WO2015001591A1 - シリカガラスルツボの検査方法 - Google Patents
シリカガラスルツボの検査方法 Download PDFInfo
- Publication number
- WO2015001591A1 WO2015001591A1 PCT/JP2013/067946 JP2013067946W WO2015001591A1 WO 2015001591 A1 WO2015001591 A1 WO 2015001591A1 JP 2013067946 W JP2013067946 W JP 2013067946W WO 2015001591 A1 WO2015001591 A1 WO 2015001591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica glass
- glass crucible
- surface defect
- spectrum
- measurement
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000007547 defect Effects 0.000 claims abstract description 65
- 238000005259 measurement Methods 0.000 claims abstract description 49
- 238000001228 spectrum Methods 0.000 claims abstract description 37
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 25
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 17
- 238000007689 inspection Methods 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 description 47
- 239000010703 silicon Substances 0.000 description 46
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 45
- 239000013078 crystal Substances 0.000 description 33
- 239000000377 silicon dioxide Substances 0.000 description 24
- 239000000843 powder Substances 0.000 description 22
- 239000010410 layer Substances 0.000 description 20
- 239000000523 sample Substances 0.000 description 15
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 12
- 238000003841 Raman measurement Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000010891 electric arc Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000002329 infrared spectrum Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010314 arc-melting process Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- -1 silicon alkoxide Chemical class 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/10—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
- G01N21/68—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using high frequency electric fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B35/00—Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
- C30B35/002—Crucibles or containers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8477—Investigating crystals, e.g. liquid crystals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/10—Scanning
- G01N2201/105—Purely optical scan
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
Definitions
- the present invention relates to a method for inspecting a silica glass crucible for predicting the occurrence of a surface defect site in a silica glass crucible and judging the quality.
- a Czochralski method (CZ method) using a silica glass crucible is employed for producing a silicon single crystal.
- This method is a method of manufacturing a single crystal by bringing a seed crystal into contact with the surface of a silicon melt at a high temperature of about 1420 ° C., which is the melting point of silicon, while rotating the seed crystal in a horizontal direction on the liquid surface and gradually pulling it up.
- a high-purity silica glass crucible for storing a silicon melt is used.
- the diameter of silicon single crystals has increased due to demands for improving the efficiency of semiconductor device processes. Accordingly, the diameter of the silica glass crucible is also increased.
- Silica glass crucible sizes include 28 inch (about 71 cm), 32 inch (about 81 cm), 36 inch (about 91 cm), and 40 inch (about 101 cm) diameters.
- the crucible having a diameter of 101 cm is a huge one weighing about 120 kg, and the mass of the silicon melt accommodated therein is 900 kg or more. In other words, when the silicon single crystal is pulled, 900 kg or more of silicon melt at about 1500 ° C. is stored in the crucible.
- the distance from the outer carbon heater to the center of the silicon single crystal and the amount of polysilicon to be melted increase, and the temperature applied to the silica glass crucible increases.
- the pulling time may be prolonged and may continue to be pulled for more than two weeks.
- the temperature of the silica glass crucible is as high as 1450 to 1600 ° C. in order to keep the solid-liquid interface at the center of the silicon melt surface where the silicon melt is in contact with the single crystal at around 1420 ° C. which is the melting point of silicon. .
- the amount of deformation of the rim of the silica glass crucible may be 5 cm or more.
- Brown cristobalite is generated on the inner surface of the silica glass crucible when it is in contact with a high-temperature silicon melt for a long time.
- cristobalite grows in the horizontal direction and the vertical direction with respect to the inner surface of the silica glass crucible to form ring-shaped spots (Brown rings).
- the formed brown ring is easy to peel off.
- the peeled brown ring falls and mixes in the silicon melt, it is carried to the silicon single crystal. As a result, the pulled silicon ingot is polycrystallized and the single crystallization rate is lowered.
- Bubbles contained in the inner surface of the silica glass crucible also cause a reduction in the single crystallization rate.
- Bubbles contained in the inner surface of the silica glass crucible enter the silicon melt. Since the bubbles in the silicon melt are contained in the silicon ingot, the single crystallization rate is lowered.
- the bubbles contained on the inner surface of the silica glass crucible expand significantly under high temperature conditions for a long time. The expanded bubbles deform the silica glass crucible or make the inner surface non-uniform. As a result, molten metal surface vibration occurs in the silicon melt, and the single crystallization rate is reduced.
- Patent Document 1 proposes a method of stably pulling up a silicon single crystal by limiting the number of brown rings at a predetermined location to a certain range.
- Patent Document 2 describes that the amorphous component ratio of a silica glass crucible is identified using laser Raman.
- Patent Document 1 has a problem that it is difficult to limit the number of brown rings to a certain range.
- surface defect sites such as brown rings are generated on the inner surface of the crucible during the pulling of the silicon single crystal, but the susceptibility of the surface defect sites varies from crucible to crucible. That is, even if the silicon single crystal is pulled up under substantially the same conditions, the number of surface defect sites generated is different for each crucible.
- an object of the present invention is to provide a method for inspecting a silica glass crucible for predicting the occurrence of a surface defect site in a silica glass crucible and judging the quality.
- the present inventors have conducted extensive research and analyzed the relationship between the inner surface of the crucible, the infrared absorption spectrum, and the Raman shift in detail, thereby determining the surface defect site of the silica glass crucible.
- the present invention provides a measurement step for measuring an infrared absorption spectrum or a Raman shift at a measurement point on the inner surface of a silica glass crucible, and a surface defect site at the measurement point based on the obtained spectrum.
- a method for inspecting a silica glass crucible comprising a determination step of predicting whether or not to occur and determining the quality of the silica glass crucible.
- Reference infrared spectrum It is an infrared spectrum of silica glass
- the inspection method according to the present invention is based on a measurement step for measuring an infrared absorption spectrum or a Raman shift at a measurement point on the inner surface of a silica glass crucible, and based on the obtained spectrum, a surface defect site is present at the measurement point. It is judged whether it generate
- the silica crucible to be inspected includes, for example, a substantially cylindrical straight body portion 15 that is open at the top and extends in the vertical direction, as shown in the sectional view of FIG. 2, the curved bottom portion 16, and the straight body.
- a corner portion 17 that connects the portion 15 and the bottom portion 16 and has a larger curvature than the bottom portion 16 is provided.
- the silica glass crucible preferably includes a transparent layer 20 on the inner side and a bubble layer 14 on the outer side.
- the transparent layer 20 is a layer formed inside the silica glass crucible and substantially does not contain bubbles. “Substantially free of bubbles” means that the bubble content and bubble diameter are such that the single crystallization rate does not decrease due to bubbles.
- the bubble content is the volume of bubbles in the unit volume of the crucible.
- the bubble layer 14 has, for example, a bubble content of 0.2% to 1% and an average bubble diameter of 20 ⁇ m to 200 ⁇ m.
- a silica glass crucible is manufactured as follows, for example.
- Silica powder used for the production of silica glass crucible includes crystalline natural silica powder and amorphous synthetic silica powder produced by chemical synthesis.
- the natural silica powder is a silica powder produced by pulverizing a natural mineral mainly composed of ⁇ -quartz.
- Synthetic silica powder is produced by chemical synthesis techniques such as vapor phase oxidation of silicon tetrachloride (SiCl 4 ) (dry synthesis method) and hydrolysis of silicon alkoxide (Si (OR 4 )) (sol-gel method). be able to.
- natural silica powder is supplied to a silica glass crucible mold.
- the synthetic silica powder is supplied onto the natural silica powder, and the silica powder is melted by Joule heat of arc discharge, and then cooled to cool the inner silica layer (synthetic layer) and natural silica.
- a silica glass crucible composed of an outer surface layer (natural layer) that is vitrified from powder is produced.
- the silica powder layer is strongly depressurized to remove bubbles to form a transparent silica glass layer (transparent layer), and then the bubble is contained in the bubble-containing silica glass layer by decreasing the depressurization. (Bubble layer) is formed.
- the inner surface layer and the transparent layer formed from the synthetic silica powder do not necessarily coincide with each other.
- the outer surface layer and bubble layer formed from natural silica powder do not necessarily coincide.
- the silica powder is preferably melted so that the maximum temperature reached on the inner surface of the rotary mold is 2000 to 2600 ° C. If the maximum temperature reached is lower than 2000 ° C., the gas remaining as bubbles in the structure of the silica glass or in the silica glass cannot be exhausted, and the crucible expands violently during pulling in the silicon single crystal. In addition, if the maximum temperature reached is higher than 2600 ° C., the viscosity of the silica glass is lowered and shape collapse occurs.
- the arc melting is performed by, for example, AC three-phase (R phase, S phase, T phase) arc discharge. Therefore, in the case of AC three-phase, the silica powder layer is melted by generating arc discharge using three carbon electrodes. Arc melting starts arc discharge at the point where the tip of the carbon electrode is located above the mold opening. Thereby, the silica powder layer in the mold opening vicinity is preferentially melted. Thereafter, the carbon electrode is lowered to melt the silica powder layer at the mold body part, the corner part, and the bottom part.
- AC three-phase the silica powder layer is melted by generating arc discharge using three carbon electrodes.
- Arc melting starts arc discharge at the point where the tip of the carbon electrode is located above the mold opening. Thereby, the silica powder layer in the mold opening vicinity is preferentially melted. Thereafter, the carbon electrode is lowered to melt the silica powder layer at the mold body part, the corner part, and the bottom part.
- an infrared absorption spectrum or a Raman shift at an arbitrary measurement point on the inner surface of the silica glass crucible is measured.
- a plurality of measurement points are preferable. By measuring a plurality of locations, the number of surface defect sites can be predicted in advance.
- the infrared absorption spectrum can be measured by a Fourier transform infrared spectrophotometer (FT-IR).
- FT-IR Fourier transform infrared spectrophotometer
- an infrared absorption spectrum can be measured as follows. Infrared of the inner surface 11 of the silica glass crucible made from synthetic silica powder using the probe 10 shown in FIG. 1 having a light source for irradiating infrared rays and a light receiving portion for receiving a reflected wave from the measurement object. An absorption spectrum can be measured. The probe 10 can measure the infrared absorption spectrum of the inner surface 11 in a non-contact manner. As a measurement method, the infrared absorption spectrum can be measured by disposing the probe 10 on the inner surface 11 of the crucible 12 in a non-contact manner and scanning in the scanning direction 13.
- the sample scanning method is a method of acquiring an infrared absorption spectrum by driving a stage on which a sample is placed in the XY directions.
- the light source scanning method is a method in which a sample is two-dimensionally scanned by illuminating a light source in the X and Y directions and moving the light receiving unit accordingly. Any scanning method may be adopted.
- the scanning direction may be the vertical direction 18 or the horizontal direction 19 of the straight body portion 15 as shown in FIG.
- the scanning does not need to be performed on the entire inner surface of the crucible, and only a part of the inner surface 11 of the crucible may be scanned. For example, the part filled with the polysilicon melt may be intensively scanned.
- the probe 10 may be attached to a robot arm, for example.
- the robot arm may be installed on a turntable provided with a rotary encode or the like capable of detecting a rotation angle. Thereby, a three-dimensional coordinate can be calculated easily.
- the robot arm may have a distance measuring unit capable of measuring a distance in order to avoid contact between the probe 10 and the inner surface 11 and to keep the distance between the probe 10 and the inner surface 11 constant at all times.
- the distance measuring unit preferably includes a semiconductor laser capable of measuring the distance from the inner surface of the silica glass crucible.
- the wavelength of the laser beam is not particularly limited, but a wavelength of 600 to 700 nm is preferable.
- the three-dimensional shape of the silica glass crucible is measured, and the robot arm is moved based on the measured three-dimensional shape, thereby avoiding contact and spacing between the probe 10 and the inner surface 11. Maintenance may be performed.
- the measurement interval of the infrared absorption spectrum is, for example, 1 to 5 mm.
- the Raman shift can be measured by Raman spectroscopy.
- Raman spectroscopy a sample is irradiated with light such as a laser, and scattered light generated by molecular motion having a polarizability is measured.
- silica glass a peak related to the strain structure due to the Si—O—Si bond angle is detected.
- the Raman shift can be measured using the probe 10 or the robot arm, similarly to the measurement of the infrared absorption spectrum.
- the conditions for Raman measurement can be, for example, laser wavelength: 785 nm (100 mW), exposure time: 10 seconds, and integration count: once.
- laser wavelength 785 nm (100 mW)
- exposure time 10 seconds
- integration count once.
- “Judgment process] In the determination step performed in the present invention, it is predicted whether or not a surface defect site is generated at the measurement point based on the obtained spectrum.
- “Surface defect site” refers to an abnormal portion or region generated in a silica glass crucible that affects the yield of a silicon single crystal. For example, brown rings and bubbles. Whether or not a surface defect site is generated can be determined based on the peak of the spectrum.
- the spectrum peak may be, for example, the whole or a part of the obtained spectrum peak. Further, it may be a characteristic peak within a specific wave number range, and in this case, it is possible to predict whether or not a surface defect site will be generated only by paying attention to a specific wave number range (band). .
- the occurrence of a surface defect site can be predicted based on the following three methods and combinations thereof.
- the obtained spectrum is compared with a reference spectrum prepared in advance to predict whether or not a surface defect site will occur at the measurement point.
- the “reference spectrum prepared in advance” means, for example, a spectrum in the case where a surface defect site has occurred at a measurement point after pulling up the silicon single crystal at a measurement point of the silica glass crucible before pulling up the silicon single crystal. It is.
- the surface defect portion is a brown ring, not only the location of the brown ring but also the center and the vicinity of the center are included.
- the comparison using the reference spectrum prepared in advance may be performed immediately after the spectrum of the inner surface 11 is measured, or a plurality of measurement points may be compared after the measurement.
- the quality of the silica glass crucible is evaluated. For example, when the number of measurement points is one, the quality can be evaluated as a missing item when it is predicted that a surface defect portion will occur. In the case where there are a plurality of measurement points, it can be evaluated as a missing item when it is predicted that a predetermined number of surface defect sites will occur.
- the quality of the silica glass crucible can be determined based on the predicted number of surface defect sites per unit area of the inner surface of the silica glass crucible.
- the expected number of surface defect sites per unit area may be an average value.
- the expected number of surface defect sites per unit area at a specific part (for example, straight body part, corner part, and bottom part) of the silica glass crucible is calculated and exceeds a certain value, the product is missing. You may judge. Thereby, even if it is short measurement time, it can be judged easily whether a silica glass crucible is defective.
- the silicon ingot (1) melts polysilicon in the silica glass crucible 12 to generate a silicon melt, and (2) rotates the seed crystal with the end of the silicon seed crystal immersed in the silicon melt. It can be manufactured by pulling up.
- the shape of the silicon single crystal is a cylindrical silicon seed crystal from the top, a conical silicon single crystal below it, a cylindrical silicon single crystal having the same diameter as the bottom of the upper cone, and a conical shape with the apex pointing downward It consists of a silicon single crystal.
- the pulling of the silicon ingot is usually performed at about 1450 to 1500 ° C.
- the inner surface of the crucible is observed to check for the presence of a brown ring.
- the confirmed three-dimensional coordinates of the brown ring may be acquired, collated with data when the silica glass crucible 12 is manufactured, and data feedback may be performed.
- silica glass crucible was produced based on the rotating mold method.
- the diameter of the mold was 32 inches (81.3 cm)
- the average thickness of the silica powder layer deposited on the inner surface of the mold was 15 mm
- arc discharge was performed with three electrodes of three-phase alternating current.
- the energization time was 90 minutes
- the output was 2500 kVA
- the silica powder layer was evacuated for 10 minutes from the start of energization.
- Three silica glass crucibles were produced. Polysilicon was added to the manufactured silica glass crucible and melted to pull up the silicon single crystal.
- FIG. 3 to 6 show the results of measuring the micro-infrared reflection spectrum using the micro-infrared reflection measuring apparatus.
- the conditions were: resolution: 4 cm ⁇ 1 , integration number: 64 times (about 30 seconds).
- 3 is a reference spectrum
- FIG. 4 is a spectrum of silica glass.
- FIG. 6 is a spectrum of a silica glass crucible after use in which a surface defect site was found
- FIG. 5 is a spectrum expected to generate a surface defect site in the silica glass crucible before use.
- FIGS. 7 to 10 show the results of measuring the Raman shift of a surface defect site using a distributed micro Raman apparatus.
- the conditions were laser wavelength: 785 nm (100 mW), exposure time: 10 seconds, and integration count: once.
- FIG. 7 is a reference spectrum
- FIG. 8 is a spectrum of silica glass.
- FIG. 10 shows a spectrum of a silica glass crucible after use in which a surface defect site was found
- FIG. 9 shows a spectrum expected to generate a surface defect site in the silica glass crucible before use.
- Examples 1 to 3 The inner surfaces of the three unused silica glass crucibles obtained in the production examples were subjected to FT-IR measurement and Raman measurement. A three-dimensional shape of the inner surface shape of the silica glass crucible was obtained, and measurement was performed at the straight body portion, corner portion, and bottom portion of the silica glass crucible. The measurement points were arbitrarily selected from the above-mentioned region of the silica glass crucible (approximately 5 cm 2 square area (about 25 cm 2 ), and 20 points were measured, respectively. Note that the measurement range of FT-IR measurement and Raman measurement (spot (Diameter) is 20 ⁇ m.
- spectra having characteristic peaks in the vicinity of wave numbers 1210 to 1230 cm ⁇ 1 and in the vicinity of wave numbers 1090 to 1094 cm ⁇ 1 were observed.
- the measurement point at which a characteristic peak was observed was used as a measurement point at which occurrence of a surface defect site was predicted, and the corresponding coordinates were stored in the storage device, and the expected occurrence index of the surface defect site was calculated.
- the occurrence index is a value obtained by dividing the number of all measurement points by the number of observed surface defect sites. The results are shown in Table 1.
- a spectrum having a characteristic peak in the vicinity of the Raman shift 520 to 530 cm ⁇ 1 was observed.
- a measurement point at which a characteristic peak was observed was taken as a measurement point at which occurrence of a surface defect site was predicted.
- Corresponding coordinates were stored in a storage device, and an expected occurrence index of the surface defect site was calculated.
- the occurrence index is a value obtained by dividing the number of all measurement points by the number of observed surface defect sites. The results are shown in Table 1.
- a silicon single crystal was pulled using the measured silica glass crucible.
- the inner surface of the silica glass crucible after the single crystal pulling was confirmed based on the coordinates regarding the characteristic peaks of the FT-IR measurement and the Raman measurement before the single crystal pulling.
- a surface defect site was observed on the inner surface of the silica glass crucible after pulling the single crystal at the coordinates where a characteristic peak was present.
- Table 2 is a list of the number of occurrences of surface defects per measurement area of about 25 cm 2 .
- the inspection method it is possible to identify the occurrence site of the surface defect site before pulling up the silicon single crystal. Therefore, it is possible to predict in advance the generation ratio, density, etc. of surface defect sites, and it is possible to perform a quality inspection of the number of surface defect sites for a silica glass crucible before shipment, which has been impossible until now. Furthermore, the quality inspection of the silica glass crucible which requires the surface defect site
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
本発明は、シリカガラスルツボの表面欠陥部位の発生を予測し、品質を判断するシリカガラスルツボの検査方法に関する。
シリコン単結晶の製造にはシリカガラスルツボを用いたチョクラルスキー法(CZ法)が採用されている。この方法は、シリコンの融点である約1420℃の高温のシリコン融液表面に種結晶を液面に水平方向に回転させながら接触させ、これを徐々に引き上げて単結晶を製造する方法であり、シリコン融液を溜めるための高純度のシリカガラスルツボが用いられている。
上記課題を解決するために、本発明者らは、鋭意研究を重ね、ルツボの内表面と赤外吸収スペクトル及びラマンシフトとの関係を詳細に分析することにより、シリカガラスルツボの表面欠陥部位の発生を予測できることを見出した。すわなち、本発明は、シリカガラスルツボの内表面上の測定点において、赤外吸収スペクトル又はラマンシフトを測定する測定工程、および 得られたスペクトルに基づいて、前記測定点に表面欠陥部位が発生するかどうかを予測し、前記シリカガラスルツボの品質を判断する判断工程を備えることを特徴とするシリカガラスルツボの検査方法である。
〔シリカガラスルツボ〕
本発明において、検査対象となるシリカルツボは、例えば、図2の断面図に示されるような、上端が開口し鉛直方向に延びる略円筒形の直胴部15、湾曲した底部16、および前記直胴部15と前記底部16とを連結し且つ前記底部16よりも曲率が大きいコーナー部17を備えるものである。
シリカガラスルツボは、内側に透明層20、及びその外側に気泡層14を備えることが好ましい。透明層20は、シリカガラスルツボの内側に形成されている層であり、実質的に気泡を含まない。「実質的に気泡を含まない」とは、気泡が原因で単結晶化率が低下しない程度の気泡含有率及び気泡径であることを意味する。ここで、気泡含有率とは、ルツボの単位体積に占める気泡の体積である。光学カメラを用いてルツボ内表面の画像を撮像し、ルツボ内表面を一定体積ごとに区分して基準体積W1とし、この基準体積W1に対する気泡の占有体積W2を求め、P(%)=(W2/W1)×100により算出される。気泡層14は、例えば、内部に含まれる気泡含有率が0.2%以上1%以下、且つ気泡の平均直径が20μm以上200μm以下である。
シリカガラスルツボは、例えば、次のように製造される。シリカガラスルツボの製造に使用されるシリカ粉には、結晶質である天然シリカ粉や化学合成によって製造される非晶質である合成シリカ粉がある。天然シリカ粉は、α-石英を主成分とする天然鉱物を粉砕して粉状にすることによって製造されるシリカ粉である。合成シリカ粉は、四塩化珪素(SiCl4)の気相酸化(乾燥合成法)や、シリコンアルコキシド(Si(OR4))の加水分解(ゾル・ゲル法)などの化学合成による手法によって製造することができる。
まず、シリカガラスルツボ用モールドに天然シリカ粉を供給する。次に、合成シリカ粉を天然シリカ粉上に供給し、アーク放電のジュール熱によりシリカ粉を熔融した後、冷却することにより、合成シリカ粉からガラス化される内面層(合成層)と天然シリカ粉からガラス化される外面層(天然層)からなるシリカガラスルツボが製造される。アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(透明層)を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(気泡層)が形成される。ここで、合成シリカ粉から形成される内面層と透明層は、必ずしも一致するものではない。また、天然シリカ粉から形成される外面層と気泡層は、必ずしも一致するものではない。
シリカ粉の融解は、回転モールドの内表面での最高到達温度が2000~2600℃になるように行うことが好ましい。最高到達温度が2000℃よりも低いとシリカガラスの構造中あるいはシリカガラス中に気泡として残存するガスが抜け切れず、シリコン単結晶中の引き上げ中に、ルツボが激しく膨張する。また、最高到達温度が2600℃よりも高いとシリカガラスの粘度が低下して形状崩れが発生するからである。
アーク熔融は、例えば、交流3相(R相、S相、T相)のアーク放電によって実施される。従って、交流3相の場合は、3本の炭素電極を使用してアーク放電を発生させることでシリカ粉層が熔融する。アーク熔融は、炭素電極の先端がモールド開口部よりも上方に位置する地点でアーク放電を開始する。これにより、モールド開口部近傍におけるシリカ粉層が優先して熔融される。その後、炭素電極を降下させモールド直胴部、コーナー部、および底部のシリカ粉層を熔融させる。
〔測定工程〕
本発明においては、シリカガラスルツボの内表面上の任意の測定点の赤外吸収スペクトル又はラマンシフトを測定する。測定点は、シリカガラスルツボの品質判断の精度を高めるために、複数であることが好ましい。複数箇所を測定することで、表面欠陥部位の発生数を事前に予想することができる。
赤外線吸収スペクトルは、フーリエ変換赤外分光光度計(FT-IR)によって測定することができる。シリカガラスルツボの内表面に赤外線を照射することによって、Si-O間の相対的位置の変動(分子振動)等を調べることができる。
本発明において行われる判断工程においては、得られたスペクトルに基づいて、測定点に表面欠陥部位が発生するかどうかを予測する。「表面欠陥部位」とは、シリコン単結晶の歩留まりに影響を与える、シリカガラスルツボに生じる異常な部分または領域を指す。例えば、ブラウンリングや気泡などである。表面欠陥部位が発生するかどうかは、スペクトルのピークに基づいて行うことができる。スペクトルのピークとは、例えば、得られたスペクトルのピーク全体または一部であってもよい。また、特定の波数の範囲内における特徴的なピークであってもよく、この場合、ある特定の波数の範囲(バンド)に注目するだけで表面欠陥部位が発生するかどうかを予測することができる。
本発明者らの分析の結果、波数1080から1100cm-1の間のピークおよび/または波数1150から1250cm-1の間のピークの有無は、表面欠陥部位の発生に特徴的な範囲であることが見出された。したがって、これらの範囲のピークの有無によって表面欠陥部位が発生するかどうかを予測することができる。具体的には、波数1080から1100cm-1の間にピークが無いとき、または有るとき、表面欠陥部位が発生すると予測することができる。また、波数1150から1250cm-1の間にピークが有るとき、表面欠陥部位が発生すると予測することができる。定量的に判定する場合は、閾値を設定して判定を行なってもよい。
本発明者らの分析の結果、ラマンシフト500から550cm-1の間のピークの有無は、異常サイトの発生に特徴的な範囲であることが見出された。したがって、これらの範囲のピークの有無によって表面欠陥部位が発生するかどうかを予測することができる。定量的に判定する場合は、閾値を設定して判定を行なってもよい。具体的には、ピークが存在するときに、表面欠陥部位が発生すると予測することができる。
得られたスペクトルと、予め準備された基準スペクトルとを比較して、測定点に表面欠陥部位が発生するかどうかを予測する。ここで、「予め準備された基準スペクトル」とは、例えば、シリコン単結晶引き上げ前のシリカガラスルツボの測定点において、シリコン単結晶引き上げ後、測定点に表面欠陥部位が発生していた場合のスペクトルである。表面欠陥部位がブラウンリングの場合は、ブラウン色のリングの場所だけでなく、その中心や中心付近も含まれる。予め準備された基準スペクトルを用いての比較は、内表面11のスペクトルを測定した直後にしてもよく、また、複数の測定点を測定後に比較してもよい。比較の結果、両スペクトルが同等であるか否かを判断し、同等でないときに、表面欠陥部位が発生すると予測することができる。定量的に判定する場合は、閾値を設定して判定を行なってもよい。基準スペクトルとの対比は、前述の(1)および(2)に基づく予測を利用して、特定波数の範囲だけを比較して、表面欠陥部位が発生すると予測してもよい。
シリコンインゴットは、(1)シリカガラスルツボ12内でポリシリコンを熔融させてシリコン融液を生成し、(2)シリコン種結晶の端部をシリコン融液中に浸けた状態で種結晶を回転させながら引き上げることによって製造することができる。シリコン単結晶の形状は、上側から円柱状のシリコン種結晶、その下に円錐状のシリコン単結晶、上部円錐底面と同じ径を持つ円柱状のシリコン単結晶、および頂点が下向きである円錐状のシリコン単結晶からなる。
回転モールド法に基づいて、シリカガラスルツボを製造した。モールド口径は、32インチ(81.3cm)、モールド内表面に堆積したシリカ粉層の平均厚さは15mm、3相交流電流3本電極によりアーク放電を行った。アーク熔融工程の通電時間は90分、出力2500kVA、通電開始から10分間はシリカ粉層の真空引きを行った。シリカガラスルツボは、3つ製造した。製造したシリカガラスルツボにポリシリコンを加えて熔融し、シリコン単結晶を引き上げた。
シリコン単結晶を引き上げた後、ルツボ内表面に発生したブラウンリングのFT-IR測定とラマン測定を行った。
製造例で得られた3つの未使用シリカガラスルツボの内表面をFT-IR測定およびラマン測定した。シリカガラスルツボの内面形状の三次元形状を取得し、シリカガラスルツボの直胴部、コーナー部及び底部で測定を行った。測定点は、シリカガラスルツボの前記部位の領域(約5cm2四方の領域(約25cm2)から任意に選び、それぞれ20点を測定した。なお、FT-IR測定およびラマン測定の測定範囲(スポット径)は20μmである。
Claims (7)
-
シリカガラスルツボの内表面上の測定点において、赤外吸収スペクトル又はラマンシフトを測定する測定工程、および
得られたスペクトルに基づいて、前記測定点に表面欠陥部位が発生するかどうかを予測し、前記シリカガラスルツボの品質を判断する判断工程
を備えることを特徴とするシリカガラスルツボの検査方法。
-
前記判断工程において、前記測定工程で得られたスペクトルの所定位置のピークの有無に基づいて表面欠陥部位が発生するかどうかを予測する請求項1記載の検査方法。
-
前記赤外吸収スペクトルの前記所定位置が、波数1080~1100cm-1、および/または波数1150~1250cm-1である請求項2記載の検査方法。
-
前記ラマンスシフトの前記所定位置が、ラマンシフト500~550cm-1である請求項2記載の検査方法。
-
前記判断工程において、得られたスペクトルと、予め準備された基準スペクトルとを比較して、前記測定点に表面欠陥部位が発生するかどうかを予測する請求項1ないし4いずれか記載の検査方法。
-
前記測定点が複数である請求項1ないし5いずれか記載の検査方法。
-
前記シリカガラスルツボの内表面の単位面積当たりの表面欠陥部位の予測発生数に基づいて、前記シリカガラスルツボの品質を判断する請求項6記載の検査方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/067946 WO2015001591A1 (ja) | 2013-06-30 | 2013-06-30 | シリカガラスルツボの検査方法 |
EP13888584.3A EP3018237A4 (en) | 2013-06-30 | 2013-06-30 | Method for inspecting silica glass crucible |
CN201380077569.1A CN105452544A (zh) | 2013-06-30 | 2013-06-30 | 氧化硅玻璃坩埚的检查方法 |
US14/901,030 US9557276B2 (en) | 2013-06-30 | 2013-06-30 | Inspection method of vitreous silica crucible |
KR1020167001680A KR101771608B1 (ko) | 2013-06-30 | 2013-06-30 | 실리카 유리 도가니의 검사 방법 |
JP2015524912A JP6030764B2 (ja) | 2013-06-30 | 2013-06-30 | シリカガラスルツボの検査方法 |
US15/377,963 US9653268B2 (en) | 2013-06-30 | 2016-12-13 | Inspection method of vitreous silica crucible |
US15/488,342 US9708730B1 (en) | 2013-06-30 | 2017-04-14 | Quality-evaluated vitreous silica crucible |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/067946 WO2015001591A1 (ja) | 2013-06-30 | 2013-06-30 | シリカガラスルツボの検査方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/901,030 A-371-Of-International US9557276B2 (en) | 2013-06-30 | 2013-06-30 | Inspection method of vitreous silica crucible |
US15/377,963 Continuation US9653268B2 (en) | 2013-06-30 | 2016-12-13 | Inspection method of vitreous silica crucible |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015001591A1 true WO2015001591A1 (ja) | 2015-01-08 |
Family
ID=52143214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067946 WO2015001591A1 (ja) | 2013-06-30 | 2013-06-30 | シリカガラスルツボの検査方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US9557276B2 (ja) |
EP (1) | EP3018237A4 (ja) |
JP (1) | JP6030764B2 (ja) |
KR (1) | KR101771608B1 (ja) |
CN (1) | CN105452544A (ja) |
WO (1) | WO2015001591A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110987823A (zh) * | 2019-11-21 | 2020-04-10 | 中国科学院地球化学研究所 | 一种利用显微红外光谱区分月球火山玻璃和撞击玻璃的方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6935790B2 (ja) * | 2018-10-15 | 2021-09-15 | 株式会社Sumco | 石英るつぼ内周面の評価方法及び石英るつぼ内周面の評価装置 |
CN109584259B (zh) * | 2019-01-18 | 2021-10-01 | 赵谦 | 一种石英坩埚气泡分层计数装置及方法 |
CN114018895B (zh) * | 2021-09-29 | 2024-03-08 | 合肥国轩高科动力能源有限公司 | 一种基于拉曼光谱检测的隔膜异常点分析方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000103694A (ja) * | 1998-09-29 | 2000-04-11 | Sumitomo Metal Ind Ltd | 石英ガラスるつぼおよびその製造方法 |
JP2004292210A (ja) | 2003-03-26 | 2004-10-21 | Kuramoto Seisakusho Co Ltd | シリコン単結晶引き上げ用石英ルツボ |
JP2005320241A (ja) | 2003-05-01 | 2005-11-17 | Shinetsu Quartz Prod Co Ltd | シリコン単結晶引上げ用石英ガラスルツボ及びその製造方法 |
JP2012116702A (ja) * | 2010-11-30 | 2012-06-21 | Japan Siper Quarts Corp | シリカガラスルツボ |
JP2013112597A (ja) * | 2011-11-30 | 2013-06-10 | Japan Siper Quarts Corp | シリカガラスルツボ及びその製造方法 |
JP2013139353A (ja) * | 2011-12-29 | 2013-07-18 | Sumco Corp | シリコンガラスルツボにおける異常サイトの検査方法 |
JP2013151385A (ja) * | 2012-01-25 | 2013-08-08 | Shin Etsu Handotai Co Ltd | シリコン単結晶の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386118A (en) * | 1992-05-11 | 1995-01-31 | Shin-Etsu Handotai Co., Ltd. | Method and apparatus for determination of interstitial oxygen concentration in silicon single crystal |
JP3826845B2 (ja) | 2001-08-29 | 2006-09-27 | 住友電装株式会社 | フラットケーブルの折り返し加工装置及び、同折り返し方法 |
JP2004192210A (ja) | 2002-12-10 | 2004-07-08 | Institute Of Physical & Chemical Research | 遺伝子発現量閲覧システム、情報端末装置、遺伝子発現量閲覧方法、および、プログラム |
JP2010126401A (ja) * | 2008-11-27 | 2010-06-10 | Sumco Corp | シリコン単結晶およびその育成方法、シリコンウェーハおよびその製造方法 |
JP5446277B2 (ja) * | 2009-01-13 | 2014-03-19 | 株式会社Sumco | シリコン単結晶の製造方法 |
JP5774400B2 (ja) * | 2010-08-12 | 2015-09-09 | 株式会社Sumco | シリカ粉の評価方法、シリカガラスルツボ、シリカガラスルツボの製造方法 |
JP5781303B2 (ja) * | 2010-12-31 | 2015-09-16 | 株式会社Sumco | シリカガラスルツボ製造方法およびシリカガラスルツボ製造装置 |
KR101638584B1 (ko) * | 2011-12-22 | 2016-07-11 | 가부시키가이샤 섬코 | 실리카 유리 도가니의 평가 방법, 실리콘 단결정의 제조 방법 |
-
2013
- 2013-06-30 WO PCT/JP2013/067946 patent/WO2015001591A1/ja active Application Filing
- 2013-06-30 EP EP13888584.3A patent/EP3018237A4/en not_active Withdrawn
- 2013-06-30 US US14/901,030 patent/US9557276B2/en active Active
- 2013-06-30 JP JP2015524912A patent/JP6030764B2/ja active Active
- 2013-06-30 CN CN201380077569.1A patent/CN105452544A/zh active Pending
- 2013-06-30 KR KR1020167001680A patent/KR101771608B1/ko active IP Right Grant
-
2016
- 2016-12-13 US US15/377,963 patent/US9653268B2/en not_active Expired - Fee Related
-
2017
- 2017-04-14 US US15/488,342 patent/US9708730B1/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000103694A (ja) * | 1998-09-29 | 2000-04-11 | Sumitomo Metal Ind Ltd | 石英ガラスるつぼおよびその製造方法 |
JP2004292210A (ja) | 2003-03-26 | 2004-10-21 | Kuramoto Seisakusho Co Ltd | シリコン単結晶引き上げ用石英ルツボ |
JP2005320241A (ja) | 2003-05-01 | 2005-11-17 | Shinetsu Quartz Prod Co Ltd | シリコン単結晶引上げ用石英ガラスルツボ及びその製造方法 |
JP2012116702A (ja) * | 2010-11-30 | 2012-06-21 | Japan Siper Quarts Corp | シリカガラスルツボ |
JP2013112597A (ja) * | 2011-11-30 | 2013-06-10 | Japan Siper Quarts Corp | シリカガラスルツボ及びその製造方法 |
JP2013139353A (ja) * | 2011-12-29 | 2013-07-18 | Sumco Corp | シリコンガラスルツボにおける異常サイトの検査方法 |
JP2013151385A (ja) * | 2012-01-25 | 2013-08-08 | Shin Etsu Handotai Co Ltd | シリコン単結晶の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110987823A (zh) * | 2019-11-21 | 2020-04-10 | 中国科学院地球化学研究所 | 一种利用显微红外光谱区分月球火山玻璃和撞击玻璃的方法 |
CN110987823B (zh) * | 2019-11-21 | 2020-10-09 | 中国科学院地球化学研究所 | 利用显微红外光谱区分月球火山玻璃和撞击玻璃的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170218534A1 (en) | 2017-08-03 |
JP6030764B2 (ja) | 2016-11-24 |
US9708730B1 (en) | 2017-07-18 |
JPWO2015001591A1 (ja) | 2017-02-23 |
US20170088973A1 (en) | 2017-03-30 |
CN105452544A (zh) | 2016-03-30 |
EP3018237A1 (en) | 2016-05-11 |
EP3018237A4 (en) | 2017-02-22 |
US20160202192A1 (en) | 2016-07-14 |
KR101771608B1 (ko) | 2017-08-25 |
US9557276B2 (en) | 2017-01-31 |
KR20160022371A (ko) | 2016-02-29 |
US9653268B2 (en) | 2017-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9708730B1 (en) | Quality-evaluated vitreous silica crucible | |
CN104145051B (zh) | 氧化硅玻璃坩埚的评价方法、单晶硅的制造方法 | |
US9810526B2 (en) | Method for measuring three-dimensional shape of silica glass crucible, and method for producing monocrystalline silicon | |
JP5453679B2 (ja) | シリカガラスルツボの製造装置及びシリカガラスルツボの製造方法 | |
JP6598142B2 (ja) | シリカガラスルツボの歪測定装置、シリコン単結晶の製造方法およびシリコン単結晶の製造方法 | |
WO2013099433A1 (ja) | シリカガラスルツボの製造条件の設定を支援する装置、シリカガラスルツボの製造用のモールドの製造条件の設定を支援する装置、シリカガラスルツボを用いたシリコン単結晶引上げの条件設定を支援する装置 | |
JP5844638B2 (ja) | シリコンガラスルツボにおける異常サイトの検査方法 | |
KR101395787B1 (ko) | 실리카 유리 도가니의 제조 방법 | |
KR101790716B1 (ko) | 단결정 인상용 실리카 유리 도가니 및 그 제조 방법 | |
WO2015001593A1 (ja) | シリカガラスルツボ | |
JP6200057B2 (ja) | シリカガラスルツボの検査方法 | |
JP5614857B2 (ja) | シリカガラスルツボの評価方法 | |
JP6665870B2 (ja) | ルツボ管理システム、ルツボ管理方法、シリカガラスルツボの製造方法、シリコンインゴットの製造方法、ホモエピタキシャルウェーハの製造方法 | |
JP5749147B2 (ja) | シリカガラスルツボの製造方法 | |
JP5682553B2 (ja) | シリカガラスルツボを用いたシリコン単結晶引上げの条件設定を支援する装置 | |
JP6301441B2 (ja) | シリコン単結晶引き上げ用のシリカガラスルツボの製造方法およびシリコン単結晶の製造方法 | |
US20230257906A1 (en) | Crystal piece of monocrystalline silicon | |
EP3018468B1 (en) | Method for evaluating suitability of silica powder for manufacturing of silica-glass crucible for pulling silicon single crystal | |
JP5823857B2 (ja) | 内表面にミクロンレベルの波面のあるシリカガラスルツボ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380077569.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13888584 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015524912 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14901030 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013888584 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167001680 Country of ref document: KR Kind code of ref document: A |