WO2015001618A1 - 逆流防止装置、電力変換装置及び冷凍空気調和装置 - Google Patents

逆流防止装置、電力変換装置及び冷凍空気調和装置 Download PDF

Info

Publication number
WO2015001618A1
WO2015001618A1 PCT/JP2013/068163 JP2013068163W WO2015001618A1 WO 2015001618 A1 WO2015001618 A1 WO 2015001618A1 JP 2013068163 W JP2013068163 W JP 2013068163W WO 2015001618 A1 WO2015001618 A1 WO 2015001618A1
Authority
WO
WIPO (PCT)
Prior art keywords
commutation
backflow prevention
module
power
current
Prior art date
Application number
PCT/JP2013/068163
Other languages
English (en)
French (fr)
Inventor
卓也 下麥
有澤 浩一
崇 山川
啓介 植村
松原 則幸
真作 楠部
健太 湯淺
晃弘 津村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/068163 priority Critical patent/WO2015001618A1/ja
Priority to EP14820605.5A priority patent/EP3018810B1/en
Priority to PCT/JP2014/067692 priority patent/WO2015002249A1/ja
Priority to US14/902,039 priority patent/US10404196B2/en
Priority to JP2015525263A priority patent/JP6132912B2/ja
Priority to CN201480037775.4A priority patent/CN105379089B/zh
Publication of WO2015001618A1 publication Critical patent/WO2015001618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0051Diode reverse recovery losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a backflow prevention device or the like included in a power conversion device or the like.
  • the present invention provides a backflow prevention device that can ensure high efficiency, high reliability, and the like in consideration of the above-described problems. The loss is further reduced.
  • a backflow prevention device is connected between a power supply and a load, and prevents a backflow of current from the load side to the power supply side, and a current to a commutation path connected in parallel with the backflow prevention element.
  • a plurality of elements including at least a part of the elements composing the commutation apparatus.
  • the backflow prevention device since a plurality of elements including at least a part of the elements composing the commutation device are configured as a module, the device and the like can be reduced in size. In addition, it is possible to simplify heat dissipation measures and air path design.
  • FIG. (1) shows another example of the module structure which concerns on Embodiment 1 of this invention.
  • FIG. (2) shows another example of the module structure which concerns on Embodiment 1 of this invention.
  • FIG. (2) shows another example of the module structure which concerns on Embodiment 1 of this invention.
  • FIG. shows an example at the time of connecting the commutation apparatus 7 in parallel with the backflow prevention element 5 which concerns on Embodiment 2 of this invention. It is FIG.
  • FIG. (1) which shows another example of the module structure which concerns on Embodiment 2 of this invention.
  • FIG. (2) which shows another example of the module structure which concerns on Embodiment 2 of this invention.
  • FIG. (1) which shows another example of the module structure which concerns on Embodiment 3 of this invention.
  • FIG. (2) which shows another example of the module structure which concerns on Embodiment 3 of this invention.
  • FIG. (The 3) which shows another example of the module structure which concerns on Embodiment 3 of this invention.
  • FIG. (1) which shows the other example of the system configuration centering on the power converter device which concerns on Embodiment 4 of this invention.
  • FIG. (2) which shows the other example of the system configuration centering on the power converter device which concerns on Embodiment 4 of this invention.
  • FIG. (The 3) which shows the other example of the system configuration centering on the power converter device which concerns on Embodiment 4 of this invention.
  • FIG. (4) which shows the other example of the system configuration centering on the power converter device which concerns on Embodiment 4 of this invention. It is FIG.
  • FIG. (5) which shows the other example of the system configuration centering on the power converter device which concerns on Embodiment 4 of this invention.
  • FIG. (1) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (2) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (3) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (4) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (5) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (6) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (7) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (8) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (9) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (10) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (11) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention.
  • FIG. (12) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention. It is FIG. (13) which shows the example of a connection of the module 80 which concerns on Embodiment 5 of this invention. It is a block diagram of the frozen air conditioning apparatus which concerns on Embodiment 6 of this invention.
  • FIG. 1 and the following drawings the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below.
  • the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification.
  • the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment.
  • the subscripts may be omitted.
  • the size relationship of each component may be different from the actual one.
  • FIG. 1 is a diagram illustrating an example of a configuration of a system or the like centering on a power conversion device according to Embodiment 1 of the present invention. First, a system configuration having a power conversion device capable of performing power conversion with high efficiency in FIG. 1 will be described.
  • the power conversion device is provided between the power source 1 and the load 9, converts the power from the power source 1 and supplies it to the load 9.
  • the power conversion device according to the present embodiment performs boosting and includes, for example, a chopper circuit 6, a commutation device 7, and a smoothing device 8.
  • the power source 1 is constituted by, for example, a DC power source, a combination of an AC power source and a rectifier circuit (rectifier device) or the like, and supplies power to the chopper circuit 6 by DC.
  • the chopper circuit 6 includes a reactor 3, a boost switch device 4, and a backflow prevention element 5.
  • the reactor 3 is connected to the power source 1 side and is provided to suppress harmonics.
  • the step-up switch device 4 includes a switching element such as an IGBT (Insulated Gate Bipolar Transistor). The step-up switching device 4 short-circuits the power source 1 (between two terminals connected to the power source 1) via the reactor 3 based on a drive signal (step-up drive signal) from the control device 100.
  • IGBT Insulated Gate Bipolar Transistor
  • the backflow prevention element 5 is an element for preventing a backflow of current from the smoothing device 8 between the boosting switch device 4 and the smoothing device 8.
  • the backflow prevention element 5 is usually a semiconductor element such as a fast recovery diode that is excellent in electrical characteristics (particularly recovery characteristics), has a small current capacity, and has a fast reverse recovery time.
  • the commutation device 7 is a device connected in parallel with the backflow prevention element 5. Then, a commutation operation is performed in which the current flowing through the backflow prevention element 5 is commutated to a different path (another path not through the backflow prevention element 5; hereinafter referred to as a commutation path) at a necessary timing.
  • the backflow prevention element 5 and the commutation device 7 constitute a backflow prevention device that prevents backflow of current from the load 9 side to the power source 1 side.
  • FIG. 2 is a diagram showing an example when the commutation device 7 is connected in parallel with the backflow prevention element 5 according to Embodiment 1 of the present invention.
  • the commutation device 7 is a device that performs a commutation operation in which a current flows through a commutation path connected in parallel with the backflow prevention element 5.
  • the commutation device 7 of the present embodiment includes a commutation operation circuit (commutation operation device) 71 and a commutation rectifying element 72.
  • the commutation rectifier element 72 is connected in series with the secondary winding of the transformer 73 in the commutation path. And the backflow of the electric current from the load 9 side is prevented, and an electric current flows from the power supply 1 side to the load 9 side.
  • the commutation rectifier element 72 is formed of a semiconductor element such as a fast recovery diode.
  • the commutation rectifying element 72 may be a Schottky barrier diode having a high withstand voltage, good recovery characteristics, low forward voltage, and low loss.
  • a wide band gap semiconductor element made of SiC (silicon carbide), GaN (gallium nitride, gallium nitride), diamond, or the like may be used.
  • the backflow preventing element 5 and the commutation rectifying element 72 are configured as a module 80 and arranged in the same module.
  • the module 80 By configuring the module 80, the area of the entire device (circuit) can be reduced as compared with the case where the discrete elements and the printed circuit board are individually configured. Further, it is not necessary to provide a heat sink corresponding to each element. For this reason, the number of heat dissipation countermeasure parts can be reduced. Therefore, cost reduction can be achieved. For example, in the case where the discrete elements are used in common, it is necessary to align the hole positions of the heat sink and the element. However, since this operation is unnecessary, the process can be shortened. Further, by configuring the module 80 so that the elements are combined, it is possible to contribute to simplification of the air path design.
  • the commutation operation circuit 71 includes a transformer 73, a commutation switch 74, and a commutation power source 75.
  • the transformer 73 has a pulse transformer or the like.
  • the transformer 73 applies a voltage to the primary side winding and causes an exciting current to flow, thereby inducing a voltage in the secondary side winding so that the current flows.
  • the current flowing through the circuit 6 is commutated to the commutation path.
  • the commutation power source 75 supplies power to the transformer 73.
  • the commutation switch 74 opens and closes based on a drive signal (commutation drive signal) from the control device 100, and controls power supply to the transformer 73 (primary winding) and supply stop.
  • FIG. 2 shows an example in which the secondary winding of the transformer 73 and the anode side of the commutation rectifying element 72 are connected, but the direction of the current flowing through the commutation rectifying element 72 is the same. If so, it is not limited to such a connection.
  • the cathode side of the commutation rectifier element 72 and the secondary winding of the transformer 73 may be connected.
  • an electric circuit composed of a commutation power source 75, a commutation switch 74, and a primary side winding of a transformer 73, if necessary, a limiting resistor, a high frequency capacitor, and a snubber circuit Alternatively, a protective device or the like may be inserted.
  • the excitation current may be reset by adding a reset winding to the primary side winding in the transformer 73 as necessary.
  • a rectifier or the like may be provided to regenerate the excitation energy to the power source side, thereby improving the efficiency.
  • the smoothing device 8 is configured using a capacitor or the like, for example, smoothes the voltage applied by the power source 1, and supplies power by applying a DC voltage (output voltage, bus voltage) to the load 9.
  • the load 9 is driven by electric power supplied via the smoothing device 8.
  • the load voltage detection unit 101 is a voltage detector that detects a voltage that is smoothed by the smoothing device 8 and is applied to the load 9, and outputs a voltage detection value by a detection signal.
  • the current detection unit 102 is a current detector that detects a current (bus current) flowing from the power source 1 and outputs a current detection value as a detection signal. Based on the current detection value of the current detection unit 102, the current flowing through the reactor 3 can also be detected.
  • the power supply voltage detection unit 103 is a voltage detector that detects a voltage applied by the power supply 1 and outputs a voltage detection value as a detection signal.
  • the control device 100 determines, for example, the operation time (short circuit time) of the boost switch device 4 and the commutation device 7 from the signals related to the detection by the load voltage detection unit 101, the current detection unit 102, and the power supply voltage detection unit 103. It is a device that performs arithmetic processing and controls.
  • the control device 100 includes, for example, a calculation device such as a microcomputer or a digital signal processor, and a conversion device that converts signals from the calculation device into drive signals for driving the boost switch device 4 and the commutation switch 74.
  • a commutation drive signal corresponding to each commutation switch 74 is sent.
  • the power conversion device of the present embodiment adds the commutation operation in the commutation device 7 to the power conversion operation of the DC chopper, for example.
  • the backflow preventing element 5 is reversely recovered before the current flows back from the smoothing device 8 to reduce the recovery current.
  • the current path becomes the path of the power source 1-the reactor 3-the backflow prevention element 5-the load 9-the power source 1.
  • the boosting switch device 4 is turned on (closed) and the commutation switch 74 is turned off, the current path becomes the path of the power source 1 -reactor 3 -boosting switch device 4 -power source 1.
  • the voltage applied to the reactor 3 is substantially equal to the voltage of the power source 1.
  • the amount of accumulated carriers tends to increase with the increase in the current capacity of the rectifier diode. Therefore, the recovery current increases as the current capacity increases. Also, the recovery current increases as the reverse bias applied increases.
  • the commutation device 7 forms a commutation path instead of applying reverse recovery to the reverse current prevention element 5 having a large current capacity by applying a high reverse bias voltage. Then, the control for reverse recovery (hereinafter referred to as commutation control) is performed by applying a low reverse bias voltage via the transformer 73 and the commutation rectifier element 72 immediately before the boost switch device 4 is turned on. .
  • commutation control the control for reverse recovery
  • the commutation switch 74 of the commutation device 7 is turned on immediately before the boost switch device 4 is turned on, and the current flowing to the backflow prevention element 5 through the transformer 73 is converted into the commutation rectifier element 72 side.
  • a current path in a state where the boosting switch device 4 is off and the commutation switch 74 is on is a path of power source 1 -reactor 3 -backflow prevention element 5 -load 9 -power source 1.
  • the transformer 73 is excited, and a current also flows into the path of the secondary winding-commutation rectifying element 72 of the transformer 73 of the commutation device 7.
  • the commutation drive signal of the commutation device 7 (commutation switch 74) is turned on immediately before the boost drive signal of the boost switch device 4 is turned on.
  • the current starts to flow through the path of the secondary winding of the transformer 73 due to the excitation current. Therefore, current flows in a diverted direction in each direction of the backflow preventing element 5 and the commutation rectifying element 72.
  • the commutation drive signal is maintained in the ON state, after a predetermined time has elapsed, no current flows through the backflow prevention element 5 and all current flows through the commutation rectifier element 72 (commutation complete).
  • the commutation power source 75 is set to a sufficiently small value as compared with the output voltage of the smoothing device 8, so that the backflow prevention element 5 is turned off (reverse recovery) with a low reverse bias voltage. ).
  • the boost switch device 4 is turned on in this state, the reverse recovery operation of the commutation rectifier element 72 is performed, and in this case, a recovery current is also generated.
  • the commutation time of the commutation rectifier element 72 is very short compared to the backflow prevention element 5, the effective current of the current flowing through the commutation rectifier element 72 is small, and the required current capacity is small. I'm sorry.
  • the noise filter can be reduced in size and the cost can be reduced.
  • FIG. 3 is a diagram showing another example of the module configuration according to Embodiment 1 of the present invention.
  • the backflow preventing element 5 and the commutation rectifying element 72 are configured as a module 80, but in FIG. 3, the commutation rectifying element 72 and the commutation switch 74 are configured in the same module 80.
  • FIG. 4 is a diagram showing another example of the module configuration according to Embodiment 1 of the present invention.
  • the backflow prevention element 5 and the commutation rectifying element 72 are configured as the module 80, but in FIG. 3, the commutation switch 74 is further included in the same module 80.
  • the backflow preventing element 5 and the commutation rectifying element 72 are configured as the module 80 and arranged in the same module. For example, it is necessary to arrange them on a printed circuit board or the like. Therefore, the area of the entire device (circuit) can be reduced.
  • the man-hours for creating printed circuit boards can be reduced. Further, there is no need to provide a heat sink or the like corresponding to each element, and the number of heat dissipation countermeasure parts can be reduced. Therefore, cost reduction can be achieved. Moreover, since it can be considered that the temperature conditions of the elements in the module 80 are the same, the air path design and the heat radiation design can be contributed to simplification by collecting them as the module 80.
  • the module 80 for example, in the commutation rectifying element 72 or the backflow preventing element 5, a reverse recovery operation when a reverse voltage is applied in a state where a forward current is flowing is performed. It can be simulated as a capacitance component of the backflow prevention element 5. In order to reduce the recovery current during reverse recovery, it is preferable that the capacitance component is small. In particular, if the capacitance component of the commutation rectifying element can be reduced, the contribution to the reduction of the recovery current is increased.
  • the capacitance component C can be reduced.
  • increasing the inter-conductor distance d is a trade-off between circuit integration and wiring impedance reduction.
  • the commutation rectifying element 72 is arranged in the module 80, and the area of the wiring (wire) and pattern in the vicinity of the element is reduced, so that the capacitance component of the commutation rectifying element is reduced. Reduction can be made and the recovery current can be further reduced.
  • FIG. FIG. 5 is a diagram showing an example when the commutation device 7 is connected in parallel with the backflow prevention element 5 according to Embodiment 2 of the present invention.
  • a plurality of commutation rectifier elements 72 are connected in series.
  • the commutation rectifying element 72 can be regarded as a capacitive component.
  • the composite capacity component in which a plurality of commutation rectifying elements 72 are connected in series is usually smaller than the capacity component in the case where the commutation rectifying element 72 is constituted by one. Therefore, for example, it is more effective to connect a plurality of commutation rectifying elements 72 in series even if the reverse recovery characteristic per one is not excellent than to configure one commutation rectifying element 72 having good reverse recovery characteristics.
  • the recovery current can be suppressed. Therefore, in the present embodiment, a plurality of commutation rectifying elements 72 connected in series are configured as a module 80.
  • FIG. 6 is a diagram showing another example of the module configuration according to Embodiment 2 of the present invention.
  • the backflow preventing element 5 and the plurality of commutation rectifying elements 72 are configured as the module 80, but in FIG. 6, the plurality of commutation rectifying elements 72 and the commutation switch 74 are included in the same module 80. Constitute.
  • FIG. 7 is a diagram showing another example of the module configuration according to Embodiment 2 of the present invention.
  • the backflow prevention element 5 and the plurality of commutation rectifying elements 72 are configured as the module 80, but in FIG. 7, the commutation switch 74 is also included in the same module 80.
  • the module 80 is configured by connecting a plurality of commutation rectifying elements 72 in series as in the present embodiment, the same effects as those of the first embodiment are obtained.
  • the temperature conditions of the commutation rectifier elements 72 are the same, there is no variation between the elements.
  • FIG. FIG. 8 is a diagram showing an example when the commutation device 7 is connected in parallel with the backflow prevention element 5 according to Embodiment 3 of the present invention.
  • a plurality of commutation rectifying elements 72 are connected in series.
  • a plurality of commutation rectifying elements 72 are connected in parallel to form a plurality of backflow prevention elements 5 and a plurality of commutation rectifying elements 72.
  • the commutation rectifying element 72 is configured as a module 80.
  • the commutation rectifying element 72 an element having a small current capacity can be selected as the commutation rectifying element 72. Therefore, the range of material selection when configuring the commutation device can be increased. At this time, if a material is selected based on cost, cost reduction or the like can be achieved.
  • FIG. 9 is a diagram showing another example of the module configuration according to Embodiment 3 of the present invention.
  • the backflow prevention element 5 and the plurality of commutation rectification elements 72 are configured as the module 80, but in FIG. 9, the plurality of commutation rectification elements 72 and the commutation switch 74 are included in the same module 80. Constitute.
  • FIG. 10 is a diagram showing another example of the module configuration according to Embodiment 3 of the present invention.
  • the backflow prevention element 5 and the plurality of commutation rectifying elements 72 are configured as the module 80, but in FIG. 10, the commutation switch 74 is also included in the same module 80.
  • FIG. 11 is a diagram showing another example of the module configuration according to Embodiment 3 of the present invention.
  • the commutation path is substantially one path, but in FIG. 11, there are two paths.
  • the commutation operation circuit 71 has a set of a transformer 73, a commutation switch 74, and a commutation power source 75 for each commutation path. For this reason, an electric current can be sent at an independent timing to each commutation path.
  • the backflow preventing element 5 and the plurality of commutation rectifying elements 72 constitute the module 80, but the commutation switches 74 may be further included.
  • FIG. 12 is a diagram showing a part of a configuration in a system centered on a power conversion device according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 1 and the like perform the same operations as those described in the first embodiment.
  • the power source 1 is configured by a combination of an AC power source 1A and a rectifier circuit (rectifier device) 1B.
  • the rectifier circuit 1B constitutes a diode bridge by combining four diodes (rectifier elements).
  • the backflow preventing element 5 and the commutation rectifying element 72 that are connected in parallel constitute a module 80.
  • the rectifier circuit 1B also has two sets of diodes that are connected in parallel. Therefore, the module 80 can be used when configuring the rectifier circuit 1B.
  • the module 80 is used for the set connected to the positive side of the AC power source 1A.
  • FIG. 13 is a diagram showing another example of the system configuration centering on the power converter according to Embodiment 4 of the present invention.
  • a module 80 including a plurality of commutation rectifying elements 72 in a serial connection relationship is configured in the second embodiment.
  • the rectifier circuit 1B has two sets of diodes connected in series. Therefore, the module 80 including a plurality of commutation rectifying elements 72 in series connection can also be used when configuring the rectifying circuit 1B.
  • FIG. 14 is a diagram showing another example of the system configuration centering on the power converter according to Embodiment 4 of the present invention.
  • the backflow preventing element 5, the commutation rectifying element 72, and the commutation switch 74 constitute the module 80.
  • the backflow preventing element 5, the commutation rectifying element 72, and the boosting switch device 4 constitute a module 80.
  • the load 9 is composed of a combination of an inverter device 9A and an AC load 9B such as a motor.
  • the module 80 is configured by the backflow preventing element 5, the commutation rectifying element 72, and the boosting switch device 4.
  • the inverter device 9A has a plurality of combinations of switching elements and free-wheeling diodes connected in reverse parallel to the switching elements. Therefore, the module 80 can be used when configuring the inverter device 9A.
  • the cost of the device or the entire system can be reduced.
  • the inverter device 9A as the module 80, the length of the wiring between the elements can be shortened. For this reason, an inductor component can be reduced and it can respond also to high frequency switching, for example. Further, by using the module 80, the area (volume) of the entire circuit can be reduced.
  • FIG. 18 to 30 are diagrams showing connection examples of the module 80 according to the fifth embodiment of the present invention. Wiring between elements as shown in each figure can be performed in the module 80 and used as a terminal.
  • FIG. 31 is a configuration diagram of a refrigeration air conditioning apparatus according to Embodiment 6 of the present invention.
  • a refrigeration air conditioner that supplies power via the above-described power converter will be described.
  • the refrigeration air conditioner of FIG. 31 includes a heat source side unit (outdoor unit) 300 and a load side unit (indoor unit) 400, which are connected by a refrigerant pipe, and become a main refrigerant circuit (hereinafter referred to as a main refrigerant circuit). And the refrigerant is circulated.
  • a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 500
  • a pipe through which a liquid refrigerant (liquid refrigerant, sometimes a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 600.
  • the heat source side unit 300 includes a compressor 301, an oil separator 302, a four-way valve 303, a heat source side heat exchanger 304, a heat source side fan 305, an accumulator 306, and a heat source side expansion device (expansion valve) 307.
  • the refrigerant heat exchanger 308, the bypass expansion device 309, and the heat source side control device 310 are configured by each device (means).
  • Compressor 301 compresses and discharges the sucked refrigerant.
  • the compressor 301 has an inverter device that can finely change the capacity of the compressor 301 (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency.
  • the power conversion device in each of the above-described embodiments is attached between the power source 1 that supplies power for driving the compressor 301 (motor) and the compressor 301 having the inverter device serving as the load 9 or the like. Yes.
  • the apparatus which combined the power converter device and the inverter apparatus becomes a motor drive device.
  • the oil separator 302 separates the lubricating oil discharged from the compressor 301 mixed with the refrigerant.
  • the separated lubricating oil is returned to the compressor 301.
  • the four-way valve 303 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the heat source side control device 310.
  • the heat source side heat exchanger 304 performs heat exchange between the refrigerant and air (outdoor air).
  • the heat source side heat exchanger 304 functions as an evaporator during heating operation, and performs heat exchange between the low-pressure refrigerant and air that have flowed in via the heat source side expansion device 307, thereby evaporating and evaporating the refrigerant. .
  • the heat source side heat exchanger 304 is provided with a heat source side fan 305 in order to efficiently exchange heat between the refrigerant and the air.
  • the heat source side fan 305 is also supplied with power via the power conversion device described in each of the above-described embodiments. For example, in the inverter device serving as the load 9, the fan motor operating frequency is arbitrarily changed to rotate the fan speed. You may make it change finely.
  • the inter-refrigerant heat exchanger 308 exchanges heat between the refrigerant flowing through the main flow path of the refrigerant circuit and the refrigerant branched from the flow path and adjusted in flow rate by the bypass expansion device 309 (expansion valve). .
  • the inter-refrigerant heat exchanger 308 is for supercooling the refrigerant and supplying it to the load-side unit 400 particularly when the refrigerant needs to be supercooled during the cooling operation.
  • the liquid flowing through the bypass throttle device 309 is returned to the accumulator 306 via the bypass pipe.
  • the accumulator 306 is means for storing, for example, liquid surplus refrigerant.
  • the heat source side control device 310 is formed of, for example, a microcomputer.
  • the heat source side control device 310 can communicate with the load side control device 404 in a wired or wireless manner. For example, based on data relating to detection by various detection means (sensors) in the refrigeration air conditioner, compression by inverter circuit control The operation of the entire refrigeration air conditioner is controlled by controlling each means related to the refrigeration air conditioner, such as operation frequency control of the machine 301. Further, the heat source side control device 310 may perform the processing performed by the control device 100 described in the above embodiment.
  • the load side unit 400 includes a load side heat exchanger 401, a load side expansion device (expansion valve) 402, a load side fan 403, and a load side control device 404.
  • the load-side heat exchanger 401 performs heat exchange between the refrigerant and air.
  • the load-side heat exchanger 401 functions as a condenser during heating operation, performs heat exchange between the refrigerant flowing in from the gas pipe 500 and air, condenses the refrigerant, and liquefies (or gas-liquid two-phase). And flow out to the liquid pipe 600 side.
  • the refrigerant functions as an evaporator, performs heat exchange between the refrigerant and the air whose pressure has been reduced by the load-side throttle device 402, causes the refrigerant to take heat of the air, evaporates it, and vaporizes it. It flows out to the piping 500 side.
  • the load side unit 400 is provided with a load side fan 403 for adjusting the flow of air for heat exchange with the refrigerant.
  • the operating speed of the load-side fan 403 is determined by, for example, user settings.
  • the load side expansion device 402 is provided to adjust the pressure of the refrigerant in the load side heat exchanger 401 by changing the opening degree.
  • the load side control device 404 is also composed of a microcomputer or the like, and can communicate with the heat source side control device 310 by wire or wireless, for example. Based on an instruction from the heat source side control device 310 and an instruction from a resident or the like, each device (means) of the load side unit 400 is controlled so that the room has a predetermined temperature, for example. In addition, a signal including data related to detection by the detection means provided in the load side unit 400 is transmitted.
  • the present invention is not limited to this.
  • the power conversion device according to the present invention can also be applied to lighting devices (systems) such as heat pump devices, devices that use refrigeration cycles (heat pump cycles) such as refrigerators, transport devices such as elevators, and the like, with similar effects. Can play.

Abstract

 電源1と負荷9との間に接続され、負荷9側から電源1側への電流の逆流を防止する逆流防止素子5と、逆流防止素子5と並列接続した転流経路に電流を流す転流動作を行う転流装置7とを備え、転流装置7を構成する素子の少なくとも一部を含む複数の素子を、モジュール80として構成し、装置等を小型化することができる。また、放熱対策、風路設計を簡単にすることができる。

Description

逆流防止装置、電力変換装置及び冷凍空気調和装置
 本発明は、電力変換装置等が有する逆流防止装置等に関するものである。
 可変電圧・可変周波数のインバータ装置等が実用化されるに従って、各種電力変換装置の応用分野が開拓されている。
 例えば、電力変換装置に関しては、近年、昇降圧コンバータの応用技術開発が盛んである。一方で、炭化珪素等を材料とするワイドバンドギャップ半導体素子等の開発も盛んに行われている。このような新しい素子に関して、高耐圧であっても電流容量(電流実効値の許容値)の小さい素子に関しては、整流器を中心に実用化されてきている(例えば、特許文献1参照)。
特開2005-160284号公報(図1)
 一方、高効率な新しい素子を実用化するにあたり、例えば電流容量が大きい素子に関しては、高コスト、結晶欠陥等のため、実用化に向けて多くの課題があり、普及にはまだ時間がかかると考えられる。このため、例えば、空気調和装置の圧縮機のモータ等に供給するような電力以上の電力を変換する電力変換装置に、新しい素子を用いて高効率化をはかろうとすることは現状では難しい。
 本発明は、上記課題を考慮し、高効率、高信頼性等を確保することができる逆流防止装置等を提供するものである。そして、損失のさらなる低減をはかるようにするものである。
 本発明に係る逆流防止装置は、電源と負荷との間に接続され、負荷側から電源側への電流の逆流を防止する逆流防止素子と、逆流防止素子と並列接続した転流経路に電流を流す転流動作を行う転流装置とを備え、転流装置を構成する素子の少なくとも一部を含む複数の素子を、モジュールとして構成する。
 本発明に係る逆流防止装置によれば、転流装置を構成する素子の少なくとも一部を含む複数の素子を、モジュールとして構成するようにしたので、装置等を小型化することができる。また、放熱対策、風路設計を簡単にすることができる。
本発明の実施の形態1に係る電力変換装置を中心とするシステム等の構成の一例を示す図である。 本発明の実施の形態1に係る逆流防止素子5と並列に転流装置7を接続した場合の一例を示す図である。 本発明の実施の形態1に係るモジュール構成の他の一例を示す図(その1)である。 本発明の実施の形態1に係るモジュール構成の別の一例を示す図(その2)である。 本発明の実施の形態2に係る逆流防止素子5と並列に転流装置7を接続した場合の一例を示す図である。 本発明の実施の形態2に係るモジュール構成の他の一例を示す図(その1)である。 本発明の実施の形態2に係るモジュール構成の他の一例を示す図(その2)である。 本発明の実施の形態3に係る逆流防止素子5と並列に転流装置7を接続した場合の一例を示す図である。 本発明の実施の形態3に係るモジュール構成の他の一例を示す図(その1)である。 本発明の実施の形態3に係るモジュール構成の他の一例を示す図(その2)である。 本発明の実施の形態3に係るモジュール構成の他の一例を示す図(その3)である。 本発明の実施の形態4に係る電力変換装置を中心とするシステムにおける構成の一部を示す図である。 本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図(その1)である。 本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図(その2)である。 本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図(その3)である。 本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図(その4)である。 本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図(その5)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その1)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その2)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その3)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その4)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その5)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その6)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その7)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その8)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その9)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その10)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その11)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その12)である。 本発明の実施の形態5に係るモジュール80の結線例を示す図(その13)である。 本発明の実施の形態6に係る冷凍空気調和装置の構成図である。
 以下、発明の実施の形態に係る逆流防止装置等について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。さらに、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は本発明の実施の形態1に係る電力変換装置を中心とするシステム等の構成の一例を示す図である。はじめに、図1における高効率に電力変換を行うことができる電力変換装置を有するシステム構成について説明する。
 図1のシステムにおいて、電力変換装置は、電源1と負荷9との間に設けられ、電源1からの電力を変換して負荷9に供給する。本実施の形態の電力変換装置は、昇圧を行うものとし、例えばチョッパ回路6、転流装置7及び平滑装置8を有している。
 電源1については、例えば直流電源、交流電源と整流回路(整流装置)との組み合わせ等で構成し、チョッパ回路6に対して直流による電力供給を行う。
 チョッパ回路6は、リアクタ3、昇圧用スイッチ装置4及び逆流防止素子5を有している。リアクタ3は、電源1側に接続され、高調波を抑制するために設けている。また、昇圧用スイッチ装置4は、例えばIGBT(Insulated Gate Bipolar Transistor)のようなスイッチング素子を有している。昇圧用スイッチ装置4は、制御装置100からの駆動信号(昇圧駆動信号)に基づいてリアクタ3を介して電源1(電源1と接続する2端子間)を短絡する。
 逆流防止素子5は、昇圧用スイッチ装置4と平滑装置8との間で、平滑装置8からの電流の逆流を防止するための素子である。ここで、逆流防止素子5は、通常は、例えば電気的特性(特にリカバリー特性)に優れ、電流容量が小さく逆回復の時間がはやいファストリカバリーダイオードのような半導体素子とする。また、転流装置7は逆流防止素子5と並列に接続している装置である。そして、逆流防止素子5に流れる電流を、必要なタイミングで、異なった経路(逆流防止素子5を介さない別経路。以下、転流経路という)に転流させる転流動作を行う。逆流防止素子5と転流装置7とにより、負荷9側から電源1側への電流の逆流を防止する逆流防止装置となる。
 図2は本発明の実施の形態1に係る逆流防止素子5と並列に転流装置7を接続した場合の一例を示す図である。転流装置7は、逆流防止素子5と並列接続した転流経路に電流を流す転流動作を行う装置である。図2に示すように、本実施の形態の転流装置7は、転流動作回路(転流動作装置)71と転流用整流素子72とを有している。
 転流用整流素子72は、転流経路において変圧器73の2次側巻線と直列接続している。そして、負荷9側からの電流の逆流を防止し、電源1側から負荷9側に電流が流れるようにする。転流用整流素子72は、ファストリカバリーダイオードのような半導体素子で構成する。ここで、転流用整流素子72には、リカバリー特性が良く、順電圧が低く、ロスの少ない高耐圧なショットキー・バリア・ダイオードを用いてもよい。また、SiC(炭化珪素)、GaN(ガリウムナイトライド、窒化ガリウム)、ダイヤモンド等を材料とするワイドバンドギャップ半導体の素子を用いてもよい。これらの素子は、電流実効値の許容値が大きい仕様になるにつれ、結晶欠陥の増大、コストアップを招く。本実施の形態における転流用整流素子72に、電流実効値の許容値が小さい素子を使用可能なため、コストパフォーマンスが良好で高効率の電力変換装置を実現することができる。
 特に、本実施の形態では、図2に示すように、逆流防止素子5と転流用整流素子72とをモジュール80として構成し、同じモジュール内に配置するようにする。モジュール80として構成することにより、ディスクリート素子等とプリント基板等とを個別に構成する場合に比べて、装置(回路)全体における面積を低減することができる。また、各素子に対応してヒートシンクを設ける必要がない。このため、放熱対策部品の個数を減らすことができる。したがって、コスト低減をはかることができる。例えば、ディスクリート素子において共通化をはかる場合には、ヒートシンクと素子との穴位置を合わせる作業が必要となるが、この作業が不要となるため、工程の短縮化等もはかることができる。また、モジュール80として素子をまとめる形で構成することにより、風路設計の簡易化に寄与することができる。
 また、転流動作回路71は変圧器73、転流用スイッチ74及び転流用電源75を有している。変圧器73は、パルストランス等を有する変圧器73は、1次側巻線に電圧を印加し、励磁電流を流すことで2次側巻線に電圧を誘起して電流が流れるようにし、チョッパ回路6に流れる電流を転流経路に転流させる。転流用電源75は、変圧器73に電力供給する。転流用スイッチ74は、制御装置100からの駆動信号(転流駆動信号)に基づいて開閉し、変圧器73(1次側巻線)への電力供給、供給停止を制御する。
 以上のように、変圧器73を介することで、転流経路と変圧器73の1次側巻線、転流用スイッチ74及び転流用電源75を接続する回路との間を絶縁することができる。このため、転流装置7を駆動する信号の注入が比較的簡易に行える。また、安全性・信頼性の高いシステムを構築することができる。ここで、図2では、変圧器73の2次側巻線と転流用整流素子72のアノード側とを接続している例を示しているが、転流用整流素子72に流す電流の向きが同じであれば、このような接続に限るものではない。例えば、転流用整流素子72のカソード側と変圧器73の2次側巻線とを接続するようにしてもよい。また、ノイズ対策や故障時保護を考慮し、必要に応じて転流用電源75、転流用スイッチ74、変圧器73の1次側巻線で構成する電気回路に、制限抵抗、高周波コンデンサ、スナバ回路、保護装置等を挿入して構成してもよい。さらに、変圧器73に、必要に応じて1次側巻線にリセット巻線を付加して励磁電流をリセットするようにしてもよい。さらに整流器等を設けて励磁エネルギーを電源側に回生し、高効率化するようにしてもよい。
 平滑装置8は、例えばコンデンサ等を用いて構成し、電源1により印加される電圧を平滑し、負荷9に対して直流電圧(出力電圧、母線電圧)を印加して電力供給を行う。負荷9は平滑装置8を介して供給された電力により駆動する。
 また、負荷電圧検出部101は、平滑装置8が平滑して負荷9に印加する電圧を検出し、電圧検出値を検出信号により出力する電圧検出器である。電流検出部102は、電源1より流れる電流(母線電流)を検出し、電流検出値を検出信号により出力する電流検出器である。電流検出部102の電流検出値に基づいて、リアクタ3を流れる電流を検出することもできる。そして、電源電圧検出部103は、電源1により印加される電圧を検出し、電圧検出値を検出信号により出力する電圧検出器である。
 制御装置100は、例えば、負荷電圧検出部101、電流検出部102、電源電圧検出部103の検出に係る信号から、昇圧用スイッチ装置4、転流装置7等の動作時間(短絡時間)等を演算処理等し、制御を行う装置である。制御装置100は、例えば、マイクロコンピュータ、デジタルシグナルプロセッサ等の演算装置、演算装置の信号を、昇圧用スイッチ装置4及び転流用スイッチ74を駆動する駆動信号に変換装置等を有している。ここで、本実施の形態では、転流用スイッチ74を複数有しているため、各転流用スイッチ74に対応した転流駆動信号を送る。
 以上のような本実施の形態のシステムに関する動作について、以下説明する。本実施の形態の電力変換装置は、例えばDCチョッパの電力変換動作に、転流装置7における転流動作を加える。これにより、平滑装置8から電流が逆流する前に逆流防止素子5を逆回復させておくようにし、リカバリー電流の低減をはかるものである。
 例えば、昇圧用スイッチ装置4、転流用スイッチ74をオフの状態としたまま動作させると、電流経路は、電源1-リアクタ3-逆流防止素子5-負荷9-電源1の経路となる。また、昇圧用スイッチ装置4がオン(閉止)、転流用スイッチ74がオフの状態で動作させると、電流経路は、電源1-リアクタ3-昇圧用スイッチ装置4-電源1の経路となる。ここで、リアクタ3に印加される電圧は電源1の電圧とほぼ同等となる。昇圧用スイッチ装置4のオン、オフの切り替えを繰り返し行うことで、電流経路を繰り返すことができる。さらにオン、オフの時間割合を制御することで、電源1による入力電流の波形を任意に変形することが可能となり、力率や高調波電流の含有率を改善することができる。
 ここで、通常、整流ダイオードの電流容量増加に伴い、蓄積キャリア量は増加していく傾向にある。そのため、電流容量増加と共に、リカバリー電流は増加していくこととなる。また、印加する逆バイアスが大きくなると、リカバリー電流は増加していくこととなる。
 本実施の形態の電力変換装置では、電流容量の大きい逆流防止素子5に対して、高い逆バイアス電圧を印加して逆回復を行うのではなく、転流装置7により転流経路を形成するようにし、昇圧用スイッチ装置4のオン直前に変圧器73及び転流用整流素子72を介して低い逆バイアス電圧を印加して逆回復を行う制御(以下、転流制御と称す)を行うものである。
 転流制御においては、昇圧用スイッチ装置4のオン直前に転流装置7の転流用スイッチ74をオンし、変圧器73を介して逆流防止素子5に流れている電流を転流用整流素子72側に転流する。昇圧用スイッチ装置4がオフ、転流用スイッチ74がオンしている状態の電流経路は、電源1-リアクタ3-逆流防止素子5-負荷9-電源1の経路となる。さらに、転流用スイッチ74がオンしているため、変圧器73が励磁され、転流装置7の変圧器73の2次側巻線-転流用整流素子72の経路にも電流が流れ込む。
 例えば、昇圧用スイッチ装置4の昇圧駆動信号がオンとなる直前で、転流装置7(転流用スイッチ74)の転流駆動信号をオンさせる。このとき、励磁電流により変圧器73の2次側巻線の経路に電流が流れ始める。よって、逆流防止素子5と転流用整流素子72の各方向に電流が分流して流れる。その後、転流駆動信号をオン状態に維持すると、一定時間経過後には、逆流防止素子5には電流が流れなくなり、転流用整流素子72側に全電流が流れることとなる(転流完了)。
 転流動作の際、転流用電源75を、平滑装置8の出力電圧と比較して十分小さい値となるよう設定しておくことで、低い逆バイアス電圧にて逆流防止素子5をオフ(逆回復)させることが可能となる。この状態で、昇圧用スイッチ装置4をオンすると、転流用整流素子72の逆回復動作が行われ、この場合にもリカバリー電流は生じる。しかしながら、転流用整流素子72の通流時間は逆流防止素子5と比較して、ごく短時間のため、転流用整流素子72に流れる電流の実効電流は小さく、必要とされる電流容量が小さくてすむ。よって、蓄積キャリアの少ない、小容量な素子を用いることができ、逆流防止素子5によって発生する場合と比較して、リカバリー電流の低減が可能となる(ただし、ピーク電流を考慮して素子を選定する)。そして、結果的にシステム全体として、リカバリー電流に起因するノイズ量及び損失を低減することができる。これにより、雑音端子電圧・放射雑音等のレベルが低減し、また、回路損失が抑制される。よってノイズフィルタを小型化することができ、コスト低減をはかることができる。
 図3は本発明の実施の形態1に係るモジュール構成の他の一例を示す図である。例えば、図2では、逆流防止素子5と転流用整流素子72とをモジュール80として構成したが、図3では、転流用整流素子72と転流用スイッチ74とを同じモジュール80内に構成する。
 図4は本発明の実施の形態1に係るモジュール構成の別の一例を示す図である。例えば、図2では、逆流防止素子5と転流用整流素子72とをモジュール80として構成したが、図3では、さらに転流用スイッチ74についても同じモジュール80に含めて構成する。
 以上のように、実施の形態1によれば、逆流防止素子5と転流用整流素子72とをモジュール80として構成し、同じモジュール内に配置するようにしたので、例えばプリント基板等に配置する必要がなく、装置(回路)全体における面積を低減することができる。
 また、プリント基板作成の工数を減らすことができる。また、各素子に対応するヒートシンク等を設ける必要がなく、放熱対策部品の個数を減らすことができる。したがって、コスト低減をはかることができる。また、モジュール80内の素子の温度条件は同じであると考えることができるので、モジュール80としてまとめることにより、風路設計、放熱設計を簡易化に寄与することができる。
 さらに、モジュール80とすることによって、例えば、転流用整流素子72又は逆流防止素子5において、順方向電流が流れている状態で逆電圧がかかったときの逆回復動作を、転流用整流素子72又は逆流防止素子5の静電容量成分として模擬することができる。逆回復時のリカバリー電流を小さくするためにはこの容量成分が小さいことが好ましい。特に転流用整流素子の容量成分を低減できれば、リカバリー電流の低減への寄与が大きくなる。ここで、導体間の容量成分Cは、導体間距離、導体面積S及び誘電率εを用いて、C=ε×S/dと表すことができる。したがって、導体面積Sの縮小又は導体間距離dを長くすれば、容量成分Cを低減させることができる。しかし、導体間距離dを長くすることは、回路の集積化、配線インピーダンスの低減とはトレードオフとなる。また、高電圧を扱う装置に適用する場合には、確保しなければならない絶縁距離が大きくなる。このため、必要箇所の導体間距離dを大きくすることは困難である。そこで、本実施の形態のように、転流用整流素子72をモジュール80内に配置するようにし、素子近傍の配線(ワイヤ)、パターンの面積を縮小することで、転流用整流素子の容量成分の低減をはかり、リカバリー電流をさらに低減することができる。
実施の形態2.
 図5は本発明の実施の形態2に係る逆流防止素子5と並列に転流装置7を接続した場合の一例を示す図である。本実施の形態では、複数の転流用整流素子72を直列に接続している。
 例えば、転流経路においては、転流用整流素子72は容量成分とみなすことができる。このため、転流用整流素子72を1つで構成する場合の容量成分よりも、通常、複数の転流用整流素子72を直列接続した合成容量成分の方が小さくなる。したがって、例えば、逆回復特性のよい転流用整流素子72を1つで構成するよりも、1つ当たりの逆回復特性は優れなくとも複数の転流用整流素子72を直列で接続した方が結果的にリカバリー電流を抑制することができる。そこで、本実施の形態では、直列に接続した複数の転流用整流素子72をモジュール80として構成するものである。
 図6は本発明の実施の形態2に係るモジュール構成の他の一例を示す図である。例えば、図5では、逆流防止素子5と複数の転流用整流素子72とをモジュール80として構成したが、図6では、複数の転流用整流素子72と転流用スイッチ74とを同じモジュール80内に構成する。
 図7は本発明の実施の形態2に係るモジュール構成の別の一例を示す図である。例えば、図5では、逆流防止素子5と複数の転流用整流素子72とをモジュール80として構成したが、図7では、さらに転流用スイッチ74についても同じモジュール80に含めて構成する。
 本実施の形態のように、複数の転流用整流素子72を直列に接続してモジュール80を構成した場合においても、実施の形態1と同様の効果を奏する。特に各転流用整流素子72の温度条件が同じになるため、素子間のばらつきがない。
実施の形態3.
 図8は本発明の実施の形態3に係る逆流防止素子5と並列に転流装置7を接続した場合の一例を示す図である。上述した実施の形態2では、複数の転流用整流素子72を直列に接続するようにしたが、本実施の形態では、複数の転流用整流素子72を並列に接続し、逆流防止素子5と複数の転流用整流素子72とをモジュール80として構成するようにしたものである。複数の転流用整流素子72を並列に接続することにより、各転流用整流素子72に流れる電流量が少なくなる。このため、転流用整流素子72として電流容量の小さい素子を選択することができる。したがって、転流装置を構成する際の材料選択の幅を増やすことができる。このとき、コストに基づいて材料を選択すれば、コスト低減等をはかることができる。
 図9は本発明の実施の形態3に係るモジュール構成の他の一例を示す図である。例えば、図8では、逆流防止素子5と複数の転流用整流素子72とをモジュール80として構成したが、図9では、複数の転流用整流素子72と転流用スイッチ74とを同じモジュール80内に構成する。
 図10は本発明の実施の形態3に係るモジュール構成の別の一例を示す図である。例えば、図8では、逆流防止素子5と複数の転流用整流素子72とをモジュール80として構成したが、図10では、さらに転流用スイッチ74についても同じモジュール80に含めて構成する。
 図11は本発明の実施の形態3に係るモジュール構成の別の一例を示す図である。例えば、図8では、転流経路が実質的に1経路であったが、図11では、2経路有している。そして、転流動作回路71は、変圧器73、転流用スイッチ74及び転流用電源75の組を各転流経路に対して有している。このため、各転流経路に独立したタイミングで電流を流すことができる。ここで、図11では、逆流防止素子5と複数の転流用整流素子72とでモジュール80を構成しているが、さらに各転流用スイッチ74を含めて構成するようにしても良い。
 本実施の形態のように、複数の転流用整流素子72を並列に接続してモジュールを構成した場合においても、実施の形態1及び実施の形態2と同様の効果を奏する。
実施の形態4.
 図12は本発明の実施の形態4に係る電力変換装置を中心とするシステムにおける構成の一部を示す図である。図12において、図1等と同じ符号を付している装置等については、実施の形態1等で説明したことと同様の動作を行う。図12では、交流電源1Aと整流回路(整流装置)1Bとの組み合わせ等で構成した電源1を有している。整流回路1Bは、4つのダイオード(整流素子)を組み合わせて、ダイオードブリッジを構成している。
 例えば、実施の形態1において、図2等で説明したように、並列接続関係となる逆流防止素子5と転流用整流素子72とでモジュール80を構成している。また、整流回路1Bについても、並列接続関係にあるダイオードを2組有している。したがって、整流回路1Bを構成する際に、モジュール80を用いることができる。ここでは、交流電源1Aの正側と接続している組にモジュール80を用いている。
 図13は本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図である。図13において、実施の形態2において、直列接続関係にある複数の転流用整流素子72を含むモジュール80を構成した。整流回路1Bは、直列接続関係にあるダイオードを2組有している。したがって、直列接続関係にある複数の転流用整流素子72を含むモジュール80を整流回路1Bを構成する際に用いることもできる。
 図14は本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図である。例えば、上述した実施の形態1等においては、逆流防止素子5、転流用整流素子72及び転流用スイッチ74でモジュール80を構成した。図14では、逆流防止素子5、転流用整流素子72及び昇圧用スイッチ装置4でモジュール80を構成するものである。
 図15~図17は本発明の実施の形態4に係る電力変換装置を中心とするシステム構成の他の例を示す図である。図15~図17では、インバータ装置9Aとモータ等の交流負荷9Bとの組み合わせ等で構成した負荷9を有している。例えば、図14では、逆流防止素子5、転流用整流素子72及び昇圧用スイッチ装置4でモジュール80を構成した。
 一方、インバータ装置9Aは、スイッチング素子とスイッチング素子に逆並列接続された還流ダイオードとの組み合わせを複数組有している。したがって、インバータ装置9Aを構成する際に、モジュール80を用いることができる。
 以上のように、逆流防止装置に用いるモジュール80を、電力変換回路又はシステム内の素子を構成する場合にも用いることにより、装置又はシステム全体としてのコストを低減することができる。 例えば、インバータ装置9Aをモジュール80として構成するとすることによって、素子間の配線の長さを短くすることができ。このため、インダクタ成分を減らすことができ、例えば高周波のスイッチングにも対応することができる。また、モジュール80にすることで、回路全体の面積(体積)を減らすことができる。
実施の形態5.
 図18~図30は本発明の実施の形態5に係るモジュール80の結線例を示す図である。各図に示すような素子間の配線をモジュール80内で行い、端子とすることができる。
実施の形態6.
 図31は本発明の実施の形態6に係る冷凍空気調和装置の構成図である。本実施の形態では、上述した電力変換装置を介して電力供給を行う冷凍空気調和装置について説明する。図31の冷凍空気調和装置は、熱源側ユニット(室外機)300と負荷側ユニット(室内機)400とを備え、これらが冷媒配管で連結され、主となる冷媒回路(以下、主冷媒回路と称す)を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管500とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管600とする。
 熱源側ユニット300は、本実施の形態においては、圧縮機301、油分離器302、四方弁303、熱源側熱交換器304、熱源側ファン305、アキュムレータ306、熱源側絞り装置(膨張弁)307、冷媒間熱交換器308、バイパス絞り装置309及び熱源側制御装置310の各装置(手段)で構成する。
 圧縮機301は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機301は、運転周波数を任意に変化させることにより、圧縮機301の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるインバータ装置を有しているものとする。ここで、上述した各実施の形態における電力変換装置が、圧縮機301(モータ)を駆動させる電力を供給する電源1と負荷9となるインバータ装置を有する圧縮機301等との間に取り付けられている。ここで、電力変換装置とインバータ装置とを組み合わせた装置がモータ駆動装置となる。
 油分離器302は、冷媒に混じって圧縮機301から吐出された潤滑油を分離させるものである。分離された潤滑油は圧縮機301に戻される。四方弁303は、熱源側制御装置310からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。また、熱源側熱交換器304は、冷媒と空気(室外の空気)との熱交換を行う。熱源側熱交換器304は、例えば、暖房運転時においては蒸発器として機能し、熱源側絞り装置307を介して流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁303側から流入した圧縮機301において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側熱交換器304には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン305が設けられている。熱源側ファン305についても、上述の各実施の形態に記載した電力変換装置を介して電力供給を行い、例えば負荷9となるインバータ装置においてファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。
 冷媒間熱交換器308は、冷媒回路の主となる流路を流れる冷媒と、その流路から分岐してバイパス絞り装置309(膨張弁)により流量調整された冷媒との間で熱交換を行う。冷媒間熱交換器308は、特に冷房運転時において冷媒を過冷却する必要がある場合に、冷媒を過冷却して負荷側ユニット400に供給するものである。バイパス絞り装置309を介して流れる液体は、バイパス配管を介してアキュムレータ306に戻される。アキュムレータ306は例えば液体の余剰冷媒を溜めておく手段である。熱源側制御装置310は、例えばマイクロコンピュータ等からなる。熱源側制御装置310は、負荷側制御装置404と有線又は無線通信することができ、例えば、冷凍空気調和装置内の各種検知手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機301の運転周波数制御等、冷凍空気調和装置に係る各手段を制御して冷凍空気調和装置全体の動作制御を行う。また、上述の実施の形態において説明した制御装置100が行う処理を熱源側制御装置310が行うようにしてもよい。
 一方、負荷側ユニット400は、負荷側熱交換器401、負荷側絞り装置(膨張弁)402、負荷側ファン403及び負荷側制御装置404で構成される。負荷側熱交換器401は冷媒と空気との熱交換を行う。負荷側熱交換器401は、例えば、暖房運転時においては凝縮器として機能し、ガス配管500から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(又は気液二相化)させ、液配管600側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置402により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管500側に流出させる。また、負荷側ユニット400には、冷媒との熱交換を行う空気の流れを調整するための負荷側ファン403が設けられている。この負荷側ファン403の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置402は、開度を変化させることで、負荷側熱交換器401内における冷媒の圧力を調整するために設ける。
 また、負荷側制御装置404もマイクロコンピュータ等からなり、例えば熱源側制御装置310と有線又は無線通信することができる。熱源側制御装置310からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット400の各装置(手段)を制御する。また、負荷側ユニット400に設けられた検知手段の検知に係るデータを含む信号を送信する。
 以上のように実施の形態6の冷凍空気調和装置では、上述した実施の形態における電力変換装置を用いて圧縮機301、熱源側ファン305等への電力供給を行うようにしたので、高効率、高信頼性の冷凍空気調和装置を得ることができる。
 前述した実施の形態6では、本発明に係る電力変換装置を冷凍空気調和装置に適用する場合について説明したが、これに限定するものではない。本発明に係る電力変換装置は、ヒートポンプ装置、冷蔵庫等の冷凍サイクル(ヒートポンプサイクル)を利用する装置、エレベータ等の搬送機器等、照明器具(システム)にも適用することができ、同様の効果を奏することができる。
 1 電源、1A 交流電源、1B 整流回路、3 リアクタ、4 昇圧用スイッチ装置、5 逆流防止素子、6 チョッパ回路、7 転流装置、8 平滑装置、9 負荷、9A インバータ装置、9B 交流負荷、71 転流動作回路、72 転流用整流素子、73 変圧器、74 転流用スイッチ、75 転流用電源、80 モジュール、100 制御装置、101 負荷電圧検出部、102 電流検出部、103 電源電圧検出部、300 熱源側ユニット、301 圧縮機、302 油分離器、303 四方弁、304 熱源側熱交換器、305 熱源側ファン、306 アキュムレータ、307 熱源側絞り装置、308 冷媒間熱交換器、309 バイパス絞り装置、310 熱源側制御装置、400 負荷側ユニット、401 負荷側熱交換器、402 負荷側絞り装置、403 負荷側ファン、404 負荷側制御装置、500 ガス配管、600 液配管。

Claims (16)

  1.  電源と負荷との間に接続され、前記負荷側から前記電源側への電流の逆流を防止する逆流防止素子と、
     該逆流防止素子と並列接続した転流経路に電流を流す転流動作を行う転流装置とを備え、
     前記転流装置を構成する素子の少なくとも一部を含む複数の素子を、モジュールとして構成する逆流防止装置。
  2.  前記転流装置は、前記転流経路を流れる電流を整流する転流用整流素子を有し、
     該転流用整流素子と前記逆流防止素子とを含むモジュールとして構成する請求項1に記載の逆流防止装置。
  3.  前記転流装置は、
     前記転流経路を流れる電流を整流する転流用整流素子と、
     1次側巻線に係る電圧に基づく電圧を前記転流経路上の2次側巻線に印加させ、前記転流動作を行う変圧器と、
     転流用電源と転流用スイッチとを有して前記変圧器の1次側巻線と接続し、前記転流用スイッチの開閉により、前記転流用電源から前記変圧器の1次側巻線に流れる励磁電流を制御する変圧器駆動装置とを有し、
     前記転流用整流素子と前記転流用スイッチとを含むモジュールとして構成する請求項1に記載の逆流防止装置。
  4.  さらに前記逆流防止素子を含んでモジュールとして構成する請求項3に記載の逆流防止装置。
  5.  複数の転流用整流素子を含むモジュールとして構成する請求項1~4のいずれか一項に記載の逆流防止装置。
  6.  前記転流装置は、前記転流経路を複数有し、各転流経路に少なくとも1つの転流用整流素子を配置する請求項5に記載の逆流防止装置。
  7.  前記複数の転流用整流素子を直列接続したモジュールを構成する請求項5又は6に記載の逆流防止装置。
  8.  前記複数の転流用整流素子を並列接続したモジュールを構成する請求項5又は6に記載の逆流防止装置。
  9.  前記転流用整流素子は、ワイドバンドギャップ半導体を用いた素子であることを特徴とする請求項2~8のいずれか一項に記載の逆流防止装置。
  10.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドを材料とすることを特徴とする請求項9に記載の逆流防止装置。
  11.  出力電圧を平滑する平滑装置と、
     該平滑装置より前記電源側に配置され、スイッチの開閉により前記電源を短絡させるスイッチ装置と、
     該スイッチ装置より前記電源側に配置されたリアクトルと、
     前記負荷側からの電流の逆流を防止する請求項1~10のいずれかに記載の逆流防止装置と
    を備える電力変換装置。
  12.  前記スイッチ装置のスイッチと前記逆流防止装置を構成する素子の少なくとも一部の素子とをモジュールとして構成する請求項11に記載の電力変換装置。
  13.  前記電源が交流電源であるとき、前記交流電源からの電力を整流する整流装置をさらに備え、
     前記逆流防止装置が有するモジュールを用いて、前記整流装置を構成する請求項11に記載の電力変換装置。
  14.  請求項11~13のいずれかに記載の電力変換装置と、
     該電力変換装置が供給する電力を交流電力に変換するインバータ装置と
    を備え、
     前記電力変換装置が有するモジュールを用いて、前記インバータ装置を構成する電力変換装置。
  15.  前記負荷をモータとする請求項1~14に記載の電力変換装置。
  16.  請求項11~15のいずれか一項に記載の電力変換装置を、圧縮機又は送風機の少なくとも一方を駆動するために備えることを特徴とする冷凍空気調和装置。
PCT/JP2013/068163 2013-07-02 2013-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置 WO2015001618A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/068163 WO2015001618A1 (ja) 2013-07-02 2013-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置
EP14820605.5A EP3018810B1 (en) 2013-07-02 2014-07-02 Backflow prevention device, power converter, and refrigerating and air-conditioning device
PCT/JP2014/067692 WO2015002249A1 (ja) 2013-07-02 2014-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置
US14/902,039 US10404196B2 (en) 2013-07-02 2014-07-02 Backflow preventing device, power conversion apparatus, and refrigerating and air-conditioning apparatus
JP2015525263A JP6132912B2 (ja) 2013-07-02 2014-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置
CN201480037775.4A CN105379089B (zh) 2013-07-02 2014-07-02 逆流防止装置、电力变换装置以及冷冻空气调节装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068163 WO2015001618A1 (ja) 2013-07-02 2013-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置

Publications (1)

Publication Number Publication Date
WO2015001618A1 true WO2015001618A1 (ja) 2015-01-08

Family

ID=52143241

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/068163 WO2015001618A1 (ja) 2013-07-02 2013-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置
PCT/JP2014/067692 WO2015002249A1 (ja) 2013-07-02 2014-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067692 WO2015002249A1 (ja) 2013-07-02 2014-07-02 逆流防止装置、電力変換装置及び冷凍空気調和装置

Country Status (5)

Country Link
US (1) US10404196B2 (ja)
EP (1) EP3018810B1 (ja)
JP (1) JP6132912B2 (ja)
CN (1) CN105379089B (ja)
WO (2) WO2015001618A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2870629T3 (es) 2014-10-02 2021-10-27 Ecoatm Llc Aplicación para evaluación de dispositivos y otros procesos asociados con reciclaje de dispositivos
CA2964214C (en) 2014-10-02 2020-08-04 ecoATM, Inc. Wireless-enabled kiosk for recycling consumer devices
JP6245385B2 (ja) * 2015-01-16 2017-12-13 富士電機株式会社 スイッチング電源装置
WO2017145339A1 (ja) * 2016-02-25 2017-08-31 三菱電機株式会社 直流電源装置および冷凍サイクル適用機器
JP6254301B1 (ja) * 2016-09-02 2017-12-27 新電元工業株式会社 Mosfet及び電力変換回路
JP6503413B2 (ja) * 2017-05-31 2019-04-17 本田技研工業株式会社 Dc/dcコンバータおよび電気機器
CN110870185A (zh) * 2017-09-22 2020-03-06 华为技术有限公司 混合升压转换器
CN110505728B (zh) * 2018-05-17 2022-05-10 朗德万斯公司 降压转换器
CN111998482A (zh) * 2020-08-20 2020-11-27 合肥美的暖通设备有限公司 开关控制电路和家电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176196A (ja) * 1986-01-30 1987-08-01 松下電器産業株式会社 パワ−モジユ−ル
WO2012120600A1 (ja) * 2011-03-04 2012-09-13 三菱電機株式会社 電力変換装置および冷凍空調システム
WO2012137258A1 (ja) * 2011-04-08 2012-10-11 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍空気調和装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117459A (ja) * 1982-12-22 1984-07-06 Hitachi Ltd スイツチング回路
JP2580804B2 (ja) * 1989-06-23 1997-02-12 富士電機株式会社 電力変換装置用トランジスタモジュール
JP2590284B2 (ja) * 1990-02-28 1997-03-12 株式会社日立製作所 半導体装置及びその製造方法
US5731970A (en) * 1989-12-22 1998-03-24 Hitachi, Ltd. Power conversion device and semiconductor module suitable for use in the device
US5550458A (en) * 1994-05-31 1996-08-27 Lucent Technologies Inc. Low-loss snubber for a power factor corrected boost converter
ATE242933T1 (de) * 1995-10-24 2003-06-15 Aquagas New Zealand Ltd Gleichrichter-stromversorgung
US6043636A (en) * 1997-10-20 2000-03-28 Diversified Technologies, Inc. Voltage transient suppression
US5874826A (en) 1997-10-29 1999-02-23 Lucent Technologies Inc. Encapsulated modular boost converter and method of manufacture therefor
IL125328A0 (en) 1998-07-13 1999-03-12 Univ Ben Gurion Modular apparatus for regulating the harmonics of current drawn from power lines
WO2001003276A2 (en) * 1999-06-30 2001-01-11 Peco Ii, Inc. Diode recovery current suppression circuits
JP2002141464A (ja) * 2000-10-31 2002-05-17 Meidensha Corp モジュール
JP2005160284A (ja) 2003-05-13 2005-06-16 Sumitomo Electric Ind Ltd 電力変換装置及び電気自動車の駆動システム
DE102006017487A1 (de) * 2006-04-13 2007-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Integriertes Beschaltungsbauelement auf Halbleiterbasis zur Schaltentlastung, Spannungsbegrenzung bzw. Schwingungsdämpfung
JP4799512B2 (ja) 2007-08-31 2011-10-26 三菱電機株式会社 電力変換装置およびその装置を用いた空気調和機
CN101516166B (zh) * 2008-02-22 2010-12-08 华为技术有限公司 一种横插框及通信机柜
FR2929053B1 (fr) * 2008-03-21 2013-08-16 Commissariat Energie Atomique Dispositif de commande d'une alimentation de decoupage dc dc non isolee, du type a n voies entrelacees
EP2750279B1 (en) * 2008-09-01 2018-12-26 Mitsubishi Electric Corporation Converter circuit and motor drive control apparatus, air-conditioner, refrigerator, and induction heating cooker provided with the circuit
JP5476028B2 (ja) * 2009-04-17 2014-04-23 株式会社日立製作所 パワー半導体スイッチング素子のゲート駆動回路及びインバータ回路
JP5359614B2 (ja) * 2009-07-01 2013-12-04 セイコーエプソン株式会社 入出力インターフェース回路、集積回路装置および電子機器
US8228021B2 (en) * 2009-07-24 2012-07-24 Automotive Parts And Accessory Systems R & D Centre Limited Converter circuit
JP4989698B2 (ja) 2009-08-24 2012-08-01 三菱電機株式会社 電力変換装置、それを備えたモーター駆動制御装置、それを搭載した圧縮機及び送風機、並びに、その圧縮機又は送風機を搭載した空気調和機、冷蔵庫及び冷凍庫
US8030884B2 (en) * 2009-08-31 2011-10-04 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same
JP5264849B2 (ja) 2010-09-27 2013-08-14 三菱電機株式会社 電力変換装置及び冷凍空気調和装置
CN103348578B (zh) 2011-01-31 2015-12-02 三菱电机株式会社 逆流防止单元、电力变换装置以及制冷空气调节装置
JP5571013B2 (ja) 2011-02-15 2014-08-13 株式会社東芝 半導体スイッチ、及び電力変換装置
JP5258927B2 (ja) * 2011-04-27 2013-08-07 三菱電機株式会社 電力変換装置、冷凍空調システムおよび制御方法
JP2013054331A (ja) * 2011-08-05 2013-03-21 Sony Corp 表示方法、表示装置、電子機器および照明装置
US8810157B2 (en) * 2012-10-18 2014-08-19 Power Integrations, Inc. Simplified current sense for buck LED driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176196A (ja) * 1986-01-30 1987-08-01 松下電器産業株式会社 パワ−モジユ−ル
WO2012120600A1 (ja) * 2011-03-04 2012-09-13 三菱電機株式会社 電力変換装置および冷凍空調システム
WO2012137258A1 (ja) * 2011-04-08 2012-10-11 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍空気調和装置

Also Published As

Publication number Publication date
JP6132912B2 (ja) 2017-05-24
EP3018810A4 (en) 2017-03-01
EP3018810A1 (en) 2016-05-11
US20160329846A1 (en) 2016-11-10
US10404196B2 (en) 2019-09-03
JPWO2015002249A1 (ja) 2017-02-23
CN105379089A (zh) 2016-03-02
WO2015002249A1 (ja) 2015-01-08
EP3018810B1 (en) 2022-06-01
CN105379089B (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
JP6132912B2 (ja) 逆流防止装置、電力変換装置及び冷凍空気調和装置
JP5748842B2 (ja) 電力変換装置、モータ駆動装置および冷凍空気調和装置
JP5855025B2 (ja) 逆流防止手段、電力変換装置及び冷凍空気調和装置
JP5264849B2 (ja) 電力変換装置及び冷凍空気調和装置
JP6109296B2 (ja) 電力変換装置及び冷凍空気調和装置
JP6076466B2 (ja) 電力変換装置及び冷凍空気調和装置
JPWO2019159317A1 (ja) 電力変換装置およびこれを用いた空気調和装置
JP6150893B2 (ja) 電力変換装置及び冷凍空気調和装置
JP6132911B2 (ja) 逆流防止装置、電力変換装置、モータ駆動装置及び冷凍空気調和装置
WO2015002248A1 (ja) 電力変換装置及び冷凍空気調和装置
US10003184B2 (en) Backflow preventing device, power conversion device, and refrigeration air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP