WO2014202365A1 - Verfahren und vorrichtung zur ermittlung eines fahrzustands eines externen kraftfahrzeugs - Google Patents

Verfahren und vorrichtung zur ermittlung eines fahrzustands eines externen kraftfahrzeugs Download PDF

Info

Publication number
WO2014202365A1
WO2014202365A1 PCT/EP2014/061068 EP2014061068W WO2014202365A1 WO 2014202365 A1 WO2014202365 A1 WO 2014202365A1 EP 2014061068 W EP2014061068 W EP 2014061068W WO 2014202365 A1 WO2014202365 A1 WO 2014202365A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor vehicle
determining
external motor
distance
external
Prior art date
Application number
PCT/EP2014/061068
Other languages
English (en)
French (fr)
Inventor
Helge ZINNER
Olivier Frament
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to JP2016520350A priority Critical patent/JP6169270B2/ja
Priority to US14/899,002 priority patent/US10246092B2/en
Priority to KR1020167001300A priority patent/KR20160021840A/ko
Priority to SE1650019A priority patent/SE539170C2/en
Publication of WO2014202365A1 publication Critical patent/WO2014202365A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/026Housings for speed measuring devices, e.g. pulse generator
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/20Lateral distance

Definitions

  • the invention relates to a method and a korrespondie ⁇ -saving device for detecting a driving state of an ex ternal ⁇ motor vehicle.
  • motor vehicles that support driving ⁇ tasks of the driver and take over.
  • the Emergency Brake Assist helps to shorten the response time of the Fah ⁇ insurer and to increase the braking effect.
  • work is being done on systems for automated driving. It is both semi-automated and autonomous driving
  • Corresponding systems will ideally have a better response time than a human driver. For example, a suitably assisted vehicle stops faster than a vehicle without such support, which can prevent accidents. Such new systems are conventionally initially offered ⁇ for high-end vehicles. Thus, it will continue for many motor vehicles ge ⁇ ben that have no system for semi-automated or self-navigating driving. A vehicle that drives autonomously and thus also has the corresponding sensors, but can more quickly to traffic events thus come reagie ⁇ ren and faster to stand as a conventional vehicle in general. For the following traffic these quick actions are difficult to assess. For example, a minimum distance should be increased to the preceding vehicle when the preceding vehicle drives autonomously or teilau ⁇ tomatinstrument.
  • the invention is characterized by a method governing the determination of a driving state of an external motor vehicle so as ⁇ a device which is adapted for performing the method.
  • the external motor vehicle is detected by means of at least one sensor.
  • the external motor vehicle moves in a longitudinal direction ⁇ .
  • a reference for a movement of the external vehicle transverse to the longitudinal direction is determined.
  • a first distance between the external motor vehicle and the reference is determined at a first time.
  • a second distance between the external vehicle and the reference is determined at a second time. The second time is after the first time.
  • a difference between the first and the second distance is determined.
  • the driving state of the external motor vehicle is used as assistant supported ermit ⁇ telt when the difference is less than or equal to a predetermined value.
  • the driving state has two different values, “assisted” or “non-assisted”.
  • the driving state "Assistenzuntermony” means in particular that the motor vehicle has a Querregelungsunterstüt tion ⁇ .
  • an assistence-assisted driving state in particular the lateral control of the external motor vehicle is automatically carried out, that is to say by a computer system and not by the driver of the external motor vehicle.
  • the driver of the vehicle steers the external force external motor vehicle transversely to the longitudinal direction, as is the case here ⁇ kömmlich. Since assistance-assisted motor vehicles can perform a more precise lateral control than would be possible for the driver without assistance, the external motor vehicle maintains the distance to the reference relatively constant over a longer period of time. In a motor vehicle without aileron assistance, the distance over the period changed more. A person who steers the external motor vehicle, although the track can hold, but drifts more to the left and right. Therefore, it is possible to determine the driving state of the external vehicle by comparing the first distance to the reference at the first time with the second distance to the reference to the second state.
  • a value of a speed of the external motor vehicle is determined.
  • the driving speed in the longitudinal direction of the ex ⁇ ternal motor vehicle is determined.
  • the period between the determination of the first distance and the determination of the second distance is predetermined as a function of the determined speed. In particular, the period is smaller, the greater the value of the speed.
  • the velocity is given a number for a respective He ⁇ transmit a further distance between the external force and the reference vehicle as a function of the value. For example, more than two distances are determined at different successive times, for example, three or more distances to successive times.
  • a type of the external motor vehicle is determined. The period between the jeweili ⁇ gen investigation of the distance between the external force and the reference vehicle is defined, for example in dependence of the determined type of the motor vehicle. Alternatively or additionally, the number of determinations of the respective distance is predefined as a function of the determined type of external motor vehicle.
  • Motor vehicle is received.
  • the types of the external motor vehicle and / or their behavior in the respective driving state are stored in a database and / or can be queried from an information system.
  • the determined state is output according to embodiments to a user or the system of the motor vehicle that drives in the vicinity of the external motor vehicle.
  • the external motor vehicle driving condition assistenzun ⁇ ter may on, the user of the motor vehicle can ⁇ example as its distance from the preceding vehicle external automotive enlarge and reduce.
  • the determined state is output alternatively or additionally to a control system of the motor vehicle, so that, for example, parameters of assistance systems of the motor vehicle can be adjusted depending on the driving state of the external motor vehicle.
  • the determined state is alternatively or additionally output to an external device, for example a mobile telephone, a so-called smart phone and / or a tablet computer.
  • an external device for example a mobile telephone, a so-called smart phone and / or a tablet computer.
  • FIG. 1 is a schematic representation of motor vehicles
  • Figures 2A and 2B is a schematic representation of the sub ⁇ difference of the driving state of motor vehicles ⁇ testify
  • Figure 3 is a schematic representation of the
  • Figures 4A to 4C is a schematic representation of a
  • FIG. 5 shows a schematic representation of method steps according to embodiments.
  • Figure 1 shows a schematic representation of Kraftfahrzeu ⁇ gen 100, 101, 102 and 103, which travel together on a road.
  • the motor vehicle 100 has in this case a device 121 that is configured to determine the driving condition of the exter ⁇ NEN vehicles 101, 102 and / or the 103rd
  • the external motor vehicle 101 drives the vehicle 100 ahead, the external motor vehicle 102 runs beside the vehicle 100 and the external motor vehicle 103 runs behind the motor vehicle 100.
  • the motor vehicle 100 to 103 move ever ⁇ wells in a longitudinal direction 105 along the road.
  • Figure 2A shows a schematic representation of the Fahrverhal ⁇ least of the external motor vehicle 101 when the driving condition is not assistenzuntermodal.
  • the external motor vehicle 101 is steered by the driver of the external motor vehicle 101.
  • the driver of the external motor vehicle 101 determines the movement conditions of the external motor vehicle 101 transverse to the longitudinal direction 105.
  • the non assistant assisted driving state arising along the longitudinal direction 105 undulated shapes for a lane 118 of the external vehicle 101.
  • the user of the external motor vehicle 101 directs the external force driving ⁇ generating 101 so that the Distance of the motor vehicle 101 to a reference 106 changes, even if the driver of the external vehicle 101 is straight in the direction of the longitudinal direction
  • the reference 106 is, for example, the side strip of the roadway.
  • FIG. 2B schematically shows the shape of the traffic lane 118 of the external motor vehicle 101 assisted in the driving state. Due to the computer-assisted lateral control of the external
  • Motor vehicle 101 runs the lane 118 is substantially rectilinear rectified to the longitudinal direction 105.
  • the computer in the assistant-assisted driving state is able to hold much more precise track than a human.
  • the waveform of the lane 118, ie the fluctuation to the reference 106, is significantly lower in the assistence-assisted driving state than in the non-assisted driving state.
  • Figure 3 illustrates schematically the determination of distances of the external force to the vehicle 101 References according execution ⁇ form.
  • the motor vehicle 100 has a sensor 104, which is designed to detect the external motor vehicle 101.
  • the sensor 104 includes, according to embodiments, a camera or more than one camera.
  • the sensor 104 comprises a lidar.
  • the sensor 104 comprises a radar.
  • the sensor 104 includes a combination of devices to detect the external vehicle 101.
  • the sensor 104 is set up, the reference
  • the senor 104 is set up to detect a plurality of references 107, 108, 119 and 120.
  • the references 106, 107, 108, 119 and 120 are in particular lane markings of the road and in particular the edges of the lane marking, at which a contrast between the bright color mark and the darker road surface is sufficiently well recognizable.
  • the apparatus 121 of the vehicle 100 is formed, an alternative to determine with the aid of data from the sensor 104 by a distance 109 Zvi ⁇ rule the motor vehicle 101 and the reference 108 or additionally, the apparatus 121 to determine a distance 110 to the reference 106 is formed.
  • the device 121 is designed to determine a distance 111 to the reference 107.
  • the device 121 is designed to determine a distance 112 to a reference 119.
  • the device 121 is designed to determine a distance 113 from the reference 120.
  • further distances to additional references are additionally determined.
  • less than the distances shown in FIG. 3 are determined.
  • the detection shown in FIG. 3 for the preceding external motor vehicle 101 is alternatively or additionally possible for the adjoining motor vehicle 102 and / or the motor vehicle 103 traveling behind.
  • the detection is for left as well as right side driving
  • FIG. 4A shows the distance 109 between the external motor vehicle 101 and the reference 108 at a first time.
  • the first distance 110 to the reference 106 is shown to ers ⁇ th time.
  • the device 121 of the motor vehicle 100 determines the speed in the longitudinal direction 105 of the external motor vehicle 101.
  • FIG. 4B shows the second distance 114 to the reference 108 at a later point in time when the external motor vehicle 101 has moved in the longitudinal direction 105.
  • the two ⁇ te distance 115 is shown to the reference 106th
  • the time interval between the determination of the first distances 109 and 110 and the determination of the second distances 114 and 115 is predetermined in the device 121 according to embodiments as a function of the determined speed of the external motor vehicle 101.
  • one type of the sensor 104 for detecting the external motor vehicle 101 is predefined as a function of the speed. For example, depending on the determined Geschwin ⁇ speed of the external motor vehicle 101 either the camera, the Lidar or the radar used.
  • a third distance 116 to the reference 108 and a third distance 117 to the reference 106 at a third time is shown.
  • the distance 109 is compared with the distance 114th
  • the distance 109 and / or the distance 114 to the Ab ⁇ stand 116 is also compared.
  • the distance 110 is compared with the distance 115.
  • the distance 110 and / or the distance 115 is additionally compared with the distance 117. If the distance 109 equal to the distance 114 or the distances soft 109 and 114 at most a predetermined value from each other, the external force as vehicle 101 travels ⁇ sistenzunterectiv.
  • the external motor vehicle 101 is not assisted.
  • the further comparisons of the corresponding distances are taken into account according to further embodiments.
  • the type of the external motor vehicle 101 taken into account.
  • the ascertained driving state of the external motor vehicle 101 is output to the user of the motor vehicle 100, ie a person or a system.
  • the driver of the motor vehicle 100 is issued a corresponding message on his on-board computer.
  • the driving condition determined is alternatively or additionally be given to the control of the vehicle 100 so that automatic assistance systems of the motor vehicle 100 as a function of the detected driving situations ⁇ stands work.
  • automatic a distance to the external preceding motor vehicle is increased 101, when the driving state is determined as the assistant ⁇ supported.
  • accidents can be avoided.
  • Drfitier it is possible to distinguish between a human driver and a computer as a driver.
  • accidents can be prepared early and appropriate As ⁇ assistance systems are activated early.
  • the motor vehicle 100 has, according to embodiments, an assistant for transverse control. According to further embodiments, the motor vehicle 100 itself has no Assis ⁇ tent for transverse control.
  • Figure 5 shows schematically the steps of the method of He ⁇ averaging the running state of the external motor vehicle 101 ge ⁇ Gurss embodiments.
  • step 201 the external motor vehicle 101 is seen or selected for Obs ⁇ stream processing.
  • step 202 the speed of the external force ⁇ vehicle 101 is determined.
  • step 203 the number of measurement periods is determined as a function of the determined speed.
  • step 204 the time interval between the individual measurements is determined as a function of the determined speed.
  • step 205 the appropriate sensor technology for the sensor 104 is determined as a function of the determined Geschwin ⁇ speed.
  • step 206 the object recognition is performed and the external vehicle 101 is detected with the sensor 104.
  • step 207 the reference 106 and / or other Refe ⁇ limit is determined at which the distance of the external force ⁇ vehicle 101 can be measured horizontally.
  • step 208 the first distance 109 to the reference 108 is determined. The first distance 109 is stored.
  • step 209 it is checked whether the preceding vehicle is the same external vehicle 101 as in step 201.
  • step 210 it is determined 114 to 108 of the same reference as the first distance 109 and stored the value of the second Ab ⁇ stand.
  • step 211 it is determined whether the preceding vehicle is still the same external motor vehicle 101 and whether the still the same. In addition, according to embodiments, it is checked whether the object is still relevant for observation.
  • step 212 the third distance 116 to the same reference 108 is determined and the determined value is stored.
  • step 213 is compared to step 211 checks whether the preceding vehicle is still the same external force ⁇ vehicle 101, the reference is still the same and whether the object is still relevant to the observation.
  • step 214 a further distance measurement to the same reference 108 is then carried out.
  • step 215 it is checked whether the preceding vehicle is still the same external motor vehicle 101 whether the Refe rence ⁇ 108 is still the same and if the object is still relevant for observation.
  • step 216 the distances determined in steps 208, 210, 212, and 214 are compared. In particular, a difference between the determined distances is determined.
  • step 217 the determined difference is compared with a pre-specified value ⁇ . If the difference is smaller than the predetermined value or equal to the predetermined value, the driving state is determined as assistive assisted. Otherwise ⁇ if the driving condition is determined as not assistenzentfoli. Thus it can be established whether a person acquires or cross Rege ⁇ development of the external motor vehicle 101 Com ⁇ puter system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Human Computer Interaction (AREA)

Abstract

Ein Verfahren zur Ermittlung eines Fahrzustands eines externen Kraftfahrzeugs (101, 102, 103) umfasst: - Erfassen des externen Kraftfahrzeugs (101, 102, 103) mittels mindestens einem Sensor (104), das sich in eine Längsrichtung (105) bewegt, - Ermitteln einer Referenz (106, 108) für eine Bewegung des externen Kraftfahrzeugs (101, 102, 103) quer zur Längsrichtung (105), - Ermitteln eines ersten Abstands (109, 110) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Referenz (106, 07, 108) zu einem ersten Zeitpunkt, - Ermitteln eines zweiten Abstands (114, 115) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Referenz (106, 107, 108) zu einem zweiten Zeitpunkt, der nach dem ersten Zeitpunkt liegt, - Ermitteln einer Differenz zwischen dem ersten (109, 110) und dem zweiten (114, 115) Abstand, - Ermitteln des Fahrzustands als assistenzunterstützt, wenn die Differenz kleiner als oder gleich einem vorgegebenen Wert ist.

Description

Beschreibung
Verfahren und Vorrichtung zur Ermittlung eines Fahrzustands eines externen Kraftfahrzeugs
Die Erfindung betrifft ein Verfahren sowie eine korrespondie¬ rende Vorrichtung zur Ermittlung eines Fahrzustands eines ex¬ ternen Kraftfahrzeugs. Es sind bereits Systeme für Kraftfahrzeuge bekannt, die Fahr¬ aufgaben des Fahrers unterstützen und übernehmen. Beispielsweise hilft der Notbremsassistent die Reaktionszeit des Fah¬ rers zu verkürzen und die Bremswirkung zu erhöhen. Zudem wird an Systemen für ein automatisiertes Fahren gearbeitet. Dabei wird sowohl teilautomatisiertes als auch autonom fahrendes
Fahren untersucht. Entsprechende Systeme werden im Idealfall eine bessere Reaktionszeit als ein menschlicher Fahrer haben. Beispielsweise kommt ein entsprechend unterstütztes Fahrzeug schneller zum Stehen als ein Fahrzeug ohne derartige Unter- Stützung, was Unfälle verhindern kann. Herkömmlich werden derartige neue Systeme zunächst für Oberklassefahrzeuge ange¬ boten. Somit wird es weiterhin noch viele Kraftfahrzeuge ge¬ ben, die kein System zum teilautomatisierten oder autonom fahrenden Fahren aufweisen. Ein Fahrzeug, das autonom fährt und somit auch über die entsprechenden Sensoren verfügt, kann jedoch in der Regel schneller auf Verkehrsereignisse reagie¬ ren und somit schneller zum Stehen kommen als ein herkömmliches Fahrzeug. Für den nachfolgenden Verkehr sind diese schnellen Aktionen schwer einschätzbar. Beispielsweise sollte ein Mindestabstand zu dem vorausfahrenden Fahrzeug vergrößert werden, wenn das vorausfahrende Fahrzeug autonom oder teilau¬ tomatisiert fährt.
Es ist wünschenswert, ein Verfahren beziehungsweise eine Vor- richtung anzugeben, das beziehungsweise die ein verlässliches Erkennen eines Fahrzustands eines externen Kraftfahrzeugs er- möglicht, insbesondere mittels herkömmlicher Sensoren an nicht automatisierten Fahrzeugen.
Die Erfindung zeichnet sich aus durch ein Verfahren zur Er- mittlung eines Fahrzustands eines externen Kraftfahrzeugs so¬ wie einer Vorrichtung, die zum Ausführen des Verfahrens eingerichtet ist.
Gemäß zumindest einer Ausführungsform der Erfindung wird das externe Kraftfahrzeug mittels mindestens eines Sensors er- fasst. Das externe Kraftfahrzeug bewegt sich in eine Längs¬ richtung. Eine Referenz für eine Bewegung des externen Kraftfahrzeugs quer zur Längsrichtung wird ermittelt. Ein erster Abstand zwischen dem externen Kraftfahrzeug und der Referenz wird zu einem ersten Zeitpunkt ermittelt. Ein zweiter Abstand zwischen dem externen Kraftfahrzeug und der Referenz wird zu einem zweiten Zeitpunkt ermittelt. Der zweite Zeitpunkt liegt nach dem ersten Zeitpunkt. Eine Differenz zwischen dem ersten und dem zweiten Abstand wird ermittelt. Der Fahrzustand des externen Kraftfahrzeugs wird als assistenzunterstützt ermit¬ telt, wenn die Differenz kleiner als oder gleich einem vorgegebenen Wert ist.
Durch das Verfahren ist feststellbar, ob der aktuelle Fahrzu- stand des externen Kraftfahrzeugs assistenzunterstützt ist oder nicht. Das externe Kraftfahrzeug ist beispielsweise ein vorausfahrendes Kraftfahrzeug, ein hinterherfahrendes Kraft¬ fahrzeug und/oder ein nebenherfahrendes Kraftfahrzeug. Der Fahrzustand weist beispielsweise zwei verschiedene Werte auf, "assistenzunterstützt" oder "nicht assistenzunterstützt". Der Fahrzustand "Assistenzunterstützt" bedeutet insbesondere, dass das Kraftfahrzeug eine Querregelungsunterstüt zung auf¬ weist. Während eines assistenzunterstützten Fahrzustands wird insbesondere die Querregelung des externen Kraftfahrzeugs au- tomatisch durchgeführt also von einem Computersystem und nicht durch den Fahrer des externen Kraftfahrzeugs. Bei einem nicht assistenzunterstützten Fahrzustand des externen Kraft- fahrzeugs lenkt der Fahrer des externen Kraftfahrzeugs das externe Kraftfahrzeug quer zur Längsrichtung, wie dies her¬ kömmlich der Fall ist. Da assistenzunterstützte Kraftfahrzeuge eine präzisere Quer¬ regelung durchführen können als dies für den Fahrer ohne Unterstützung möglich wäre, hält das externe Kraftfahrzeug auch über einen längeren Zeitraum den Abstand zu der Referenz relativ konstant aufrecht. Bei einem Kraftfahrzeug ohne Quer- reglungsassistenz verändert sich der Abstand über den Zeitraum stärker. Ein Mensch, der das externe Kraftfahrzeug lenkt, kann die Spur zwar halten, driftet aber stärker nach links und rechts. Daher ist es möglich, durch den Vergleich des ersten Abstandes zu der Referenz zu dem ersten Zeitpunkt mit dem zweiten Abstand zu der Referenz zu dem zweiten Zustand den Fahrzustand des externen Kraftfahrzeugs zu ermitteln.
Gemäß weiteren Ausführungsformen wird ein Wert einer Geschwindigkeit des externen Kraftfahrzeugs ermittelt. Insbe- sondere wird die Fahrgeschwindigkeit in Längsrichtung des ex¬ ternen Kraftfahrzeugs ermittelt. Der Zeitraum zwischen dem Ermitteln des ersten Abstands und dem Ermitteln des zweiten Abstands wird in Abhängigkeit von der ermittelten Geschwindigkeit vorgegeben. Insbesondere ist der Zeitraum kleiner, je größer der Wert der Geschwindigkeit ist. Dadurch lässt sich in Abhängigkeit der Geschwindigkeit des externen Kraftfahr¬ zeugs der Fahrzustand präzise ermitteln.
Gemäß weiteren Ausführungsformen wird in Abhängigkeit des Werts der Geschwindigkeit eine Anzahl für ein jeweiliges Er¬ mitteln eines weiteren Abstands zwischen dem externen Kraftfahrzeug und der Referenz vorgegeben. Beispielsweise werden mehr als zwei Abstände zu unterschiedlichen hintereinander liegenden Zeitpunkten ermittelt, beispielsweise drei oder mehr Abstände zu jeweils hintereinander liegenden Zeitpunkten. Gemäß weiteren Ausführungsformen wird ein Typ des externen Kraftfahrzeugs ermittelt. Der Zeitraum zwischen den jeweili¬ gen Ermittlungen des Abstands zwischen dem externen Kraftfahrzeug und der Referenz wird beispielsweise in Abhängigkeit von dem ermittelten Typ des Kraftfahrzeugs vorgegeben. Alternativ oder zusätzlich wird die Anzahl der Ermittlungen des jeweiligen Abstands in Abhängigkeit des ermittelten Typs des externen Kraftfahrzeugs vorgegeben. Somit ist es möglich, dass bei dem Ermitteln des Fahrzustands auf Sonderheiten und/oder Eigenheiten eines jeweiligen Typs des externen
Kraftfahrzeugs eingegangen wird. Beispielsweise sind die Ty¬ pen des externen Kraftfahrzeugs und/oder ihr Verhalten im jeweiligen Fahrzustand in einer Datenbank gespeichert und/oder können aus einem Informationssystem abgefragt werden.
Der ermittelte Zustand wird gemäß Ausführungsformen an einen Nutzer oder das System des Kraftfahrzeugs ausgegeben, das in der Umgebung des externen Kraftfahrzeugs fährt. Somit ist es möglich, dass der Nutzer des Kraftfahrzeugs sein Fahrverhal- ten an den Fahrzustand des externen Kraftfahrzeugs anpasst. Weist das externe Kraftfahrzeug den Fahrzustand assistenzun¬ terstützt auf, kann der Nutzer des Kraftfahrzeugs beispiels¬ weise seinen Abstand zu dem vorausfahrenden externen Kraftfahrzeug vergrößern als auch verringern. Gemäß weiteren Aus- führungsformen wird der ermittelte Zustand alternativ oder zusätzlich an ein Steuersystem des Kraftfahrzeugs ausgegeben, so dass beispielsweise Parameter von Assistenzsystemen des Kraftfahrzeugs in Abhängigkeit des Fahrzustands des externen Kraftfahrzeugs eingestellt werden können. Gemäß weiteren Aus- führungsformen wird der ermittelte Zustand alternativ oder zusätzlich an ein externes Gerät ausgegeben, beispielsweise ein Mobiltelefon, ein so genanntes Smart Phone und/oder einen Tablet Computer. Weitere Vorteile, Merkmale und Weiterbildungen ergeben sich aus dem im Folgenden in Zusammenhang mit den Figuren erläuterten Beispielen. Gleiche, gleichartige und gleich wirkende Elemente können dabei mit den gleichen Bezugszeichen versehen sein. Es zeigen:
Figur 1 eine schematische Darstellung von Kraft¬ fahrzeugen,
Figuren 2A und 2B eine schematische Darstellung des Unter¬ schieds des Fahrzustands von Kraftfahr¬ zeugen,
Figur 3 eine schematische Darstellung des von
zwei hintereinander fahrenden Kraftfahrzeugen, Figuren 4A bis 4C eine schematische Darstellung eines
Kraftfahrzeugs zu unterschiedlichen punkten und
Figur 5 eine schematische Darstellung von Verfahrensschritten gemäß Ausführungsformen.
Figur 1 zeigt eine schematische Darstellung von Kraftfahrzeu¬ gen 100, 101, 102 und 103, die gemeinsam auf einer Straße fahren. Das Kraftfahrzeug 100 weist dabei eine Vorrichtung 121 auf, die dazu ausgebildet ist, den Fahrzustand der exter¬ nen Kraftfahrzeuge 101, 102 und/oder 103 zu ermitteln. Das externe Kraftfahrzeug 101 fährt dem Kraftfahrzeug 100 voraus, das externe Kraftfahrzeug 102 fährt neben dem Kraftfahrzeug 100 und das externe Kraftfahrzeug 103 fährt hinter dem Kraft- fahrzeug 100. Die Kraftfahrzeuge 100 bis 103 bewegen sich je¬ weils in eine Längsrichtung 105 entlang der Straße.
Figur 2A zeigt eine schematische Darstellung des Fahrverhal¬ tens des externen Kraftfahrzeugs 101, wenn der Fahrzustand nicht assistenzunterstützt ist. Das externe Kraftfahrzeug 101 wird durch den Fahrer des externen Kraftfahrzeugs 101 gelenkt Der Fahrer des externen Kraftfahrzeugs 101 bestimmt die Bewe- gungen des externen Kraftfahrzeugs 101 quer zur Längsrichtung 105. In dem nicht assistenzunterstützten Fahrzustand ergeben sich entlang der Längsrichtung 105 wellenförmige Formen für eine Fahrspur 118 des externen Kraftfahrzeugs 101. Der Nutzer des externen Kraftfahrzeugs 101 lenkt das externe Kraftfahr¬ zeug 101 so, dass sich der Abstand des Kraftfahrzeugs 101 zu einer Referenz 106 ändert, auch wenn der Fahrer des externen Kraftfahrzeugs 101 geradeaus in Richtung der Längsrichtung
105 fahren will. Die Referenz 106 ist beispielsweise der Sei- tenstreifen der Fahrbahn.
Figur 2B zeigt schematisch die Form der Fahrspur 118 des externen Kraftfahrzeugs 101 im Fahrzustand assistenzunterstützt. Durch die computerunterstützte Querregelung des externen
Kraftfahrzeugs 101 verläuft die Fahrspur 118 im Wesentlichen geradlinig gleichgerichtet zur Längsrichtung 105. Der Computer im assistenzunterstützten Fahrzustand ist in der Lage im Gegensatz zu einem Mensch die Spur viel präziser zu halten. Die Wellenform der Fahrspur 118, also die Schwankung zur Re- ferenz 106, ist im assistenzunterstützten Fahrzustand deutlich geringer als im nicht assistenzunterstützten Fahrzustand. Figur 3 zeigt schematisch die Ermittlung von Abständen des externen Kraftfahrzeugs 101 zu Referenzen gemäß Ausführungs¬ formen. Das Kraftfahrzeug 100 weist einen Sensor 104 auf, der zur Erfassung des externen Kraftfahrzeugs 101 ausgebildet ist. Der Sensor 104 umfasst gemäß Ausführungsformen eine Kamera oder mehr als eine Kamera. Gemäß weiteren Ausführungsformen umfasst der Sensor 104 einen Lidar. Gemäß weiteren Ausführungsformen umfasst der Sensor 104 einen Radar. Gemäß weite- ren Ausführungsformen umfasst der Sensor 104 eine Kombination von Vorrichtungen, um das externen Kraftfahrzeug 101 zu erfassen. Zudem ist der Sensor 104 eingerichtet, die Referenz
106 zu erfassen. Insbesondere ist der Sensor 104 eingerichtet eine Mehrzahl von Referenzen 107, 108, 119 und 120 zu erfas- sen. Die Referenzen 106, 107, 108, 119 und 120 sind insbesondere Fahrbahnmarkierungen der Straße und insbesondere die Kanten der Fahrbahnmarkierung, an denen ein Kontrast zwischen der hellen Farbbahnmarkierung und dem dunkleren Fahrbahnbelag ausreichend gut erkennbar ist.
Die Vorrichtung 121 des Kraftfahrzeugs 100 ist ausgebildet, mit Hilfe der Daten des Sensors 104 einen Abstand 109 zwi¬ schen dem Kraftfahrzeug 101 und der Referenz 108 zu ermitteln Alternativ oder zusätzlich ist die Vorrichtung 121 ausgebildet, einen Abstand 110 zu der Referenz 106 zu ermitteln. Alternativ oder zusätzlich ist die Vorrichtung 121 ausgebildet, einen Abstand 111 zu der Referenz 107 zu ermitteln. Alternativ oder zusätzlich ist die Vorrichtung 121 ausgebildet, einen Abstand 112 zu einer Referenz 119 zu ermitteln. Alternativ oder zusätzlich ist die Vorrichtung 121 ausgebildet, einen Abstand 113 zu der Referenz 120 zu ermitteln. Gemäß wei- teren Ausführungsformen werden zusätzlich weitere Abstände zu weiteren Referenzen ermittelt. Gemäß wiederum weiteren Ausführungsformen werden weniger als die in Figur 3 dargestellten Abstände ermittelt. Die in Figur 3 für das vorausfahrenden externe Kraftfahrzeug 101 dargestellte Erfassung ist gemäß weiteren Ausführungsformen alternativ oder zusätzlich für das nebenher fahrende Kraftfahrzeug 102 und/oder das hinterher fahrende Kraftfahrzeug 103 möglich. Natürlich ist die Erfassung gemäß Ausfüh- rungsformen für links als auch rechts nebenher fahrende
Kraftfahrzeuge möglich. Gemäß Ausführungsformen ist die Ermittlung für die Mehrzahl von Kraftfahrzeugen 101, 102 und 103 gleichzeitig möglich. Figur 4A zeigt den Abstand 109 zwischen dem externen Kraftfahrzeug 101 und der Referenz 108 zu einem ersten Zeitpunkt. Zudem ist der erste Abstand 110 zu der Referenz 106 zum ers¬ ten Zeitpunkt dargestellt. Zudem wird gemäß Ausführungsformen durch die Vorrichtung 121 des Kraftfahrzeugs 100 die Ge- schwindigkeit in Längsrichtung 105 des externen Kraftfahrzeugs 101 ermittelt. Figur 4B zeigt den zweiten Abstand 114 zu der Referenz 108 zu einem späteren Zeitpunkt, zu dem sich das externe Kraftfahrzeug 101 in Längsrichtung 105 bewegt hat. Zudem ist der zwei¬ te Abstand 115 zu der Referenz 106 dargestellt. Der zeitliche Abstand zwischen der Ermittlung der ersten Abstände 109 und 110 und der Ermittlung der zweiten Abstände 114 und 115 ist in der Vorrichtung 121 gemäß Ausführungsformen in Abhängigkeit der ermittelten Geschwindigkeit des externen Kraftfahrzeugs 101 vorgegeben. Gemäß weiteren Ausführungsformen ist ein Typ des Sensors 104 zur Erfassung des externen Kraftfahrzeugs 101 in Abhängigkeit der Geschwindigkeit vorgegeben. Beispielsweise wird in Abhängigkeit der ermittelten Geschwin¬ digkeit des externen Kraftfahrzeugs 101 entweder die Kamera, der Lidar oder der Radar verwendet. Zudem wird gemäß Ausfüh- rungsformen in Abhängigkeit der ermittelten Geschwindigkeit des externen Kraftfahrzeugs 101 vorgegeben, ob zusätzlich ein dritter Abstand 116 beziehungsweise 117 und gegebenenfalls weitere Abstände zum zweiten Zeitpunkt ermittelt werden. In Figur 4C ist ein dritter Abstand 116 zu der Referenz 108 und ein dritter Abstand 117 zu der Referenz 106 zu einem dritten Zeitpunkt dargestellt. Zur Ermittlung des Fahrzu¬ stands des externen Kraftfahrzeugs 101 wird der Abstand 109 mit dem Abstand 114 verglichen. Gemäß Ausführungsformen wird zudem der Abstand 109 und/oder der Abstand 114 mit dem Ab¬ stand 116 verglichen. Der Abstand 110 wird mit dem Abstand 115 verglichen. Gemäß weiteren Ausführungsformen wird zudem der Abstand 110 und/oder der Abstand 115 mit dem Abstand 117 verglichen. Ist der Abstand 109 gleich dem Abstand 114 oder weichen die Abstände 109 und 114 höchstens einen vorgegeben Wert voneinander ab, fährt das externe Kraftfahrzeug 101 as¬ sistenzunterstützt. Weichen die Abstände 109 und 114 mehr als der vorgegebene Wert voneinander ab, ist fährt das externe Kraftfahrzeug 101 nicht assistenzunterstützt. Zur Ermittlung des Fahrzustands werden gemäß weiteren Ausführungsformen die weiteren Vergleiche der korrespondierenden Abstände berücksichtigt. Gemäß Ausführungsformen wird zusätzlich der Typ des externen Kraftfahrzeugs 101 berücksichtigt. Somit ist es mög¬ lich, bei der Ermittlung des Fahrzustands typabhängige Verän¬ derungen der Abstände zu berücksichtigen. Gemäß Ausführungsformen wird der ermittelte Fahrzustand des externen Kraftfahrzeugs 101 dem Nutzer des Kraftfahrzeugs 100 ausgegeben, also einem Mensch oder einem System. Beispielsweise bekommt der Fahrer des Kraftfahrzeugs 100 auf seinem Bordcomputer einen entsprechenden Hinweis ausgegeben. Gemäß weiteren Ausführungsformen wird der ermittelte Fahrzustand alternativ oder zusätzlich der Steuerung des Kraftfahrzeugs 100 übergeben, so dass automatische Assistenzsysteme des Kraftfahrzeugs 100 in Abhängigkeit des ermittelten Fahrzu¬ stands arbeiten. Insbesondere ist es möglich, dass automa- tisch ein Abstand zu dem externen vorausfahrenden Kraftfahrzeug 101 vergrößert wird, wenn der Fahrzustand als assistenz¬ unterstützt ermittelt wird. Dadurch können Unfälle vermieden werden. Zudem ist es möglich Drängier ausfindig zu machen. Weiterhin ist es möglich zwischen einem menschlichen Fahrer und einem Computer als Fahrer zu unterscheiden. Zudem können Unfälle frühzeitig vorbereitet werden und entsprechende As¬ sistenzsysteme frühzeitig aktiviert werden. Weiterhin ist es möglich ein wahrscheinlich korrektes Fahrverhalten zu erkennen, wenn der Fahrzustand als assistenzunterstützt ermittelt wird. Zudem ist es möglich, Prognosen zu erlangen, ob das Verhalten und die Aktionen des externen Kraftfahrzeugs 101 vorhersehbar sind. Weiterhin ist es möglich, Warnhinweise an die externen Kraftfahrzeuge 102 und 103 zu geben, um einen Unfall beziehungsweise gefährliche Situationen zu vermeiden. Das Kraftfahrzeug 100 weist gemäß Ausführungsformen selbst einen Assistent zur Querregelung auf. Gemäß weiteren Ausführungsformen weist das Kraftfahrzeug 100 selbst keinen Assis¬ tent zur Querregelung auf. Figur 5 zeigt schematisch die Schritte des Verfahrens zur Er¬ mittlung des Fahrzustands des externen Kraftfahrzeugs 101 ge¬ mäß Ausführungsformen. In Schritt 201 wird das externe Kraftfahrzeug 101 zur Beo¬ bachtung sichtbar beziehungsweise ausgewählt. In Schritt 202 wird die Geschwindigkeit des externen Kraft¬ fahrzeugs 101 ermittelt.
In Schritt 203 wird in Abhängigkeit der ermittelten Geschwindigkeit die Anzahl der Messperioden ermittelt.
In Schritt 204 wird in Abhängigkeit der ermittelten Geschwindigkeit der Zeitraum zwischen den einzelnen Messungen ermittelt . In Schritt 205 wird in Abhängigkeit der ermittelten Geschwin¬ digkeit die geeignete Sensorik für den Sensor 104 ermittelt.
In Schritt 206 wird die Ob ekterkennung durchgeführt und das externe Kraftfahrzeug 101 mit dem Sensor 104 erfasst.
In Schritt 207 wird die Referenz 106 und/oder weitere Refe¬ renzen ermittelt, zu denen der Abstand des externen Kraft¬ fahrzeugs 101 horizontal gemessen werden kann. In Schritt 208 wird der erste Abstand 109 zu der Referenz 108 ermittelt. Der erste Abstand 109 wird gespeichert.
In Schritt 209 wird überprüft, ob das vorausfahrende Fahrzeug das gleiche externe Kraftfahrzeug 101 wie in Schritt 201 ist.
Wenn das vorausfahrende Fahrzeug weiterhin das gleiche exter¬ ne Kraftfahrzeug 101 ist, wird in Schritt 210 der zweite Ab¬ stand 114 zu der gleichen Referenz 108 wie beim ersten Abstand 109 ermittelt und der Wert gespeichert.
In Schritt 211 wird ermittelt, ob das vorausfahrende Fahrzeug noch das gleiche externe Kraftfahrzeug 101 ist und ob die Re- ferenz noch die gleiche ist. Zudem wird gemäß Ausführungsformen überprüft, ob das Objekt noch relevant zur Beobachtung ist . In Schritt 212 wird der dritte Abstand 116 zu der gleichen Referenz 108 ermittelt und der ermittelte Wert gespeichert. In Schritt 213 wird vergleichbar zu Schritt 211 überprüft, ob das vorausfahrende Fahrzeug noch das gleiche externe Kraft¬ fahrzeug 101 ist, die Referenz noch die gleiche ist und ob das Objekt noch relevant zur Beobachtung ist.
In Schritt 214 wird dann gemäß Ausführungsformen eine weitere Abstandsmessung zu der gleichen Referenz 108 durchgeführt. In Schritt 215 wird überprüft, ob das vorausfahrende Fahrzeug noch das gleiche externe Kraftfahrzeug 101 ist, ob die Refe¬ renz 108 noch die gleiche ist und ob das Objekt noch relevant zur Beobachtung ist. In Schritt 216 werden die in Schritt 208, 210, 212 und 214 ermittelten Abstände miteinander verglichen. Insbesondere wird eine Differenz zwischen den ermittelten Abständen ermittelt . In Schritt 217 wird die ermittelte Differenz mit einem vorge¬ gebenen Wert verglichen. Wenn die Differenz kleiner als der vorgegebene Wert oder gleich dem vorgegebenen Wert ist, wird der Fahrzustand als assistenzunterstützt ermittelt. Andern¬ falls wird der Fahrzustand als nicht assistenzunterstützt er- mittelt. Somit ist feststellbar, ob ein Mensch die Querrege¬ lung des externen Kraftfahrzeugs 101 übernimmt oder ein Com¬ putersystem.

Claims

Verfahren zur Ermittlung eines Fahrzustands eines externen Kraftfahrzeugs (101, 102, 103), umfassend:
- Erfassen des externen Kraftfahrzeugs (101, 102, 103) mittels mindestens einem Sensor (104), das sich in ei¬ ne Längsrichtung (105) bewegt,
- Ermitteln einer Referenz (106, 108) für eine Bewegung des externen Kraftfahrzeugs (101, 102, 103) quer zur Längsrichtung (105),
- Ermitteln eines ersten Abstands (109, 110) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Re¬ ferenz (106, 107, 108) zu einem ersten Zeitpunkt,
- Ermitteln eines zweiten Abstands (114, 115) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Re¬ ferenz (106, 107, 108) zu einem zweiten Zeitpunkt, der nach dem ersten Zeitpunkt liegt,
- Ermitteln einer Differenz zwischen dem ersten (109, 110) und dem zweiten (114, 115) Abstand,
- Ermitteln des Fahrzustands als assistenzunterstützt, wenn die Differenz kleiner als oder gleich einem vorgegebenen Wert ist.
Verfahren nach Anspruch 1, umfassend:
- Ermitteln eines Werts einer Geschwindigkeit des exter¬ nen Kraftfahrzeugs (101, 102, 103),
- Vorgeben eines Zeitraums zwischen dem Ermitteln des ersten Abstands (109, 110) und dem Ermitteln des zwei¬ ten Abstands (114, 115) in Abhängigkeit von der ermit¬ telten Geschwindigkeit.
Verfahren nach Anspruch 1 oder 2, umfassend:
- Ermitteln eines Werts einer Geschwindigkeit des exter¬ nen Kraftfahrzeugs ( 101 , 102, 103),
- Vorgeben einer Anzahl für ein jeweiliges Ermitteln eines weiteren Abstands (116, 117) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Referenz (106, 107, 108), wobei die Anzahl in Abhängigkeit von der ermittelten Geschwindigkeit vorgegeben wird.
Verfahren nach Anspruch 2 oder 3, umfassend:
- Ermitteln eines Typs des externen Kraftfahrzeugs (101, 102, 103),
- Vorgeben des Zeitraums und/oder Anzahl in Abhängigkeit von dem ermittelten Typ.
Verfahren nach einem der Ansprüche 1 bis 4, bei dem das Ermitteln der Referenz (106, 107, 108) für die Bewegung umfasst :
- Ermitteln einer Fahrbahnmarkierung als Referenz (106, 107, 108) ) .
Verfahren nach einem der Ansprüche 1 bis 5, bei dem das Ermitteln des Fahrzustands als assistenzunterstützt um- fasst :
- Ermitteln einer aktiven Querregelung des externe
Kraftfahrzeugs (101, 102, 103) .
Verfahren nach einem der Ansprüche 1 bis 6, umfassend:
- Ausgeben des ermittelten Zustands an einen Nutzer eines Kraftfahrzeugs (100).
Verfahren nach einem der Ansprüche 1 bis 7, umfassend:
- Erfassen des externen Kraftfahrzeugs (101, 102, 103) mittels mindestens einer Kamera, einem Lidar und/oder einem Radar.
Vorrichtung für ein Kraftfahrzeug (100) zur Ermittlung eines Fahrzustands eines externen Kraftfahrzeugs (101, 102, 103), die ausgebildet ist zum:
- Erfassen des externen Kraftfahrzeugs (101, 102, 103) mittels mindestens einem Sensor (104), das sich in ei¬ ne Längsrichtung (105) bewegt,
- Ermitteln einer Referenz (106, 108) für eine Bewegung des externen Kraftfahrzeugs (101, 102, 103) quer zur Längsrichtung (105),
Ermitteln eines ersten Abstands (109, 110) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Re¬ ferenz (106, 107, 108) zu einem ersten Zeitpunkt, Ermitteln eines zweiten Abstands (114, 115) zwischen dem externen Kraftfahrzeug (101, 102, 103) und der Re¬ ferenz (106, 107, 108) zu einem zweiten Zeitpunkt, der nach dem ersten Zeitpunkt liegt,
Ermitteln einer Differenz zwischen dem ersten (109, 110) und dem zweiten (114, 115) Abstand,
Ermitteln des Fahrzustands als assistenzunterstützt, wenn die Differenz kleiner als oder gleich einem vorgegebenen Wert ist.
PCT/EP2014/061068 2013-06-18 2014-05-28 Verfahren und vorrichtung zur ermittlung eines fahrzustands eines externen kraftfahrzeugs WO2014202365A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016520350A JP6169270B2 (ja) 2013-06-18 2014-05-28 外部車両の走行状態を識別する方法及び装置
US14/899,002 US10246092B2 (en) 2013-06-18 2014-05-28 Method and device for determining a driving state of an external motor vehicle
KR1020167001300A KR20160021840A (ko) 2013-06-18 2014-05-28 외부 자동차의 주행 상태를 결정하기 위한 방법 및 디바이스
SE1650019A SE539170C2 (en) 2013-06-18 2014-05-28 Method and device for determining a driving state of an external motor vehicle.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013211427.3 2013-06-18
DE102013211427.3A DE102013211427B4 (de) 2013-06-18 2013-06-18 Verfahren und Vorrichtung zur Ermittlung eines Fahrzustands eines externen Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO2014202365A1 true WO2014202365A1 (de) 2014-12-24

Family

ID=50877262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/061068 WO2014202365A1 (de) 2013-06-18 2014-05-28 Verfahren und vorrichtung zur ermittlung eines fahrzustands eines externen kraftfahrzeugs

Country Status (6)

Country Link
US (1) US10246092B2 (de)
JP (1) JP6169270B2 (de)
KR (1) KR20160021840A (de)
DE (1) DE102013211427B4 (de)
SE (1) SE539170C2 (de)
WO (1) WO2014202365A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121106A1 (de) * 2014-02-11 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren und systeme zur erkennung von autonom betriebenen fahrzeugen, zur abstandsmessung und zur abstandssteuerung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016205569A1 (de) * 2016-04-05 2017-10-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
DE102017119317A1 (de) * 2017-08-24 2019-02-28 Valeo Schalter Und Sensoren Gmbh Klassifizierung von Umgebungs-Fahrzeugen für eine Abstandsregeltempomat-Vorrichtung in einem Kraftfahrzeug
CN110775069B (zh) * 2019-10-29 2021-04-27 长安大学 一种混行模式下车辆驾驶模式识别装置和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557332A2 (de) * 2004-01-21 2005-07-27 Nissan Motor Co., Ltd. Regelvorrichtung für Kraftfahrzeuge
JP2011248532A (ja) * 2010-05-25 2011-12-08 Toyota Motor Corp 先行車検出装置
DE102011002275A1 (de) * 2011-04-27 2012-10-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Prognose des Fahrverhaltens eines vorausfahrenden Fahrzeugs
DE102012012829A1 (de) * 2011-06-28 2013-01-03 Bendix Commercial Vehicle Systems, Llc Adaptive Geschwindigkeitsregelung und AM-Bremsbereichvariable basierend auf internen und externen Faktoren
US20130024075A1 (en) * 2011-07-22 2013-01-24 GM Global Technology Operations LLC Object identification and active safety control for vehicles

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1240974B (it) * 1990-07-05 1993-12-27 Fiat Ricerche Metodo e apparecchiatura per evitare la collisione di un autoveicolo contro ostacoli.
JPH09142236A (ja) * 1995-11-17 1997-06-03 Mitsubishi Electric Corp 車両の周辺監視方法と周辺監視装置及び周辺監視装置の故障判定方法と周辺監視装置の故障判定装置
JP3805832B2 (ja) 1996-07-10 2006-08-09 富士重工業株式会社 車両用運転支援装置
US5926126A (en) * 1997-09-08 1999-07-20 Ford Global Technologies, Inc. Method and system for detecting an in-path target obstacle in front of a vehicle
JP3747599B2 (ja) 1997-11-20 2006-02-22 日産自動車株式会社 車両用障害物検出装置
US6795765B2 (en) * 2001-03-22 2004-09-21 Visteon Global Technologies, Inc. Tracking of a target vehicle using adaptive cruise control
DE60329876D1 (de) * 2002-02-01 2009-12-17 Nissan Motor Verfahren und System zur Verbesserung der Fahrerunterstützung
US6643588B1 (en) * 2002-04-11 2003-11-04 Visteon Global Technologies, Inc. Geometric based path prediction method using moving and stop objects
US6753804B2 (en) * 2002-05-21 2004-06-22 Visteon Global Technologies, Inc. Target vehicle identification based on the theoretical relationship between the azimuth angle and relative velocity
JP3964287B2 (ja) * 2002-09-04 2007-08-22 富士重工業株式会社 車外監視装置、及び、この車外監視装置を備えた走行制御装置
DE102004028822B4 (de) 2004-06-15 2006-07-06 Daimlerchrysler Ag Verfahren zur Erkennung einer Ausrichtungsänderung eines Umgebungsfahrzeugs
JP4371137B2 (ja) * 2006-11-10 2009-11-25 トヨタ自動車株式会社 自動運転制御装置
DE102009045937A1 (de) * 2008-10-22 2010-04-29 Continental Teves Ag & Co. Ohg Verfahren zur Einhaltung einer Fahrspur
US8954260B2 (en) * 2010-06-15 2015-02-10 GM Global Technology Operations LLC Method and system for collision assessment for vehicles
DE102010053352A1 (de) * 2010-12-03 2012-06-06 Daimler Ag Verfahren für eine fahrdynamische Adaption einer Insassenfixierung
US8972147B2 (en) 2011-01-10 2015-03-03 Bendix Commercial Vehicle Systems Llc ACC and AM braking range variable based on internal and external factors
DE102011009209A1 (de) 2011-01-22 2012-07-26 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verfahren und System zur Spurüberwachung eines Kraftfahrzeugs, Kraftfahrzeug und Infrastruktureinrichtung
DE102011009483A1 (de) 2011-01-26 2012-07-26 Audi Ag Verfahren zum Betrieb eines längsführenden Fahrerassistenzsystems eines Kraftfahrzeugs und Kraftfahrzeug
US8791835B2 (en) * 2011-10-03 2014-07-29 Wei Zhang Methods for road safety enhancement using mobile communication device
US9381916B1 (en) * 2012-02-06 2016-07-05 Google Inc. System and method for predicting behaviors of detected objects through environment representation
KR20130127822A (ko) * 2012-05-15 2013-11-25 한국전자통신연구원 도로상 물체 분류 및 위치검출을 위한 이종 센서 융합처리 장치 및 방법
US9633564B2 (en) * 2012-09-27 2017-04-25 Google Inc. Determining changes in a driving environment based on vehicle behavior
US8473144B1 (en) * 2012-10-30 2013-06-25 Google Inc. Controlling vehicle lateral lane positioning
US9156473B2 (en) * 2013-12-04 2015-10-13 Mobileye Vision Technologies Ltd. Multi-threshold reaction zone for autonomous vehicle navigation
US9707942B2 (en) * 2013-12-06 2017-07-18 Elwha Llc Systems and methods for determining a robotic status of a driving vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557332A2 (de) * 2004-01-21 2005-07-27 Nissan Motor Co., Ltd. Regelvorrichtung für Kraftfahrzeuge
JP2011248532A (ja) * 2010-05-25 2011-12-08 Toyota Motor Corp 先行車検出装置
DE102011002275A1 (de) * 2011-04-27 2012-10-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Prognose des Fahrverhaltens eines vorausfahrenden Fahrzeugs
DE102012012829A1 (de) * 2011-06-28 2013-01-03 Bendix Commercial Vehicle Systems, Llc Adaptive Geschwindigkeitsregelung und AM-Bremsbereichvariable basierend auf internen und externen Faktoren
US20130024075A1 (en) * 2011-07-22 2013-01-24 GM Global Technology Operations LLC Object identification and active safety control for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121106A1 (de) * 2014-02-11 2015-08-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren und systeme zur erkennung von autonom betriebenen fahrzeugen, zur abstandsmessung und zur abstandssteuerung
US10395524B2 (en) 2014-02-11 2019-08-27 Bayerische Motoren Werke Aktiengesellschaft Method and system for detecting autonomously driven vehicles, for distance measurement and for distance control

Also Published As

Publication number Publication date
US20160121892A1 (en) 2016-05-05
JP6169270B2 (ja) 2017-07-26
US10246092B2 (en) 2019-04-02
SE539170C2 (en) 2017-05-02
DE102013211427B4 (de) 2016-10-13
SE1650019A1 (sv) 2016-01-07
JP2016529588A (ja) 2016-09-23
KR20160021840A (ko) 2016-02-26
DE102013211427A1 (de) 2014-12-18

Similar Documents

Publication Publication Date Title
DE112012007157B4 (de) Fahrunterstützungsvorrichtung und Fahrunterstützungsverfahren
DE102009006335B4 (de) Verfahren zur Unterstützung des Fahrers eines Kraftfahrzeugs
DE102005009814B4 (de) Fahrzeugzustands-Erfassungssystem und -verfahren
DE112012007158B4 (de) Fahrunterstützungsvorrichtung und Fahrunterstützungsverfahren
DE102015224192B4 (de) Erkennen einer Freifläche
DE102009017152A1 (de) Verfahren und Vorrichtung zur Längs- und Querführung eines Kraftfahrzeugs
DE102013020315A1 (de) Verfahren zum Durchführen eines zumindest semi-autonomen Einparkvorgangs eines Kraftfahrzeugs, Parkassistenzsystem und Kraftfahrzeug
WO2009103692A1 (de) Verfahren und assistenzsystem zum erfassen von objekten im umfeld eines fahrzeugs
EP1758755A1 (de) Verfahren und voorichtung zur fahrerunterstützung
DE102018221054B4 (de) Verfahren zum Bereitstellen von Kartendaten in einem Kraftfahrzeug, Kraftfahrzeug und zentrale Datenverarbeitungseinrichtung
DE102014012781B4 (de) Spurwechselassistent, zugehöriges Betriebsverfahren und Kraftfahrzeug
EP2689991B1 (de) Vorrichtung und Verfahren zum Unterstützen eines Fahrers bei Parkvorgängen
DE102014207541A1 (de) Fahrbahnmarkierungsbezogene Fahrassistenz
EP2668067B2 (de) Verfahren zum automatischen durchführen eines fahrmanövers
WO2014202365A1 (de) Verfahren und vorrichtung zur ermittlung eines fahrzustands eines externen kraftfahrzeugs
DE102015112313A1 (de) Verfahren zum zumindest semi-autonomen Manövrieren eines Kraftfahrzeugs mit Lagekorrektur, Fahrerassistenzsystem sowie Kraftfahrzeug
AT518940B1 (de) Verfahren und Vorrichtung zum Messen eines Abstands zwischen einem ersten Fahrzeug und einem zweiten, dem ersten Fahrzeug unmittelbar vorausfahrenden, Fahrzeug
DE102008041248A1 (de) Verfahren und Vorrichtung zum Steuern der Seitenstabilität eines Fahrzeugs
DE102011109712A1 (de) Verfahren und Vorrichtung zum unterstützten Einparken eines Kraftfahrzeugs
DE102016208774A1 (de) Fahrassistenzvorrichtung und Fahrassistenzverfahren
DE102009040677A1 (de) Sicherheitsvorrichtung eines Fahrzeugs und Verfahren zum Betreiben einer ebensolchen Sicherheitsvorrichtung
DE102015222784A1 (de) Spurhalteassistenzsystem für ein Fahrzeug und Verfahren zu dessen Steuerung
DE102012220138A1 (de) Automatische Erkennung von Falschfahrern
DE102013103372A1 (de) Verfahren zum automatisierten Führen eines Fahrzeugs bei unzureichenden Umfeldinformationen
DE102004028822B4 (de) Verfahren zur Erkennung einer Ausrichtungsänderung eines Umgebungsfahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14727463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14899002

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016520350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167001300

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14727463

Country of ref document: EP

Kind code of ref document: A1