WO2015002223A1 - 車載器、及びスプーフィング検知方法 - Google Patents

車載器、及びスプーフィング検知方法 Download PDF

Info

Publication number
WO2015002223A1
WO2015002223A1 PCT/JP2014/067634 JP2014067634W WO2015002223A1 WO 2015002223 A1 WO2015002223 A1 WO 2015002223A1 JP 2014067634 W JP2014067634 W JP 2014067634W WO 2015002223 A1 WO2015002223 A1 WO 2015002223A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
spoofing
positioning
positioning result
mounted device
Prior art date
Application number
PCT/JP2014/067634
Other languages
English (en)
French (fr)
Inventor
義弘 馬渕
宅原 雅人
健治 藤田
太三 山口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/901,722 priority Critical patent/US20160370469A1/en
Priority to SG11201510539YA priority patent/SG11201510539YA/en
Priority to KR1020157036370A priority patent/KR101834723B1/ko
Priority to CN201480036108.4A priority patent/CN105324682A/zh
Publication of WO2015002223A1 publication Critical patent/WO2015002223A1/ja
Priority to HK16106037.4A priority patent/HK1218161A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • G07B15/063Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station

Definitions

  • the present invention relates to a vehicle-mounted device using GNSS (Global Navigation Satelite System).
  • GNSS Global Navigation Satelite System
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • GLONASS Global Positioning System
  • Galileo System Galileo System
  • a charging process can be performed on a vehicle traveling in an area set as a toll road based on the positioning result of the vehicle position by the artificial satellite.
  • spoofing In a satellite positioning system, a technique called spoofing is known in which an estimated position is misidentified as a position different from an actual position by spoofing a positioning signal transmitted from an artificial satellite. In order to legitimately charge a vehicle on a toll road, a technique capable of detecting spoofing is desired.
  • Patent Documents 1 and 2 are examples of techniques for dealing with spoofing.
  • the vehicle-mounted device outputs a positioning result indicating the current position of the vehicle based on the positioning signal received from the artificial satellite, and a positioning result storage that stores the positioning result in association with the time. And spoofing is detected based on whether the vehicle motion satisfies a predetermined criterion using the past positioning result stored in the positioning result storage unit and the current positioning result measured by the positioning unit.
  • a processing unit is configured to perform arithmetic or indicating the current position of the vehicle based on the positioning signal received from the artificial satellite, and a positioning result storage that stores the positioning result in association with the time.
  • spoofing is detected based on whether the vehicle motion satisfies a predetermined criterion using the past positioning result stored in the positioning result storage unit and the current positioning result measured by the positioning unit.
  • a spoofing detection method for an in-vehicle device includes a step of outputting a positioning result indicating a current position of a vehicle based on a positioning signal received from an artificial satellite, and a storage device in which the positioning result is associated with time And spoofing based on whether or not the vehicle motion satisfies a predetermined condition using the past positioning result stored in the positioning result storage unit and the current positioning result measured by the positioning unit. And a step of detecting.
  • the present invention provides a technique that enables spoofing detection.
  • FIG. 1 shows the configuration of a satellite positioning system.
  • FIG. 2 shows the configuration of the vehicle-mounted device.
  • FIG. 3 shows the configuration of the spoofing detection unit.
  • FIG. 4 shows the operation of the vehicle-mounted device.
  • FIG. 5 shows the operation of the vehicle-mounted device.
  • FIG. 6 shows the configuration of the satellite positioning system.
  • FIG. 7 shows the configuration of the vehicle-mounted device.
  • FIG. 8 shows the configuration of the spoofing detection unit.
  • FIG. 9 shows the operation of the vehicle-mounted device.
  • FIG. 10 shows the operation of the vehicle-mounted device.
  • FIG. 11 shows the operation of the vehicle-mounted device.
  • FIG. 12 shows a base station ID table.
  • FIG. 1 shows the configuration of the satellite positioning system in the first embodiment of the present invention.
  • the position of the vehicle 1 is estimated using GNSS satellite information carried by positioning signals transmitted from a plurality of GNSS satellites 12 (only one is shown).
  • the vehicle-mounted device 2 is mounted on the user's vehicle 1.
  • the vehicle-mounted device 2 receives the GNSS satellite information by the GNSS antenna 6.
  • the GNSS chip 7 provided in the vehicle-mounted device 2 estimates a three-dimensional current position on the earth of the vehicle 1 based on the received GNSS satellite information, and outputs it as a positioning result.
  • the vehicle-mounted device 2 further includes a processing unit 3 that is a computer that performs billing processing using the positioning result output from the GNSS chip 7.
  • the processing unit 3 stores the positioning result in the positioning result storage area 5 prepared in the storage device.
  • the vehicle 1 includes a battery and supplies the vehicle power supply voltage 17 from the battery to the vehicle-mounted device 2.
  • the vehicle power supply voltage 17 is supplied to the power supply circuit 4 provided in the vehicle-mounted device 2.
  • the vehicle 1 further outputs an ignition ON / OFF signal 18 indicating whether the ignition key is turned in the on direction and the engine is turned on or turned off and the engine is turned off to the vehicle-mounted device 2.
  • the ignition ON / OFF signal 18 is transmitted as an ignition ON / OFF signal 19 to the processing unit 3 via the power supply circuit 4.
  • the processing unit 3 supplies a vehicle-mounted power supply voltage ON / OFF signal 20 that instructs to turn on the power of the vehicle-mounted device 2. 4 is output.
  • the power supply circuit 4 converts the vehicle power supply voltage 17 supplied from the vehicle 1 as necessary to output the on-vehicle power supply voltage 21.
  • Various circuits included in the vehicle-mounted device 2 are driven by the vehicle-mounted device power supply voltage 21.
  • FIG. 2 shows the configuration of the vehicle-mounted device 2.
  • the vehicle-mounted device 2 includes a GNSS antenna 6, a GNSS chip 7, a positioning result storage unit 32, a positioning result storage area 5, a main processing unit 34, and a spoofing detection unit 31.
  • the positioning result storage unit 32, the main processing unit 34, and the spoofing detection unit 31 correspond to the processing unit 3 in FIG.
  • Each of these units included in the processing unit 3 may be realized by software executed by the CPU, or may be realized by hardware by separate devices having respective functions.
  • the positioning result storage unit 32 stores the positioning result 35 in the positioning result storage area 5 together with the current time.
  • the positioning result 35 is stored in association with the positioning time.
  • the positioning result 36 output from the GNSS chip 7 is further input to the spoofing detection unit 31.
  • the spoofing detection unit 31 outputs a determination result 39 as to whether or not spoofing has been performed based on the positioning result 36 and the past positioning result 35 and positioning time stored in the positioning result storage area 5.
  • the main processing unit 34 Based on the positioning result 38 output from the GNSS chip 7 and the determination result 39 output from the spoofing detection unit 31, the main processing unit 34 performs a charging process when the vehicle 1 travels on a toll road.
  • FIG. 3 shows functional blocks provided in the spoofing detection unit 31.
  • the spoofing detection unit 31 includes a determination unit 41, a threshold setting unit 42, and an engine information collection unit 43.
  • the determination unit 41 is used. These functional blocks can be realized by the main CPU included in the vehicle-mounted device 2 reading out a program stored in the storage device and operating according to the procedure described in the program.
  • the operation of the spoofing detection unit 31 in this embodiment will be described with reference to FIG.
  • the GNSS chip 7 is data indicating a three-dimensional position of the vehicle 1 on the earth based on the GNSS satellite information.
  • Positioning results 35, 36, and 38 are output.
  • the positioning result storage unit 32 stores the positioning result 35 in the positioning result storage area 5 together with the positioning time indicating the current time (step A1).
  • the determination unit 41 compares the current positioning result 36 output from the GNSS chip 7 with the past positioning result stored in the positioning result storage area 5. For this comparison, for example, a time deviation amount is set in advance, and the previous positioning result (for example, 10 seconds before) is read from the positioning result storage area 5 and compared with the current positioning result 36. (Step A2).
  • the determination unit 41 determines the magnitude relationship between the difference between the past positioning result and the current positioning result, and a preset threshold value. As this threshold value, a distance that is considered unnatural for the vehicle 1 to move further is set between the set deviation amounts used in step A2. For example, if the amount of time difference is set to 10 seconds and the threshold is set to 500 meters, if the positioning result 10 seconds ago and the current positioning result are 500 meters or more, it is determined that the movement is unnatural.
  • step A3 NO the determination unit 41 determines that there is no spoofing and that the positioning is performed normally (step A5). If the difference is greater than or equal to the threshold (YES in step A3), it is determined that spoofing has been performed (step A4).
  • the determination part 41 outputs the determination result 39 regarding the presence or absence of spoofing (step A6).
  • the main processing unit 34 performs processing such as billing based on the positioning result 38, the main processing unit 34 performs processing in consideration of the determination result 39 as well. For example, when it is determined that spoofing has been performed, normal charging processing is stopped, and data indicating the determination result 39 is stored in the storage device.
  • a means for detecting a multipath that causes a positioning error in the satellite positioning system may be prepared.
  • a positioning error due to multipath for example, the vehicle motion path based on satellite positioning temporarily shows an unnatural jump, and returns to the original correct positioning result again. Therefore, when the period in which the difference in distance determined in step A3 is equal to or greater than the threshold is equal to or less than the predetermined period, it is determined that there is a possibility of positioning error due to multipath or the like, and the process of not determining spoofing is performed. May be.
  • the spoofing detection by the means described above has an advantage that it can be easily mounted on the vehicle-mounted device 2. The advantages will be described below.
  • a dedicated GNSS chip is mounted on the vehicle-mounted device.
  • a function for verifying data received from the GNSS satellite inside the GNS chip.
  • there is no need to change the GNSS chip and a technique that enables spoofing detection using a signal output from the GNSS chip is desirable.
  • the standard of signals output from the GNSS chip is defined by NMEA (National Marine Electronics Association). Any type of chip can be adopted as long as spoofing detection can be performed based on an output signal defined in such a standard, and the degree of freedom in chip selection is high.
  • the estimated position of the vehicle 1 output from the GNSS chip 7 is used as data generated by the satellite positioning system. According to the standard, such an estimated position is output by any type of GNSS chip 7. Detailed information such as orbit information of each GNSS satellite that is not necessarily output by the GNSS chip 7 is not required in the spoofing detection of FIG. Therefore, the spoofing detection process shown in FIG. 4 can be executed without changing the GNSS chip 7 itself, and has the advantage that it can be executed regardless of the type of the GNSS chip 7. Such advantages also have other embodiments of the present invention described below.
  • FIGS. 1 and 2 the configuration shown in FIGS. 1 and 2 is the same as that in the first embodiment.
  • the operation of the threshold setting unit 42 performs spoofing determination processing. Is called.
  • FIG. 5 is a flowchart showing the operation of the spoofing detection unit 31 in the second embodiment of the present invention.
  • the GNSS chip 7 outputs positioning results 35, 36, and 38 as in step A1 of FIG.
  • the positioning result storage unit 32 stores the positioning result 35 in the positioning result storage area 5 together with the positioning time indicating the current time (step A11).
  • the threshold setting unit 42 sets the threshold with reference to the threshold database 50 stored in the storage device in the vehicle-mounted device 2.
  • the position change of the vehicle 1 is, for example, fast when traveling on a highway and slow while traveling on an urban area. Therefore, it is possible to determine whether or not the time-series changes in the positioning results 35, 36, and 38 of the vehicle 1 are unnatural by setting different threshold values for the moving speed according to the current position of the vehicle 1. .
  • the threshold value database 50 stores an area on the map in association with the threshold value. For example, a high speed threshold is set for an area indicating a highway, and a low speed threshold is set for an area indicating an urban area.
  • the threshold value setting unit 42 extracts a threshold value corresponding to the current position of the vehicle 1 indicated in the positioning result 36 output from the GNSS chip 7 from the threshold value database 50 and sets it as a threshold value for spoofing detection.
  • Such threshold values can be set for, for example, vehicle speed, acceleration, angular velocity, and the like (step A12).
  • the determination unit 41 determines the current speed, acceleration, and angular velocity of the vehicle 1 based on the positioning result 36 input from the GNSS chip 7 and the past positioning results and positioning time history stored in the positioning result storage area 5. Calculate (step A13).
  • the determination unit 41 determines the magnitude relationship between the calculated speed of the vehicle 1 and the threshold value Vth of the speed set by the threshold setting unit 42. When the speed of the vehicle 1 is smaller than the threshold value (step A14 YES), the process proceeds to step A15. When the speed of the vehicle 1 is equal to or higher than the threshold (NO in step A14), it is determined that there is a suspicion that spoofing has been performed (step A18).
  • the determination unit 41 determines the magnitude relationship between the calculated acceleration of the vehicle 1 and the acceleration threshold Ath set by the threshold setting unit 42.
  • the process proceeds to step A16.
  • the acceleration of the vehicle 1 is equal to or greater than the threshold (NO in step A15), it is determined that there is a suspicion that spoofing has been performed (step A18).
  • the determination unit 41 determines the magnitude relationship between the calculated angular velocity of the vehicle 1 and the angular velocity threshold Ath set by the threshold setting unit 42.
  • the process proceeds to step A17. If the acceleration of the vehicle 1 is greater than or equal to the threshold (NO in step A16), it is determined that there is a suspicion that spoofing has been performed (step A18). By this process, when the rate of change in the direction of the vehicle is unnaturally large, it can be determined that there is a suspected spoofing.
  • steps A14 to A16 may be executed by arbitrarily changing the order, or only one or two of these three types of processing may be executed. In all of these processes, when the amount (speed, acceleration, angular velocity) indicating the motion of the vehicle is below the threshold, it is determined that spoofing is not performed (step A17).
  • the spoofing detection unit 31 can also perform a spoofing detection operation based on a comparison of the past and current positioning results in the first embodiment shown in FIG. 4. In that case, in addition to steps A14 to A16, in the operation of step A3, it is determined that there is no spoofing only when it is determined that there is no spoofing.
  • the history of suspected spoofing is registered in the spoofing candidate database 51 in association with the current time output by the GNSS chip 7 in step A18.
  • the determination unit 41 extracts the past suspected spoofing history from the spoofing candidate database 51. If the duration of suspected spoofing is shorter than the predetermined threshold (NO in step A19), it is determined that there is a short-term positioning error due to multipath or the like and spoofing is not performed (step A17). When the period during which the spoofing suspicion has continued is equal to or greater than a predetermined threshold (step A19 YES), it is determined that spoofing has been performed (step A20).
  • the determination unit 41 outputs a determination result 39 indicating no spoofing generated in Step A17 or spoofing generated in Step A20 (Step A21).
  • the main processing unit 34 takes into consideration the determination result 39 as in the first embodiment when executing the charging process or the like based on the positioning result 38 output from the GNSS chip 7.
  • spoofing determination based on the operation of the engine information collection unit 43 in FIG. 3 may be added.
  • the position of the vehicle 1 does not change. If the position estimated by the satellite positioning system changes more than a certain while the engine of the vehicle 1 is stopped, it is considered that spoofing is suspected.
  • the engine information collection unit 43 shown in FIG. 3 monitors the ignition ON / OFF signal 19. If the engine information collecting unit 43 determines that the engine of the vehicle 1 has been stopped based on the ignition ON / OFF signal 19 (the ignition key has been turned off), the last GNSS chip 7 output before that Is stored in a storage device inside the vehicle-mounted device 2 as a positioning result when the engine is stopped.
  • the first positioning result 36 output from the GNSS chip 7 is determined as the engine starting positioning result as the engine stopping positioning result.
  • the result is passed to the determination unit 41.
  • the determination unit 41 calculates the difference between the positioning result when the engine is stopped and the positioning result when the engine is started.
  • the determination unit 41 determines that the difference is smaller than a predetermined threshold value, and determines that the spoofing has been performed when the difference is equal to or greater than the predetermined threshold value.
  • FIG. 6 shows the configuration of the satellite positioning system in the third embodiment.
  • FIG. 7 shows a configuration of the vehicle-mounted device 2 in the present embodiment.
  • the following processing is performed. (1) Spoofing detection based on past and present GNSS positioning results. (2) Spoofing detection based on comparison between GNSS time information and DSRC time information, or comparison between GNSS time information and cellular communication time. (3) Spoofing detection based on a comparison between the GNSS positioning result and the position of the DSRC roadside unit, or a comparison between the GNSS positioning result and the communication area of the cellular base station.
  • the processing shown in the first embodiment or the second embodiment is performed.
  • processes (2) and (3) are further added. For these processes, a cellular communication network and a roadside system are used in this embodiment.
  • Cellular communication is a method generally used as one of mobile communication methods. The outline will be described below.
  • cellular communication a communication area is divided into many small cells, and a base station is installed in each cell.
  • the cell size is typically in the range of several kilometers to several tens of kilometers centering on the base station, but a method of dividing into smaller microcells is also used.
  • the radio wave output of each base station is large enough to cover the cell to which the base station belongs as a communication range. In other words, each base station is installed away from other base stations so as not to cause radio wave interference. Therefore, the same frequency can be reused in different base stations, and the frequency can be effectively used.
  • the cellular communication network includes a center system 14 and a plurality of cellular base stations 13.
  • the vehicle-mounted device 2 includes a cellular communication antenna 8 and a cellular communication chip 9.
  • the cellular communication network can be used as a part of a toll road charging system using the result of position estimation of the vehicle 1 by GNSS.
  • the GNSS chip 7 estimates the position of the vehicle 1 based on the GNSS satellite information received from the GNSS satellite 12 and outputs it as a positioning result.
  • the cellular communication chip 9 transmits the positioning result from the cellular communication antenna 8.
  • the positioning result is transmitted to the center system 14 via the cellular base station 13 near the vehicle 1.
  • processing such as billing using the positioning result of the vehicle 1 is performed.
  • the roadside system 16 is connected to a plurality of DSRC antennas 15 installed on the roadside such as a road on which a vehicle runs or a parking lot.
  • the vehicle-mounted device 2 includes a DSRC antenna 10 for performing bidirectional narrow area dedicated communication (DSRC) with the DSRC antenna 15 and a DSRC communication processing unit 11.
  • DSRC narrow area dedicated communication
  • the vehicle-mounted device 2 in the present embodiment includes a real-time clock 33.
  • the information generated by the GNSS chip 7 based on the GNSS satellite information includes GNSS time information 37 indicating the current time.
  • the GNSS chip 7 outputs the GNSS time information 37 to the real-time clock 33 inside the vehicle-mounted device 2.
  • the real-time clock 33 outputs GNSS time information 40 in a format that can be used as a time stamp or the like in processing in the vehicle-mounted device 2.
  • the GNSS time information 37 output from the GNSS chip 7 and the GNSS time information 40 output from the real-time clock 33 have substantially the same contents, although the formats are different.
  • the roadside system 16 always generates DSRC time information indicating the current time.
  • the DSRC communication processing unit 11 receives the DSRC time information via the DSRC antenna 10 and passes it to the spoofing detection unit 31.
  • the roadside system 16 transmits DSRC position information indicating the position of the DSRC antenna 15 (roadside device).
  • the DSRC communication processing unit 11 passes the DSRC position information received by the DSRC antenna 10 to the spoofing detection unit 31 as a DSRC positioning result.
  • the spoofing detection unit 31 receives the positioning result 36 output from the GNSS chip 7 and the GNSS time information 40 output from the real-time clock 33.
  • the spoofing detection unit 31 outputs a determination result 39 as to whether or not spoofing has been performed based on the positioning result 36, the GNSS time information 40, and the DSRC time information.
  • the spoofing detection unit 31 further outputs a determination result 39 on whether or not spoofing has been performed based on the positioning result 36 (GNSS positioning result) output from the GNSS chip 7 and the DSRC positioning result. Based on the positioning result 38 output from the GNSS chip 7 and the determination result 39 output from the spoofing detection unit 31, the main processing unit 34 performs a charging process when the vehicle 1 travels on a toll road.
  • FIG. 8 shows functional blocks provided in the spoofing detection unit 31.
  • the spoofing detection unit 31 in this embodiment further includes a time information acquisition unit 44 and a position information acquisition unit 45 in addition to the first embodiment shown in FIG.
  • These functional blocks can be realized by the main CPU included in the vehicle-mounted device 2 reading out a program stored in the storage device and operating according to the procedure described in the program.
  • FIG. 9 is a flowchart showing spoofing detection based on a comparison between GNSS time information and DSRC time information in the present embodiment.
  • the GNSS chip 7 outputs GNSS time information 37 indicating the current time based on the GNSS satellite information.
  • the real time clock 33 outputs the GNSS time information 40 corresponding to the GNSS time information 37 to the spoofing detection unit 31 in substantially real time (step B1).
  • the time information acquisition unit 44 acquires DSRC time information from the DSRC communication processing unit 11 in substantially real time (step B2).
  • the determination unit 41 compares the GNSS time information 40 with the DSRC time information (step B3). When the difference between the GNSS time information 40 and the DSRC time information is smaller than the predetermined threshold (step B4 NO), the determination unit 41 determines that spoofing is not performed (step B6). When the difference between the GNSS time information 40 and the DSRC time information is equal to or greater than a predetermined threshold (step B4 YES), the determination unit 41 determines that spoofing has been performed (step B5).
  • the determination part 41 outputs the determination result 39 regarding the presence or absence of spoofing (step B7).
  • the main processing unit 34 performs processing such as billing based on the positioning result 38
  • the main processing unit 34 performs processing in consideration of the determination result 39 as well. For example, when it is determined that spoofing has been performed, normal charging processing is stopped, and data indicating the determination result 39 is stored in the storage device.
  • the time information included in the spoofing information may be different from the current time.
  • spoofing can be detected by verifying the time by the satellite positioning system in comparison with the time provided by the roadside system 16.
  • cellular communication may be used instead of the roadside system 16.
  • the cellular communication network generates cellular communication time information indicating the current time.
  • the cellular communication time information is transmitted from the cellular base station 13 to the vehicle-mounted device 2.
  • the cellular communication chip 9 delivers the cellular communication time information received via the cellular communication antenna 8 to the spoofing detection unit 31 in almost real time.
  • the spoofing detection unit 31 inputs cellular communication time information instead of inputting DSRC time information in step B2 of FIG.
  • the other processes are the same as those in FIG.
  • spoof detection is performed by verifying the reliability of the GNSS time information using the time supplied from the cellular communication network even in a region where the DSRC roadside device is not installed. Can do.
  • the spoofing detection unit 31 further performs spoofing detection (description process (3)) based on a comparison between the GNSS positioning result and the position of the DSRC roadside machine.
  • FIG. 10 is a flowchart showing the operation of the spoofing detection unit 31 in the spoofing detection based on the comparison between the GNSS positioning result and the position of the DSRC roadside device in the present embodiment.
  • the GNSS chip 7 is data indicating a three-dimensional position of the vehicle 1 on the earth based on the GNSS satellite information. Positioning results 36 and 38 are output (step C1).
  • the position information acquisition unit 45 inputs the DSRC positioning result from the DSRC communication processing unit 11 in substantially real time (step C2).
  • the determination unit 41 compares the current positioning result 36 (GNSS positioning result) output from the GNSS chip 7 with the DSRC positioning result (step C3).
  • the determination unit 41 determines the magnitude relationship between the difference between the position indicated by the GNSS positioning result and the position indicated by the DSRC positioning result (the distance between the two) and a preset threshold value. As this threshold value, a distance that is equal to or larger than the communication range of the roadside unit of DSRC is set.
  • the determination unit 41 proceeds to the process of step C5.
  • the determination unit 41 proceeds to the process of step C6.
  • step C6 the determination unit 41 determines that there is a suspicion of spoofing.
  • the history of suspected spoofing is registered in the spoofing candidate database 51 in association with the current time.
  • the determination unit 41 extracts the past suspected spoofing history from the spoofing candidate database 51. If the duration of suspected spoofing is shorter than a predetermined threshold (NO in step C7), it is determined that there is a short-term positioning error due to multipath or the like and spoofing is not performed (step C5). If the duration of suspected spoofing is longer than a predetermined threshold (YES in step C7), it is determined that spoofing has been performed (step C8).
  • the determination unit 41 outputs a determination result indicating no spoofing generated in step C5 or spoofing generated in step C8 (step C9).
  • the main processing unit 34 takes the determination result 39 into consideration when executing a charging process or the like based on the positioning result 38 output from the GNSS chip 7. For example, when it is determined that spoofing has been performed, normal charging processing is stopped, and data indicating the determination result 39 is stored in the storage device.
  • the spoofing can be detected when the positioning result based on the GNSS satellite information is unnaturally separated from the position of the DSRC roadside device that is communicating.
  • the cellular communication network transmits an identifier for identifying the cellular base station 13 in communication with the vehicle-mounted device 2 to the vehicle-mounted device 2 when communicating with the vehicle-mounted device 2 for charging processing or the like via the cellular base station 13. .
  • the identifier By the identifier, the position where the vehicle 1 is located can be roughly recognized and used instead of the DSRC positioning result in the first embodiment.
  • FIG. 12 shows a base station ID table 52 registered in advance in the spoofing detection unit 31 in the present embodiment.
  • the base station ID table 52 associates a base station ID 53 that is an identifier for specifying each of a plurality of base stations with an area 54 that is information indicating a communication range covered by each cellular base station 13.
  • FIG. 11 shows the operation of the spoofing detection unit 31 in the present embodiment. Similar to step C1 in FIG. 10, the positioning result 36 by the satellite positioning system is input to the spoofing detection unit 31 (step C11).
  • the cellular communication chip 9 extracts from the signal received from the cellular base station 13 via the cellular communication antenna 8 the base station ID 53 that identifies the cellular base station 13 in communication.
  • the position information acquisition unit 45 inputs the base station ID 53 from the cellular communication chip 9 (step C12).
  • the position information acquisition unit 45 searches the base station ID table 52 for an area 54 corresponding to the base station ID 53 acquired from the cellular communication chip 9 (step C13).
  • the determination unit 41 compares the position indicated by the GNSS positioning result with the area 54 (cellular base station communication range) searched from the base station ID table 52 (step C14). If the GNSS positioning result is within the cellular base station communication range (step C15 NO), the determination unit 41 proceeds to the process of step C16, and if not (step C15 YES), the determination unit 41 proceeds to the process of step C17. Subsequent steps C16 to C20 are the same as steps C5 to C9 in FIG.
  • the spoofing detection unit 31 performs spoofing detection using the position of the cellular base station 13 in communication instead of the DSRC positioning result in the operation shown in FIG. In such a satellite positioning system, spoofing detection can be performed even in an area where a DSRC roadside device is not installed.
  • the spoofing detection unit 31 When the spoofing detection unit 31 performs the processing shown in FIG. 9 and the processing shown in FIG. 10 in addition to the processing shown in FIG. 4 or FIG. 5, the following three types of spoofing detection results are obtained. (1) Spoofing detection based on past and present GNSS positioning results. (2) Spoofing detection based on comparison between GNSS time and DSRC time (or cellular communication time). (3) Spoofing detection based on a comparison between the GNSS positioning result and the position of the DSRC roadside unit (or the communication area of the cellular base station). The spoofing detection unit 31 comprehensively outputs a determination result 39 indicating that there is spoofing when it is determined that “spoofing is present” in at least one of these three types of spoofing detection methods.
  • the spoofing detection unit 31 employs a majority method that outputs a determination result 39 of spoofing comprehensively when it is determined that “spoofing is present” in at least two of these three spoofing detection methods. May be.
  • only one of the methods (2) and (3) may be employed. In that case, when at least one of the two types of spoofing detection detects the spoofing, a determination result 39 that there is spoofing is output comprehensively.
  • a determination result 39 that spoofing is present may be output comprehensively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

 車載器は、人工衛星から受信した測位信号に基づいて、車両の現在位置を示す測位結果を出力する測位部と、測位結果を時刻と対応付けて格納する測位結果記憶部と、測位結果記憶部に格納された過去の測位結果と、測位部が測定した現在の測位結果とを用いて、車両の運動が所定の基準を満たすか否かに基づいてスプーフィングを検知する処理部とを備える。

Description

車載器、及びスプーフィング検知方法
 本発明は、GNSS(Global Navigation Satellite System)を利用した車載器に関する。
 人工衛星が発信する信号を用いて地球上の車両等の位置を推定する衛星測位システムが用いられている。そのような技術として、GPS(Global Positioning System)、GLONASS、ガリレオシステム等のGNSS(Global Navigation Satellite System)が知られている。
 衛星測位システムを用いる事により、例えば、有料道路として設定された領域内を走行する車両に対して、人工衛星による車両位置の測位結果に基づいて課金処理を行うことができる。
特表2008-510138号公報 シンガポール特許出願公開第171571号
 衛星測位システムにおいて、人工衛星が発信する測位用の信号を偽装することによって、推定位置を現実の位置と異なる位置に誤認させるスプーフィングと呼ばれる技術が知られている。有料道路における車両の課金処理などを正当に行うために、スプーフィングの検知を可能とする技術が望まれる。特許文献1、2は、スプーフィングに対処するための技術の例である。
 本発明の一側面において、車載器は、人工衛星から受信した測位信号に基づいて、車両の現在位置を示す測位結果を出力する測位部と、測位結果を時刻と対応付けて格納する測位結果記憶部と、測位結果記憶部に格納された過去の測位結果と、測位部が測定した現在の測位結果とを用いて、車両の運動が所定の基準を満たすか否かに基づいてスプーフィングを検知する処理部とを備える。
 本発明の一側面において、車載器のスプーフィング検知方法は、人工衛星から受信した測位信号に基づいて、車両の現在位置を示す測位結果を出力する工程と、測位結果を時刻と対応付けて記憶装置に格納する工程と、測位結果記憶部に格納された過去の測位結果と、測位部が測定した現在の測位結果とを用いて、車両の運動が所定の条件を満たすか否かに基づいてスプーフィングを検知する工程とを備える。
 本発明により、スプーフィング検知を可能とする技術が提供される。
図1は、衛星測位システムの構成を示す。 図2は、車載器の構成を示す。 図3は、スプーフィング検知部の構成を示す。 図4は、車載器の動作を示す。 図5は、車載器の動作を示す。 図6は、衛星測位システムの構成を示す。 図7は、車載器の構成を示す。 図8は、スプーフィング検知部の構成を示す。 図9は、車載器の動作を示す。 図10は、車載器の動作を示す。 図11は、車載器の動作を示す。 図12は、基地局IDテーブルを示す。
(第1実施形態)
 以下、添付図面を参照して、本発明の実施形態を説明する。図1は、本発明の第1実施形態における衛星測位システムの構成を示す。衛星測位システムにおいては、複数のGNSS衛星12(1つのみ図示)が発信する測位信号が搬送するGNSS衛星情報を用いて、車両1の位置が推定される。
 ユーザの車両1に車載器2が搭載される。車載器2は、GNSS衛星情報をGNSSアンテナ6によって受信する。車載器2が備えるGNSSチップ7は、受信したGNSS衛星情報に基づいて車両1の地球上の三次元的な現在位置を推定し、測位結果として出力する。車載器2は更に、GNSSチップ7から出力される測位結果を用いて課金処理等を行う計算機である処理部3を備える。処理部3は、測位結果を、記憶装置に用意された測位結果記憶領域5に格納する。
 車両1はバッテリを備え、バッテリから車載器2に車両電源電圧17を供給する。車両電源電圧17は、車載器2が備える電源回路4に供給される。車両1は更に、イグニッションキーがオンの方向に回されエンジンがオンされたか、オフの方向に回されエンジンがオフされたかを示すイグニッションON/OFF信号18を車載器2に出力する。イグニッションON/OFF信号18は電源回路4を経由して処理部3にイグニッションON/OFF信号19として送信される。
 処理部3は、車両1のイグニッションがオンされたことを示すイグニッションON/OFF信号19に応じて、車載器2の電源をオンすることを指令する車載器電源電圧ON/OFF信号20を電源回路4に出力する。電源回路4は、その車載器電源電圧ON/OFF信号20に応答して、車両1から供給される車両電源電圧17を必要に応じて電力変換して車載器電源電圧21を出力する。車載器2が備える各種回路は、車載器電源電圧21によって駆動する。
 図2は、車載器2の構成を示す。車載器2は、GNSSアンテナ6、GNSSチップ7、測位結果保存部32、測位結果記憶領域5、メイン処理部34、及びスプーフィング検知部31を備える。これらのうち、測位結果保存部32、メイン処理部34、及びスプーフィング検知部31が、図1の処理部3に相当する。処理部3に含まれるこれらの各部は、CPUが実行するソフトウェアによって実現してもよいし、それぞれの機能を有する別個の装置によってハードウェア的に実現してもよい。GNSSチップ7が測位結果35を出力すると、測位結果保存部32はその測位結果35を現在時刻と共に測位結果記憶領域5に格納する。測位結果記憶領域5には、測位結果35が測位時刻と対応づけられて格納される。
 GNSSチップ7が出力する測位結果36は更に、スプーフィング検知部31に入力される。スプーフィング検知部31は、測位結果36と、測位結果記憶領域5に格納された過去の測位結果35及び測位時刻とに基づいて、スプーフィングが行われたか否かの判定結果39を出力する。メイン処理部34は、GNSSチップ7が出力する測位結果38と、スプーフィング検知部31が出力する判定結果39とに基づいて、車両1が有料道路を走行した際の課金処理などを実行する。
 図3は、スプーフィング検知部31が備える機能ブロックを示す。スプーフィング検知部31は、判定部41、閾値設定部42、及びエンジン情報収集部43を備える。本実施形態においては、判定部41が用いられる。これらの機能ブロックは、車載器2が備えるメインCPUが記憶装置に格納されたプログラムを読み出し、そのプログラムに記載された手順に従って動作することによって実現することができる。
 次に、図4を参照して、本実施形態におけるスプーフィング検知部31の動作について説明する。まず、車両1のエンジンが起動し、車載器2がオンとなっているとき、GNSSチップ7は、GNSS衛星情報に基づいて、車両1の地球上での三次元的な位置を示すデータである測位結果35、36、38を出力する。測位結果保存部32は、現在時刻を示す測位時刻と共に、測位結果35を測位結果記憶領域5に格納する(ステップA1)。
 判定部41は、GNSSチップ7が出力した現在の測位結果36と、測位結果記憶領域5に格納された過去の測位結果とを比較する。この比較は、例えば、予め時間のずれ量を設定し、測位結果記憶領域5から、設定されたずれ量だけ過去の(例えば10秒前の)測位結果を読み出し、現在の測位結果36と比較することによって実行される(ステップA2)。
 判定部41は、過去の測位結果と現在の測位結果の差異と、予め設定された閾値との大小関係を判定する。この閾値としては、ステップA2で用いられた設定されたずれ量の間に、車両1がそれ以上運動するのは不自然だと思われる距離が設定される。例えば、時間のずれ量を10秒に設定し、閾値を500メートルに設定すると、10秒前の測位結果と現在の測位結果が500メートル以上である場合は、不自然な運動であると判断される。
 判定部41は、差異が閾値以上でない場合は(ステップA3NO)、スプーフィングが無く、測位が正常に行われているものと判定する(ステップA5)。差異が閾値以上である場合は(ステップA3YES)、スプーフィングが行われたと判定する(ステップA4)。
 判定部41は、スプーフィングの有無に関する判定結果39を出力する(ステップA6)。メイン処理部34は、測位結果38に基づいて課金等の処理を行う際に、判定結果39も考慮に入れて処理を行う。例えば、スプーフィングが行われたと判定されたときは、通常の課金処理を中止し、その判定結果39を示すデータを記憶装置に格納する。
 以上の処理により、スプーフィングが行われた結果、GNSS衛星情報に基づく測位結果が不自然な飛躍を示した場合に、スプーフィング情報に依拠した課金処理を避けることができる。
 以上のスプーフィング検知処理に加えて、衛星測位システムにおける測位誤差の原因となるマルチパスを検出する手段を用意してもよい。マルチパスによる測位誤差の場合は、例えば、衛星測位に基づく車両の運動経路が一時的に不自然な飛躍を示し、再び元の正しい測位結果に戻る。従って、ステップA3で判定した、距離の差異が閾値以上である期間が所定期間以下であるときは、マルチパス等による測位誤差の可能性があると判定して、スプーフィングと判定しないという処理を行ってもよい。
 以上に説明した手段によるスプーフィング検知は、車載器2への実装が容易であるという利点を有する。以下に、その利点について説明する。
 衛星測位システムにおいては、専用のGNSSチップが車載器に搭載される。スプーフィング検知機能を実装するために、GNSチップの内部に、GNSS衛星から受信するデータを検証する機能を追加することも考えられる。しかしながら、実装の容易さの観点からは、GNSSチップに変更を加える必要が無く、GNSSチップが出力する信号を用いたスプーフィング検知を可能とする技術が望ましい。
 GNSSチップが出力する信号は、NMEA(National Marine Electronics Association)などによって規格が定められている。そのような規格に定められた出力信号に基づいてスプーフィング検知を行うことができれば、どの種類のチップを採用することもでき、チップ選定の自由度が高い。
 図4に示したスプーフィング検知処理においては、衛星測位システムが生成するデータとして、GNSSチップ7が出力する車両1の推定位置が用いられる。このような推定位置は、どのような種類のGNSSチップ7でも出力することが規格に定められている。そして、各GNSS衛星の軌道情報などの、GNSSチップ7が必ずしも出力するとは限らない詳細な情報は、図4のスプーフィング検知においては必要とされない。そのため、図4に示したスプーフィング検知処理は、GNSSチップ7自身に変更を加えること無く実行でき、更に、GNSSチップ7の種類を問わずに実行することができるという利点を有する。このような利点は、以下に説明する本発明の他の実施形態も同様に有する。
(第2実施形態)
 次に、本発明の第2実施形態を説明する。第2実施形態においては、図1、図2に示される構成は第1実施形態と同様であるが、図3の判定部41に加えて、閾値設定部42の動作によって、スプーフィング判定処理が行われる。
 図5は、本発明の第2実施形態におけるスプーフィング検知部31の動作を示すフローチャートである。図4のステップA1と同様に、GNSSチップ7が測位結果35、36、38を出力する。測位結果保存部32は、現在時刻を示す測位時刻と共に、測位結果35を測位結果記憶領域5に格納する(ステップA11)。
 次に、閾値設定部42は、車載器2内の記憶装置に格納された閾値データベース50を参照して、閾値を設定する。車両1の位置変化は、例えば高速道路を走行中には速く、市街地を走行中には遅い。従って、車両1の現在位置に応じて、異なる移動速度の閾値を設定することによって、車両1の測位結果35、36、38の時系列的な変化が不自然か否かを判定することができる。
 そのような判定を行うため、閾値データベース50は、地図上の領域と、閾値とを対応づけて格納する。例えば、高速道路を示す領域に対しては速度の閾値が大きく設定され、市街地を示す領域に対しては速度の閾値が小さく設定される。閾値設定部42は、GNSSチップ7が出力した測位結果36に示された車両1の現在位置に対応する閾値を閾値データベース50から抽出して、スプーフィング検知用の閾値として設定する。このような閾値は、例えば車両の速度、加速度、角速度などについてそれぞれ設定することができる(ステップA12)。
 判定部41は、GNSSチップ7から入力した測位結果36と、測位結果記憶領域5に格納された過去の測位結果と測位時刻の履歴に基づいて、車両1の現在の速度、加速度、及び角速度を算出する(ステップA13)。
 判定部41は、算出された車両1の速度と、閾値設定部42が設定した速度の閾値Vthとの大小関係を判定する。車両1の速度が閾値よりも小さい場合は(ステップA14YES)、ステップA15の処理に進む。車両1の速度が閾値以上の場合には(ステップA14NO)、スプーフィングが行われた疑いがあると判定される(ステップA18)。
 判定部41は、算出された車両1の加速度と、閾値設定部42が設定した加速度の閾値Athとの大小関係を判定する。車両1の加速度が閾値よりも小さい場合は(ステップA15YES)、ステップA16の処理に進む。車両1の加速度が閾値以上の場合には(ステップA15NO)、スプーフィングが行われた疑いがあると判定される(ステップA18)。
 判定部41は、算出された車両1の角速度と、閾値設定部42が設定した角速度の閾値Athとの大小関係を判定する。車両1の角速度が閾値よりも小さい場合は(ステップA16YES)、ステップA17の処理に進む。車両1の加速度が閾値以上の場合には(ステップA16NO)、スプーフィングが行われた疑いがあると判定される(ステップA18)。この処理により、車両の方向の変化率が不自然な程大きいときに、スプーフィング疑いがあると判定することができる。
 ステップA14~A16の処理は、任意に順序を入れ替えて実行してもよいし、これら3種類の処理のうち1又は2種類のみ実行してもよい。これらの処理の全てにおいて、車両の運動を示す量(速度、加速度、角速度)が閾値を下回った場合には、スプーフィングは行われていないと判定される(ステップA17)。
 本実施形態において、スプーフィング検知部31は、図5に示す動作に加えて、図4に示した第1実施形態における過去と現在の測位結果の比較に基づくスプーフィング検知動作を行うこともできる。その場合には、ステップA14~A16に加えて、ステップA3の動作においてもスプーフィング無しと判定された場合にのみ、スプーフィング無しと判定される。
 スプーフィング疑いがあると判定された場合、ステップA18において、GNSSチップ7が出力する現在時刻と対応づけて、スプーフィング疑いの履歴がスプーフィング候補データベース51に登録される。
 判定部41は、スプーフィング疑いが発生した場合、過去のスプーフィング疑いの履歴をスプーフィング候補データベース51から抽出する。スプーフィング疑いが継続した期間が所定の閾値より短かった場合は(ステップA19NO)、マルチパス等による短期的な測位誤差であり、スプーフィングは行われていないと判定する(ステップA17)。スプーフィング疑いが継続した期間が所定の閾値以上であった場合は(ステップA19YES)、スプーフィングが行われたと判定する(ステップA20)。
 判定部41は、ステップA17において生成されたスプーフィングなし、又はステップA20において生成されたスプーフィングありを示す判定結果39を出力する(ステップA21)。メイン処理部34は、GNSSチップ7が出力する測位結果38に基づいて課金処理等を実行する際に、第1実施形態と同様に、判定結果39を考慮に入れる。
(エンジンの起動状態を用いたスプーフィング判定)
 以上の処理に加えて、図3のエンジン情報収集部43の動作によるスプーフィング判定を追加してもよい。通常、車両1のエンジンが停止している場合は、車両1の位置は変化しない。もし車両1のエンジンが停止中に、衛星測位システムによって推定された位置がある程度以上変化した場合には、スプーフィングの疑いがあると考えられる。
 そうしたスプーフィング疑いを検知するため、図3に示すエンジン情報収集部43は、イグニッションON/OFF信号19を監視する。エンジン情報収集部43は、イグニッションON/OFF信号19に基づいて、車両1のエンジンが停止された(イグニッションキーがオフ状態とされた)と判定した場合、GNSSチップ7がそれ以前に出力した最後の測位結果36を、エンジン停止時測位結果として、車載器2の内部の記憶装置に保存する。
 エンジン情報収集部43が、イグニッションON/OFF信号19がオフからオンに変わったことを認識したとき、GNSSチップ7が出力する最初の測位結果36が、エンジン起動時測位結果として、エンジン停止時測位結果と共に、判定部41に受け渡される。判定部41は、エンジン停止時測位結果と、エンジン起動時測位結果の差を算出する。判定部41は、その差が所定の閾値より小さかった場合は正常であると判定し、所定の閾値以上であった場合はスプーフィングが行われたと判定する。
(第3実施形態)
 次に、本発明の第3実施形態について説明する。図6は、第3実施形態における衛星測位システムの構成を示す。図7は、本実施形態における車載器2の構成を示す。本実施形態においては、以下の処理が行われる。
(1)過去と現在のGNSS測位結果に基づくスプーフィング検知。
(2)GNSS時刻情報とDSRC時刻情報の比較、又は、GNSS時刻情報とセルラ通信時刻の比較に基づくスプーフィング検知。
(3)GNSS測位結果とDSRC路側機の位置の比較、又は、GNSS測位結果とセルラ基地局の通信領域との比較に基づくスプーフィング検知。
 これらのうち、(1)については、第1実施形態又は第2実施形態に示した処理が行われる。本実施形態においては更に、(2)と(3)の処理が追加される。それらの処理のために、本実施形態においては、セルラ通信網と、路側システムとが用いられる。
 セルラ通信は、移動体通信の方式の一つとして一般的に用いられている方式である。以下に概略を説明する。セルラ通信においては、通信地域が多数の小さいセルに分けられ、各セルに基地局が設置される。セルのサイズは、典型的には基地局を中心とする数キロメートルから十数キロメートル程度の範囲だが、それより小さいマイクロセルに分割する方式も用いられている。各基地局の電波の出力は、その基地局が属するセルを通信範囲としてカバーする程度の大きさである。すなわち、各基地局は、他の基地局に対して、電波干渉を起こさない程度に離れて設置される。そのため、異なる基地局で同じ周波数を使い回すことが可能であり、周波数の有効利用が可能である。
 セルラ通信網は、センタシステム14と、複数のセルラ基地局13とを備える。車載器2は、セルラ通信アンテナ8と、セルラ通信チップ9とを備える。セルラ通信網は、GNSSによる車両1の位置推定結果を用いた有料道路の課金システムの一部として使用することができる。GNSSチップ7は、GNSS衛星12から受信するGNSS衛星情報に基づいて、車両1の位置を推定して測位結果として出力する。セルラ通信チップ9は、その測位結果をセルラ通信アンテナ8から発信する。測位結果は、車両1の近くのセルラ基地局13を介してセンタシステム14に送信される。車載器2とセルラ通信網とが双方向に通信することにより、車両1の測位結果を用いた課金等の処理が行われる。
 路側システム16は、車両が走行する道路や駐車場などの路側に設置される複数のDSRCアンテナ15に接続される。車載器2は、DSRCアンテナ15と双方向の狭域専用通信(DSRC、Dedicated Short Range Communication)を行うためのDSRCアンテナ10と、DSRC通信処理部11とを備える。
(DSRCによる時刻情報の取得)
 図7に示すように、本実施形態における車載器2は、リアルタイムクロック33を備える。GNSSチップ7がGNSS衛星情報に基づいて生成する情報の中には、現在時刻を示すGNSS時刻情報37が含まれる。GNSSチップ7はGNSS時刻情報37を車載器2の内部のリアルタイムクロック33に出力する。リアルタイムクロック33は、車載器2内の処理においてタイムスタンプ等として利用できる形式のGNSS時刻情報40を出力する。GNSSチップ7が出力するGNSS時刻情報37と、リアルタイムクロック33が出力するGNSS時刻情報40とは、形式は異なるが、実質的には同一の内容を有している。
 路側システム16は、現在時刻を示すDSRC時刻情報を常に生成している。DSRC通信処理部11は、DSRCアンテナ10を介してそのDSRC時刻情報を受信し、スプーフィング検知部31に受け渡す。
(DSRCによる位置情報の取得)
 路側システム16は、DSRCアンテナ15(路側装置)の位置を示すDSRC位置情報を発信する。DSRC通信処理部11は、DSRCアンテナ10が受信したDSRC位置情報を、DSRC測位結果としてスプーフィング検知部31に受け渡す。
(スプーフィング検知部の構成)
 スプーフィング検知部31には、GNSSチップ7が出力する測位結果36と、リアルタイムクロック33が出力するGNSS時刻情報40とが入力される。スプーフィング検知部31は、測位結果36と、GNSS時刻情報40と、DSRC時刻情報とに基づいて、スプーフィングが行われたか否かの判定結果39を出力する。
 スプーフィング検知部31は更に、GNSSチップ7が出力する測位結果36(GNSS測位結果)と、DSRC測位結果とに基づいて、スプーフィングが行われたか否かの判定結果39を出力する。メイン処理部34は、GNSSチップ7が出力する測位結果38と、スプーフィング検知部31が出力する判定結果39とに基づいて、車両1が有料道路を走行した際の課金処理などを実行する。
 図8は、スプーフィング検知部31が備える機能ブロックを示す。本実施形態におけるスプーフィング検知部31は、図3に示す第1実施形態に加えて更に、時刻情報取得部44と、位置情報取得部45とを備える。これらの機能ブロックは、車載器2が備えるメインCPUが記憶装置に格納されたプログラムを読み出し、そのプログラムに記載された手順に従って動作することによって実現することができる。
(DSRC時刻情報を用いたスプーフィング検知部の動作)
 次に、本実施形態におけるスプーフィング検知部31の動作について説明する。本実施形態においては、スプーフィング検知部31は、GNSS時刻とDSRC時刻との比較に基づくスプーフィング検知(既述の処理(2))を行う。図9は、本実施形態における、GNSS時刻情報とDSRC時刻情報との比較に基づくスプーフィング検知を示すフローチャートである。
 まず、車両1のエンジンが起動し、車載器2がオンとなっているとき、GNSSチップ7は、GNSS衛星情報に基づいて、現在時刻を示すGNSS時刻情報37を出力する。リアルタイムクロック33は、そのGNSS時刻情報37に対応するGNSS時刻情報40を、ほぼリアルタイムでスプーフィング検知部31に出力する(ステップB1)。時刻情報取得部44は、DSRC通信処理部11からDSRC時刻情報をほぼリアルタイムで取得する(ステップB2)。
 判定部41は、GNSS時刻情報40とDSRC時刻情報とを比較する(ステップB3)。判定部41は、GNSS時刻情報40とDSRC時刻情報との差が所定の閾値より小さい場合は(ステップB4NO)、スプーフィングは行われていないと判定する(ステップB6)。判定部41は、GNSS時刻情報40とDSRC時刻情報との差が所定の閾値以上である場合は(ステップB4YES)、スプーフィングが行われたと判定する(ステップB5)。
 判定部41は、スプーフィングの有無に関する判定結果39を出力する(ステップB7)。メイン処理部34は、測位結果38に基づいて課金等の処理を行う際に、判定結果39も考慮に入れて処理を行う。例えば、スプーフィングが行われたと判定されたときは、通常の課金処理を中止し、その判定結果39を示すデータを記憶装置に格納する。
 スプーフィングの手法の一つとして、過去の衛星測位システムによる測位結果のデータを、現在の車両の位置データであるかのように偽装して使用することが考えられる。そのような場合、スプーフィング用の情報に含まれる時刻情報が現在時刻とは異なっている可能性がある。本実施形態における処理により、そのような場合に、衛星測位システムによる時刻を、路側システム16が提供する時刻と比較して検証することによって、スプーフィングを検知することができる。
(セルラ通信網時刻情報を用いたスプーフィング検知)
 図9に示したスプーフィング検知の変形例として、路側システム16に替えて、セルラ通信を用いてもよい。本変形例において、セルラ通信網は、現在時刻を示すセルラ通信時刻情報を生成する。セルラ通信時刻情報は、セルラ基地局13から車載器2に送信される。セルラ通信チップ9は、セルラ通信アンテナ8を介して受信したセルラ通信時刻情報をスプーフィング検知部31にほぼリアルタイムで受け渡す。
 本変形例において、スプーフィング検知部31は、図9のステップB2におけるDSRC時刻情報の入力に替えて、セルラ通信時刻情報を入力する。それ以外の処理は、図9と同じである。このような衛星測位システムにおいては、DSRCの路側装置が設置されていない領域においても、セルラ通信網から供給される時刻を用いてGNSS時刻情報の信頼性を検証することにより、スプーフィング検知を行うことができる。
(DSRC位置情報を用いたスプーフィング検知部の動作)
 本実施形態においては、スプーフィング検知部31は、更に、GNSS測位結果とDSRC路側機の位置との比較に基づくスプーフィング検知(記述の処理(3))を行う。図10は、本実施形態における、GNSS測位結果とDSRC路側機の位置との比較に基づくスプーフィング検知におけるスプーフィング検知部31の動作を示すフローチャートである。
 まず、車両1のエンジンが起動し、車載器2がオンとなっているとき、GNSSチップ7は、GNSS衛星情報に基づいて、車両1の地球上での三次元的な位置を示すデータである測位結果36、38を出力する(ステップC1)。位置情報取得部45は、DSRC通信処理部11からDSRC測位結果をほぼリアルタイムで入力する(ステップC2)。
 判定部41は、GNSSチップ7が出力した現在の測位結果36(GNSS測位結果)と、DSRC測位結果とを比較する(ステップC3)。判定部41は、GNSS測位結果が示す位置とDSRC測位結果が示す位置との差異(両者間の距離)と、予め設定された閾値との大小関係を判定する。この閾値としては、DSRCの路側機の通信範囲と同程度か、それより大きい距離が設定される。判定部41は、差異が閾値より小さい場合(ステップC4NO)、ステップC5の処理に進み、差異が閾値以上であった場合(ステップC4YES)、ステップC6の処理に進む。
 ステップC4においてYESの判定がなされると、判定部41は、スプーフィングの疑いがあると判定する(ステップC6)。スプーフィング疑いがあると判定された場合、現在時刻と対応づけて、スプーフィング疑いの履歴がスプーフィング候補データベース51に登録される。
 判定部41は、スプーフィング疑いが発生した場合、過去のスプーフィング疑いの履歴をスプーフィング候補データベース51から抽出する。スプーフィング疑いが継続した期間が所定の閾値より短かった場合は(ステップC7NO)、マルチパス等による短期的な測位誤差であり、スプーフィングは行われていないと判定する(ステップC5)。スプーフィング疑いが継続した期間が所定の閾値以上であった場合は(ステップC7YES)、スプーフィングが行われたと判定する(ステップC8)。
 判定部41は、ステップC5において生成されたスプーフィングなし、又はステップC8において生成されたスプーフィングありを示す判定結果を出力する(ステップC9)。メイン処理部34は、GNSSチップ7が出力する測位結果38に基づいて課金処理等を実行する際に、判定結果39を考慮に入れる。例えば、スプーフィングが行われたと判定されたときは、通常の課金処理を中止し、その判定結果39を示すデータを記憶装置に格納する。
 以上の処理により、スプーフィングが行われた結果、GNSS衛星情報に基づく測位結果が通信を行っているDSRC路側機の位置から不自然に離れていた場合に、スプーフィングを検知することができる。
(セルラ基地局位置情報を用いたスプーフィング検知部の動作)
 図10に示したDSRC位置情報に替えて、セルラ基地局13の位置(通信範囲)に基づいてスプーフィング検知を行うことも可能である。セルラ通信網は、セルラ基地局13を介して車載器2と課金処理等のための通信を行う際に、車載器2と通信中のセルラ基地局13を特定する識別子を車載器2に送信する。その識別子によって、車両1が位置する位置を概略的に認識し、第1実施形態におけるDSRC測位結果の代わりに用いることができる。
 図12は、本実施形態におけるスプーフィング検知部31に予め登録される基地局IDテーブル52を示す。基地局IDテーブル52は、複数の基地局の各々を特定する識別子である基地局ID53と、各セルラ基地局13によってカバーされる通信範囲を示す情報である領域54とを対応付ける。
 図11は、本実施形態におけるスプーフィング検知部31の動作を示す。図10のステップC1と同様に、衛星測位システムによる測位結果36がスプーフィング検知部31に入力される(ステップC11)。セルラ通信チップ9は、セルラ通信アンテナ8を介してセルラ基地局13から受信する信号の中から、通信中のセルラ基地局13を特定する基地局ID53を抽出する。位置情報取得部45は、セルラ通信チップ9から基地局ID53を入力する(ステップC12)。位置情報取得部45は、セルラ通信チップ9から取得した基地局ID53に対応する領域54を基地局IDテーブル52から検索する(ステップC13)。
 判定部41は、GNSS測位結果が示す位置と、基地局IDテーブル52から検索された領域54(セルラ基地局通信範囲)とを比較する(ステップC14)。判定部41は、GNSS測位結果がセルラ基地局通信範囲に入っていた場合(ステップC15NO)、ステップC16の処理に進み、入っていなかった場合(ステップC15YES)、ステップC17の処理に進む。それ以降のステップC16~C20の処理は、図10のステップC5~C9とそれぞれ同じである。
 本実施形態において、スプーフィング検知部31は、図10に示した動作におけるDSRC測位結果に替えて、通信中のセルラ基地局13の位置を用いてスプーフィング検知を行う。このような衛星測位システムにおいては、DSRCの路側装置が設置されていない領域においても、スプーフィング検知を行うことができる。
 スプーフィング検知部31が図4又は図5に示した処理に加えて、図9に示した処理と、図10に示した処理とを行うことによって、以下の3通りのスプーフィング検知結果が得られる。
(1)過去と現在のGNSS測位結果に基づくスプーフィング検知。
(2)GNSS時刻とDSRC時刻(又はセルラ通信時刻)との比較に基づくスプーフィング検知。
(3)GNSS測位結果とDSRC路側機の位置(又はセルラ基地局の通信領域)との比較に基づくスプーフィング検知。
 スプーフィング検知部31は、これらの3通りのスプーフィング検知方法のうちの少なくとも1つにおいて「スプーフィングあり」と判定されたときに、総合的にスプーフィングありとの判定結果39を出力する。あるいは、スプーフィング検知部31は、これらの3通りのスプーフィング検知方法のうち少なくとも2つにおいて「スプーフィングあり」と判定されたときに、総合的にスプーフィングありとの判定結果39を出力する多数決方式を採用してもよい。あるいは、第1実施形態と同じ(1)の方法に加えて、(2)と(3)のいずれか一方のみの方法を採用することもできる。その場合は、二通りのスプーフィング検知のうち、少なくとも一方がスプーフィングを検知した場合に、総合的にスプーフィングありとの判定結果39を出力する。あるいは、両者がスプーフィングを検知した場合に、総合的にスプーフィングありとの判定結果39を出力してもよい。

Claims (8)

  1.  人工衛星から受信した測位信号に基づいて、車両の現在位置を示す測位結果を出力する測位部と、
     前記測位結果を時刻と対応付けて格納する測位結果記憶部と、
     前記測位結果記憶部に格納された過去の前記測位結果と、前記測位部が測定した現在の前記測位結果とを用いて、前記車両の運動が所定の条件を満たすか否かに基づいてスプーフィングを検知する処理部と
     を具備する車載器。
  2.  請求項1に記載された車載器であって、
     前記所定の条件は、前記車両の速度が所定の閾値以上の場合にスプーフィングが行われたと判定する条件である
     車載器。
  3.  請求項2に記載された車載器であって、
     前記処理部は、前記車両が存在する地図上の領域に応じて前記所定の閾値を設定する
     車載器。
  4.  請求項1に記載された車載器であって、
     前記処理部は、前記車両の加速度が所定の閾値以上の場合にスプーフィングが行われたと判定する
     車載器。
  5.  請求項1に記載された車載器であって、
     前記処理部は、前記車両の角速度が所定の閾値以上の場合にスプーフィングが行われたと判定する
     車載器。
  6.  請求項1から5のいずれかに記載された車載器であって、
     前記処理部は、前記車両のエンジンが起動しているか否かを示す起動情報を収集し、前記エンジンが起動していないと前記起動情報に示されており、前記車両が運動していることが前記測位結果に示されていたときに、スプーフィングが行われたと判定する
     車載器。
  7.  請求項1から6のいずれかに記載された車載器であって、
     前記処理部は、前記車両の運動が前記所定の基準を満たさないときにスプーフィング疑いが有ると判定し、前記スプーフィング疑いが所定の期間以上継続したときにスプーフィングが行われたと判定する
     車載器。
  8.  人工衛星から受信した測位信号に基づいて、車両の現在位置を示す測位結果を出力する工程と、
     前記測位結果を時刻と対応付けて記憶装置に格納する工程と、
     前記測位結果記憶部に格納された過去の前記測位結果と、前記測位部が測定した現在の前記測位結果とを用いて、前記車両の運動が所定の条件を満たすか否かに基づいてスプーフィングを検知する工程と
     を具備する車載器のスプーフィング検知方法。
PCT/JP2014/067634 2013-07-03 2014-07-02 車載器、及びスプーフィング検知方法 WO2015002223A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/901,722 US20160370469A1 (en) 2013-07-03 2014-07-02 On-board unit and spoofing detecting method
SG11201510539YA SG11201510539YA (en) 2013-07-03 2014-07-02 On-board unit and spoofing detecting method
KR1020157036370A KR101834723B1 (ko) 2013-07-03 2014-07-02 차량 탑재 기기, 및 스푸핑 검지 방법
CN201480036108.4A CN105324682A (zh) 2013-07-03 2014-07-02 车载器以及欺骗检测方法
HK16106037.4A HK1218161A1 (zh) 2013-07-03 2016-05-26 車載器以及欺騙檢測方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013139990A JP2015014473A (ja) 2013-07-03 2013-07-03 車載器、及びスプーフィング検知方法
JP2013-139990 2013-07-03

Publications (1)

Publication Number Publication Date
WO2015002223A1 true WO2015002223A1 (ja) 2015-01-08

Family

ID=52143795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067634 WO2015002223A1 (ja) 2013-07-03 2014-07-02 車載器、及びスプーフィング検知方法

Country Status (7)

Country Link
US (1) US20160370469A1 (ja)
JP (1) JP2015014473A (ja)
KR (1) KR101834723B1 (ja)
CN (1) CN105324682A (ja)
HK (1) HK1218161A1 (ja)
SG (1) SG11201510539YA (ja)
WO (1) WO2015002223A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339907A1 (de) * 2016-12-22 2018-06-27 Toll Collect GmbH Verfahren zur signalisierung einer fehlfunktion einer positionsbestimmungsvorrichtung, signalisierungssystem, gebührenerhebungssystem, positionsbestimmungsvorrichtung und computerprogrammprodukt

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598795B2 (en) 2015-07-31 2020-03-24 Verizon Patent And Licensing Inc. Methods and systems for detecting potential interference with a tracking device associated with a vehicle
CN106199647B (zh) * 2016-06-21 2019-02-01 华东师范大学 一种推测未知无人机目标位置的方法
CN106353775A (zh) * 2016-08-12 2017-01-25 华东师范大学 一种基于卫星导航系统的移动设备俘获方法
CN108700667A (zh) * 2016-09-13 2018-10-23 雷古拉斯赛博有限公司 识别对无人机的全球导航卫星系统欺骗攻击的系统和方法
US10641906B2 (en) * 2016-09-27 2020-05-05 Bae Systems Information And Electronic Systems Integrations Inc. GPS jammer and spoofer detection
CN108693543B (zh) * 2017-03-31 2022-11-22 法拉第未来公司 用于检测信号欺骗的方法及系统
US10585180B2 (en) 2017-06-21 2020-03-10 International Business Machines Corporation Management of mobile objects
US10535266B2 (en) 2017-06-21 2020-01-14 International Business Machines Corporation Management of mobile objects
US10600322B2 (en) 2017-06-21 2020-03-24 International Business Machines Corporation Management of mobile objects
US10546488B2 (en) 2017-06-21 2020-01-28 International Business Machines Corporation Management of mobile objects
US10540895B2 (en) 2017-06-21 2020-01-21 International Business Machines Corporation Management of mobile objects
US10504368B2 (en) 2017-06-21 2019-12-10 International Business Machines Corporation Management of mobile objects
US11676427B2 (en) * 2019-02-12 2023-06-13 Toyota Jidosha Kabushiki Kaisha Vehicle component modification based on vehicle-to-everything communications
CN110568456B (zh) * 2019-09-11 2022-01-14 北京交通大学 基于超宽带辅助的列车卫星定位欺骗干扰检测方法
EP3805800B1 (en) * 2019-10-10 2024-04-24 HERE Global B.V. Identifying potentially manipulated gnss navigation data at least partially based on gnss reference data
JP7486172B2 (ja) * 2020-07-15 2024-05-17 富士防災警備株式会社 位置情報管理サーバ及び位置情報管理方法
CN113238253B (zh) * 2021-04-30 2024-04-02 国网电力科学研究院有限公司 一种基于基站辅助的卫星导航定位欺骗信号防御方法和装置
CN113419258B (zh) * 2021-07-07 2024-03-01 东软集团股份有限公司 一种定位异常检测方法及其相关设备
CN114460606A (zh) * 2021-12-29 2022-05-10 浙江盛洋科技股份有限公司 一种里程收费系统终端恶意干扰判定方法、装置、电子设备及存储介质
WO2024214201A1 (ja) * 2023-04-12 2024-10-17 三菱重工機械システム株式会社 不正検知装置、不正検知システム、不正検知方法、及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107876A (ja) * 2003-09-30 2005-04-21 Secom Co Ltd 位置情報監視システム
JP2008510138A (ja) * 2004-08-10 2008-04-03 ノースロップ グルーマン コーポレーション スプーフィングによる信号の矛盾の検出器
EP2333582A1 (fr) * 2009-11-27 2011-06-15 Thales Procédé de détection de fraude sur la transmission d'informations de position par un dispositif mobile
JP4789222B2 (ja) * 2009-04-13 2011-10-12 株式会社コロプラ 移動距離改ざん防止システムおよび方法
JP2013250271A (ja) * 2012-06-01 2013-12-12 Korea Electronics Telecommun 衛星航法スプーフィング信号除去装置及びその方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666916A (ja) * 1992-08-13 1994-03-11 Fujitsu Ten Ltd Gps受信機
US5557284A (en) * 1995-02-03 1996-09-17 Honeywell Inc. Spoofing detection system for a satellite positioning system
JP3275691B2 (ja) * 1996-03-01 2002-04-15 日産自動車株式会社 車両盗難防止装置
US5969595A (en) * 1996-07-22 1999-10-19 Trimble Navigation Limited Security for transport vehicles and cargo
JP4150059B2 (ja) * 1999-03-17 2008-09-17 株式会社小松製作所 建設機械の通信装置
JP2000295669A (ja) * 1999-04-07 2000-10-20 Matsushita Electric Ind Co Ltd 車載端末装置と情報転送システムと緊急通報システム
JP2001184569A (ja) * 1999-12-24 2001-07-06 Denso Corp 電子機器制御装置
US20050184904A1 (en) * 2004-01-16 2005-08-25 Mci, Inc. Data filtering by a telemetry device for fleet and asset management
US20060023655A1 (en) * 2004-05-17 2006-02-02 Engel Glenn R System and method for detection of signal tampering
JP4959463B2 (ja) * 2007-08-01 2012-06-20 株式会社トヨタIt開発センター 位置認証システム
US7956803B2 (en) * 2008-12-01 2011-06-07 Andrew, Llc System and method for protecting against spoofed A-GNSS measurement data
JP5314502B2 (ja) * 2009-05-29 2013-10-16 三菱重工業株式会社 車両位置測定装置および車両位置測定方法
EP2348335A1 (en) * 2010-01-22 2011-07-27 Astrium Limited A receiver and method for authenticating satellite signals
DE102011106507A1 (de) * 2011-06-15 2012-12-20 Astrium Gmbh Vorrichtung zur Fahrzeug-ortung und -verfolgung
KR101169766B1 (ko) * 2011-07-28 2012-07-30 주식회사 현대제이콤 지피에스 재밍 신호 검출 장치
FR2981756B1 (fr) * 2011-10-21 2013-12-27 Thales Sa Procede et systeme de detection de fraude d'informations de position d'un dispositif mobile
US9507026B2 (en) * 2013-05-04 2016-11-29 Trimble Navigation Limited Apparatus for verified antispoofing navigation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107876A (ja) * 2003-09-30 2005-04-21 Secom Co Ltd 位置情報監視システム
JP2008510138A (ja) * 2004-08-10 2008-04-03 ノースロップ グルーマン コーポレーション スプーフィングによる信号の矛盾の検出器
JP4789222B2 (ja) * 2009-04-13 2011-10-12 株式会社コロプラ 移動距離改ざん防止システムおよび方法
EP2333582A1 (fr) * 2009-11-27 2011-06-15 Thales Procédé de détection de fraude sur la transmission d'informations de position par un dispositif mobile
JP2013250271A (ja) * 2012-06-01 2013-12-12 Korea Electronics Telecommun 衛星航法スプーフィング信号除去装置及びその方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339907A1 (de) * 2016-12-22 2018-06-27 Toll Collect GmbH Verfahren zur signalisierung einer fehlfunktion einer positionsbestimmungsvorrichtung, signalisierungssystem, gebührenerhebungssystem, positionsbestimmungsvorrichtung und computerprogrammprodukt

Also Published As

Publication number Publication date
JP2015014473A (ja) 2015-01-22
SG11201510539YA (en) 2016-01-28
US20160370469A1 (en) 2016-12-22
HK1218161A1 (zh) 2017-02-03
KR101834723B1 (ko) 2018-03-09
CN105324682A (zh) 2016-02-10
KR20160015271A (ko) 2016-02-12

Similar Documents

Publication Publication Date Title
JP6385651B2 (ja) 車載器、及びスプーフィング検知方法
WO2015002223A1 (ja) 車載器、及びスプーフィング検知方法
JP6496472B2 (ja) 車載器、及びスプーフィング検知方法
US9869771B2 (en) Information sharing system for vehicle
Zhou et al. How long to wait? Predicting bus arrival time with mobile phone based participatory sensing
EP3309585A1 (en) Positioning processing system, method, computer program, positioning processing device, and user terminal
US20090254270A1 (en) System and method for tracking a path of a vehicle
US8078138B2 (en) In-vehicle emergency call apparatus
US20130122928A1 (en) Systems and methods for identifying and acting upon states and state changes
EP3575833A1 (en) Distance assessment in a gnss system using particle filter
CN104748756B (zh) 使用云计算测量车辆位置的方法
US11035927B2 (en) Apparatus and method for determining a geographical position of a vehicle
US20210016776A1 (en) Smart traffic control devices and beacons, methods of their operation, and use by vehicles of information provided by the devices and beacons
JP2011220852A (ja) 移動通信端末及び測位方式選択方法
CN116931005B (zh) 一种基于v2x辅助的车辆高精度定位方法、装置和存储介质
KR20090032804A (ko) 항법 위성을 이용한 차량 주차 정보 제공 시스템 및 그방법
CN107444118B (zh) 一种车辆控制方法及相关设备
Stephenson et al. Accuracy requirements and benchmarking position solutions for intelligent transportation location based services
US10395538B2 (en) Vehicular communication device
JP2009104330A (ja) 死角車両検出システム、路側装置、車載装置および死角車両検出方法
JP2007257421A (ja) 交通情報の作成装置並びにその方法及びプログラム
JP2018136254A (ja) 測位装置、測位システム
KR20160055993A (ko) 차량의 위치 탐색 방법
CN114867990A (zh) 产生并传输位置数据的方法
JP2018060436A (ja) 車載装置、走行位置推定システム、走行位置推定方法およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036108.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036370

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901722

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820416

Country of ref document: EP

Kind code of ref document: A1