WO2014208275A1 - ハニカム構造体の製造方法 - Google Patents

ハニカム構造体の製造方法 Download PDF

Info

Publication number
WO2014208275A1
WO2014208275A1 PCT/JP2014/064504 JP2014064504W WO2014208275A1 WO 2014208275 A1 WO2014208275 A1 WO 2014208275A1 JP 2014064504 W JP2014064504 W JP 2014064504W WO 2014208275 A1 WO2014208275 A1 WO 2014208275A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
hole
cell
inlet
sealed
Prior art date
Application number
PCT/JP2014/064504
Other languages
English (en)
French (fr)
Inventor
博之 井川
将志 井上
照夫 小森
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to MX2015017477A priority Critical patent/MX2015017477A/es
Priority to US14/392,179 priority patent/US20160185010A1/en
Priority to EP14817867.6A priority patent/EP3015234A4/en
Priority to KR1020157037092A priority patent/KR20160025529A/ko
Priority to CN201480034600.8A priority patent/CN105324224A/zh
Publication of WO2014208275A1 publication Critical patent/WO2014208275A1/ja
Priority to US15/095,664 priority patent/US9700820B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/093Producing shaped prefabricated articles from the material by vibrating or jolting by means directly acting on the material, e.g. by cores wholly or partly immersed in the material or elements acting on the upper surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/003Apparatus or processes for treating or working the shaped or preshaped articles the shaping of preshaped articles, e.g. by bending
    • B28B11/006Making hollow articles or partly closed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal

Definitions

  • One embodiment of the present invention relates to a method for manufacturing a honeycomb structure, and relates to a method for manufacturing a honeycomb structure that becomes a honeycomb structure by firing a green honeycomb molded body.
  • a ceramic honeycomb hole structure having a plurality of through holes having a polygonal cross section is known.
  • a honeycomb structure is used for a particulate matter removing filter such as a diesel particulate filter (diesel particulate filter).
  • the ceramic raw material powder is formed by extrusion molding to manufacture a green honeycomb formed body.
  • a part of the through hole of the green honeycomb molded body is sealed at the end face.
  • a honeycomb structure is manufactured by firing the green honeycomb molded body with the through holes sealed.
  • Patent Document 1 discloses a method for manufacturing such a honeycomb filter.
  • a sealing material is supplied to an end portion of a through hole of a honeycomb structure by pressing the sealing material with a piston against one end of the honeycomb structure disposed in a cylinder, thereby sealing the through hole. ing.
  • Patent Document 1 requires a sealing material such as a sealing paste.
  • a sealing material such as a sealing paste.
  • a very complicated process is required, such as attaching a sealing mask to the end face portion and making a hole in a portion of the mask to be sealed.
  • One aspect of the present invention is a sealing in which a part of a through-hole is sealed by joining the partition walls of a green honeycomb molded body having a plurality of through-holes partitioned by partition walls to each other at the end surfaces.
  • the green honeycomb molded body including the process and having a part of the through-hole sealed in the sealing process is adjacent to one first through-hole and one first through-hole through a partition wall at the end surface.
  • This configuration eliminates the need for a sealing paste as in the conventional method, and allows the end of the honeycomb structure to be easily sealed. Furthermore, since the cells are sealed by welding the cell walls together, when the honeycomb structure is used in a diesel particle filter, the disturbance of the exhaust gas flow at the end surface on the exhaust gas supply side is reduced, and the pressure loss is reduced. Can be reduced.
  • the first through hole may have an octagonal shape
  • the second through hole may have a quadrangular shape
  • the first through hole has an octagonal shape
  • the second through hole has a quadrangular shape. Therefore, for example, when the rectangular through holes are adjacent to every other side of the octagonal through holes, through holes having different sizes can be arranged on the end surface.
  • first through hole may be a rounded square shape with rounded corners
  • second through hole may be a square shape
  • the first through hole has a rounded quadrangular shape with rounded corners
  • the second through hole has a quadrangular shape. Therefore, for example, when the square through holes are adjacent to the four sides of the rounded square through holes, the through holes having different sizes can be arranged on the end surface.
  • the second through hole can be sealed at one end face, and the first through hole can be sealed at the other end face.
  • the second through hole is sealed at one end face, and the first through hole is sealed at the other end face.
  • the opening area is large while sealing the second through hole having a small opening area on the inlet side of the particulate matter removal filter. Opening the first through hole and opening the second through hole with a small opening area while sealing the first through hole with a large opening area on the outlet side, the entrance side becomes wide and soot accumulates The pressure loss at can also be reduced.
  • the partition walls can be joined at the end surfaces to seal the through holes.
  • the sealing step by inserting a sealing jig into a part of the plurality of through holes of the green honeycomb molded body, the partition walls are joined at the end surfaces to seal the through holes. Thereby, sealing of a through-hole can be performed very easily.
  • a sealing jig including either the shape of a quadrangular pyramid or a quadrangular pyramid is formed in the first through hole, and the side of the sealing jig is a second through hole.
  • the second through-hole can be sealed by inserting the adjacent partition walls so as to contact each other.
  • the first through-hole in the sealing step, in the sealing of the second through-hole, includes a sealing jig including a shape of either a quadrangular pyramid or a quadrangular pyramid.
  • the second through-hole is sealed by inserting it so as to abut each of the partition walls adjacent to the through-hole. Thereby, a 2nd through-hole can be sealed easily and reliably.
  • a sealing jig including one of a quadrangular pyramid and a quadrangular pyramid shape is provided in each of the second through holes, and the side of the sealing jig is a first through hole.
  • the first through hole can be sealed by inserting it so as to abut against an adjacent partition wall.
  • the sealing jig including the shape of either a quadrangular pyramid or a quadrangular pyramid is formed in each of the second through holes.
  • the first through-hole is sealed by inserting it so as to abut against the partition wall adjacent to the through-hole. Thereby, a 1st through-hole can be sealed easily and reliably.
  • a manufacturing method capable of easily sealing an end portion of the honeycomb structure without using a sealing paste, and a honeycomb structure manufactured thereby. I can do it.
  • (A) is a perspective view of the green honeycomb molded object which concerns on 1st Embodiment before sealing
  • (b) is the elements on larger scale of (a).
  • It is a perspective view which shows the sealing apparatus of the green honeycomb molded object which concerns on 1st Embodiment.
  • It is a fragmentary sectional view of the closing jig for the entrance side of the green honeycomb molded object concerning a 1st embodiment.
  • It is the top view to which the part A of FIG. 3 was expanded.
  • It is a fragmentary sectional view showing the initial state of the sealing process on the entrance side of the green honeycomb molded object concerning a 1st embodiment. It is sectional drawing by the VII-VII line of FIG.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12. It is a fragmentary sectional view which shows the state of the middle stage of the sealing process of FIG.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. 14.
  • FIG. 7 is a cross-sectional view corresponding to a cross section taken along line VII-VII in FIG. 6 in a sealing step on the inlet side according to the second embodiment.
  • FIG. 9 is a cross-sectional view corresponding to a cross section taken along line IX-IX of FIG. 8 in a sealing process on the inlet side according to the second embodiment.
  • FIG. 11 is a cross-sectional view corresponding to a cross section taken along line XI-XI in FIG. 10 in a sealing process on the inlet side according to the second embodiment.
  • FIG. 13 is a cross-sectional view corresponding to a cross section taken along line XIII-XIII in FIG. 12 in a sealing step on the outlet side according to the second embodiment.
  • FIG. 15 is a cross-sectional view corresponding to a cross section taken along line XV-XV of FIG. 14 in a sealing step on the outlet side according to the second embodiment.
  • FIG. 17 is a cross-sectional view corresponding to a cross section taken along line XVII-XVII in FIG. 16 in a sealing step on the outlet side according to the second embodiment.
  • the green honeycomb molded object 70 which concerns on this embodiment has the upper surface 71a, the lower surface 71b, and the side surface 71c, for example, and the upper surface 71a and the lower surface 71b are a plurality of octagonal through-holes. It is a cylindrical body in which an inlet-side octagonal cell 70Octin and an outlet-side square cell 70Sout which is a quadrangular through hole are opened.
  • the entrance-side octagonal cell 70Octin and the exit-side quadrangular cell 70Sout extend substantially in parallel from the upper surface 71a to the lower surface 71b along the side surface 71c.
  • the green honeycomb formed body 70 is an unfired formed body that becomes a porous ceramic when fired later.
  • the length of the green honeycomb molded body 70 in the direction in which the inlet side octagonal cell 70Octin and the outlet side rectangular cell 70Sout extend is not particularly limited, but may be, for example, 40 to 400 mm.
  • the outer diameter of the green honeycomb molded body 70 is not particularly limited, but may be, for example, 10 to 360 mm.
  • the partition wall 70W allows the entrance-side octagonal cell 70Octin having a large opening area and the exit-side square cell 70Sout having an opening area smaller than that of the entrance-side octagonal cell 70Octin. And is divided.
  • the entrance-side octagonal cell 70 Octin has an octagonal shape in which a square corner is further cut by a straight side.
  • Four exit-side square cells 70Sout are adjacent to each other around one entrance-side octagonal cell 70Octin via four partition walls 70W that define four sides excluding the corners of the entrance-side octagon cell 70Octin. .
  • inlet-side octagonal cells 70Octin are adjacent to each other around one outlet-side rectangular cell 70Sout via four partition walls 70W that define each side of the outlet-side rectangular cell 70Sout.
  • the inlet-side octagonal cell 70Octin does not have to be a regular octagon, and the outlet-side rectangular cell 70Sout does not have to be square.
  • the inlet-side octagonal cell 70Octin may have an octagonal shape that is long in one direction, and the outlet-side square cell 70Sout may have a rectangular shape.
  • the inlet side octagonal cell 70Octin may be an octagonal shape in which the corners of the parallelogram are cut off at the right side, and the outlet side rectangular cell 70Sout may be a parallelogram shape.
  • the external shape of the green honeycomb molded body 70 is not limited to a cylindrical body, but is an elliptical column or a rectangular column (for example, a regular polygonal column such as a triangular column, a quadrangular column, a hexagonal column, or an octagonal column, a triangular column other than a regular polygonal column, or a rectangular column.
  • a regular polygonal column such as a triangular column, a quadrangular column, a hexagonal column, or an octagonal column, a triangular column other than a regular polygonal column, or a rectangular column.
  • a case where the green honeycomb molded body 70 is a cylindrical body will be described.
  • Such a green honeycomb molded body 70 is manufactured by extruding a ceramic composition with an extruder.
  • a ceramic composition an inorganic compound source powder that is a ceramic raw material, an organic binder, a solvent, and an additive that is added as necessary are prepared.
  • the inorganic compound source powder includes two or more selected from the group consisting of aluminum source powder, magnesium source powder, silicon source powder and titanium source powder, or silicon carbide source powder, silicon nitride source powder and aluminum nitride What contains any 1 type or more among source powders is mentioned.
  • any one or more of a carbon source powder, a zirconium source powder, a molybdenum source powder, and a calcium source powder may be added to the inorganic compound source powder.
  • aluminum source powder, magnesium source powder, titanium source powder and silicon source powder are included, heat resistance can be improved.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • the additive include a pore-forming agent, a lubricant and a plasticizer, a dispersant, and a solvent.
  • the prepared raw material is mixed by a kneader or the like to obtain a raw material mixture, and the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the cross-sectional shape of the partition wall 70W, thereby forming the green honeycomb according to the present embodiment.
  • the body is manufactured.
  • the ultrasonic sealing machine 300 of this embodiment includes an ultrasonic signal transmitter 310, an ultrasonic transducer unit 320, a horn unit 330, and a sealing jig 400. Similar to the ultrasonic cutting machine 200 described above, the ultrasonic signal transmitter 310 transmits an electrical ultrasonic signal.
  • the ultrasonic transducer unit 320 converts the electrical ultrasonic signal supplied from the ultrasonic signal transmitter 310 into mechanical ultrasonic vibration.
  • the horn unit 330 amplifies the amplitude of the ultrasonic vibration supplied from the ultrasonic transducer unit 220.
  • the sealing jig 400 is vibrated at a frequency of about 20 to 40 kHz by ultrasonic vibration supplied from the horn unit 330.
  • sealing jig of this embodiment will be described.
  • the sealing is performed in the same manner on both end faces of the green honeycomb molded body 70 having the inlet side octagonal cell 70Octin and the outlet side rectangular cell 70Sout.
  • a sealing jig for sealing the upper surface 71a on the exhaust gas supply side (inlet side) when the green honeycomb molded body 70 is used as a particulate matter removing filter such as a diesel particulate filter after firing will be described.
  • the sealing jig 400 of the present embodiment includes a sealing surface 401 a for sealing the green honeycomb molded body 70 and a support socket portion in which an end of the green honeycomb molded body 70 is fitted. 450.
  • the sealing surface 401a is disposed at a position corresponding to the inlet-side octagonal cell 70Octin and inserted into the inlet-side octagonal cell 70Octin to weld the partition walls 70W to seal the outlet-side square cell 70Sout.
  • the support socket portion 450 is formed of a cylindrical concave portion corresponding to the diameter of the green honeycomb molded body 70 to be sealed.
  • the inner peripheral surface of the support socket portion 450 is provided with an inclined surface 451 such that the inner diameter of the support socket portion 450 increases as the distance from the sealing surface 401a increases so that the end of the green honeycomb molded body 70 can be easily inserted.
  • the sealing jig 400 of the present embodiment is the same as the sealing jig 40 of the sealing jig 40 of the first embodiment.
  • 401c has a sealing projection 410c.
  • the sealing projection 410 c has a quadrangular pyramid base 416 and a conical tip 412.
  • the quadrangular pyramidal base 416 is located at the base of the sealing projection 410c and protrudes from the sealing surface 401c.
  • the quadrangular pyramid base portion 416 has a quadrangular pyramid shape obtained by removing a quadrangular pyramid that is similarly reduced from a quadrangular pyramid having a larger apex angle than the conical tip portion 412.
  • the conical tip 412 is located at the top of the quadrangular pyramid base 416, which is the tip of the sealing projection 410c.
  • the conical tip portion 412 has a conical shape having a bottom surface corresponding to the upper surface of the quadrangular pyramid base portion 416.
  • the apex angle of the conical tip 412 is smaller than the apex angle formed by the sides of the quadrangular pyramid of the quadrangular pyramid base 416.
  • the quadrangular pyramid base 416 includes a quadrangular pyramid side portion 417 on the side of the quadrangular pyramid and a round chamfered side portion 415 on the side of the quadrangular pyramid.
  • the round chamfered side portion 415 is rounded with a predetermined curvature on each side of the quadrangular pyramid.
  • the valley between the quadrangular pyramidal base portions 416 of the adjacent sealing projections 410c includes a round chamfered valley portion 414 that is a concave portion that is rounded with a predetermined curvature.
  • each of the sealing protrusions 410 c is arranged such that the tops of the conical tip portions 412 correspond to the plurality of inlet side octagonal cells 70 Octin of the green honeycomb molded body 70. Further, each of the sealing projections 410c is arranged in such a direction that the rounded chamfered side portion 415 of the quadrangular pyramid base 416 contacts the partition wall 70W.
  • the size of each of the quadrangular pyramidal base portions 416 is such that the length of the rounded chamfered side portion 415 projected from directly above the sealing surface 401c onto the sealing surface 401c is the center of the inlet-side octagonal cell 70Octin of the green honeycomb molded body 70. The size corresponds to the length of the center of the outlet side square cell 70Sout.
  • a sealing jig 400 for sealing the lower surface 71b on the exhaust side (exit side) of exhaust gas Similar to the upper surface 71a, a sealing jig 400 having a sealing surface 401c in which a sealing projection 410c is arranged at a position corresponding to the outlet-side square cell 70Sout is used.
  • the end on the upper surface 71 a side of the green honeycomb molded body 70 is inserted into the support socket portion 450 of the sealing jig 400 of the ultrasonic sealing machine 300.
  • the sealing jig 400 is vibrated by ultrasonic vibration from the horn part 330.
  • the tip of the sealing projection 410c on the sealing surface 401c is inserted into the inlet-side octagonal cell 70Octin.
  • the conical tip portion 412 of the sealing projection 410c is inserted into the inlet-side octagonal cell 70Octin.
  • the quadrangular pyramid base 416 of the sealing projection 410c is inserted into the inlet-side octagonal cell 70Octin as shown in FIG. Inserted.
  • Each of the round chamfered side portions 415 of the quadrangular pyramid base 416 is brought into contact with the partition wall 70W. Since the sealing protrusion 410c is vibrated by ultrasonic vibration, the partition wall 70W is liquefied, and the sealing protrusion 410c at the center of the four inlet side octagonal cells 70Octin into which the sealing protrusions 410c are inserted is inserted.
  • the outlet side square cell 70Sout is pressed to seal.
  • the sealing step of the lower surface 71b that becomes the exhaust side (exit side) of the exhaust gas as shown in FIG.
  • the end portion on the lower surface 71 b side of the green honeycomb molded body 70 is inserted into the support socket portion 450 of the sealing jig 400 of the ultrasonic sealing machine 300.
  • the sealing jig 400 is vibrated by ultrasonic vibration from the horn part 330.
  • the tip of the sealing projection 410c on the sealing surface 401c is inserted into the outlet-side square cell 70Sout.
  • the conical tip portion 412 of the sealing projection 410c is inserted into the outlet side square cell 70Sout.
  • the quadrangular pyramid base 416 of the sealing projection 410c is inserted into the outlet-side square cell 70Sout.
  • the Each of the round chamfered side portions 415 of the quadrangular pyramid base 416 is brought into contact with the partition wall 70W. Since the sealing protrusion 410c is vibrated by ultrasonic vibration, the partition wall 70W is liquefied, and the sealing protrusion 410c at the center of the four outlet side square cells 70Sout into which the sealing protrusions 410c are inserted is not inserted.
  • the inlet side octagonal cell 70Octin is pressed to seal.
  • the sealing projection 410c when the sealing projection 410c is further inserted into the outlet side square cell 70Sout, the rounded chamfered side portion 415 and the quadrangular pyramid side surface portion 417 of the quadrangular pyramid base portion 416 are used as shown in FIG.
  • the partition walls 70W pressed from four directions while being liquefied are welded together.
  • the end of the welded partition wall 70 ⁇ / b> W is brought into contact with the round chamfered valley portion 414 of the sealing surface 401 c, and the rounded partition wall junction end portion 73 is formed in a state where the round chamfering corresponding to the shape of the round chamfered valley portion 414 is made.
  • the sealing is completed.
  • a plurality of inlet-side octagonal cells 70Octin and outlet-side square cells 70Sout which are partitioned by partition walls 70W, are opened on the upper surface 71a and the lower surface 71b of the column body, and fired.
  • the partition walls 70W of the green honeycomb molded body 70 to be the honeycomb structure are joined to each other at the upper surface 71a and the lower surface 71b, thereby sealing the inlet side octagonal cell 70Octin or the outlet side rectangular cell 70Sout.
  • the sealing paste as in the conventional method becomes unnecessary.
  • the inlet and outlet of the exhaust gas flow channel at the end face are provided with through holes. Since it can be made larger than the opening area, the disturbance of the flow of the exhaust gas at the end face on the exhaust gas supply side is reduced, and the pressure loss can be reduced.
  • FIG. 18 (a) when the outlet side square cell 70Sout is sealed by the conventional sealing material 70P, there is a drawback that the air resistance is large on the upper surface 71a on the exhaust gas supply side (inlet side).
  • FIG. 18 (a) when the outlet side square cell 70Sout is sealed by the conventional sealing material 70P, there is a drawback that the air resistance is large on the upper surface 71a on the exhaust gas supply side (inlet side).
  • the green honeycomb molded body 70 in which a part of the through-hole is sealed is formed such that, on the upper surface 71a or the lower surface 71b, one inlet side octagonal cell 70Octin and one inlet side octagonal cell 70Octin are surrounded by a partition wall 70W.
  • four exit-side square cells 70Sout having an opening area smaller than that of the adjacent entrance-side octagonal cell 70Octin. For this reason, for example, when the honeycomb structure is applied to a particulate matter removing filter such as a diesel particulate filter, the outlet side square cell 70Sout having a small opening area is sealed on the inlet side of the particulate matter removing filter and the opening area is large.
  • the inlet side becomes wider and soot accumulates. It is also possible to reduce the pressure loss in the wet state.
  • the through-hole having a large opening area is the inlet-side octagonal cell 70 Octin
  • the through-hole having a small opening area adjacent to the periphery of the inlet-side octagonal cell 70 Octin is the outlet-side square cell 70 Sout.
  • through-side square cells 70Sout are adjacent to every other side of the inlet-side octagonal cell 70Octin, through holes having different sizes can be arranged on the upper surface 71a or the lower surface 71b.
  • the outlet side square cell 70Sout is sealed at the upper surface 71a, and the inlet side octagonal cell 70Octin is sealed at the lower surface 71b. For this reason, for example, when the honeycomb structure is applied to a particulate matter removing filter such as a diesel particulate filter, the outlet side square cell 70Sout having a small opening area is sealed on the inlet side of the particulate matter removing filter and the opening area is large.
  • the inlet side becomes wider and soot accumulates. It is also possible to reduce the pressure loss in the wet state.
  • the sealing protrusions 410c of the sealing jig 400 into the plurality of inlet side octagonal cells 70Octin or outlet side rectangular cells 70Sout of the green honeycomb molded body 70, the partition walls 70W are joined to each other by the upper surface 71a or the lower surface 71b. And seal the cell. Thereby, sealing of a cell can be performed very easily.
  • the rounding chamfered side portion 415 includes the sealing projection 410c of the sealing jig 400 including either a quadrangular pyramid or a quadrangular pyramid shape on the inlet side octagonal cell 70Octin.
  • the outlet side square cell 70Sout is sealed by inserting the rounded chamfered side portion 415 so as to be in contact with each of the partition walls 70W adjacent to each other. Thereby, the exit side square cell 70Sout can be easily and reliably sealed.
  • the sealing protrusion 410c of the sealing jig 400 including either a quadrangular pyramid or a quadrangular pyramid shape is provided in each of the through holes of the outlet-side rectangular cell 70Sout.
  • the green honeycomb molded body 70 has, for example, an upper surface 71a, a lower surface 71b, and a side surface 71c, and a plurality of square corners are rounded on the upper surface 71a and the lower surface 71b. It is a cylindrical body in which an entrance-side rounded quadrangular cell 70SRin which is a rounded quadrangular through-hole and an outlet-side quadrangular cell 70Sout which is a quadrangular through-hole similar to the first embodiment are opened. .
  • the entrance-side rounded quadrangular cell 70SRin and the exit-side quadrangular cell 70Sout extend substantially in parallel from the upper surface 71a to the lower surface 71b along the side surface 71c.
  • the green honeycomb molded body 70 is an unfired molded body that becomes a porous ceramic when fired later, and the materials and manufacturing methods other than the entrance-side rounded square cell 70SRin are the same. is there.
  • the length of the green honeycomb molded body 70 in the direction in which the entrance-side rounded square cell 70SRin and the outlet-side square cell 70Sout extend is not particularly limited, but may be, for example, 40 to 400 mm.
  • the partition wall 70W allows the entrance-side rounded square cell 70SRin having a large opening area and the exit-side square having an opening area smaller than the entrance-side rounded square cell 70SRin.
  • a cell 70Sout is partitioned.
  • the entrance-side rounded quadrangular cell 70SRin has a rounded quadrangular shape with rounded chamfered corners.
  • Four exit-side square cells 70Sout are adjacent to each other around one entrance-side rounded quadrangular cell 70SRin via four partition walls 70W that define four sides of the entrance-side rounded quadrangular cell 70SRin.
  • the entrance-side square cells 70SRin are adjacent to each other around one exit-side square cell 70Sout via four partition walls 70W that define each side of the exit-side square cell 70Sout.
  • the entrance-side rounded quadrangular cell 70SRin does not have to have a rounded corner.
  • the entrance-side rounded square cell 70SRin may have a rounded square shape that is long in one direction.
  • the entrance-side rounded quadrangular cell 70SRin may have a rounded quadrangular shape in which the corners of the parallelogram are rounded.
  • the sealing step of the green honeycomb molded body 70 of the present embodiment will be described.
  • the inlet-side rounded square cell 70SRin and the outlet-side rectangular cell 70Sout are sealed using the same sealing jig 400 as in the first embodiment.
  • the sealing step of the upper surface 71a on the exhaust gas supply side (inlet side) when the green honeycomb molded body 70 is used as a particulate matter removal filter such as a diesel particle filter after firing will be described.
  • the end on the upper surface 71 a side of the green honeycomb molded body 70 is inserted into the support socket portion 450 of the sealing jig 400 of the ultrasonic sealing machine 300.
  • the sealing jig 400 is vibrated by ultrasonic vibration from the horn part 330.
  • the tip of the sealing projection 410c on the sealing surface 401c is inserted into the inlet-side rounded quadrangular cell 70SRin.
  • the conical tip portion 412 of the sealing projection 410c is inserted into the entrance-side rounded square cell 70SRin.
  • the quadrangular pyramid base 416 of the sealing projection 410c becomes the entrance-side rounded quadrangular cell. 70SRin.
  • Each of the round chamfered side portions 415 of the quadrangular pyramid base 416 is brought into contact with the partition wall 70W. Since the sealing projection 410c is vibrated by ultrasonic vibration, the partition wall 70W is liquefied and the sealing projection 410c at the center of each of the four entrance-side rounded square cells 70SRin into which the sealing projections 410c are inserted is inserted.
  • the outlet-side square cell 70Sout that is not closed is pressed to seal.
  • the sealing projection 410c when the sealing projection 410c is further inserted into the entrance-side rounded quadrangular cell 70SRin, as shown in FIG. 22, the rounded chamfered side portion 415 and the quadrangular pyramid side portion of the quadrangular pyramid base portion 416
  • the partition walls 70W pressed from four directions while being liquefied by 417 are welded together.
  • the end of the welded partition wall 70 ⁇ / b> W is brought into contact with the round chamfered valley portion 414 of the sealing surface 401 c, and the rounded partition wall junction end portion 73 is formed in a state where the round chamfering corresponding to the shape of the round chamfered valley portion 414 is made.
  • the sealing is completed.
  • the sealing step of the lower surface 71b that becomes the exhaust side (exit side) of the exhaust gas as shown in FIG.
  • the end portion on the lower surface 71 b side of the green honeycomb molded body 70 is inserted into the support socket portion 450 of the sealing jig 400 of the ultrasonic sealing machine 300.
  • the sealing jig 400 is vibrated by ultrasonic vibration from the horn part 330.
  • the tip of the sealing projection 410c on the sealing surface 401c is inserted into the outlet-side square cell 70Sout.
  • the conical tip portion 412 of the sealing projection 410c is inserted into the outlet-side square cell 70Sout.
  • the quadrangular pyramid base 416 of the sealing projection 410c is inserted into the outlet-side square cell 70Sout.
  • the Each of the round chamfered side portions 415 of the quadrangular pyramid base 416 is brought into contact with the partition wall 70W. Since the sealing protrusion 410c is vibrated by ultrasonic vibration, the partition wall 70W is liquefied, and the sealing protrusion 410c at the center of the four outlet side square cells 70Sout into which the sealing protrusions 410c are inserted is not inserted.
  • the inlet side rounded square cell 70SRin is pressed to seal.
  • the through-hole having a large opening area is the entrance-side rounded square cell 70SRin
  • the through-hole having a small opening area adjacent to the periphery of the entrance-side rounded square cell 70SRin is the exit-side square cell 70Sout. . Therefore, through-side square cells 70Sout are adjacent to every other side of the entrance-side rounded square cell 70SRin, through holes having different sizes can be arranged on the upper surface 71a or the lower surface 71b.
  • the sealed green honeycomb molded body 70 is sealed by welding the partition walls 70W by applying ultrasonic waves, but the sealed green honeycomb molded body 70 is It is not limited to an aspect.
  • the sealed green honeycomb molded body 70 includes those sealed by crimping the partition walls 70 ⁇ / b> W without application of ultrasonic waves.
  • the sealed green honeycomb molded body 70 includes those sealed by pressure-bonding the partition walls 70 ⁇ / b> W by applying a vibration having a frequency lower than that of ultrasonic waves, for example, 1 kHz or less.
  • a manufacturing method capable of easily sealing an end portion of the honeycomb structure without using a sealing paste, and a honeycomb structure manufactured thereby. I can do it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Filtering Materials (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 柱体の端面に互いに隔壁で区画された複数の貫通孔が開口しているグリーンハニカム成形体で、上面及び下面に隔壁で区画された複数の入口側八角形セル及び出口側四角形セルが開口する。1つの入口側八角形セルの周囲に隔壁を介してより小さい開口面積の4つの出口側四角形セルが隣接する。隔壁同士を接合して、ディーゼル粒子フィルタ等の粒子状物質除去フィルタの入口側で出口側四角形セルを封口しつつ入口側八角形セルを開口させ、出口側で入口側八角形セルを封口しつつ出口側四角形セルを開口させる。

Description

ハニカム構造体の製造方法
 本発明の一態様は、ハニカム構造体の製造方法に関し、グリーンハニカム成形体を焼成することによりハニカム構造体となるハニカム構造体の製造方法に関する。
 従来より、例えば、断面多角形の複数の貫通孔を有するセラミック製のハニカム孔構造体が知られている。このようなハニカム構造体は、ディーゼルパティキュレートフィルタ(ディーゼル粒子フィルタ:Diesel particulate filter)等の粒子状物質除去フィルタ等に用いられる。このようなハニカム構造体の製造工程では、セラミック原料粉が押出成形により成形されて、グリーンハニカム成形体が製造される。このグリーンハニカム成形体の貫通孔の一部が端面で封口される。貫通孔を封口されたグリーンハニカム成形体が焼成されることにより、ハニカム構造体が製造される。特許文献1には、このようなハニカムフィルタを製造する方法が開示されている。特許文献1では、シリンダ内に配置したハニカム構造体の一端に対して、ピストンにより封口材を押圧することにより、ハニカム構造体の貫通孔の端部に封口材を供給し、貫通孔を封口している。
特公昭63-24731号公報
 しかしながら、上記特許文献1の方法では、封口用ペーストのような封口材が必要となる。また、端面部に封口用のマスクを貼り、そのマスクの封口すべき箇所に穴を開けるなど非常に煩雑な工程が必要となる問題がある。
 本技術分野では、封口用ペーストが不要で、ハニカム構造体の端部を簡易に封口することが出来る製法とその製法により得られるハニカム構造体が望まれている。
 本発明の一態様は、柱体の端面に互いに隔壁で区画された複数の貫通孔が開口しているグリーンハニカム成形体の隔壁同士を端面で接合することにより貫通孔の一部を封口する封口工程を備え、封口工程で貫通孔の一部を封口されるグリーンハニカム成形体は、端面において、1つの第1の貫通孔と、1つの第1の貫通孔の周囲に隔壁を介して隣接した第1の貫通孔よりも小さい開口面積を有する4つの第2の貫通孔とを有するハニカム構造体の製造方法である。
 この構成によれば、従来の方法のような封口用ペーストが不要となり、ハニカム構造体の端部を簡易に封口することが出来る。さらに、セル壁同士を溶着させることによりセルを封口するため、ハニカム構造体をディーゼル粒子フィルタに用いた場合に、排ガスを供給する側の端面での排ガスの流れの乱れが少なくなり、圧力損失を低減することができる。
 この場合、第1の貫通孔は八角形状であり、第2の貫通孔は四角形状であることができる。
 この構成によれば、第1の貫通孔は八角形状であり、第2の貫通孔は四角形状である。そのため、例えば、八角形状の貫通孔の一辺置きに四角形状の貫通孔が隣接することにより、端面において、大きさの異なる貫通孔を配列することができる。
 また、第1の貫通孔は四角形の角部が丸められた角丸四角形状であり、第2の貫通孔は四角形状であることができる。
 この構成によれば、第1の貫通孔は四角形の角部が丸められた角丸四角形状であり、第2の貫通孔は四角形状である。そのため、例えば、角丸四角形状の貫通孔の四辺それぞれに四角形状の貫通孔が隣接することにより、端面において、大きさの異なる貫通孔を配列することができる。
 また、封口工程では、一方の端面において、第2の貫通孔を封口し、他方の端面において、第1の貫通孔を封口することができる。
 この構成によれば、封口工程では、一方の端面において、第2の貫通孔を封口し、他方の端面において、第1の貫通孔を封口する。このため、例えばハニカム構造体をディーゼル粒子フィルタ等の粒子状物質除去フィルタに適用した場合に、粒子状物質除去フィルタの入口側で開口面積の小さい第2の貫通孔を封口しつつ開口面積の大きい第1の貫通孔を開口させ、出口側で開口面積の大きい第1の貫通孔を封口しつつ開口面積の小さい第2の貫通孔を開口させることにより、入口側が広くなり、煤が溜まった状態での圧力損失も低減することができる。
 また、封口工程では、グリーンハニカム成形体の複数の貫通孔の一部に封口用治具を挿入することにより、隔壁同士を端面で接合して貫通孔を封口することができる。
 この構成によれば、封口工程では、グリーンハニカム成形体の複数の貫通孔の一部に封口用治具を挿入することにより、隔壁同士を端面で接合して貫通孔を封口する。これにより、貫通孔の封口を極めて容易に行うことができる。
 この場合、封口工程では、第2の貫通孔の封口において、第1の貫通孔に四角錐及び四角錐台のいずれかの形状を含む封口用治具をその側辺が第2の貫通孔に隣接した隔壁それぞれに当接するようにしつつ挿入することにより、第2の貫通孔を封口することができる。
 この構成によれば、封口工程では、第2の貫通孔の封口において、第1の貫通孔に四角錐及び四角錐台のいずれかの形状を含む封口用治具をその側辺が第2の貫通孔に隣接した隔壁それぞれに当接するようにしつつ挿入することにより、第2の貫通孔を封口する。これにより、第2の貫通孔を容易かつ確実に封口することができる。
 また、封口工程では、第1の貫通孔の封口において、第2の貫通孔それぞれに四角錐及び四角錐台のいずれかの形状を含む封口用治具をその側辺が第1の貫通孔に隣接した隔壁に当接するようにしつつ挿入することにより、第1の貫通孔を封口することができる。
 この構成によれば、封口工程では、第1の貫通孔の封口において、第2の貫通孔それぞれに四角錐及び四角錐台のいずれかの形状を含む封口用治具をその側辺が第1の貫通孔に隣接した隔壁に当接するようにしつつ挿入することにより、第1の貫通孔を封口する。これにより、第1の貫通孔を容易かつ確実に封口することができる。
 本発明の一態様に係るハニカム構造体の製造方法によれば、封口ペーストが不要で、ハニカム構造体の端部を簡易に封口することが出来る製法とそれにより製造されるハニカム構造体を提供することが出来る。
(a)は封口前の第1実施形態に係るグリーンハニカム成形体の斜視図であり、(b)は(a)の部分拡大図である。 第1実施形態に係るグリーンハニカム成形体の封口装置を示す斜視図である。 第1実施形態に係るグリーンハニカム成形体の入口側用の封口用治具の部分断面図である。 図3の部分Aを拡大した斜視図である。 図3の部分Aを拡大した平面図である。 第1実施形態に係るグリーンハニカム成形体の入口側の封口工程の初期の状態を示す部分断面図である。 図6のVII-VII線による断面図である。 図6の封口工程の中期の状態を示す部分断面図である。 図8のIX-IX線による断面図である。 図6の封口工程の終期の状態を示す部分断面図である。 図10のXI-XI線による断面図である。 第1実施形態に係るグリーンハニカム成形体の出口側の封口工程の初期の状態を示す部分断面図である。 図12のXIII-XIII線による断面図である。 図12の封口工程の中期の状態を示す部分断面図である。 図14のXV-XV線による断面図である。 図12の封口工程の終期の状態を示す部分断面図である。 図16のXVII-XVII線による断面図である。 (a)は従来の封口されたセルを通過するガスの流れを示す図であり、(b)は本発明の実施形態に係る封口されたセルを通過するガスの流れを示す図である。 (a)は封口前の第1実施形態に係るグリーンハニカム成形体の斜視図であり、(b)は(a)の部分拡大図である。 第2実施形態に係る入口側の封口工程における図6のVII-VII線による断面に対応した断面図である。 第2実施形態に係る入口側の封口工程における図8のIX-IX線による断面に対応した断面図である。 第2実施形態に係る入口側の封口工程における図10のXI-XI線による断面に対応した断面図である。 第2実施形態に係る出口側の封口工程における図12のXIII-XIII線による断面に対応した断面図である。 第2実施形態に係る出口側の封口工程における図14のXV-XV線による断面に対応した断面図である。 第2実施形態に係る出口側の封口工程における図16のXVII-XVII線による断面に対応した断面図である。
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する。
 〔第1実施形態〕
(グリーンハニカム成形体(八角形セル及び四角形セル))
 まず、本発明の第1実施形態において加工の対象となるグリーンハニカム成形体について説明する。図1(a)に示すように、本実施形態に係るグリーンハニカム成形体70は、例えば、上面71a、下面71b及び側面71cを有し、上面71a及び下面71bに複数の八角形状の貫通孔である入口側八角形セル70Octinと、四角形状の貫通孔である出口側四角形セル70Soutとが開口している円柱体である。入口側八角形セル70Octinと出口側四角形セル70Soutとは、側面71cに沿って上面71aから下面71bまで略平行に伸びている。グリーンハニカム成形体70は、後で焼成することにより多孔質のセラミックとなる未焼成成形体である。また、グリーンハニカム成形体70の入口側八角形セル70Octinと出口側四角形セル70Soutとが延びる方向の長さは特に限定されないが、例えば、40~400mmとすることができる。また、グリーンハニカム成形体70の外径も特に限定されないが、例えば、10~360mmとすることできる。
 図1(b)に示すように、上面71aあるいは下面71bにおいて、隔壁70Wにより、大きな開口面積の入口側八角形セル70Octinと、入口側八角形セル70Octinよりも小さな開口面積の出口側四角形セル70Soutとが区画される。入口側八角形セル70Octinは、四角形の角部がさらに直辺により切断された八角形状を有する。1つの入口側八角形セル70Octinの周囲には、入口側八角形セル70Octinの角部を除く4辺を区画する4つの隔壁70Wそれぞれを介して4つの出口側四角形セル70Soutがそれぞれ隣接している。1つの出口側四角形セル70Soutの周囲には、出口側四角形セル70Soutの各辺を区画する4つの隔壁70Wを介して4つの入口側八角形セル70Octinがそれぞれ隣接している。なお、入口側八角形セル70Octinは正八角形状でなくても良く、出口側四角形セル70Soutは正方形状でなくても良い。例えば、入口側八角形セル70Octinは一方向に長い八角形状でも良く、出口側四角形セル70Soutは長方形状でも良い。また、入口側八角形セル70Octinは平行四辺形の角部が直辺で切断された形状の八角形状でも良く、出口側四角形セル70Soutは平行四辺形状でも良い。
 なお、グリーンハニカム成形体70の外形形状は円柱体に限定されず、楕円柱、角柱(例えば三角柱、四角柱、六角柱、八角柱等の正多角柱や、正多角柱以外の三角柱、四角柱、六角柱、八角柱等)等であっても良いが、本実施形態においては、グリーンハニカム成形体70が円柱体である場合について説明する。
 このようなグリーンハニカム成形体70は、セラミック組成物を押出成形機により押出成形することにより製造される。この場合、セラミック組成物を調製するために、セラミック原料である無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。
 無機化合物源粉末は、アルミニウム源粉末、マグネシウム源粉末、ケイ素源粉末およびチタニウム源粉末からなる群から選択される二種以上を含むのもの、又は、炭化ケイ素源粉末、窒化ケイ素源粉末および窒化アルミニウム源粉末のうちいずれか一種以上を含むものが挙げられる。また、製品の耐熱性や機械的強度向上のため、前記無機化合物源粉末に炭素源粉末、ジルコニウム源粉末、モリブデン源粉末およびカルシウム源粉末のうちいずれか一種以上を添加しても良い。アルミニウム源粉末、マグネシウム源粉末、チタニウム源粉末及びケイ素源粉末を含むと耐熱性を向上させることができる。有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩を例示できる。添加物としては、例えば、造孔剤、潤滑剤および可塑剤、分散剤、溶媒が挙げられる。
 用意した原料を混練機等により混合して原料混合物を得、得られた原料混合物を隔壁70Wの断面形状に対応する出口開口を有する押出成形機から押し出すことにより、本実施形態に係るグリーンハニカム成形体が製造される。
(超音波封口機)
 以下、本実施形態の超音波封口機について説明する。図2に示すように、本実施形態の超音波封口機300は、超音波信号発信器310、超音波振動子部320、ホーン部330及び封口用治具400を備える。上記の超音波切断機200と同様に、超音波信号発信器310は、電気的な超音波信号を発信する。超音波振動子部320は、超音波信号発信器310から供給された電気的な超音波信号を機械的な超音波振動に変換する。ホーン部330は、超音波振動子部220から供給された超音波振動の振幅を増幅する。封口用治具400はホーン部330から供給された超音波振動により、20~40kHz程度の周波数で振動させられる。
(封口用治具)
 以下、本実施形態の封口用治具について説明する。本実施形態では、入口側八角形セル70Octin及び出口側四角形セル70Soutを有するグリーンハニカム成形体70の両端面で同様の態様で封口を行う。まず、グリーンハニカム成形体70を焼成後にディーゼル粒子フィルタ等の粒子状物質除去フィルタとした場合に、排ガスの供給側(入口側)となる上面71aを封口するための封口用治具について説明する。
 図3に示すように、本実施形態の封口用治具400は、グリーンハニカム成形体70の封口を行うための封口面401aと、グリーンハニカム成形体70の端部が嵌合される支持ソケット部450を有している。封口面401aには、入口側八角形セル70Octinに対応した位置に配置され、入口側八角形セル70Octinにそれぞれ挿入されることにより、隔壁70W同士を溶着させて出口側四角形セル70Soutを封口するための複数の封口用突起410aを備えている。支持ソケット部450は、封口するグリーンハニカム成形体70の直径に対応した円筒状の凹部から成る。支持ソケット部450の内周面は、グリーンハニカム成形体70の端部を差し込み易いように、封口面401aから離れるほど支持ソケット部450の内径が拡がるような傾斜面451が設けられている。
 上述した図3の部分Aに相当する部位を拡大した図4及び図5に示すように、本実施形態の封口用治具400は、第1実施形態と同様の封口用治具40の封口面401cにおいて封口用突起410cを有する。封口用突起410cは、四角錐状基部416と円錐状先端部412とを有している。四角錐状基部416は、封口用突起410cの基部に位置し、封口面401cから突出している。四角錐状基部416は、円錐状先端部412よりも頂角が大きい四角錐から相似に縮小した四角錐を取り除いた四角錐台状をなす。円錐状先端部412は、封口用突起410cの先端部であって四角錐状基部416の上部に位置する。円錐状先端部412は、四角錐状基部416の上面に対応した大きさの底面を有する円錐状をなす。円錐状先端部412の頂角は、四角錐状基部416の四角錐台の側辺がなす頂角よりも小さい。
 四角錐状基部416は、四角錐台の側面の四角錐側面部417と四角錐台の側辺の丸み面取り側辺部415を含む。丸み面取り側辺部415には、四角錐台の側辺それぞれに対して所定の曲率による丸み面取りがなされている。また、隣接する封口用突起410cの四角錐状基部416同士の谷間には、所定の曲率による丸み面取りがなされた凹部である丸み面取り谷間部414を含む。
 図5に示すように、封口用突起410cそれぞれは、その円錐状先端部412の頂部それぞれが、グリーンハニカム成形体70の複数の入口側八角形セル70Octinに対応した位置に配置されている。また、封口用突起410cそれぞれは、その四角錐状基部416の丸み面取り側辺部415が隔壁70Wに当接する向きに配置されている。四角錐状基部416それぞれの大きさは、丸み面取り側辺部415を封口面401cの直上から封口面401c上に投影した長さが、グリーンハニカム成形体70の入口側八角形セル70Octinの中心と出口側四角形セル70Soutの中心との長さに対応するような大きさとされている。
 なお、グリーンハニカム成形体70を焼成後にディーゼル粒子フィルタ等の粒子状物質除去フィルタとした場合に、排ガスの排気側(出口側)となる下面71bを封口するための封口用治具400としては、上面71aと同様に出口側四角形セル70Soutに対応する位置に封口用突起410cが配置された封口面401cを有する封口用治具400が用いられる。
(封口工程)
 以下、本実施形態のグリーンハニカム成形体70の封口工程について説明する。まず、グリーンハニカム成形体70を焼成後にディーゼル粒子フィルタ等の粒子状物質除去フィルタとした場合に、排ガスの供給側(入口側)となる上面71aの封口工程について説明する。
 図6に示すように、グリーンハニカム成形体70の上面71a側の端部が、超音波封口機300の封口用治具400の支持ソケット部450に挿入される。封口用治具400はホーン部330からの超音波振動により振動させられる。図7に示すように、封口面401cの封口用突起410cの先端が入口側八角形セル70Octinに挿入される。入口側八角形セル70Octinに対して、封口用突起410cの円錐状先端部412が挿入される。
 図8に示すように、封口用突起410cがさらに入口側八角形セル70Octinに挿入されると、図9に示すように、封口用突起410cの四角錐状基部416が入口側八角形セル70Octinに挿入される。四角錐状基部416の丸み面取り側辺部415それぞれは、隔壁70Wに当接させられる。封口用突起410cは超音波振動により振動させられているため、隔壁70Wは液状化し、それぞれ封口用突起410cを挿入された4つの入口側八角形セル70Octinの中心の封口用突起410cを挿入されていない出口側四角形セル70Soutを封口するように押し付けられる。
 図10に示すように、封口用突起410cがさらに入口側八角形セル70Octinに挿入されると、図11に示すように、四角錐状基部416の丸み面取り側辺部415及び四角錐側面部417により液状化されつつ四方向から押圧された隔壁70W同士は一体に溶着される。溶着された隔壁70Wの端部は、封口面401cの丸み面取り谷間部414に当接させられ、丸み面取り谷間部414の形状に対応した丸み面取りがなされた状態で丸み隔壁接合端部73が形成され、封口が完了する。これにより、排ガスの供給側(入口側)となる上面71aでは、その周囲を隔壁70Wを挟んでそれぞれ隣接する4つの入口側八角形セル70Octinに囲まれた1つの出口側四角形セル70Soutが封口される。
 一方、グリーンハニカム成形体70を焼成後にディーゼル粒子フィルタ等の粒子状物質除去フィルタとした場合に、排ガスの排気側(出口側)となる下面71bの封口工程については、図12に示すように、グリーンハニカム成形体70の下面71b側の端部が、超音波封口機300の封口用治具400の支持ソケット部450に挿入される。封口用治具400はホーン部330からの超音波振動により振動させられる。封口面401cの封口用突起410cの先端が出口側四角形セル70Soutに挿入される。図13に示すように、出口側四角形セル70Soutに対して、封口用突起410cの円錐状先端部412が挿入される。
 図14に示すように、封口用突起410cがさらに出口側四角形セル70Soutに挿入されると、図15に示すように、封口用突起410cの四角錐状基部416が出口側四角形セル70Soutに挿入される。四角錐状基部416の丸み面取り側辺部415それぞれは、隔壁70Wに当接させられる。封口用突起410cは超音波振動により振動させられているため、隔壁70Wは液状化し、それぞれ封口用突起410cを挿入された4つの出口側四角形セル70Soutの中心の封口用突起410cを挿入されていない入口側八角形セル70Octinを封口するように押し付けられる。
 図16に示すように、封口用突起410cがさらに出口側四角形セル70Soutに挿入されると、図17に示すように、四角錐状基部416の丸み面取り側辺部415及び四角錐側面部417により液状化されつつ四方向から押圧された隔壁70W同士は一体に溶着される。溶着された隔壁70Wの端部は、封口面401cの丸み面取り谷間部414に当接させられ、丸み面取り谷間部414の形状に対応した丸み面取りがなされた状態で丸み隔壁接合端部73が形成され、封口が完了する。これにより、排ガスの排気側(出口側)となる下面71bでは、その周囲を隔壁70Wを挟んでそれぞれ隣接する4つの出口側四角形セル70Soutに囲まれた1つの入口側八角形セル70Octinが封口される。
 本実施形態では、ハニカム構造体の製造方法において、柱体の上面71a及び下面71bに互いに隔壁70Wで区画された複数の入口側八角形セル70Octin及び出口側四角形セル70Soutが開口しており、焼成することによりハニカム構造体となるグリーンハニカム成形体70の隔壁70W同士を上面71a及び下面71bで接合することにより入口側八角形セル70Octin又は出口側四角形セル70Soutを封口する。これにより、隔壁(セル壁)70W同士を接合させることによりセルを封口するため、従来の方法のような封口用ペーストが不要となる。さらに、セル壁同士を溶着させることによりセルを封口するため、ハニカム構造体をディーゼル粒子フィルタ等の粒子状物質除去フィルタに用いた場合に、端面における排ガスの流路の入口及び出口を貫通孔の開口面積よりも大きくすることが出来るので、排ガスを供給する側の端面での排ガスの流れの乱れが少なくなり、圧力損失を低減することができる。図18(a)に示すように、従来の封口材70Pにより出口側四角形セル70Soutが封口された場合、排ガスの供給側(入口側)となる上面71aにおいて空気抵抗が大きい欠点がある。一方、図18(b)に示すように、本実施形態の製造方法により出口側四角形セル70Soutが封口された場合、上面71aにおけるガスの流路の入口が大きく、封口された隔壁70W同士の端部が先端で細くされているため、空気抵抗が極めて低減されるのである。
 また、貫通孔の一部を封口されるグリーンハニカム成形体70は、上面71a又は下面71bにおいて、1つの入口側八角形セル70Octinと、1つの入口側八角形セル70Octinの周囲に隔壁70Wを介して隣接した入口側八角形セル70Octinよりも小さい開口面積を有する4つの出口側四角形セル70Soutとを有する。このため、例えばハニカム構造体をディーゼル粒子フィルタ等の粒子状物質除去フィルタに適用した場合に、粒子状物質除去フィルタの入口側で開口面積の小さい出口側四角形セル70Soutを封口しつつ開口面積の大きい入口側八角形セル70Octinを開口させ、出口側で開口面積の大きい入口側八角形セル70Octinを封口しつつ開口面積の小さい出口側四角形セル70Soutを開口させることにより、入口側が広くなり、煤が溜まった状態での圧力損失も低減することができる。
 また、大きい開口面積を有する貫通孔は入口側八角形セル70Octinであり、入口側八角形セル70Octinの周囲に隣接する小さい開口面積を有する貫通孔は出口側四角形セル70Soutである。そのため、入口側八角形セル70Octinの一辺置きに出口側四角形セル70Soutが隣接することにより、上面71a又は下面71bにおいて、大きさの異なる貫通孔を配列することができる。
 また、上面71aにおいて、出口側四角形セル70Soutを封口し、下面71bにおいて、入口側八角形セル70Octinを封口する。このため、例えばハニカム構造体をディーゼル粒子フィルタ等の粒子状物質除去フィルタに適用した場合に、粒子状物質除去フィルタの入口側で開口面積の小さい出口側四角形セル70Soutを封口しつつ開口面積の大きい入口側八角形セル70Octinを開口させ、出口側で開口面積の大きい入口側八角形セル70Octinを封口しつつ開口面積の小さい出口側四角形セル70Soutを開口させることにより、入口側が広くなり、煤が溜まった状態での圧力損失も低減することができる。
 また、グリーンハニカム成形体70の複数の入口側八角形セル70Octin又は出口側四角形セル70Soutに封口用治具400の封口用突起410cを挿入することにより、隔壁70W同士を上面71a又は下面71bで接合してセルを封口する。これにより、セルの封口を極めて容易に行うことができる。
 また、出口側四角形セル70Soutの封口において、入口側八角形セル70Octinに四角錐及び四角錐台のいずれかの形状を含む封口用治具400の封口用突起410cをその丸み面取り側辺部415が丸み面取り側辺部415に隣接した隔壁70Wそれぞれに当接するようにしつつ挿入することにより、出口側四角形セル70Soutを封口する。これにより、出口側四角形セル70Soutを容易かつ確実に封口することができる。
 また、入口側八角形セル70Octinの封口において、出口側四角形セル70Soutの貫通孔それぞれに四角錐及び四角錐台のいずれかの形状を含む封口用治具400の封口用突起410cをその丸み面取り側辺部415が入口側八角形セル70Octinに隣接した隔壁70Wに当接するようにしつつ挿入することにより、入口側八角形セル70Octinを封口する。これにより、入口側八角形セル70Octinを容易かつ確実に封口することができる。
〔第2実施形態〕
(グリーンハニカム成形体(角丸四角形セル及び四角形セル))
 まず、本発明の第2実施形態において加工の対象となるグリーンハニカム成形体について説明する。図19(a)に示すように、本実施形態に係るグリーンハニカム成形体70は、例えば、上面71a、下面71b及び側面71cを有し、上面71a及び下面71bに複数の四角形の角部が丸められた角丸四角形状の貫通孔である入口側角丸四角形セル70SRinと、上記第1実施形態と同様の四角形状の貫通孔である出口側四角形セル70Soutとが開口している円柱体である。入口側角丸四角形セル70SRinと出口側四角形セル70Soutとは、側面71cに沿って上面71aから下面71bまで略平行に伸びている。上記第1実施形態と同様に、グリーンハニカム成形体70は、後で焼成することにより多孔質のセラミックとなる未焼成成形体であり、入口側角丸四角形セル70SRin以外の材質や製法は同様である。また、グリーンハニカム成形体70の入口側角丸四角形セル70SRinと出口側四角形セル70Soutとが延びる方向の長さは特に限定されないが、例えば、40~400mmとすることができる。
 図19(b)に示すように、上面71aあるいは下面71bにおいて、隔壁70Wにより、大きな開口面積の入口側角丸四角形セル70SRinと、入口側角丸四角形セル70SRinよりも小さな開口面積の出口側四角形セル70Soutとが区画される。入口側角丸四角形セル70SRinは、四角形の角部が丸面取りを施された角丸四角形状を有する。1つの入口側角丸四角形セル70SRinの周囲には、入口側角丸四角形セル70SRinの4辺を区画する4つの隔壁70Wそれぞれを介して4つの出口側四角形セル70Soutがそれぞれ隣接している。1つの出口側四角形セル70Soutの周囲には、出口側四角形セル70Soutの各辺を区画する4つの隔壁70Wを介して4つの入口側角丸四角形セル70SRinがそれぞれ隣接している。なお、入口側角丸四角形セル70SRinは正方形の角部が丸められたものでなくても良い。例えば、入口側角丸四角形セル70SRinは一方向に長い角丸四角形状でも良い。また、入口側角丸四角形セル70SRinは平行四辺形の角部が丸められた形状の角丸四角形状でも良い。
(封口工程)
 以下、本実施形態のグリーンハニカム成形体70の封口工程について説明する。本実施形態においては、上記第1実施形態と同様の封口用治具400を用いて入口側角丸四角形セル70SRin及び出口側四角形セル70Soutの封口が行われる。まず、グリーンハニカム成形体70を焼成後にディーゼル粒子フィルタ等の粒子状物質除去フィルタとした場合に、排ガスの供給側(入口側)となる上面71aの封口工程について説明する。
 図6に示すように、グリーンハニカム成形体70の上面71a側の端部が、超音波封口機300の封口用治具400の支持ソケット部450に挿入される。封口用治具400はホーン部330からの超音波振動により振動させられる。図20に示すように、封口面401cの封口用突起410cの先端が入口側角丸四角形セル70SRinに挿入される。入口側角丸四角形セル70SRinに対して、封口用突起410cの円錐状先端部412が挿入される。
 図8に示すように、封口用突起410cがさらに入口側角丸四角形セル70SRinに挿入されると、図21に示すように、封口用突起410cの四角錐状基部416が入口側角丸四角形セル70SRinに挿入される。四角錐状基部416の丸み面取り側辺部415それぞれは、隔壁70Wに当接させられる。封口用突起410cは超音波振動により振動させられているため、隔壁70Wは液状化し、それぞれ封口用突起410cを挿入された4つの入口側角丸四角形セル70SRinの中心の封口用突起410cを挿入されていない出口側四角形セル70Soutを封口するように押し付けられる。
 図10に示すように、封口用突起410cがさらに入口側角丸四角形セル70SRinに挿入されると、図22に示すように、四角錐状基部416の丸み面取り側辺部415及び四角錐側面部417により液状化されつつ四方向から押圧された隔壁70W同士は一体に溶着される。溶着された隔壁70Wの端部は、封口面401cの丸み面取り谷間部414に当接させられ、丸み面取り谷間部414の形状に対応した丸み面取りがなされた状態で丸み隔壁接合端部73が形成され、封口が完了する。これにより、排ガスの供給側(入口側)となる上面71aでは、その周囲を隔壁70Wを挟んでそれぞれ隣接する4つの入口側角丸四角形セル70SRinに囲まれた1つの出口側四角形セル70Soutが封口される。
 一方、グリーンハニカム成形体70を焼成後にディーゼル粒子フィルタ等の粒子状物質除去フィルタとした場合に、排ガスの排気側(出口側)となる下面71bの封口工程については、図12に示すように、グリーンハニカム成形体70の下面71b側の端部が、超音波封口機300の封口用治具400の支持ソケット部450に挿入される。封口用治具400はホーン部330からの超音波振動により振動させられる。封口面401cの封口用突起410cの先端が出口側四角形セル70Soutに挿入される。図23に示すように、出口側四角形セル70Soutに対して、封口用突起410cの円錐状先端部412が挿入される。
 図14に示すように、封口用突起410cがさらに出口側四角形セル70Soutに挿入されると、図24に示すように、封口用突起410cの四角錐状基部416が出口側四角形セル70Soutに挿入される。四角錐状基部416の丸み面取り側辺部415それぞれは、隔壁70Wに当接させられる。封口用突起410cは超音波振動により振動させられているため、隔壁70Wは液状化し、それぞれ封口用突起410cを挿入された4つの出口側四角形セル70Soutの中心の封口用突起410cを挿入されていない入口側角丸四角形セル70SRinを封口するように押し付けられる。
 図16に示すように、封口用突起410cがさらに入口側八角形セル70Octinに挿入されると、図25に示すように、四角錐状基部416の丸み面取り側辺部415及び四角錐側面部417により液状化されつつ四方向から押圧された隔壁70W同士は一体に溶着される。溶着された隔壁70Wの端部は、封口面401cの丸み面取り谷間部414に当接させられ、丸み面取り谷間部414の形状に対応した丸み面取りがなされた状態で丸み隔壁接合端部73が形成され、封口が完了する。これにより、排ガスの排気側(出口側)となる下面71bでは、その周囲を隔壁70Wを挟んでそれぞれ隣接する4つの出口側四角形セル70Soutに囲まれた1つの入口側角丸四角形セル70SRinが封口される。
 本実施形態では、大きい開口面積を有する貫通孔は入口側角丸四角形セル70SRinであり、入口側角丸四角形セル70SRinの周囲に隣接する小さい開口面積を有する貫通孔は出口側四角形セル70Soutである。そのため、入口側角丸四角形セル70SRinの一辺置きに出口側四角形セル70Soutが隣接することにより、上面71a又は下面71bにおいて、大きさの異なる貫通孔を配列することができる。
 なお、本発明は上記実施形態に限定されるものでなく、様々な変形態様が可能である。例えば、上記実施形態では、封口されたグリーンハニカム成形体70は、超音波が印加されることにより隔壁70W同士が溶着されることにより封口されていたが、封口されたグリーンハニカム成形体70は当該態様に限定されない。例えば、封口されたグリーンハニカム成形体70は、超音波が印加されることがなく隔壁70W同士が圧着されることにより封口されたものも含まれる。また、封口されたグリーンハニカム成形体70は、超音波より低い周波数の例えば1kHz以下の振動が印加されることにより隔壁70W同士が圧着されることにより封口されたものも含まれる。
 本発明の一態様に係るハニカム構造体の製造方法によれば、封口ペーストが不要で、ハニカム構造体の端部を簡易に封口することが出来る製法とそれにより製造されるハニカム構造体を提供することが出来る。
70…グリーンハニカム成形体、71a…上面、71b…下面、71c…側面、70Octin…入口側八角形セル、70Sout…出口側四角形セル、70SRin…入口側角丸四角形セル、70W…隔壁、73…丸み隔壁接合端部、300…超音波封口機、310…超音波信号発信器、320…超音波振動子部、330…ホーン部、400…封口用治具、401c…封口面、410c…封口用突起、412…円錐状先端部、414…丸み面取り谷間部、415…丸み面取り側辺部、416…四角錐状基部、417…四角錐側面部、450…支持ソケット部、451…傾斜面。

Claims (8)

  1.  柱体の端面で開口し互いに隔壁で区画された複数の貫通孔の一部が封口されたハニカム構造体の製造方法であって、
     グリーンハニカム成形体の前記隔壁同士を前記端面で接合することにより前記貫通孔の一部を封口する封口工程を備え、
     前記封口工程で前記貫通孔の一部を封口される前記グリーンハニカム成形体は、
     前記端面において、1つの第1の前記貫通孔と、1つの第1の前記貫通孔の周囲に前記隔壁を介して隣接した第1の前記貫通孔よりも小さい開口面積を有する4つの第2の前記貫通孔とを有する、ハニカム構造体の製造方法。
  2.  第1の前記貫通孔は八角形状であり、第2の前記貫通孔は四角形状である、請求項1に記載のハニカム構造体の製造方法。
  3.  第1の前記貫通孔は四角形の角部が丸められた角丸四角形状であり、第2の前記貫通孔は四角形状である、請求項1に記載のハニカム構造体の製造方法。
  4.  前記封口工程では、一方の前記端面において、第2の前記貫通孔を封口し、他方の前記端面において、第1の前記貫通孔を封口する、請求項1~3のいずれか1項に記載のハニカム構造体の製造方法。
  5.  前記封口工程では、前記グリーンハニカム成形体の複数の前記貫通孔の一部に封口用治具を挿入することにより、前記隔壁同士を前記端面で接合して前記貫通孔を封口する、請求項1~4のいずれか1項に記載のハニカム構造体の製造方法。
  6.  前記封口工程では、第2の前記貫通孔の封口において、第1の前記貫通孔に四角錐及び四角錐台のいずれかの形状を含む前記封口用治具をその側辺が第2の前記貫通孔に隣接した前記隔壁それぞれに当接するようにしつつ挿入することにより、第2の前記貫通孔を封口する、請求項5に記載のハニカム構造体の製造方法。
  7.  前記封口工程では、第1の前記貫通孔の封口において、第2の前記貫通孔それぞれに四角錐及び四角錐台のいずれかの形状を含む前記封口用治具をその側辺が第1の前記貫通孔に隣接した前記隔壁に当接するようにしつつ挿入することにより、第1の前記貫通孔を封口する、請求項5又は6に記載のハニカム構造体の製造方法。
  8.  請求項1~7のいずれか1項記載の方法により製造されたハニカム構造体。
PCT/JP2014/064504 2013-06-28 2014-05-30 ハニカム構造体の製造方法 WO2014208275A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2015017477A MX2015017477A (es) 2013-06-28 2014-05-30 Metodo para producir estructuras alveolares.
US14/392,179 US20160185010A1 (en) 2013-06-28 2014-05-30 Method for producing honeycomb structures
EP14817867.6A EP3015234A4 (en) 2013-06-28 2014-05-30 Method for producing honeycomb structures
KR1020157037092A KR20160025529A (ko) 2013-06-28 2014-05-30 허니콤 구조체의 제조 방법
CN201480034600.8A CN105324224A (zh) 2013-06-28 2014-05-30 蜂窝构造体的制造方法
US15/095,664 US9700820B2 (en) 2013-06-28 2016-04-11 Method for producing honeycomb structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-136587 2013-06-28
JP2013136587A JP6140554B2 (ja) 2013-06-28 2013-06-28 ハニカム構造体の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/392,179 A-371-Of-International US20160185010A1 (en) 2013-06-28 2014-05-30 Method for producing honeycomb structures
US15/095,664 Continuation US9700820B2 (en) 2013-06-28 2016-04-11 Method for producing honeycomb structures

Publications (1)

Publication Number Publication Date
WO2014208275A1 true WO2014208275A1 (ja) 2014-12-31

Family

ID=52141626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064504 WO2014208275A1 (ja) 2013-06-28 2014-05-30 ハニカム構造体の製造方法

Country Status (7)

Country Link
US (2) US20160185010A1 (ja)
EP (1) EP3015234A4 (ja)
JP (1) JP6140554B2 (ja)
KR (1) KR20160025529A (ja)
CN (1) CN105324224A (ja)
MX (1) MX2015017477A (ja)
WO (1) WO2014208275A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6216797B2 (ja) * 2012-10-19 2017-10-18 ダウ グローバル テクノロジーズ エルエルシー 形成可能および/または崩壊し得る材料を切断するための器具、および方法
CN109209575B (zh) 2018-09-29 2021-05-14 大连理工大学 一种颗粒捕集器过滤体的非对称孔道结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324731B2 (ja) 1980-06-16 1988-05-23 Ngk Insulators Ltd
JP2004042440A (ja) * 2001-08-28 2004-02-12 Denso Corp 排ガス浄化フィルタ及びその製造方法
JP2006272318A (ja) * 2005-03-01 2006-10-12 Denso Corp 排ガス浄化フィルタの製造方法
WO2014103839A1 (ja) * 2012-12-27 2014-07-03 住友化学株式会社 ハニカム構造体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577215B2 (ja) 1974-01-28 1982-02-09
JPS577217A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Ceramic honeycomb filter and preparation thereof
JPS6324731A (ja) 1986-07-17 1988-02-02 Fujitsu Ltd デ−タ伝送回路
DE4224726A1 (de) 1992-07-27 1994-02-03 Voith Gmbh J M Streicheinrichtung mit zwischen einer Auftragswalze und einer Gegenwalze gebildetem Auftragsspalt
DK40293D0 (da) * 1993-04-05 1993-04-05 Per Stobbe Method for preparing a filter body
JP3719232B2 (ja) * 2002-06-18 2005-11-24 トヨタ自動車株式会社 内燃機関のパティキュレートフィルタ
JP4032902B2 (ja) * 2002-09-25 2008-01-16 トヨタ自動車株式会社 排気浄化用の基材、および、その製造方法
JP2004321848A (ja) 2003-04-21 2004-11-18 Ngk Insulators Ltd ハニカム構造体及びその製造方法
JP3945452B2 (ja) * 2003-05-30 2007-07-18 株式会社デンソー 排ガス浄化フィルタの製造方法
KR100679190B1 (ko) * 2003-06-23 2007-02-06 이비덴 가부시키가이샤 벌집형 구조체
JP4767491B2 (ja) * 2003-12-11 2011-09-07 日本碍子株式会社 ハニカム構造体
JP5124177B2 (ja) * 2007-06-13 2013-01-23 東京窯業株式会社 ハニカム構造体
KR101569330B1 (ko) * 2012-10-15 2015-11-13 스미또모 가가꾸 가부시끼가이샤 허니컴 구조체의 제조 방법 및 그린 허니컴 성형품용 실링 지그

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324731B2 (ja) 1980-06-16 1988-05-23 Ngk Insulators Ltd
JP2004042440A (ja) * 2001-08-28 2004-02-12 Denso Corp 排ガス浄化フィルタ及びその製造方法
JP2006272318A (ja) * 2005-03-01 2006-10-12 Denso Corp 排ガス浄化フィルタの製造方法
WO2014103839A1 (ja) * 2012-12-27 2014-07-03 住友化学株式会社 ハニカム構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3015234A4

Also Published As

Publication number Publication date
US9700820B2 (en) 2017-07-11
EP3015234A4 (en) 2017-05-10
MX2015017477A (es) 2016-03-31
US20160263507A1 (en) 2016-09-15
US20160185010A1 (en) 2016-06-30
CN105324224A (zh) 2016-02-10
JP2015009444A (ja) 2015-01-19
KR20160025529A (ko) 2016-03-08
JP6140554B2 (ja) 2017-05-31
EP3015234A1 (en) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5636524B2 (ja) グリーンハニカム成形体の封口用治具及びハニカム構造体の製造方法
JP6596413B2 (ja) ハニカムフィルタ、及び、ハニカムフィルタの製造方法
JP5677648B2 (ja) ハニカム構造体の製造方法
WO2016098835A1 (ja) ハニカム構造体
WO2014208275A1 (ja) ハニカム構造体の製造方法
JP5416636B2 (ja) 目封止ハニカム構造体の製造方法
JP6155139B2 (ja) ハニカム構造体の製造方法、治具及びハニカム構造体
JP5636525B2 (ja) ハニカム構造体の製造方法
WO2014208276A1 (ja) ハニカム構造体の製造方法及びグリーンハニカム成形体の封口用治具
JP2014141062A (ja) ハニカム構造体の製造方法
JP2015009441A (ja) ハニカム構造体の製造方法
JP2014141063A (ja) ハニカム構造体の製造方法、グリーンハニカム成形体の加工装置及びハニカム構造体
JP2013154549A (ja) ハニカム構造体の封口方法
JP2006272156A (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034600.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817867

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/017477

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14392179

Country of ref document: US

Ref document number: 2014817867

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157037092

Country of ref document: KR

Kind code of ref document: A