WO2014208161A1 - コイル及びコイルの製造方法 - Google Patents

コイル及びコイルの製造方法 Download PDF

Info

Publication number
WO2014208161A1
WO2014208161A1 PCT/JP2014/058936 JP2014058936W WO2014208161A1 WO 2014208161 A1 WO2014208161 A1 WO 2014208161A1 JP 2014058936 W JP2014058936 W JP 2014058936W WO 2014208161 A1 WO2014208161 A1 WO 2014208161A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coil layer
layer
flat
bent
Prior art date
Application number
PCT/JP2014/058936
Other languages
English (en)
French (fr)
Inventor
池田 隆
道太郎 臼井
康太郎 和田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2014208161A1 publication Critical patent/WO2014208161A1/ja
Priority to US14/972,759 priority Critical patent/US9899901B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Definitions

  • the present invention relates to a coil and a method for manufacturing the coil.
  • a coil formed by winding a conducting wire may be used as a mover (drive unit).
  • a coil at this time there may be a case where a plurality of coils composed of flat coils in which a plurality of annular coil layers are stacked are used in combination.
  • the bent portion when a plurality of coils are combined, it is necessary to provide a bent portion whose end portion is bent so that the coils do not interfere with each other.
  • the bent portion does not contribute to the thrust of the linear motor, but the bent portion may become larger when a flat coil in which a plurality of annular coil layers are stacked is bent. And when this bending part becomes large, the heat_generation
  • the present invention has been made in order to solve such a problem, and an object of the present invention is to provide a coil and a method for manufacturing the coil which can reduce a bent portion when a flat coil is bent and have improved performance. To do.
  • a method for manufacturing a coil according to one aspect of the present invention includes a pair of linear portions opposed in a first direction and a pair of end portions opposed in a second direction intersecting the first direction.
  • a step is provided between the second tip surface so that the first tip surface is located on the inner peripheral side.
  • the first step of preparing the flat coil at the end portion on the side to be bent, the first tip surface in the second direction of the first coil layer;
  • a step is provided between the second coil layer and the second tip surface in the second direction so that the first tip surface is located on the inner peripheral side.
  • the first coil layer has a smaller radius of curvature than the second coil layer.
  • the amount of protrusion in the bending direction tends to be larger than the surface.
  • the amount of protrusion of the first tip surface can be reduced, and the bent portion when the flat coil is bent can be reduced. Thereby, since the radiation dose used for a coil can be reduced, an increase in resistance and accompanying heat generation can be suppressed, and the performance of the coil can be improved.
  • the size of the step may be set so that the first tip surface and the second tip surface are located on the same plane after the second step.
  • the flat coil may be an ⁇ -winding coil.
  • the ⁇ winding coil By using the ⁇ winding coil, both ends of the conducting wire used for the coil are drawn from the outer peripheral side. Thereby, connection of conducting wire can be performed easily. Moreover, when bending a flat coil, it can prevent that the edge part of conducting wire is caught in the wire inside a 1st coil layer or a 2nd coil layer.
  • the coil which concerns on 1 aspect of this invention is a cyclic
  • a flat coil in which at least one second coil layer is laminated is bent at least on one end side, and the flat coil is an ⁇ -winding coil, and the second coil layer side. From the first coil layer to the first coil layer side, and at the end of the bent side, the first tip surface in the second direction of the first coil layer and the second tip surface in the second direction of the second coil layer are , Located on the same plane.
  • the curvature radius of the first coil layer is smaller than that of the second coil layer, the bent portion when the flat coil is bent from the second coil layer side to the first coil layer side can be reduced, And the accompanying heat generation can be suppressed. Therefore, the performance of the coil can be improved. Further, since the flat coil is an ⁇ -winding coil, the conductor can be easily connected, and when the flat coil is bent, the end of the conductor is inside the first coil layer or the second coil layer. Can be prevented from being caught in the wire.
  • a bent portion when a flat coil is bent can be reduced, and a coil with improved performance and a method for manufacturing the coil can be provided.
  • FIG. 1 is a perspective view showing a linear motor using a coil according to an embodiment of the present invention.
  • 2 is a cross-sectional view of the coil portion in FIG.
  • FIG. 3 is a perspective view showing a coil according to an embodiment of the present invention in the coil section in FIG. 1.
  • the linear motor 1 includes a coil unit 2 that can accommodate and move a coil 5 (see FIG. 3), and a magnet unit 4 that moves the coil unit 2 while guiding the coil unit 2 in its traveling direction.
  • the traveling direction of the coil unit 2 is the X-axis direction
  • the vertical direction orthogonal (crossing) to the traveling direction of the coil unit 2 is the Y-axis direction
  • the horizontal direction is the Z-axis direction.
  • the coil unit 2 is formed with a coil mold (on the entire surface of a coil unit 6 in which two coil arrays 5A and 5B in which a plurality of coils 5 are arranged in parallel in the X-axis direction are arranged back to back.
  • the coil unit 6 is covered with a molding material 7 and accommodated in a case 9.
  • other coils combined with one coil 5 are indicated by phantom lines.
  • This coil part 2 has a main body part 2a extending in the Y-axis direction, and an upper end part 2b and a lower end part 2c wider than the main body part 2a in the Z-axis direction, and has a substantially I-shaped cross section. Presents.
  • the coil unit 2 generates electromagnetic force by energizing the coil unit 6 and moves in the X-axis direction.
  • the magnet unit 4 has a configuration in which the base yoke 4a is combined in a U shape with the base yoke 4a at the bottom and the side yoke 4b at both sides.
  • the base yoke 4a is disposed to face the lower end 2c with a predetermined gap from the lower end 2c of the coil part 2.
  • the side yoke 4b has N-pole magnets 8a and S-pole magnets 8b alternately arranged in parallel on the inner wall along the X-axis direction.
  • magnets 8a and 8b are arranged to face both side surfaces 2d of the main body portion 2a of the coil portion 2 with a predetermined gap therebetween.
  • the coil unit 2 generates electromagnetic force when energized between the magnets 8 a and 8 b and moves in the X-axis direction with respect to the magnet unit 4.
  • the pitch between magnets having the same polarity is a magnetic pole pitch M.
  • the coil 5 is formed by bending a substantially rectangular annular (substantially rectangular annular in this embodiment) flat coil 20 at both ends in the longitudinal direction (corresponding to the Y-axis direction in FIG. 3). Composed.
  • the flat coil 20 is a plate-like coil in which the first coil layer 11 and the second coil layer 12 are laminated. The detailed configuration of the flat coil 20 will be described later together with the method for manufacturing the coil 5.
  • the coil 5 is a saddle type coil having a pair of thrust generating portions 30 corresponding to the main body portion 2 a of the coil portion 2 of the linear motor 1 and a pair of bent portions 40 bent at both ends of the thrust generating portion 30. .
  • the pair of bent portions 40 correspond to the upper end portion 2b and the lower end portion 2c of the coil portion 2, respectively.
  • the pair of thrust generators 30 are portions that contribute to the thrust of the linear motor 1, are opposed in the short direction (corresponding to the X-axis direction in FIG. 3), and are in the longitudinal direction (Y A pair of linear portions extending in the axial direction. Between the pair of straight line portions, the thrust generating unit 30 of the other coil 5 is disposed.
  • the bent portion 40 is a portion that does not contribute to the thrust of the linear motor 1 and is provided to prevent interference between the coil arrays 5A and 5B arranged in parallel in the coil unit 6 shown in FIG.
  • FIG. 4 is a diagram for explaining a first step, which is a step of preparing a flat coil.
  • FIG. 4A shows a plan view of the flat coil 20.
  • the flat coil 20 includes a first coil layer 11 and a second coil layer 12 that are formed by winding a continuous strip-shaped conducting wire into a rectangular ring shape.
  • the first coil layer 11 and the second coil layer 12 are laminated with each other and have a rectangular ring shape with substantially the same shape and size as viewed from the lamination direction. Further, the first coil layer 11 and the second coil layer 12 are wound with conductive wires with the same center line CL as a reference.
  • the first coil layer 11 is located on the front side of the paper with respect to the second coil layer 12.
  • the flat coil 20 has a first coil layer 11 and a second coil layer 12 formed by winding a continuous strip-shaped conductor in a substantially rectangular ring shape with the center line CL as a reference.
  • One end (first end 50) extends from the outer periphery of the first coil layer 11, and the other end (second end 51) of the conducting wire is the outer periphery of the second coil layer 12.
  • An ⁇ -winding coil extending from the side.
  • the first end portion 50 of the conductive wire forming the flat coil 20 extends from the outer peripheral side of the first coil layer 11, and the second end portion 51 of the conductive wire is connected to the second coil layer 12. It extends from the outer peripheral side.
  • the first coil layers 11 face each other in the short direction D1 (corresponding to the “first direction” in the claims and correspond to the X-axis direction in FIG. 3) and are perpendicular to the short direction D1. It has a pair of linear portions 11A extending in the direction D2 (corresponding to the “second direction” in the claims and corresponding to the Y-axis direction in FIG. 3), and a pair of end portions 11B opposed in the longitudinal direction D2. is doing.
  • the straight portion 11A corresponds to the long side portion of the rectangular first coil layer 11, and the end portion 11B corresponds to the short side portion.
  • the end portion 11B has a portion other than the straight portion 11A in the flat coil 20 and a portion extending linearly in the short-side direction D1 and a portion corresponding to a curved corner portion. Since the width of the straight portion 11A and the width of the end portion 11B are defined by the thickness of the strip-shaped conductor and the number of windings, the width of the straight portion 11A is equal to the width of the end portion 11B.
  • the second coil layer 12 is formed by the same method as the first coil layer 11.
  • the second coil layer 12 is opposed in the short direction D1, and has a pair of linear portions 12A extending in the longitudinal direction D2 and a pair of end portions 12B facing in the longitudinal direction D2.
  • the correspondence between the straight portion 12A and the end portion 12B is the same as that of the first coil layer 11, and the width of the straight portion 12A and the width of the end portion 12B are equal.
  • the number of turns of the second coil layer 12 is the same as the number of turns of the first coil layer 11.
  • the length of the first coil layer 11 in the short direction D1 (that is, the length of the end portion 11B in the short direction D1) and the length of the second coil layer 12 in the short direction D1.
  • the length (that is, the length of the end portion 12B in the short direction D1) is the same.
  • the width of the linear portion 11A of the first coil layer 11 is increased.
  • the width of the linear portion 12A of the second coil layer 12 is the same. Therefore, the inner peripheral surface of the straight portion 11A and the inner peripheral surface of the straight portion 12A are formed so as to be located on the same plane.
  • outer peripheral surface of the linear portion 11A and the outer peripheral surface of the linear portion 12A are formed so as to be located on the same plane.
  • “located on the same plane” is not limited to being completely located on the same plane, but includes a slight deviation of a manufacturing error.
  • FIG. 4B shows a side view of the flat coil 20.
  • the length in the longitudinal direction D2 of the first coil layer 11 (that is, the sum of the length in the longitudinal direction D2 of the linear portion 11A and the width of the pair of end portions 11B) is the second coil. It is shorter than the length in the longitudinal direction D2 of the layer 12 (that is, the sum of the length in the longitudinal direction D2 of the linear portion 12A and the width of the pair of end portions 12B).
  • the width of the end portion 11B and the width of the end portion 12B are the same, the length of the linear portion 11A in the longitudinal direction D2 is shorter than the length of the linear portion 12A in the longitudinal direction D2.
  • the first inner peripheral surface 11b which is the inner peripheral surface in the longitudinal direction D2 of the end portion 11B, and the end portion 12B.
  • a deviation (second step) is also generated between the second inner peripheral surface 12b, which is the inner peripheral surface in the longitudinal direction D2. Since the width of the end portion 11B and the width of the end portion 12B are the same, the shift amount between the first tip surface 11a and the second tip surface 12a, and the first inner peripheral surface 11b and the second inner peripheral surface 12b. The amount of deviation is equal.
  • the vicinity where the first step and the second step are provided is referred to as a step portion 21.
  • FIG. 4C shows a plan view in which one of the step portions 21 is enlarged.
  • the distance between the first tip surface 11a and the center line CL in the longitudinal direction D2 is larger than the distance between the second tip surface 12a and the center line CL in the longitudinal direction D2. short. That is, in the flat coil 20, the first tip surface 11a is located on the inner peripheral side with respect to the second tip surface 12a. Similarly, the distance between the first inner peripheral surface 11b and the center line CL in the longitudinal direction D2 is also shorter than the distance between the second inner peripheral surface 12b and the center line CL in the longitudinal direction D2.
  • the second coil layer 12 has an exposed surface 12 c exposed from the first coil layer 11 when viewed from the first coil layer 11 side in the stacking direction.
  • FIG. 5 is a diagram for explaining the second step, which is a step of bending the flat coil.
  • FIG. 5A shows a plan view of the coil 5 obtained by bending the flat coil 20.
  • FIG. 5B shows a side view of the coil 5.
  • FIG. 6 shows an enlarged view of one of the bent portions in FIG.
  • the flat coil 20 is bent from the second coil layer 12 side to the first coil layer 11 side on both sides of the end portions 11B and 12B.
  • the crease 22 is set at a predetermined position (or a boundary position between the straight portion 11A (12A) and the end portion 11B (12B)) on both ends in the longitudinal direction D2 of the straight portions 11A and 12A. Bend to draw an arc.
  • the bending angle is not limited to the angle shown in the figure as long as interference with the adjacent coil 5 can be avoided.
  • the first coil layer 11 and the second coil are arranged such that the point P1 on the second coil layer 12 side of the second inner peripheral surface 12b shown in FIG. 6 is located closer to the first coil layer 11 than the straight line L1.
  • the layer 12 may be bent.
  • you may set to the angle of the range to 90 degrees with respect to the linear part 11A (12B).
  • the first step (see FIG. 4B) by the first tip surface 11a and the second tip surface 12a in the step portion 21 formed by the flat coil 20 is as follows.
  • the flat coil 20 is lost by being bent. That is, by bending the flat coil 20, the exposed surface 12 c of the second coil layer 12 is covered and hidden by the surface on the second coil layer 12 side in the stacking direction of the first coil layer 11.
  • the second step due to the first inner peripheral surface 11b and the second inner peripheral surface 12b is eliminated by bending the flat coil 20.
  • the surface opposite to the second coil layer 12 among the surfaces facing the stacking direction of the first coil layer 11 is the first surface 40a, and the first coil layer 11 and the second coil layer 12 are joined.
  • a surface to be bonded is a bonding surface 40b, and a surface opposite to the first coil layer 11 among the surfaces facing the stacking direction of the second coil layer 12 is a second surface 40c.
  • first surface 40a ⁇ joint surface 40b ⁇ second surface 40c is established between the radii of curvature of the first surface 40a, the joint surface 40b, and the second surface 40c in the vicinity of the fold line 22. Therefore, in consideration of the difference in curvature radius, the difference between the curvature radius of the first coil layer 11 and the curvature radius of the second coil layer 12 is expressed as the first tip surface 11a and the second tip surface shown in FIG. It is set as the magnitude
  • the maximum distance W1 between the second tip surface 12a and the second surface 40c after bending shown in FIG. 6, and the first tip surface 11a and the second tip after bending are shown.
  • the difference from the maximum distance W2 between the surfaces 40c is reduced, and the bent portion 40 when the flat coil 20 is bent can be reduced.
  • FIG. 7 is a diagram for explaining a first step, which is a step of preparing a conventional flat coil.
  • the conventional flat coil 120 has the same shape as the flat coil 20 shown in FIG. 4 except that the size of the first coil layer 111 and the size of the second coil layer 112 are the same, and the flat coil 20.
  • the same manufacturing method is used. Therefore, the inner peripheral surface of the first coil layer 111 and the inner peripheral surface of the second coil layer 112 are formed so as to be located on the same plane, and the outer peripheral surface of the first coil layer 111 and the second coil layer 112 are The outer peripheral surface is formed so as to be located on the same plane.
  • FIG. 8 is a diagram for explaining a second step, which is a step of bending a conventional flat coil.
  • the flat coil 120 is moved from the second coil layer 112 side to the first coil layer 111 side at the fold 122, similarly to the step of bending the flat coil 20. Bend.
  • the coil 105 having the bent portion 140 is formed.
  • FIG. 9 shows an enlarged view of one side of the bent portion 140 in FIG.
  • the first coil layer 111 and the second coil layer 112 have the same size. Therefore, since the curvature radius of the first coil layer 111 and the curvature radius of the second coil layer 112 at the time of bending are different, the amount of protrusion of the first coil layer 111 is larger than that of the second coil layer 112, The first coil layer 111 protrudes. Accordingly, the first tip surface 111a of the first coil layer 111 and the second tip surface 112a of the second coil layer 112 in the bent portion 140 are not positioned on the same plane.
  • the longitudinal direction D2 (second) of the first coil layer 11 is formed at the bent end.
  • the first tip surface 11a is positioned on the inner peripheral side between the first tip surface 11a in the direction (2) and the second tip surface 12a in the longitudinal direction D2 (second direction) of the second coil layer 12.
  • Has a step By providing such a step, the amount of protrusion of the first tip surface 11a can be reduced, and the bent portion 40 when the flat coil 20 is bent can be reduced.
  • the difference in curvature radius between the first coil layer 11 and the second coil layer 12 is taken into consideration, and the size of the bent portion 40 that does not contribute to the thrust of the linear motor 1 is determined. It can suppress becoming larger than necessary. Thereby, since the radiation dose used for the flat coil 20 can be reduced, an increase in resistance and the accompanying heat generation can be suppressed, and a coil with improved performance can be provided. Moreover, the coil using this manufacturing method can obtain the above-described effects.
  • the size of the step may be set so that the first tip surface 11a and the second tip surface 12a are located on the same plane after the second step.
  • the flat coil 20 may be an ⁇ -winding coil.
  • the ⁇ winding coil By using the ⁇ winding coil, both ends of the conducting wire used for the coil are drawn from the outer peripheral side. Thereby, connection of conducting wire can be performed easily. Further, when the flat coil 20 is bent, it is possible to prevent the end portion of the conducting wire from being caught in the wire inside the first coil layer 11 or the second coil layer 12.
  • both sides of the end portion in the longitudinal direction of the flat coil 20 are bent, but only one end portion may be bent.
  • the outer peripheral surface and the inner peripheral surface of the first coil layer and the second coil layer at the end that is not bent may be formed so as to be located on the same plane.
  • the flat coil 20 is not necessarily limited to the ⁇ -winding coil, and may be formed, for example, by winding different conductive wires in the first coil layer and the second coil layer.
  • the flat coil 20 is not necessarily limited to two layers, and may be formed of three or more layers.
  • each coil layer 11 and 12 has at least linear part 11A, 12A
  • the shape of edge part 11B, 12B will not be specifically limited.
  • the end portions 11B and 12B may be formed in a semicircular shape, an arc shape, or may be formed in a substantially triangular shape.
  • the bent portion when the flat coil is bent can be reduced, and the coil can be applied to a coil with improved performance and a method for manufacturing the coil.
  • the coil is not limited to a linear motor, and can be applied to other uses (for example, an electric motor, a generator, a damper, and the like).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Linear Motors (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

平型コイルを屈曲させたときの折れ曲がった部分を小さくでき、性能が向上したコイル及びコイルの製造方法を提供する。第1の方向にて対向する一対の直線部11A(12A)と、第1の方向に交差する第2の方向にて対向する一対の端部11B(12B)を有する環状の第1コイル層11及び第2コイル層12が少なくとも積層された平型コイル20を、少なくとも一方の前記端部側において屈曲することによって構成されるコイル5を提供する。平型コイル20は、α巻コイルであり、第2コイル層12側から第1コイル層11側へ屈曲される。屈曲する側の端部において、第1コイル層11の第2の方向における第1先端面11aと、第2コイル層12の第2の方向における第2先端面12aとが、同一平面上に位置している。

Description

コイル及びコイルの製造方法
 本発明は、コイル及びコイルの製造方法に関する。
 従来、例えば特許文献1に示すように、リニアモータの分野などで、導線を巻回することで形成されるコイルが、可動子(駆動部)として用いられることがある。このときのコイルとして、環状のコイル層が複数積層された平型コイルからなるコイルを、複数組み合わせて用いられる場合がある。
特開2008-283763号公報
 ここで、コイルを複数組み合わせるとき、コイル同士が干渉しないように端部側を屈曲した屈曲部を設ける必要がある。この屈曲部は、リニアモータの推力に寄与しないが、環状のコイル層が複数積層された平型コイルを屈曲するときに、屈曲部が大きくなる場合がある。そして、この屈曲部が大きくなると、抵抗の増加による発熱が生じ、ひいてはコイルの性能が低下する問題がある。
 本発明は、かかる課題を解決するためになされたものであり、平型コイルを屈曲させたときの折れ曲がった部分を小さくでき、性能が向上したコイル及びコイルの製造方法を提供することを目的とする。
 本発明の一態様に係るコイルの製造方法は、第1の方向にて対向する一対の直線部及び第1の方向に交差する第2の方向にて対向する一対の端部を有する環状の第1コイル層及び第2コイル層が少なくとも積層された平型コイルを準備する第1工程と、少なくとも一方の端部側において、第2コイル層側から第1コイル層側へ平型コイルを屈曲する第2工程と、を有しており、第1工程において、屈曲する側の端部では、第1コイル層の第2の方向における第1先端面と、第2コイル層の第2の方向における第2先端面との間で、第1先端面が内周側に位置するように段差を設ける。
 本発明の一態様に係るコイルの製造方法によれば、平型コイルを準備する第1工程において、屈曲する側の端部では、第1コイル層の第2の方向における第1先端面と、第2コイル層の第2の方向における第2先端面との間で、第1先端面が内周側に位置するように段差を設けている。ここで、平型コイルを第2コイル層側から第1コイル層側へ屈曲する場合、第1コイル層の方が第2コイル層より曲率半径が小さいため、第1先端面は、第2先端面よりも屈曲方向に迫り出す量が大きくなり易い。しかしながら、上述のような段差を設けておくことで、第1先端面の迫り出し量を低減することができ、平型コイルを屈曲させたときの屈曲部を小さくできる。これにより、コイルに用いられる導線量を削減できるため、抵抗の増加及びそれに伴う発熱を抑えることができ、コイルの性能を向上することができる。
 本発明の一態様に係るコイルの製造方法において、段差の大きさは、第2工程後に、第1先端面と、第2先端面とが同一平面上に位置するように設定されてもよい。これにより、平型コイルを屈曲させたときの屈曲部をさらに小さくでき、抵抗の増加及びそれに伴う発熱を抑えることができる。従って、コイルの性能を向上することができる。
 本発明の一態様に係るコイルの製造方法において、平型コイルは、α巻コイルであってもよい。α巻コイルを用いることによって、コイルに用いられる導線の端部は、両方とも外周側から引き出される。これにより、導線の結線を容易に行うことができる。また、平型コイルを屈曲する時に、導線の端部が第1コイル層又は第2コイル層の内側の線に巻き込まれるのを防ぐことができる。
 本発明の一態様に係るコイルは、第1の方向にて対向する一対の直線部及び第1の方向に交差する第2の方向にて対向する一対の端部を有する環状の第1コイル層及び第2コイル層が少なくとも積層された平型コイルを、少なくとも一方の端部側において屈曲することによって構成されるコイルであって、平型コイルは、α巻コイルであり、第2コイル層側から第1コイル層側へ屈曲され、屈曲する側の端部において、第1コイル層の第2の方向における第1先端面と、第2コイル層の第2の方向における第2先端面とが、同一平面上に位置する。これにより、第1コイル層の方が第2コイル層より曲率半径が小さかったとしても、平型コイルを第2コイル層側から第1コイル層側へ屈曲する場合の屈曲部を小さくでき、抵抗の増加及びそれに伴う発熱を抑えることができる。従って、コイルの性能を向上することができる。また、平型コイルがα巻コイルであることにより、導線の結線を容易に行うことができると共に、平型コイルを屈曲する時に、導線の端部が第1コイル層又は第2コイル層の内側の線に巻き込まれるのを防ぐことができる。
 本発明によれば、平型コイルを屈曲させたときの折れ曲がった部分を小さくでき、性能が向上したコイル及び該コイルの製造方法が提供できる。
本発明の実施形態に係るコイルを用いたリニアモータを示す斜視図である。 本発明の実施形態に係るコイル部の横断面図である。 本発明の実施形態に係るコイルを示す斜視図である。 平型コイルを準備する工程である第1工程を説明する図である。 平型コイルを屈曲する工程である第2工程を説明する図である。 コイルの屈曲部の片方の拡大図を示す。 従来の平型コイルを準備する工程である第1工程を説明する図である。 従来の平型コイルを屈曲する工程である第2工程を説明する図である。 従来のコイルの屈曲部の片方の拡大図を示す。
 以下、本発明の一態様によるコイルの好適な実施形態について添付図面を参照しながら説明する。以下の実施形態は、本発明の一態様を説明するための例示であり、本発明は以下の内容に限定されない。また、添付図面は実施形態の一例を示したものであり、コイルの形態、寸法、構成の比率は図面に限定して解釈されるものではない。本発明の一態様は、その要旨の範囲内で適宜に変形して実施できる。なお、以下の説明において同一または相当要素には同一の符号を付し、重複する説明を省略する。
 図1は、本発明の実施形態に係るコイルを用いたリニアモータを示す斜視図である。また、図2は、図1中のコイル部の横断面図である。図3は、図1中のコイル部内の本発明の実施形態に係るコイルを示す斜視図である。
 図1に示すように、リニアモータ1は、コイル5(図3参照)を収容し移動可能なコイル部2と、コイル部2をその進行方向へ案内しながら移動させるための磁石ユニット4とを備えている。なお、図1において、コイル部2の進行方向をX軸方向とし、コイル部2の進行方向と直交(交差)する鉛直方向をY軸方向とし、コイル部2の進行方向と直交(交差)する水平方向をZ軸方向とする。
 コイル部2は、X軸方向にコイル5が複数並設された2つのコイル列5A、5Bが互いに背面合わせで配置されて成るコイルユニット6の全面を、図2に示すように、コイルモールド(モールド材)7で被覆し、被覆されたコイルユニット6をケース9に収容することによって構成される。なお、図3では、一のコイル5に対して組み合わせる他のコイルを仮想線で示す。このコイル部2は、Y軸方向に延びる本体部2aと、Z軸方向において本体部2aよりも幅広の上端部2b及び下端部2cとを有しており、横断面略I字状の形状を呈している。そして、コイル部2は、コイルユニット6へ通電することによって電磁力を発生させ、X軸方向へ移動する。
 図1に戻って、磁石ユニット4は、ベースヨーク4aを底部、サイドヨーク4bを両側部としてコの字状に組み合わせた構成を有する。ベースヨーク4aは、コイル部2の下端部2cに対して所定の隙間を隔てて、下端部2cと対向して配置される。サイドヨーク4bは、その内壁に、X軸方向に沿ってN極の磁石8aとS極の磁石8bとを交互に並設して備えている。
 これらの磁石8a、8bは、コイル部2の本体部2aの両側面2dに対して所定の隙間を隔てて対向して配置される。そして、コイル部2が、磁石8a、8bの間で通電されることにより電磁力を発生し、磁石ユニット4に対してX軸方向に移動する。なお、図1中において、同極の磁石同士のピッチを磁極ピッチMとする。
 ここで、コイル5の構成について図3を用いて詳細に説明する。
 図3に示すように、コイル5は、略矩形環状(本実施形態では略長方形環状)の平型コイル20を、長手方向(図3ではY軸方向に対応)の両端側において屈曲することによって構成される。平型コイル20は、第1コイル層11及び第2コイル層12が積層された板状のコイルである。なお、平型コイル20の詳細な構成については、コイル5の製造方法と共に後述する。コイル5は、リニアモータ1のコイル部2の本体部2aに対応する一対の推力発生部30と、推力発生部30の両端側で屈曲する一対の屈曲部40と、を有する鞍型コイルである。一対の屈曲部40は、コイル部2の上端部2b及び下端部2cにそれぞれ対応する。
 一対の推力発生部30は、リニアモータ1の推力に寄与する部分であり、短手方向(図3ではX軸方向に対応)にて対向しており、短手方向に直交する長手方向(Y軸方向)に延びる一対の直線部分である。この一対の直線部分の間には、他のコイル5の推力発生部30が配置される。屈曲部40は、リニアモータ1の推力に寄与しない部分であり、図2に示すコイルユニット6において並設されるコイル列5A、5B同士の干渉を防ぐために設けられる。
 次に、コイル5の製造方法等について図4~図6を用いて説明する。
 図4は、平型コイルを準備する工程である第1工程を説明する図である。図4(a)は、平型コイル20の平面図を示す。平型コイル20は、連続する帯状の導線を矩形環状に巻回することによって形成された第1コイル層11及び第2コイル層12を有している。第1コイル層11と第2コイル層12とは、互いに積層され、積層方向から見て略同一な形状・大きさに係る長方形環状をなしている。また、第1コイル層11及び第2コイル層12は、同一の中心線CLを基準として導線が巻回されている。図4(a)においては、第1コイル層11が第2コイル層12よりも紙面手前側に位置している。
 ここで、平型コイル20は、連続する帯状の導線を、中心線CLを基準にして略矩形環状に巻回することによって、第1コイル層11と第2コイル層12が形成され、導線の端部の一方(第1端部50)が、第1コイル層11の外周側から延在しており、導線の端部の他方(第2端部51)が、第2コイル層12の外周側から延在しているα巻コイルである。具体的には、平型コイル20を形成する導線の第1端部50が第1コイル層11の外周側から延在しており、当該導線の第2端部51が、第2コイル層12の外周側から延在している。なお、本実施形態に係るコイル5の特徴部を分かり易く示すために、第1端部50及び第2端部51は、図4(a)及び図4(c)においては仮想線で示され、他の図においては省略されている。
 第1コイル層11は、短手方向D1(請求項における「第1の方向」に対応し、図3ではX軸方向に対応する)にて対向しており、短手方向D1に直交する長手方向D2(請求項における「第2の方向」に対応し、図3ではY軸方向に対応する)に延びる一対の直線部11Aと、長手方向D2にて対向する一対の端部11Bとを有している。直線部11Aは長方形環状の第1コイル層11のうち長辺部分に対応し、端部11Bは短辺部分に対応している。なお、端部11Bは、平型コイル20における直線部11A以外の部分であって、短手方向D1に直線状に延びる部分と、湾曲した角部に対応する部分と、を有している。直線部11Aの幅及び端部11Bの幅は、帯状の導線の厚さ及び巻回数によって規定されるため、直線部11Aの幅と端部11Bの幅とは等しくなる。
 第2コイル層12は、第1コイル層11と同様の方法で形成される。第2コイル層12は、短手方向D1にて対向しており、長手方向D2に延びる一対の直線部12Aと、長手方向D2にて対向する一対の端部12Bとを有している。なお、直線部12A及び端部12Bの対応関係は、第1コイル層11と同様であり、直線部12Aの幅及び端部12Bの幅が等しい。また、第2コイル層12の巻回数は、第1コイル層11の巻回数と同一である。
 図4(a)に示すように、第1コイル層11の短手方向D1における長さ(すなわち端部11Bの短手方向D1における長さ)と、第2コイル層12の短手方向D1における長さ(すなわち端部12Bの短手方向D1における長さ)とは、同一である。また、第1コイル層11及び第2コイル層12は、同一の中心線CLを基準にして巻回数が同一であるように巻回されているため、第1コイル層11の直線部11Aの幅と第2コイル層12の直線部12Aの幅とは、同一である。従って、直線部11Aの内周面と直線部12Aの内周面とは、同一平面上に位置するように形成される。また、直線部11Aの外周面と直線部12Aの外周面とは、同一平面上に位置するように形成される。ここで「同一平面上に位置する」とは、完全に同一平面上に位置することに限らず、製造誤差程度の多少のずれを包含することとする。
 図4(b)は、平型コイル20の側面図を示す。図4(b)に示すように、第1コイル層11の長手方向D2における長さ(すなわち直線部11Aの長手方向D2における長さ及び一対の端部11Bの幅の合計)は、第2コイル層12の長手方向D2における長さ(すなわち直線部12Aの長手方向D2における長さ及び一対の端部12Bの幅の合計)よりも短い。上述のように、端部11Bの幅と端部12Bの幅とは同一であることから、直線部11Aの長手方向D2における長さが、直線部12Aの長手方向D2における長さよりも短いこととなる。これにより、端部11Bの長手方向D2における外周面である第1先端面11aと、端部12Bの長手方向D2における外周面である第2先端面12aとの間にずれ(第1段差)が生じている。
 また、上述のように、端部11Bの幅と端部12Bの幅とは同一であるため、端部11Bの長手方向D2における内周面である第1内周面11bと、端部12Bの長手方向D2における内周面である第2内周面12bとの間にもずれ(第2段差)が生じている。なお、端部11Bの幅と端部12Bの幅とは同一であるため、第1先端面11aと第2先端面12aとのずれ量、及び第1内周面11bと第2内周面12bとのずれ量は等しくなる。ここで、当該第1段差及び第2段差が設けられた付近を段差部21とする。
 図4(c)は、段差部21の片方を拡大した平面図を示す。図4(c)に示すように、長手方向D2における第1先端面11aと中心線CLとの間の距離は、長手方向D2における第2先端面12aと中心線CLとの間の距離よりも短い。つまり、平型コイル20において、第1先端面11aは、第2先端面12aよりも内周側に位置している。同様に、長手方向D2における第1内周面11bと中心線CLとの間の距離も、長手方向D2における第2内周面12bと中心線CLとの間の距離よりも短い。そして、積層方向における第1コイル層11側から見て、第2コイル層12は、第1コイル層11から露出した露出面12cを有する。
 図5は、平型コイルを屈曲する工程である第2工程を説明する図である。図5(a)は、平型コイル20を屈曲したコイル5の平面図を示す。図5(b)は、コイル5の側面図を示す。図6は、図5(b)における屈曲部の片方の拡大図を示す。第2工程では、端部11B、12Bの両側において、平型コイル20を第2コイル層12側から第1コイル層11側へ屈曲する。第2の工程では、直線部11A、12Aの長手方向D2の両端側における所定位置(または、直線部11A(12A)と端部11B(12B)との境界位置)に設定された折り目22にて円弧を描くように屈曲する。屈曲の角度は、隣り合うコイル5との干渉を避けられる限り図に示す角度に限定されない。例えば、図6に示される第2内周面12bの第2コイル層12側の地点P1が、直線L1よりも第1コイル層11側に位置するように、第1コイル層11及び第2コイル層12が屈曲されればよい。また、直線部11A(12B)に対して90°までの範囲の角度に設定してよい。当該第2工程を実行することによって、推力発生部30及び屈曲部40を有する前述のコイル5を形成する。なお、推力発生部30は、直線部11A、12Aに対応し、屈曲部40は、端部11B、12Bに対応している。
 図5(b)に示すように、平型コイル20にて形成されていた段差部21における第1先端面11a及び第2先端面12aによる第1段差(図4(b)を参照)は、平型コイル20が屈曲されることによって無くなっている。つまり、平型コイル20を屈曲することにより、第2コイル層12の露出面12cが、第1コイル層11の積層方向における第2コイル層12側の面に覆われ、隠れている。また、第1内周面11b及び第2内周面12bによる第2段差も同様に、平型コイル20が屈曲されることによって無くなっている。
 図6では、第1コイル層11の積層方向に対向する面のうち、第2コイル層12と反対側の面を第1面40aとし、第1コイル層11と第2コイル層12とが接合される面を接合面40bとし、第2コイル層12の積層方向に対向する面のうち、第1コイル層11と反対側の面を第2面40cとする。
 折り目22付近における第1面40aと、接合面40bと、第2面40cとの曲率半径の間には、第1面40a<接合面40b<第2面40cの関係が成り立っている。従って、この曲率半径の違いを考慮し、第1コイル層11の曲率半径と第2コイル層12の曲率半径との差分を、図4(b)に示す第1先端面11aと第2先端面12aとによって形成される第1段差の大きさとする。これにより、平型コイル20を屈曲した後に、第1先端面11aと第2先端面12aとが同一平面上に位置することができる。従って、上述のような段差を設けておくことで、図6に示す屈曲後の第2先端面12a及び第2面40cの間の最大距離W1と、屈曲後の第1先端面11a及び第2面40cの間の最大距離W2との差分が小さくなり、平型コイル20を屈曲させたときの屈曲部40を小さくできる。
 ここで、従来作製されていたコイルについて図7~図9を用いて説明する。
 図7は、従来の平型コイルを準備する工程である第1工程を説明する図である。従来の平型コイル120は、第1コイル層111の大きさと第2コイル層112の大きさとが同一である以外は図4に示す平型コイル20と同様の形状であり、且つ平型コイル20と同様の製造方法にて作製される。従って、第1コイル層111の内周面と第2コイル層112の内周面とは、同一平面上に位置するように形成され、第1コイル層111の外周面と第2コイル層112の外周面とは、同一平面上に位置するように形成される。
 図8は、従来の平型コイルを屈曲する工程である第2工程を説明する図である。図8(a)及び図8(b)に示すように、平型コイル20を屈曲する工程と同様に、折り目122にて第2コイル層112側から第1コイル層111側へ平型コイル120を屈曲する。この工程により、屈曲部140を有するコイル105を形成する。
 図9は、図8(b)における屈曲部140の片方の拡大図を示す。上述のように、第1コイル層111と第2コイル層112の大きさは同一である。そのため、屈曲時の第1コイル層111の曲率半径と第2コイル層112の曲率半径とが異なることから、第1コイル層111の迫り出し量が第2コイル層112のそれよりも多くなり、第1コイル層111が突出する。従って、屈曲部140における第1コイル層111の第1先端面111aと、第2コイル層112の第2先端面112aとが、同一平面上に位置しなくなる。
 これにより、図9に示されるように、第2コイル層112の積層方向に対向する面のうち、屈曲後の第1コイル層111と反対側の面を第2面140cとする場合、屈曲後の第2先端面112aと第2面140cとの間の最大距離W3と、屈曲後の第1先端面111aと第2面140cとの最大距離W4との差分が大きくなる。つまり、平型コイル120を屈曲させたときの屈曲部140が大きくなる。ここで、第2コイル層112の大きさが、本実施形態における第2コイル層12の大きさと同一である場合、W3(=W1)とW4の差分は、W1とW2の差分よりも大きくなることがわかる。そのため、従来のコイル105を用いると、リニアモータの推力に寄与しない屈曲部140が必要以上に大きくなってしまうことでコイル105のサイズが大きくなり、抵抗の増加による発熱などが生じる。
 従って、以上説明した本実施形態に係るコイルの製造方法によれば、平型コイル20を準備する第1工程において、屈曲する側の端部では、第1コイル層11の長手方向D2(第2の方向)における第1先端面11aと、第2コイル層12の長手方向D2(第2の方向)における第2先端面12aとの間で、第1先端面11aが内周側に位置するように段差を設けている。このような段差を設けておくことで、第1先端面11aの迫り出し量を低減することができ、平型コイル20を屈曲させたときの屈曲部40を小さくできる。すなわち、本実施形態に係るコイルの製造方法では、第1コイル層11と第2コイル層12との曲率半径の違いを考慮しており、リニアモータ1の推力に寄与しない屈曲部40のサイズが必要以上に大きくなることを抑制することができる。これにより、平型コイル20に用いられる導線量を削減できるため、抵抗の増加及びそれに伴う発熱を抑えることができ、性能の向上したコイルを提供できる。また、この製造方法を用いたコイルは、上述の作用効果を得ることができる。
 また、段差の大きさは、第2工程後に、第1先端面11aと、第2先端面12aとが同一平面上に位置するように設定されてもよい。これにより、平型コイル20を屈曲させたときの屈曲部40をさらに小さくでき、抵抗の増加及びそれに伴う発熱を抑えることができる。従って、コイルの性能を向上することができる。
 また、平型コイル20は、α巻コイルであってもよい。α巻コイルを用いることによって、コイルに用いられる導線の端部は、両方とも外周側から引き出される。これにより、導線の結線を容易に行うことができる。また、平型コイル20を屈曲する時に、導線の端部が第1コイル層11又は第2コイル層12の内側の線に巻き込まれるのを防ぐことができる。
 なお、本発明の一態様の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。例えば、本実施形態においては、平型コイル20の長手方向における端部の両側を屈曲しているが、一方の端部を屈曲するだけでもよい。この場合、屈曲しない方の端部における第1コイル層及び第2コイル層の外周面と内周面とは、同一平面上に位置するように形成されてもよい。
 また、平型コイル20は必ずしもα巻コイルに限定されず、例えば第1コイル層と第2コイル層とが異なる導線を巻回することによって形成されていてもよい。なお、平型コイル20は必ずしも2層に限らず、3層以上によって形成されていてもよい。
 平型コイル20として、略矩形環状のものを例示したが、各コイル層11、12が少なくとも直線部11A、12Aを有していれば、端部11B、12Bの形状は特に限定されない。例えば、端部11B、12Bが半円状、円弧状に形成されていてもよく、略三角形状に形成されていてもよい。
 本発明によれば、平型コイルを屈曲させたときの折れ曲がった部分を小さくでき、性能が向上したコイル及び該コイルの製造方法に適用可能である。また、該コイルは、リニアモータに限定されず、他の用途(例えば電動モータや発電機、ダンパーなど)に適用可能である。
1…リニアモータ、2…コイル部、4…磁石ユニット、5…コイル、5A、5B…コイル列、6…コイルユニット、11…第1コイル層、12…第2コイル層、11A、12A…直線部、11B、12B…端部、11a…第1先端面、12a…第2先端面、11b…第1内周面、12b…第2内周面、12c…露出面、20…平型コイル、21…段差部、22…折り目、30…推力発生部、40…屈曲部、40a…第1面、40b…接合面、40c…第2面、50…第1端部、51…第2端部。

Claims (4)

  1.  第1の方向にて対向する一対の直線部及び前記第1の方向に交差する第2の方向にて対向する一対の端部を有する環状の第1コイル層及び第2コイル層が少なくとも積層された平型コイルを準備する第1工程と、
     前記平型コイルを、少なくとも一方の前記端部側において、前記第2コイル層側から前記第1コイル層側へ屈曲する第2工程と、を有するコイルの製造方法であって、
     前記第1工程において、屈曲する側の前記端部では、前記第1コイル層の前記第2の方向における第1先端面と、前記第2コイル層の前記第2の方向における第2先端面との間で、前記第1先端面が内周側に位置するように段差を設けることを特徴とする、コイルの製造方法。
  2.  前記段差の大きさは、前記第2工程後に、前記第1先端面と、前記第2先端面とが同一平面上に位置するように設定されることを特徴とする請求項1に記載のコイルの製造方法。
  3.  前記平型コイルは、α巻コイルであることを特徴とする請求項1または2に記載のコイルの製造方法。
  4.  第1の方向にて対向する一対の直線部及び前記第1の方向に交差する第2の方向にて対向する一対の端部を有する環状の第1コイル層及び第2コイル層が少なくとも積層された平型コイルを、少なくとも一方の前記端部側において屈曲することによって構成されるコイルであって、
     前記平型コイルは、α巻コイルであり、前記第2コイル層側から前記第1コイル層側へ屈曲され、
     屈曲する側の前記端部において、前記第1コイル層の前記第2の方向における第1先端面と、前記第2コイル層の前記第2の方向における第2先端面とが、同一平面上に位置することを特徴とするコイル。
PCT/JP2014/058936 2013-06-27 2014-03-27 コイル及びコイルの製造方法 WO2014208161A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/972,759 US9899901B2 (en) 2013-06-27 2015-12-17 Coil and method of manufacturing coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-135275 2013-06-27
JP2013135275A JP6579729B2 (ja) 2013-06-27 2013-06-27 コイル及びコイルの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/972,759 Continuation US9899901B2 (en) 2013-06-27 2015-12-17 Coil and method of manufacturing coil

Publications (1)

Publication Number Publication Date
WO2014208161A1 true WO2014208161A1 (ja) 2014-12-31

Family

ID=52141515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058936 WO2014208161A1 (ja) 2013-06-27 2014-03-27 コイル及びコイルの製造方法

Country Status (4)

Country Link
US (1) US9899901B2 (ja)
JP (1) JP6579729B2 (ja)
TW (1) TWI523378B (ja)
WO (1) WO2014208161A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474159A (zh) * 2018-11-28 2019-03-15 华中科技大学 直线无铁芯绕组、制备工艺及具有该绕组的直线永磁电机
JP7120182B2 (ja) * 2019-08-22 2022-08-17 株式会社デンソー 電機子
EP3787156B1 (en) 2019-08-30 2024-02-28 ABB Schweiz AG A method and an arrangement for producing a segment coil
US11528806B2 (en) * 2020-02-22 2022-12-13 Kla Corporation Electromagnet coils made from flexible circuits
TWI779315B (zh) * 2020-07-13 2022-10-01 東佑達自動化科技股份有限公司 無鐵芯線性馬達及其線圈裝置
CN212785131U (zh) * 2020-09-01 2021-03-23 瑞声科技(南京)有限公司 直线电机
CN116438731A (zh) * 2020-11-27 2023-07-14 株式会社电装 旋转电机
JP2023034600A (ja) * 2021-08-31 2023-03-13 株式会社セルコ コイルの製造方法及びコイル曲げ治具
CN114446569B (zh) * 2022-01-19 2022-12-02 华中科技大学 一种用于高重复频率分段式充磁的线圈装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103725A (ja) * 1999-09-28 2001-04-13 Sumitomo Heavy Ind Ltd リニアモータ用可動コイル及びその製造方法
JP2006295106A (ja) * 2005-07-21 2006-10-26 Selco Co Ltd 空芯コイルおよび空芯コイルの製造方法
JP2012157183A (ja) * 2011-01-27 2012-08-16 Chokutoku Kagi Kofun Yugenkoshi ユニットコイル、コイルアセンブリ及びコイルレスタイプリニアモーター

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427955A (en) * 1977-08-03 1979-03-02 Sumitomo Electric Industries Method of forming magnetic coil
JPS62260548A (ja) * 1986-04-30 1987-11-12 Mitsubishi Electric Corp 鞍形コイル製造方法
JP2007027345A (ja) * 2005-07-15 2007-02-01 Selco Co Ltd 積層電磁コイル及び積層電磁コイルの製造方法
JP4819746B2 (ja) 2007-05-09 2011-11-24 住友重機械工業株式会社 リニアモータ
US8384263B2 (en) * 2008-02-14 2013-02-26 Hitachi, Ltd. Rotating electrical machine having a compact stator
JP2010226903A (ja) * 2009-03-25 2010-10-07 Toyota Motor Corp 回転電機用コイル及びステータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103725A (ja) * 1999-09-28 2001-04-13 Sumitomo Heavy Ind Ltd リニアモータ用可動コイル及びその製造方法
JP2006295106A (ja) * 2005-07-21 2006-10-26 Selco Co Ltd 空芯コイルおよび空芯コイルの製造方法
JP2012157183A (ja) * 2011-01-27 2012-08-16 Chokutoku Kagi Kofun Yugenkoshi ユニットコイル、コイルアセンブリ及びコイルレスタイプリニアモーター

Also Published As

Publication number Publication date
US20160105087A1 (en) 2016-04-14
JP6579729B2 (ja) 2019-09-25
TWI523378B (zh) 2016-02-21
TW201501453A (zh) 2015-01-01
JP2015012664A (ja) 2015-01-19
US9899901B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
WO2014208161A1 (ja) コイル及びコイルの製造方法
JP5986774B2 (ja) 回転電機
WO2011102150A1 (ja) 回転電機用電機子
US20140009031A1 (en) Motor stator and motor
JPWO2016043330A1 (ja) ステータ
KR101117204B1 (ko) 전기기기의 고정자 코어
US20150244233A1 (en) Stator of rotating electric machine
JP6143076B2 (ja) 超電導回転電機ステータ
WO2012011352A1 (ja) 回転電機用電機子
JP2008161015A (ja) 回転電機のステータ
JP2012244782A (ja) 電動機の固定子及び絶縁シートの製造方法
WO2013031679A1 (ja) 超電導コイル体および超電導機器
JP6936773B2 (ja) コイルの製造方法
JP5892859B2 (ja) 電機子の製造方法
JP6558152B2 (ja) ステータ
JP6139195B2 (ja) 超電導コイル装置
JP2012029444A (ja) 回転電機用電機子
JP2016123249A (ja) コイル
JP2016123247A (ja) コイル
JP5972154B2 (ja) 回転電機
JP2010142000A (ja) ステータコア,ステータおよびアキシャル型モータ
JP6271088B2 (ja) 回転電機
KR102571261B1 (ko) 스테이터 및 이를 갖는 모터
JP2009213310A (ja) 回転電機の固定子及び回転電機
JP2012029442A (ja) 回転電機用電機子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818836

Country of ref document: EP

Kind code of ref document: A1