WO2014200153A1 - 3원계 탄성 공중합체의 제조 방법 - Google Patents

3원계 탄성 공중합체의 제조 방법 Download PDF

Info

Publication number
WO2014200153A1
WO2014200153A1 PCT/KR2013/009158 KR2013009158W WO2014200153A1 WO 2014200153 A1 WO2014200153 A1 WO 2014200153A1 KR 2013009158 W KR2013009158 W KR 2013009158W WO 2014200153 A1 WO2014200153 A1 WO 2014200153A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
copolymer
solvent
gas
liquid separator
Prior art date
Application number
PCT/KR2013/009158
Other languages
English (en)
French (fr)
Inventor
고준석
윤성철
박성호
최수영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380077279.7A priority Critical patent/CN105377916B/zh
Priority to EP13886690.0A priority patent/EP3000832B1/en
Priority to US14/888,992 priority patent/US9611349B2/en
Publication of WO2014200153A1 publication Critical patent/WO2014200153A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/12Separation of polymers from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/02Recovery or working-up of waste materials of solvents, plasticisers or unreacted monomers

Definitions

  • the present invention is a high viscosity and high molecular weight elasticity by optimizing energy efficiency by using a gas-liquid separator and a stripper sequentially in the process of purifying the solvent and unbanung monomer from the polymer solution after copolymerization of ethylene / ⁇ -olefin / diene monomer It relates to a method for preparing a terpolymer-based elastomeric copolymer comprising recovering a polymer.
  • EPDM ethylene-propylene-diene-monomer
  • a polymer is prepared by using an aqueous NaOH solution and high pressure steam to remove C1 contained in the catalyst from the polymer composition.
  • the catalyst residue remaining in the polymer is removed.
  • the method has a problem that the process is complicated because it goes through a cumbersome process of removing the catalyst in the polymer.
  • Korean Patent Registration No. 10-0226175 describes a method of removing vanadium catalyst composition using water or an aqueous alkali solution to remove the catalyst residue.
  • US Patent No. 3, 590, 026 removes the solvent and the unreacted monomer through a two-stage steam stripping.
  • the energy consumption is more than twice as large as compared to the present invention described later, which is excessively expensive.
  • Korean Patent Registration No. 10-0496101 discloses a method of recovering a polymer by sequentially passing a two-step anhydrous solvent recovery process in the EPDM manufacturing method using a metallocene catalyst composition.
  • the method has the advantage of using less energy, but the flow of polymer solution is poor when producing high viscosity and high molecular weight EPDM polymer.
  • the devolatilization extruder is used, a polymer having a high density is generated, and thus, the compound must be blended with an oil, carbon black, accelerator, etc. for compounding. That is, the above method cannot produce high molecular weight EPDM, and it is impossible to produce a product properly because the shear is excessively high in the extruder after purification.
  • the invention of the amount of ethylene polymer, without shear (shear) of the extruder, while increasing the energy efficiency - to provide a method of manufacturing a ternary elastic copolymer that can be produced diene elastic copolymer-alpha olefin.
  • the present invention also provides a method for producing an ethylene-alpha-olefin-diene-based elastomeric copolymer having improved productivity.
  • the present invention polymerizes a monomer composition comprising 40-70 weight 3 ⁇ 4 of ethylene, 15-55 weight% of alpha olefins having 3 to 20 carbon atoms and 0.5 to 20 weight% of diene in the presence of a metallocene catalyst and a solvent. Preparing a polymer solution comprising an ethylene-alphalefin-diene-based copolymer by copolymerizing at; And
  • the gas-liquid separator 40 to 70% by weight of the total amount of the total material except the total polymer contained in the polymer solution is separated and removed, and in the stripper, the remaining amount of the remaining material except the polymer contained in the polymer solution is removed. It may include the step of separating and removing the solvent and the non-banung monomer.
  • the stripper may include recovering the solvent and the unreacted monomer included in the copolymer to be within 10% by weight based on the total copolymer content.
  • the content of the ethylene-alphaolefin-diene-based copolymer contained in the polymer solution before passing through the gas-liquid separator is 10 to 20% by weight, and the ethylene-alphaolefin-diene contained in the polymer solution after passing through the gas-liquid separator.
  • the content of the system copolymer may be 20 to 50% by weight.
  • the temperature of the upper portion of the gas-liquid separator is 150 to
  • the stripper may include the step of adding water vapor to a carrier gas under conditions of a temperature of 140 to 18 C C and a pressure of 4 to 10 bar to remove the remaining solvent and unreacted monomer from the polymer solution passed through the gas-liquid separator.
  • the solvent and the non-banung monomer separated in the gas-liquid separator and the stripper are It can be reused for copolymerization with ethylene-alphalepine-diene.
  • the method may further include preparing the copolymer in the form of a bale or pellet.
  • metallocene catalyst it is preferable to use a catalyst composition comprising a first transition metal compound represented by Formula 1 and a second transition metal compound represented by Formula 2 below.
  • Ri to R 13 may be the same as or different from each other, and each independently hydrogen; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Silyl radicals; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Or a metalloid radical of a Group 4 metal substituted with hydrocarbyl;
  • the two groups different from each other to R 13 may be alkyl having 1 to 20 carbon atoms or sub 6 to 20 carbon atoms. May be linked to each other by an alkylidine radical comprising a aryl radical to form an aliphatic ring or an aromatic ring;
  • M is a Group 4 transition metal
  • Qi and Q 2 may be the same as or different from each other, and each independently a halogen radical; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Alkyl amido radicals having 1 to 20 carbon atoms; Aryl amido radicals having 6 to 20 carbon atoms; Or an alkylidene radical having 1 to 20 carbon atoms.
  • the catalyst composition may further include one or more cocatalyst compounds selected from the group consisting of Chemical Formulas 3, 4, and 5 below.
  • R may be the same or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or hydrocarbons having 1 to 20 carbon atoms substituted with halogen; n is an integer of 2 or more;
  • R is as defined in Formula 3; D is aluminum or boron;
  • L is a neutral or divalent Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • A may be the same or different from each other, and each independently one or more hydrogen atoms are halogen, a C1-C20 hydrocarbon : alkoxy or phenoxy unsubstituted or substituted with a C6-C20 aryl group or a C1-C20 alkyl group to be.
  • the alphaolefin consists of propylene, 1-butene, 1-nuxene and 1-octene At least one selected from the group of genes, and dienes are 5-ethylidene-2-norbornene, 5-methylene _2 ′ norbornene, 5-vinyl-2-norbornene, 1,4′nucleadiene and dicyclopentadiene. It may be one or more selected from the group consisting of. ⁇ Effects of the Invention ⁇
  • the solvent and the unfung monomer are removed from the polymer solution by using a gas-liquid separator (flashing process) and a stripper sequentially.
  • High viscosity and high molecular weight elastomeric copolymers can be obtained.
  • the present invention can be recycled to the copolymer for preparing the elastomer by recovering the solvent and the non-banung monomer removed from the polymer solution, it is possible to properly prepare a high molecular weight EPM without shear of the extruder while improving the energy efficiency Can be.
  • Figure 2 briefly illustrates a process for recovering the solvent and the non-reflective monomer using the gas-liquid separator and stripper sequentially in the manufacturing process of the EPDM elastic copolymer according to the present invention.
  • Figure 3 is a simplified illustration of the apparatus for producing an EPDM elastic copolymer having a gas-liquid separator and a stripper according to the present invention.
  • a tertiary elastic copolymer as used herein is any elastic copolymer (e.g., crosslinkable random air copolymerized with ethylene, alpha-olefins having 3 to 20 carbon atoms and three monomers of dienes). Coalescence).
  • terpolymer elastomers ethylene, propylene And EPDM rubbers which are copolymers of dienes.
  • terpolymeric elastomeric copolymers do not refer to copolymers of only three monomers, and together with the ethylene, one or more monomers belonging to the category of alpha olefins and one or more monomers belonging to the category of dienes
  • it can include any elastomeric copolymer copolymerized.
  • an elastic copolymer obtained by copolymerizing ethylene, two alpha olefins of propylene and 1-butene, and two dienes of ethylidene norbornene and 1,4-nuxadiene is also ethylene and alpha olefin.
  • the three monomers each belonging to the category of the diene is copolymerized, it may belong to the category of "three-way elastic copolymer".
  • a metallocene catalyst and a solvent 40 to 70% by weight of ethylene, 20 to 50% by weight of alpha olefin having 3 to 20 carbon atoms and 0 to 20% by weight of diene Copolymerizing a monomer composition comprising a polymerizer in a polymerization reactor to prepare a polymer solution including an ethylene-alphaolefin-diene-based copolymer; And separating the solvent and the non-banung monomer from the polymer solution using a gas-liquid separator and a stripper sequentially, and recovering the ethylene-alpha-lepine-diene-based copolymer.
  • the present invention is characterized in that a gas-liquid separator and a stripper are sequentially used to recover the solvent and the non-banung monomer from the polymer solution obtained after the reaction in the manufacturing process of the ethylene-alphaolefin-diene-based elastomer such as EPDM.
  • the present invention is characterized by reducing the energy cost by primary recovery of the solvent and the non-banung monomer from the polymer solution through the gas-liquid separator.
  • the present invention can provide a high-viscosity and high-molecular weight copolymer by recovering the residual solvent and unbanung monomer in the polymer solution secondary by steam stripping by sequentially installing a stripper after the gas-liquid separator. Therefore, the polymer prepared according to the present invention exhibits excellent compounding with additives and facilitates commercialization.
  • the present invention also relates to a process for preparing a polymer in a single polymerization reactor. It is possible to provide a process for effectively separating and recovering solvent, unbanung monomers, and comonomers from an elastomeric polymer including EPDM, removing catalyst poisoning material, and then recycling the reactor in a coarse polymer solution bath. According to this process, the present invention can reuse the solvent and unreacted monomer separated in the gas-liquid separator and stripper in the co-polymerization reaction for producing the ethylene-alpha olefin-diene-based elastomeric copolymer.
  • the gas-liquid separator separates and removes 40 to 70 weight 3 ⁇ 4 of the total amount of the total material except the total polymer contained in the polymer solution, and the stripper removes the remaining amount of the solvent except the polymer contained in the polymer solution. And separating and removing unreacted monomers.
  • the stripper may include recovering the solvent and the unreacted monomer included in the copolymer to be within 10% by weight based on the total copolymer content.
  • the content of the ethylene-alpha-lefin-diene-based copolymer contained in the polymer solution before passing through the gas-liquid separator is 10 to 20 weight 3 ⁇ 4, and the ethylene-alphaolefin-diene contained in the polymer solution after the gas-liquid separator.
  • the content of the system copolymer may be 20 to 50% by weight. That is, the content of the elastic copolymer before purification is 10 to 20% by weight, and the content of the elastic copolymer after the first gas-liquid separator is about 20 to 50% by weight 3 ⁇ 4>. The content can be increased further.
  • the viscosity and the molecular weight of the final polymer can be improved.
  • the gas-liquid separator may include a process of removing the solvent and the non-banung monomer from the polymer solution under conditions of the temperature of 150 to 160 ° C, pressure 5 to 10 bar of the top of the gas-liquid separator.
  • the gas-liquid powder If the temperature of the upper portion of the back plate is less than 150 ° C or the pressure exceeds lObar, there is a problem that the solvent and unbanung monomer is not removed from the polymer solution by the desired amount.
  • the temperature is greater than 160 ° C or less than 5 bar, there is a problem that the solvent and the unbanung monomer are removed from the polymer solution more than the desired amount.
  • the said gas-liquid separator means anhydrous gas-liquid separator.
  • the stripper may include a step of removing the remaining solvent and unbanung monomer from the polymer solution passed through the gas-liquid separator by applying water vapor as a carrier gas under conditions of a temperature of 140 to 180 ° C and a pressure of 4 to 10 bar. .
  • the temperature of the stripper is less than 90 ° C or more than 0.3 bar, there is a problem that the solvent and the non-reflective monomer is not removed from the polymer solution by the desired amount.
  • the temperature is higher than 180 ° C or less than 3 bar, there is a problem that excessively high steam is required to remove the solvent and unbanung monomer from the polymer solution.
  • a predetermined amount of monomer that is, about 40 to 70 weight 3 ⁇ 4, or about 50 to 70% by weight of ethylene, about 15 to 55% by weight, Or a monomer composition comprising from about 25 to 45% by weight of alpha olepan having 3 to 20 carbon atoms and about 0.5 to 20% by weight, or about 2 to 10% by weight of diene.
  • each of these monomers may be copolymerized in the presence of a catalyst composition containing a Group 4 transition metal to prepare an ethylene-alphalepine-diene-based elastomeric copolymer.
  • This copolymerization can also be carried out by solution polymerization, in particular by continuous solution polymerization.
  • the catalyst composition described above may be used in the form of a homogeneous catalyst dissolved in such a solution.
  • the gas-liquid separator and the stripper are sequentially used, and thus the terpolymer-based elastomer copolymer of one embodiment satisfying a large molecular weight range and an ethylene content through a process of purifying the polymer solution in high yield. This can be achieved by improving productivity.
  • the method for producing the elastic copolymer the reaction time of 80 to 150 ° C, reaction pressure of 75 to 120 bar reaction solution residence time 0.05 to 0.5 hours Performing a polymerization reaction during the liver to prepare an ethylene ⁇ alphalefin-diene-based elastomeric copolymer having a polymer concentration of 5 to 20 weight 3 ⁇ 4.
  • the distribution in the polymer chain of each monomer can be more uniformly arranged alternately, which is a ternary elasticity satisfying the characteristics of the embodiment It allows for the efficient production of copolymers.
  • the method of the present invention may further include preparing the copolymer in a bale or pellet form after recovering the copolymer.
  • the method of productizing in the form of the bale or pellet may be made by methods well known in the art.
  • the EPDM manufacturing process is divided into the first region of solvent / raw material purification, the second region of polymer production, the three regions of separating solvent / unreacted monomer and the fourth region of veil / pellet production.
  • the first region is a region for purifying a solvent, an unreacted monomer, and the like separated from the polymer after being used to prepare the raw material and the polymer.
  • the first region includes a portion in which a raw material and a solvent for supplying an elastomer are supplied, and impurities may be removed by performing a purification process.
  • the second region is a region for preparing a polymer in the presence of the metallocene catalyst composition using the raw material and the solvent purified in the first region. Therefore, the metallocene catalyst may be supplied to the second region.
  • the third zone is a step of separating the solvent and the non-banung monomer from the polymer solution prepared in the second zone and sending the polymer to the fourth zone.
  • the fourth region generally includes further separating the residual solvent and unreacted monomer not separated in the third region from the polymer separated in the third region, removing moisture, etc., and forming the product.
  • the fourth spirit A station is an area where products are manufactured in the form of pellets or bales.
  • the present invention includes a step of completely separating and recovering the solvent and the unreacted monomer from the polymer solution by using the gas-liquid separator and the stripper step by step in the third region as shown in FIG. That is, FIG. 2 briefly illustrates a process of recovering a solvent and an unreacted monomer using a gas-liquid separator and a stripper sequentially in a manufacturing process of the EPDM elastic copolymer according to the present invention.
  • the gas-liquid separator refers to the anhydrous gas-liquid separator shown in FIG. 2
  • the stripper refers to a steam stripper through which water vapor is supplied as a carrier gas.
  • the solvent, unbanung monomer, and comonomer used for reaction are separated, and the separated solvent, unbanung monomer, etc. are recovered.
  • the configuration of the first region, the second region and the fourth region can be performed according to methods well known in the art.
  • the solvent / raw material purification process of the first region is not particularly limited, and any method well known in the art for removing impurities may be used.
  • the second region may be performed by solution polymerization using the metallocene catalyst as described above.
  • the fourth region may be a commercialization of the polymer through a general process for producing the bale / pellets.
  • the elastic copolymer of the present invention is a metallocene catalyst And a polymerization reactor for producing a polymer solution containing an ethylene-alphalepine-diene copolymer by polymerization of ethylene, an alpha olefin having 3 to 20 carbon atoms, and a diene introduced from a raw material supply device in the presence of a solvent;
  • a gas-liquid separator connected to the polymerization reactor and configured to first separate the solvent and the non-fung monomer from the polymer solution;
  • a stripper installed in series with the gas-liquid separator and separating the remaining solvent and the non-banung monomer from the polymer solution in which the solvent and the non-banung monomer are first separated in the gas-liquid separator, and recovering a copolymer; And a dryer for drying the copolymer recovered from the stripper.
  • the polymerization reaction device may be provided with a continuous stirring device, and when the solution polymerization is completed, it may be provided with an outlet for transferring the polymer solution containing the ethylene propylene-diene copolymer to the next step.
  • the outlet may be installed on the upper side of the polymerization reactor, allowing the polymer solution to be continuously discharged during the polymerization process, and may be transferred to the gas-liquid separator through a pump. Therefore, a pump may be provided between the polymerization reactor and the gas-liquid separator as a means for transferring the polymer solution obtained from the polymerization reaction vessel to the gas-liquid separator.
  • the gas-liquid separator may be provided with an outlet on the upper part of the gas-liquid separator after separating a part of the entire solvent and the non-banung monomer from the polymer solution supplied from the polymerization reactor. That is, the solvent and unreacted monomers, which are first separated and purified in the gas-liquid separator, may be recycled to the raw material supply apparatus through a transfer line connected to the upper portion of the gas-liquid separator. In addition, the remaining polymer solution in the gas-liquid separator is discharged through the transfer line connected to the bottom of the gas-liquid separator to be moved to the stripper.
  • the stripper In the stripper, a process of purifying the remaining amount of solvent, unbanung monomer, and the like from the first polymer solution purified in a gas-liquid separator is performed.
  • the stripper means for supplying water vapor which is a carrier gas It may be connected and may be provided with control means for controlling the amount of steam supplied.
  • the solvent and unreacted monomer secondary and separated and purified in the stripper may be recycled to the raw material feeder through a transfer line connected to the upper portion of the stripper.
  • the polymer in which the residual solvent and the non-banung monomer are removed through the secondary purification process in the stripper may be transferred to the dryer through a transfer line connected to the lower side of the stripper. Drying conditions of the polymer in the dryer is not particularly limited, it can be carried out under conditions well known in the art.
  • alpha olefin propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1 'pentene, 1-nucleene , 1-heptene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-nuxadecene 1 ⁇ heptadecene, 1-nonadecene, 9- One or more carbon atoms having 3 to 20 alpha olefins such as methyl-1-decene, 11-methyl-1 dodecene and 12-ethyl 12 1-tetradecene may be used, and among these, alpha olefins having 3 to 10 carbon atoms, As a representative example, propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1 'pentene, 1-nu
  • a nonconjugated diene type monomer can be used as said diene.
  • Specific examples thereof include 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5 'vinyl-2-norbornene, 5- (2-propenyl) -2-norbornene and 5- ( 3'butenyl) -2-norbornene, 5- (1'methyl-2-propenyl) -2-norbornene, 5- (4-pentenyl) -2-norbornene, 5- (1-methyl-3) ⁇ butenyl) —2-norbornene, 5- (5-nucenyl) -2-norbornene, 5- (1-methyl-4-pentenyl) —2-norbornene, 5- (2, 3-dimethyl 3-butenyl) -2-norbornene, 5- (2-ethyl-3-butenyl) -2-norbornene, 5_ (6-hepteny
  • dienes selected from these are mentioned, One or more types of dienes selected from these are used. Available. Among them, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-vinyl-2-norbornene, 1,4-nuxadiene or dicyclopentadiene can be suitably used.
  • the metallocene catalyst used for preparing the elastic copolymer in the present invention is a catalyst composition comprising a first transition metal compound represented by Formula 1 and a second transition metal compound represented by Formula 2 It is preferable.
  • Ri to Ri 3 may be the same as or different from each other, and each independently hydrogen; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Silyl radicals; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Or a metalloid radical of a Group 4 metal substituted with hydrocarbyl; Neighboring one another of the above 3 ⁇ 4 to R 13
  • the other two groups may be linked to each other by an alkylidine radical comprising an alkyl ring having 1 to 20 carbon atoms or an aryl radical having 6 to 20 carbon atoms to form an aliphatic ring or an aromatic ring;
  • M is a Group 4 transition metal
  • Qi and Q 2 may be the same as or different from each other, and each independently a halogen radical; Alkyl radicals having 1 to 20 carbon atoms; Alkenyl radicals having 2 to 20 carbon atoms; Aryl radicals having 6 to 20 carbon atoms; Alkylaryl radicals having 7 to 20 carbon atoms; Arylalkyl radicals having 7 to 20 carbon atoms; Alkyl amido radicals having 1 to 20 carbon atoms; Aryl amido radicals having 6 to 20 carbon atoms; Or an alkylidene radical having 1 to 20 carbon atoms.
  • hydrocarbyl may refer to a monovalent functional group in a form in which a hydrogen atom is removed from a hydrocarbon, and may include, for example, an alkyl group such as ethyl or an aryl group such as phenyl. Can be.
  • metalloid is a metal and an element showing intermediate properties between metal and nonmetal, and may refer to, for example, arsenic, boron, silicon, tellurium, and the like.
  • M may refer to a Group 4 transition metal element such as titanium, zirconium or hafnium.
  • first and second transition metal compounds as the first transition metal compound of Formula 1, one or more compounds selected from the group consisting of compounds of the following formulas may be suitably used:
  • 3 ⁇ 4 and R 3 may be the same as or different from each other, and each independently hydrogen or a methyl radical
  • M is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same as or different from each other, and each independently a methyl radical
  • Dimethylimido is also a radical or chlorine radical.
  • the compound of the following formula One or more compounds selected from the group consisting of water may suitably be used:
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, each independently hydrogen or methyl radical
  • M is a Group 4 transition metal
  • 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, each independently methyl radical
  • Dimethylimido is also a radical or chlorine radical.
  • the catalyst composition is represented by the following Chemical Formulas 3, 4 and 5 It may further comprise at least one cocatalyst compound selected from the group consisting of. [Formula 3]
  • R may be the same as or different from each other, and each independently halogen; Hydrocarbons having 1 to 20 carbon atoms; Or hydrocarbons having 1 to 20 carbon atoms substituted with halogen; n is an integer of 2 or more;
  • R is as defined in Formula 3; D is aluminum or boron;
  • L is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • A may be the same as or different from each other, and each independently one or more hydrogen atoms are unsubstituted or substituted with halogen, a hydrocarbon having 1 to 20 carbon atoms, alkoxy or phenoxy, an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms to be.
  • examples of the compound represented by Formula 3 include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane or butyl aluminoxane.
  • examples of the compound represented by the formula (4) include trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-S-butylaluminum , Tricyclopentyl Aluminum, Tripentyl Aluminum, Triisopentyl Aluminum, Trinuclear Aluminum, Trioctyl Aluminum, Ethyl Dimethyl Aluminum, Methyl Diethyl Aluminium, Triphenyl Aluminum, Tri—P-allyl Aluminum , Dimethyl Aluminum Hydroxide, Dimethyl Aluminum specialty, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron or tributyl boron, among which trimethyl Aluminum, triethyl aluminum, or triisobutyl aluminum can be used suitably.
  • the compound represented by Chemical Formula 5 includes a non-coordinating anion compatible with cations which are Bronsted acids. Suitable anions are those that are relatively large in size and contain a single coordinating complex comprising a metalloid. In particular, compounds containing a single boron atom in the anion moiety are widely used. In view of this, as the compound represented by Formula 5, a salt containing an anion including a coordinating complex compound containing a single boron atom may be appropriately used.
  • Such compounds include trimethylammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorofluorophenyl) borate and tripropylammonium tetrakis (pentafluuro) in the case of trialkylammonium salts.
  • Phenyl) borate tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (2-butyl) ammonium tetrakis (pentafluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium tetrakis ( Pentafluorophenyl) borate , ⁇ , ⁇ -dimethylanilinium ⁇ -butyltris (pentafluorophenyl) borate , ⁇ , ⁇ -dimethylanilinium benzyltris (pentafluorophenyl) borate , ⁇ , ⁇ -dimethylanilinium Tetrakis (4- (t-butyldimethylsilyl) -2, 3, 5, 6-tetrafluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium tetrakis (4—triisopropylsilyl) -2, 3
  • dialkyl ammonium salt di- (i-propyl) ammonium tetrakis (pentafluorophenyl) borate or dicyclonucleammonium tetrakis (pentafluophenyl) borate may be exemplified.
  • the carbonium salt trophylium tetrakis (pentafluorophenyl) borate, triphenylmethyllium tetrakis (pentafluorophenyl) borate, or benzene (diazonium) tetrakis (pentafluorophenyl) borate
  • the catalyst composition comprising the above-described first and second transition metal compound, and optionally a cocatalyst compound, for example, the first and second transition metal compound, and the cocatalyst of the formula (3) or (4) Contacting the compound to obtain a mixture; And it may be prepared by a method comprising the step of adding the promoter compound of Formula 5 to the mixture.
  • the molar ratio of the first transition metal compound: the second transition metal compound may be about 10: 1 to 1:10, and the total transition metal compound in which the first and second transition metal compounds are added together.
  • the molar ratio of the promoter compound of Formula 3 or Formula 4 may be about 1: 5 to 1: 500, and the total transition metal compound:
  • the molar ratio of the promoter compound of Formula 5 is about 1: 1 to 1. 1: It can be set to 10.
  • the catalyst composition may further include a reaction solvent, and the reaction solvent may include a hydrocarbon solvent such as pentane, nucleic acid or heptane; Aromatic solvents, such as benzene or luene, etc. are mentioned, but it is not limited to this.
  • a hydrocarbon solvent such as pentane, nucleic acid or heptane
  • Aromatic solvents such as benzene or luene, etc. are mentioned, but it is not limited to this.
  • alpha-olepine contained in the said monomer composition propylene, 1-butene, 1-nuxene, 1-octene, 1 kpentene, 4-methyl-1- pentene, 1-nuxene, 1-heptene, 1-decene, 1-undecene or 1-dodecene round may be used, and as the diene, a non-conjugated diene monomer may be used.
  • the elastic copolymer prepared by the method of one embodiment of the present invention is a terpolymer-based elastomer copolymer in which three monomers of ethylene, alpha olefin and diene are copolymerized in a constant content range, and when measured by GPC, about 100,000 to 500,000 Or a relatively large weight average molecular weight of about 1500,000 to 400,000, or 200,000 to 300, 000.
  • These large weight average molecular weights can be determined by the first and the above-mentioned formulas 1 and 2 belonging to the Group 4 transition metal catalyst, for example, the metallocene series.
  • the tertiary elastomeric copolymer As achieved due to the excellent activity of the second transition metal compound, as one embodiment of the tertiary elastomeric copolymer has such a large molecular weight, the tertiary elastomeric copolymer, for example EPDM rubber, has excellent mechanical properties. It can exhibit physical properties.
  • EPDM rubber As achieved due to the excellent activity of the second transition metal compound, as one embodiment of the tertiary elastomeric copolymer has such a large molecular weight, the tertiary elastomeric copolymer, for example EPDM rubber, has excellent mechanical properties. It can exhibit physical properties.
  • the ternary elastic copolymer of one embodiment according to the present invention can simultaneously stratify more improved elasticity and flexibility with excellent mechanical properties. Therefore, the terpolymer-based elastomeric copolymer of the embodiment can be produced, for example, with excellent productivity and yield unique to the Group 4 transition metal catalyst belonging to the metallocene series, and has a high molecular weight and excellent mechanical properties. At the same time, it is possible to solve the problems of the conventional EPDM rubber prepared with a metallocene Group 4 transition metal catalyst, thereby simultaneously striking excellent elasticity and flexibility.
  • the elastomeric copolymer of one embodiment of the present invention obtained according to this method has a pattern viscosity (1 + 4®) capable of appropriate physical layering as EPDM rubber or the like.
  • FIG. 3 schematically shows the apparatus for producing an EPDM elastic copolymer having a gas-liquid separator and a stripper according to the present invention.
  • the first and second transition metal compounds include the above-mentioned [(1,2,3,4 ⁇ tetrahydroquinolin-8-yl) tetramethylcyclopentadienyl-eta 5, kepa-N] titanium dimeth Til and [(2-methylindolin-7-yl) tetramethylcyclopentadienyl-eta 5, kepa-N] titanium dimethyl were used in a reaction vessel using dissolved in nucleic acid.
  • ⁇ , ⁇ ⁇ dimethylanilinium tetrakis (pentafluorophenyl) borate was added to the reactor in the state dissolved in toluene.
  • triisobutylaluminum was added to the reactor in the state dissolved in nucleic acid as an additional promoter compound.
  • the continuous supply of each monomer and the catalyst composition proceeds, and the solution polymerization proceeds while the continuous stirring of the polymerization reaction takes place.
  • the polymer solution containing the ethylene-propylene-diene copolymer was continuously discharged from the upper side of the polymerization reactor 1 and transferred to the gas-liquid separator 2 through a pump.
  • the gas-liquid separator a part of the whole solvent and the non-banung monomer were separated from the polymer solution, and then it was discharged through the top of the gas-liquid separator to recover.
  • the remaining polymer solution in the gas-liquid separator was discharged through the lower part of the gas-liquid separator to move to the stripper (3).
  • the stripper 3 was continuously supplied with water vapor as a carrier gas to separate the remaining solvent and unreacted monomer from the polymer solution passed through the gas-liquid separator. Residual solvent and unreacted monomer separated from the polymer solution were recovered by discharging through the upper part of the stripper, and the copolymer (EPDM elastic copolymer) after the residual solvent and unreacted monomer was removed was discharged through the lower part of the stripper and dried. Transfer to (4). After drying the copolymer for 4 hours at a temperature of 100 ° C. in the dryer (4), it was recovered. The copolymer thus recovered was used for commercialization in pellet form by conventional methods.
  • water vapor as a carrier gas
  • the present invention was confirmed that the pattern viscosity of EPDM is 30 or more (1 + 4 ® 125 ° C) to obtain a ternary elastic copolymer having a high viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 전체 공정의 에너지 효율이 최적화되고 고점도 및 고분자량을 가지는 에틸렌-알파올레핀-디엔계 탄성 공중합체의 제조방법에 관한 것이다. 상기 탄성 공중합체의 제조방법은 에틸렌/α-올레핀/디엔계 탄성 공중합체의 공중합 후 용매와 미반응 단량체를 정제하는 공정에서 기액 분리기 및 스트리퍼를 순차 사용하여 중합체 용액으로부터 용매와 미반응 단량체를 분리 및 제거하고, 상기 탄성 공중합체를 회수하는 단계를 포함한다.

Description

【명세세
【발명의 명칭】
3원계 탄성 공중합체의 제조 방법
[기술분야】
본 발명은 에틸렌 /α-올레핀 /디엔계 단량체의 공중합 후, 중합체 용 액으로부터 용매와 미반웅 단량체를 정제하는 공정에서 기액 분리기 및 스 트리퍼를 순차 사용하여 에너지 효율 최적화로 고점도 및 고분자량의 탄성 중합체를 회수하는 단계를 포함하는 3원계 탄성 공중합체의 제조 방법에 관 한 것이다.
【발명의 배경이 되는 기술】
일반적으로 바나듐 촉매를 이용하여 에틸렌 -프로필렌-디엔-모노머 (이 하, EPDM)을 제조하게 되면, 중합체 조성물로부터 촉매에 함유되어 있는 C1 를 제거하기 위해 NaOH 수용액과 고압 스팀 (steam)을 사용하여 폴리머 중합 체에 잔존하는 촉매 잔사를 제거한다. 하지만, 상기 방법은 폴리머 중합체 내의 촉매를 제거해야 하는 번거로운 과정을 거치므로 공정이 복잡해지는 문제가 있다.
또한 바나듐 촉매를 이용하여 EPDM을 제조하는 공정에서는 미반응 단 량체 및 공단량체와 용매를 회수하기 위해 고압 스팀을 폴리머 용액에 직접 투입하여 제거함으로써 많은 에너지가 소모된다. 또한 중합체 조성물로부터 제거된 미반응 단량체 및 공단량체와 용매는 전부 추가 정제를 통해 수분 등을 제거하고 반웅기에 재순환되기 때문에 많은 정제 비용이 소요된다. 예를 들어, 시간 당 10톤의 EPDM 폴리머를 제조하기 위해서는 반응기 출구 에서 EPDM 폴리머를 제외한 모노머 및 공단량체 핵산을 합한 양은 50 내지 100톤이며, 이를 폴리머부터 분리하여 반웅기에 재사용하기 위해서는 공정 중에 투입된 수분과 촉매 킬링제 (killing agent) 등과 같은 촉매독 성분을 제거해야 한다. 하지만, 기존 방법은 이러한 과정을 거치는 동안 에너지 비용이 과다하게 소요되어 비효율적인 문제가 있다.
또한, 기존에는 바나듐 촉매 조성물을 이용한 EPDM 제조방법에서 폴 리머를 회수하기 위해, 스팀 스트리핑 (steam stripping)으로 용매와 미반응 단량체를 회수하고 있다. 한국특허등록 제 10-0226175호에서는 바나듐 촉매 조성물의 촉매 잔사 제거를 위해 물이나 알칼리 수용액을 이용해 제거하는 방법에 대해 기술하고 있다. 또한 미국특허 제 3, 590 ,026호에서는 2단계의 스팀 -스트리핑을 통해 용매와 미반응 단량체를 제거하고 있다. 그러나, 상 기 스팀 -스트리핑을 통해 중합체 용액으로부터 용매와 미반웅 단량체를 제 거할 때에는 에너지 소모량이 후술하는 본 발명과 비교할때 2배 이상 커져 비용이 과도하게 많이 소요되는 단점이 있다.
또한 이러한 문제를 극복하기 위해 한국특허등록 제 10-0496101호에서 메탈로센 촉매 조성물을 이용한 EPDM 제조방법시 2단계의 무수 용매 회수 공정을 차례로 통과하여 중합체를 회수하는 방법을 개시하고 있다. 상기 방법은 에너지를 적게 사용하는 장점은 있지만, 점도가 높고 고분자량의 EPDM 폴리머를 제조할 경우에는 폴리머 용액의 흐름이 좋지 않다. 또한, 탈휘발화 압출기를 이용할 경우 밀도가 높은 폴리머가 생성되어 컴파운딩을 위해 오일이나 카본블랙, 촉진제 등과 배합해야 하는데, 이들과 배합성능이 좋지 않은 단점이 있다. 즉 상기 방법은 고분자량 EPDM을 제조할 수 없으 며, 정제 후 압출기에 전단 (shear)이 지나치게 높게 걸려 제대로 제품을 생 산할 수 없다.
이에 고분자량의 EPDM을 제조할 수 있으며, 높은 생산성과 에너지 효 율을 향상시킬 수 있는 EPDM 탄성 공중합체의 제조 방법의 개발이 계속적으 로 요구되고 있다.
【발명의 내용】
【해결하려는 과제】
본 발명은 에너지 효율을 높이면서 압출기의 전단 (shear)없이 고분자 '량의 에틸렌-알파올레핀-디엔계 탄성 공중합체를 제조할 수 있는 3원계 탄 성 공중합체의 제조방법을 제공하는 것이다.
본 발명은 또한, 생산성이 향상된 에틸렌ᅳ알파올레핀-디엔계 탄성 공 중합체의 제조방법을 제공하는 것이다.
【과제의 해결 수단】 본 발명은 메탈로센 촉매 및 용매 존재 하에서, 40 내지 70 중량 ¾의 에틸렌, 15 내지 55 중량 %의 탄소수 3 내지 20의 알파올레핀 및 0.5 내지 20 중량 %의 디엔을 포함하는 단량체 조성물을 중합 반웅기에서 공중합하여 에틸렌-알파을레핀-디엔계 공중합체를 포함하는 중합체 용액을 제조하는 단 계; 및
기액 분리기 및 스트리퍼를 순차적으로 사용하여 상기 중합체 용액으 로부터 용매 및 미반웅 단량체를 분리하고 에틸렌—알파을레핀-디엔계 공중 합체를 회수하는 단계 ;
를 포함하는, 3원계 탄성 공중합체의 제조방법을 제공한다.
상기 기액 분리기에서는, 중합체 용액 내에 포함되어 있는 전체 폴리 머를 제외한 전체 물질의 총량 중 40 내지 70 중량 %를 분리하여 제거하고, 상기 스트리퍼에서는 중합체 용액 내에 포함되어 있는 폴리머를 제외한 나 머지 물질의 잔량의 용매 및 미반웅 단량체를 분리하여 제거하는 단계를 포 함할 수 있다.
또한 상기 스트리퍼에서는 공중합체 내에 포함되어 있는 용매 및 미 반응 단량체를 전체 공중합체 함량 대비 10 중량 % 이내가 되도록 회수하는 단계를 포함할 수 있다.
본 발명에 따르면, 기액 분리기를 거치기 전의 중합체 용액 내에 포 함된 에틸렌-알파올레핀-디엔계 공중합체의 함량은 10 내지 20 중량 %이고, 기액 분리기를 거친 후의 중합체 용액 내에 포함된 에틸렌 -알파올레핀 -디엔 계 공중합체의 함량은 20 내지 50 중량 %일 수 있다.
또한, 상기 기액 분리기에서는 기액 분리기 상부의 온도 150 내지
160 °C, 압력 5 내지 10 bar의 조건 하에 중합체 용액으로부터 용매 및 미 반응 단량체를 제거하는 공정을 포함할 수 있다.
상기 스트리퍼에서는 온도 140 내지 18C C 및 압력 4 내지 lObar의 조건 하에 수증기를 캐리어 가스로 가하여 기액 분리기를 거친 중합체 용액 으로부터 나머지의 용매 및 미반응 단랑체를 제거하는 공정을 포함할 수 있 다.
상기 기액 분리기 및 스트리퍼에서 분리된 용매 및 미반웅 단량체는 에틸렌-알파을레핀-디엔와 공중합에 재사용될 수 있다.
또한 상기 공중합체를 회수하는 단계 이후에, 공중합체를 베일 또는 펠렛 형태로 제조하는 단계를 더 포함할 수 있다.
상기 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 전이금속 화합 물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조 성물을 사용하는 것이 바람직하다.
[화학식 1]
Figure imgf000006_0001
상기 화학식 1 및 2에서,
Ri 내지 R13은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소 수 6 내지 20의 아릴 라디칼; 실릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 또는 하이드로카르빌로 치환 된 4족 금속의 메탈로이드 라디칼이고; 상기 내지 R13 증 이웃하는 서로 다른 2 개의 그룹은 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아 릴 라디칼을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Qi 및 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐 라 디칼; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디 칼; 탄소수 6 내지 20의 아릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디 칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 탄소수 1 내지 20의 알킬 아미도 라디칼; 탄소수 6 내지 20의 아릴 아미도 라디칼; 또는 탄소수 1 내지 20의 알킬리덴 라디칼이다.
상기 촉매 조성물은 하기 화학식 3, 화학식 4 및 화학식 5로 이루어 진 군에서 선택된 1종 이상의 조촉매 화합물올 더 포함할 수 있다.
[화학식 3]
-[Al(R)-0]n- 상기 화학식 3에서,
R은서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소 수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄 화수소이고; n은 2 이상의 정수이며;
[화학식 4]
D(R)3
상기 화학식 4에서, R은 상기 화학식 3에서 정의된 바와 같고; D는 알루미늄 또는 보론이며;
[화학식 5]
[L-H] + [ZA4]—또는 [L]+[ZA4]- ―
상기 화학식 5에서, L은 중성 또는 양이은성 루이스 산이고; H는 수 소 원자이며; Z는 13족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각 각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소: 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
상기 알파올레핀은 프로필렌, 1-부텐, 1-핵센 및 1-옥텐으로 이루어 진 군에서 선택된 1종 이상이고, 디엔은 5-에틸리덴 -2-노보넨, 5-메틸렌 _2ᅳ 노보넨, 5-비닐 -2-노보넨, 1,4ᅳ핵사디엔 및 디시클로펜타디엔으로 이루어진 군에서 선택된 1종 이상일 수 있다. 【발명의 효과】
상술한 바와 같이, 본 발명에 따르면 에틸렌-알파을레핀-디엔계 탄성 공중합체를 제조하는 공정에서 기액 분리기 (플래싱 공정) 및 스트리퍼를 순 차적으로 사용하여 중합체 용액으로부터 용매 및 미반웅 단량체를 제거하므 로 고점도 및 고분자량의 탄성 공중합체를 얻을 수 있다. 또한 본 발명은 중합체 용액으로부터 제거된 용매 및 미반웅 단량체를 회수하여 상기 탄성 중합체를 제조하기 위한 공중합에 재이용 가능하므로, 에너지 효율을 높이 면서 압출기의 전단 (shear)없이 고분자량의 EPM을 적절히 제조할 수 있다.
【도면의 간단한 설명】
도 1은 일반적인 EPDM 탄성 공중합체를 제조하기 위한 용액 중합 공 정도를 간략히 도시한 것이다.
도 2는 본 발명에 따른 EPDM 탄성 공중합체의 제조공정에서 기액 분 리기 및 스트리퍼를 순차적으로 이용한 용매 및 미반옹 단량체를 회수하는 공정을 간략히 도시한 것이다.
도 3은 본 발명에 따른 기액 분리기 및 스트리퍼를 구비한 EPDM 탄성 공중합체의 제조장치를 간략히 도시한 것이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구체적인 구현예에 따른 3원계 탄성 공중합체의 제조 방법에 관하여 상세히 설명하기로 한다.
먼저 t 본 명세서에서 사용되는 "3원계 탄성 공중합체" 는 에틸렌과, 탄소수 3 내지 20의 알파을레핀과, 디엔의 3 종의 단량체가 공중합된 임의 의 탄성 공중합체 (예를 들어, 가교 가능한 랜덤 공중합체)를 지칭할 수 있 다. 이러한 "3원계 탄성 공중합체" 의 대표적인 예로는, 에틸렌, 프로필렌 및 디엔의 공중합체인 EPDM 고무를 들 수 있다. 다만, 이러한 "3원계 탄성 공중합체" 가 단 세 가지 단량체의 공중합체만을 지칭하지는 않으며, 상기 에틸렌과 함께, 알파올레핀의 범주에 속하는 한 가지 이상의 단량체 및 디 엔의 범주에 속하는 한 가지 이상의 단량체가 공중합된 임의의 탄성 공중합 체를 포함할 수 있음은 물론이다. 예를 들어, 에틸렌과, 프로필렌 및 1-부 텐의 2종의 알파올레핀과, 에틸리덴 노보넨 및 1,4-핵사디엔의 2종의 디엔 이 공중합된 탄성 공중합체 역시, 에틸렌과, 알파을레핀과, 디엔의 범주에 각각 속하는 3종의 단량체가 공중합된 것이므로, 상기 "3원계 탄성 공중합 체" 의 범주에 속할 수 있다.
한편, 발명의 일 구현예에 따르면, 메탈로센 촉매 및 용매 존재 하에 서, 40 내지 70 중량 %의 에틸렌, 20 내지 50 중량 %의 탄소수 3 내지 20의 알파올레핀 및 0 내지 20 중량 »의 디엔을 포함하는 단량체 조성물을 중합 반웅기에서 공중합하여 에틸렌-알파올레핀-디엔계 공중합체를 포함하는 중 합체 용액을 제조하는 단계; 및 기액 분리기 및 스트리퍼를 순차적으로 사 용하여 상기 중합체 용액으로부터 용매 및 미반웅 단량체를 분리하고 에틸 렌 -알파을레핀 -디엔계 공중합체를 회수하는 단계;를 포함하는, 3원계 탄성 공중합체의 제조방법이 제공된다.
본 발명은 EPDM과 같은 에틸렌—알파올레핀 -디엔계 탄성 중합체의 제 조공정에서 반응 후 얻어진 중합체 용액으로부터 용매 및 미반웅 단량체를 회수하기 위해 기액 분리기 및 스트리퍼를 순차적으로 사용하는 것을 특징 으로 한다.
보다 구체적으로, 본 발명은 상기 기액 분리기를 통해 중합체 용액으 로부터 용매와 미반웅 단량체를 1차적으로 회수하여 에너지비용을 절감하는 특징이 있다. 또한 본 발명은 상기 기액 분리기 뒤에 순차적으로 스트리퍼 를 설치하여 수증기 분리 (steam stripping)에 의해 중합체 용액 내의 잔류 용매 및 미반웅 단량체를 2차적으로 회수하여 고점도 및 고분자량의 공중합 체를 얻을 수 있다. 따라서, 본 발명에 따라 제조된 폴리머는 첨가제와의 컴바운딩이 우수하여 제품화가 용이한 특성을 나타낸다.
또한 본 발명은 중합체를 제품화하기 위해 단일 중합 반웅기에서 제 조된 중합체 용액 증에서 용매와 미반웅 단량체, 공단량체를 EPDM을 포함한 탄성계 중합체로부터 효과적으로 분리 및 회수하고 촉매독 물질을 제거한 후 반웅기로 재순환시키는 공정을 제공할 수 있다. 이러한 공정에 따라, 본 발명은 기액 분리기 및 스트리퍼에서 분리된 용매 및 미반응 단량체를 에틸렌-알파올레핀-디엔계 탄성 공중합체를 제조하기 위한 공증합 반응에 재사용할 수 있다.
상기 기액 분리기에서는 중합체 용액 내에 포함되어 있는 전체 폴리 머를 제외한 전체 물질의 총량 중 40 내지 70 중량 ¾를 분리하여 제거하고, 상기 스트리퍼에서는 중합체 용액 내에 포함되어 있는 폴리머를 제외한 나 머지 물질의 잔량의 용매 및 미반응 단량체를 분리하여 제거하는 단계를 포 함할 수 있다.
또한 상기 스트리퍼에서는 공중합체 내에 포함되어 있는 용매 및 미 반응 단량체를 전체 공중합체 함량 대비 10 중량 % 이내가 되도록 회수하는 단계를 포함할 수 있다.
본 발명에 따르면, 기액 분리기를 거치기 전의 중합체 용액 내에 포 함된 에틸렌ᅳ알파을레핀-디엔계 공중합체의 함량은 10 내지 20 중량 ¾이고, 기액 분리기를 거친 후의 중합체 용액 내에 포함된 에틸렌 -알파올레핀 -디엔 계 공중합체의 함량은 20 내지 50 중량%일 수 있다. 즉, 정제 전의 탄성 공중합체의 함량은 10~20중량 %이고, 1차적으로 기액 분리기를 거친 후의 탄 성 공중합체의 함량은 약 20~50 중량 ¾>가 되도록 하므로, 본 발명은 기존 대 비 폴리머 함량을 더 증가시킬 수 있다. 또한 본 발명에서는 2차적으로 스 트리퍼를 통해 용매와 미반웅 단량체를 비롯하여 공단량체도 함께 모두 제 거하므로, 최종 폴리머의 점도와 분자량을 향상시킬 수 있다.
특히, 본 발명에서는 기액 분리기와 스트리퍼를 사용하되, 이들의 조 건을 특정화게 조절함으로써, 효과적으로 중합체 용액으로부터 용매와 미반 웅 단량체, 공단량체 등을 제거할 수 있다.
바람직하게, 상기 기액 분리기에서는 기액 분리기 상부의 온도 150 내지 160 °C, 압력 5 내지 10 bar의 조건 하에 중합체 용액으로부터 용매 및 미반웅 단량체를 제거하는 공정을 포함할 수 있다. 이때, 상기 기액 분 리기 상부의 온도가 150 °C 미만이거나 압력이 lObar를 초과하면, 중합체 용액으로부터 용매 및 미반웅 단량체가 원하는 양만큼 제거되지 않는 문제 가 있다. 또한, 그 온도가 160 °C를 초과하거나 5bar 미만이면 중합체 용 액으로부터 용매 및 미반웅 단량체가 원하는 양보다 많이 제거되는 문제가 있다. 또한, 상기 기액 분리기는 무수 기액 분리기를 의미한다.
또한, 상기 스트리퍼에서는 온도 140 내지 180°C 및 압력 4 내지 lObar의 조건 하에 수증기를 캐리어 가스로 가하여 기액 분리기를 거친 중 합체 용액으로부터 나머지의 용매 및 미반웅 단랑체를 제거하는 공정을 포 함할 수 있다. 이때, 상기 스트리퍼의 온도가 90 °C 미만이거나 0.3bar를 초과하면, 중합체 용액으로부터 용매 및 미반웅 단량체가 원하는 양만큼 제 거되지 않는 문제가 있다. 또한, 그 온도가 180 °C를 초과하거나 3bar 미 만이면, 중합체 용액으로부터 용매 및 미반웅 단량체를 제거하는데 필요한 스팀이 과도하게 많이 소모되는 문제가 있다.
부가하여, 본 발명의 일 구현예에 따른 탄성 공중합체의 제조방법은, 일정 함량의 단량체, 즉, 약 40 내지 70 중량 ¾, 혹은 약 50 내지 70 증량 % 의 에틸렌, 약 15 내지 55 중량 %, 혹은 약 25 내지 45 중량 %의 탄소수 3 내 지 20의 알파올레판 및 약 0.5 내지 20 중량 %, 혹은 약 2 내지 10 중량 %의 디엔을 포함한 단량체 조성물을 사용할 수 있다.
또, 본 발명에 따르면 이러한 각 단량체를 4족 전이금속을 포함한 촉 매 조성물의 존재 하에 공중합하여 에틸렌-알파을레핀-디엔계 탄성 공중합 체를 제조할 수 있다. 또, 이러한 공중합은 용액 중합, 특히, 연속 용액 중 합 방법으로 진행할 수 있다. 이때, 상술한 촉매 조성물은 이러한 용액에 용해된 균일계 촉매의 형태로 사용될 수 있다.
상기 공중합 후에는 상술한 바의 기액 분리기와스트리퍼를 순차적으 로 사용함에 따라, 중합체 용액의 정제 과정을 통해 큰 분자량 범위 및 에 틸렌의 함량을 만족하는 일 구현예의 3원계 탄성 공중합체를 높은 수율로 생산성을 향상시켜 얻을 수 있다.
또한 상기 탄성 공중합체의 제조 방법은, 반웅온도 80 내지 150 °C, 반웅압력 75 내지 120 bar에서 용액 중합으로 체류 시간 0.05 내지 0.5 시 간 동안 중합 반응을 진행하여 폴리머의 농도가 5 내지 20 중량 ¾인 에틸렌ᅳ 알파을레핀-디엔계 탄성 공중합체를 제조하는 단계를 포함한다. 본 발명에 따르면 각 단량체의 함량이 상술한 바대로 최적화된 범위로 조절됨에 따라, 각 단량체의 고분자 사슬 내의 분포는 더욱 균일하게 교대 배열될 수 있고, 이는 상기 일 구현예의 특성을 충족하는 3원계 탄성 공중합체의 효과적 제 조를 가능케 한다.
또한 본 발명의 방법은 상기 공중합체를 회수하는 단계 이후에, 공중 합체를 베일 또는 펠렛 형태로 제조하는 단계를 더 포함할 수 있다. 상기 베일 또는 펠렛 형태로 제품화하는 방법은 이 분야에 잘 알려진 방법에 의 해 이루어질 수 있다.
그러면, 이러한 일 구현예에 따른 본 발명의 에틸렌 -알파올레핀 -디엔 계 탄성 공중합체의 제조방법 중에서, EPDM 탄성 공중합체의 제조방법을 도 면을 참고하여 설명하기로 한다.
도 1은 일반적인 EPDM 탄성 공중합체를 제조하기 위한 용액 중합 공 정도를 간략히 도시한 것이다. 도 1에 도시된 바대로, EPDM 제조 공정은 크게 용매 /원료 정제의 제 1 영역, 중합체 제조의 제 2 영역, 용매 /미반응 단 량체를 분리하는 게 3영역 및 베일 /펠렛 제조의 제 4 영역으로 나눌 수 있다. 상기 제 1 영역은 원료와 중합체 제조에 사용된 후 중합체로부터 분리 된 용매와 미반응 단량체 등을 정제하는 영역이다. 상기 제 1 영역은 탄성 중합체 제조를 위한 원료와 용매가 공급되는 부분을 포함하며, 정제 과정을 수행하여 불순물을 제거할 수 있다.
또한 제 2 영역은 제 1 영역에서 정제된 원료와 용매를 이용하여 메탈 로센 촉매 조성물 존재하에서 중합체를 제조하는 영역이다. 따라서, 상기 제 2 영역에는 메탈로센 촉매가 공급될 수 있다.
상기 제 3 영역은 제 2 영역에서 제조된 중합체 용액으로부터 용매와 미반웅 단량체를 분리하여 제 4 영역으로 중합체를 보내는 단계이다.
상기 제 4 영역은 일반적으로 제 3 영역에서 분리된 중합체로부터 상기 제 3 영역에서 분리되지 않은 잔류 용매 및 미반응 단량체를 추가로 분리하 고, 수분 등을 제거한 후 제품화하는 단계를 포함한다. 또한, 상기 제 4 영 역은 펠렛이나 베일 형태로 제품을 제작하는 영역이다.
그렇지만, 종래 방법의 경우 중합체를 제품화하는 과정에서 잔류 용 매와 미반응 단량체를 분리해야 하므로, 에너지 효율이 떨어지고 고점도 및 고분자량의 탄성 중합체를 제조하는데 한계가 있다.
반면, 본 발명에서는 도 2와 같이 상기 제 3 영역에서 기액 분리기와 스트리퍼를 단계적으로 사용하여 중합체 용액으로부터 용매 및 미반응 단량 체를 완전하게 분리하고 회수하는 공정을 포함한다. 즉, 도 2는 본 발명에 따른 EPDM 탄성 공중합체의 제조공정에서 기액 분리기 및 스트리퍼를 순차 적으로 이용한 용매 및 미반응 단량체를 회수하는 공정을 간략히 도시한 것 이다.
이때, 기액 분리기는 도 2에 도시된 무수 기액 분리기를 지칭하며, 스트리퍼는 수증기가 캐리어 가스로 공급되는 스팀 스트리퍼 (steam stripper)를 지칭한다.
이러한 일 구현예에 따라, 중합체 용액의 정제 과정에서 무수 기액 분리기와 스팀 스트리퍼를 단계적으로 거치면 반웅에 사용된 용매와 미반웅 단량체, 공단량체 등이 분리되고, 분리된 용매와 미반웅 단량체 등은 회수 하여 상기 제 1 영역으로 다시 보내서 용매 /원료 정제 과정을 거쳐 제 2 영역 의 중합체 제조 과정에 재이용할 수 있는 특징이 있다.
또한, 본 발명에서는 상기 제 3 영역에서 기액 분리기와 스트리퍼를 단계적으로 사용하는 것을 제외하고, 제 1 영역, 제 2 영역 및 제 4 영역의 구 성은 이 분야에 잘 알려진 방법에 따라 수행할 수 있다.
예를 들어, 상기 제 1 영역의 용매 /원료 정제 과정은 그 방법이 특별 히 한정되지 않고 불순물을 제거하기 위한 이 분야에 잘 알려진 방법이 모 두 사용 가능하다.
또한, 본 발명에 따른 EPDM 제조과정에서 제 2 영역의 경우 상술한 바 의 메탈로센 촉매를 사용한 용액 중합을 통해 수행할 수 있다.
또한, 제 4 영역은 베일 /펠렛 제조를 위한 일반적인 공정을 통해 폴리 머의 제품화를 수행할 수 있다.
이러한 일 구현예에 따른 본 발명의 탄성 공중합체는 메탈로센 촉매 및 용매 존재 하에, 원료 공급 장치로부터 투입된 에틸렌, 탄소수 3 내지 20의 알파올레핀 및 디엔의 중합 반응으로 에틸렌 -알파을레핀 -디엔 공중합 체를 포함한 중합체 용액을 제조하기 위한 중합 반응기 ; 상기 중합 반응기 에 연결 설치되며 상기 중합체 용액으로부터 용매 및 미반웅 단량체를 1차 분리하기 위한 기액 분리기; 상기 기액 분리기와 순차적으로 연결 설치되며 상기 기액 분리기에서 용매 및 미반웅 단량체가 1차 분리된 중합체 용액으 로부터 나머지의 용매 및 미반웅 단량체를 2차 분리하고 공중합체를 회수하 기 위한 스트리퍼; 및 상기 스트리퍼로부터 회수된 공중합체를 건조하기 위 한 건조기;를 포함하는 장치를 사용하여 제조될 수 있다. 또한 본 발명의 탄성 공중합체의 제조방법은 메탈로센 촉매를 이용하여 제조하므로, 폴리머 중합체 내의 촉매를 제거하지 않아도 되는 이점이 있다.
상기 중합 반웅기는 연속 교반 장치가 구비될 수 있고, 용액 중합이 완료되면 에틸렌ᅳ프로필렌 -디엔 공중합체를 포함하는 중합체 용액을 다음 단계로 이송할 수 있는 출구를 구비할 수 있다. 상기 출구는 중합 반웅기 의 측면 상부에 설치될 수 있고, 중합 과정에서 중합체 용액이 연속적으로 배출되도록 할 수 있으며 펌프를 통해 기액 분리기로 이동될 수 있도록 한 다. 따라서 , 상기 중합 반응기와 기액 분리기 사이에는 중합 반웅기로부터 얻어진 중합체 용액을 기액 분리기로 이송시키는 수단으로 펌프가 구비될 수 있다.
또한, 상기 기액 분리기는 상기 중합 반웅기로부터 공급된 중합체 용 액으로부터 전체 용매와 미반웅 단량체 중 일부를 분리한 후, 이를 배출하 여 회수하기 위한 출구를 기액 분리기의 상부에 구비할 수 있다. 즉, 상기 기액 분리기에서 1차 분리 및 정제된 용매 및 미반응 단량체는 기액 분리기 의 상부에 연결 설치된 이송라인을 통해 원료 공급장치로 재순환될 수 있다. 또한, 상기 기액 분리기에서의 나머지의 중합체 용액은 기액 분리기 의 하부에 연결 설치된 이송라인을 통해 배출되어 스트리퍼로 이동되도록 한다. 상기 스트리퍼에서는 기액 분리기에서 1차 정제한 중합체 용액으로 부터 나머지 함량의 용매와 미반웅 단량체 등을 정제하는 과정을 수행하도 록 한다. 상기 스트리퍼에는 캐리어 가스인 수증기를 공급하기 위한 수단이 연결될 수 있고ᅳ 수증기 공급량을 제어하기 위한 제어 수단이 함께 구비될 수 있다. 또한, 상기 스트리퍼에서 2차 분리 및 정제된 용매 및 미반응 단 량체는 스트리퍼의 상부에 연결 설치된 이송라인을 통해 원료 공급장치로 재순환될 수 있다.
상기 스트리퍼에서 2차 정제 과정을 거쳐 잔류 용매와 미반웅 단량체 가 제거된 중합체는 스트리퍼의 측면 하부에 연결 설치된 이송 라인을 통해 건조기로 이동될 수 있다. 상기 건조기에서 중합체의 건조 조건은 특별히 한정되지 않고, 이 분야에 잘 알려진 조건에서 수행이 가능하다.
한편 상기 일 구현예의 3원계 탄성 공중합체의 제조방법에서, 상기 알파을레핀으로는, 프로필렌, 1-부텐, 1-핵센, 1-옥텐, 1-펜텐, 4-메틸 -1ᅳ 펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 1-트리데센, 1-테트라 데센, 1-펜타데센, 1-핵사데센 1ᅳ헵타데센, 1-노나데센, 9-메틸 -1-데센, 11-메틸 -1도데센, 12-에틸ᅳ 1-테트라데센 등의 탄소수 3 내지 20의 알파을레 핀을 1종 이상 사용할 수 있으며, 이들 중에서도 탄소수 3 내지 10의 알파 올레핀, 대표적인 예로서 프로필렌, 1-부텐, 1-핵센 또는 1-옥텐을 적절히 사용할 수 있다. 또, 상기 디엔으로는 비공액 디엔계 단량체를 사용할 수 있다. 이의 구체적인 예로는, 5-에틸리덴 -2-노보넨, 5-메틸렌 -2-노보넨, 5ᅳ 비닐 -2-노보넨 , 5-(2-프로페닐) -2-노보넨, 5-(3ᅳ부테닐) -2-노보넨, 5-(1ᅳ 메틸 -2-프로페닐) -2-노보넨, 5-(4—펜테닐) -2-노보넨, 5-(1-메틸 -3ᅳ부테 닐) —2-노보넨, 5-(5-핵세닐 )-2-노보넨, 5-(1-메틸 -4-펜테닐) —2-노보넨, 5-(2, 3-디메틸 -3-부테닐 )-2-노보넨, 5-(2-에틸 -3-부테닐) -2-노보넨, 5_(6- 헵테닐) -2-노보넨, 5— (3-메틸-핵세닐) -2-노보넨, 5-(3,4-디메틸 -4ᅳ펜테 닐) -2-노보넨, 5— (3-에틸 -4-펜테닐) -2-노보넨, 5-(7-옥테닐) -2-노보넨, 5-(2-메틸 -6-헵테닐) -2-노보넨, 5— (1,2-디메틸 -5-핵세닐) -2-노보넨, 5ᅳ (5-에틸 -5-핵세닐) -2-노보넨, 5-(1,2,3-트리메틸— 4-펜테닐) -2-노보넨, 5ᅳ 프로필리덴 -2-노보넨, 5-이소프로필리덴 -2ᅳ노보넨, 5-부틸리덴 -2—노보넨, 5-이소부틸리덴 -2-노보넨, 2, 3-디이소프로필리덴 -5-노보넨, 2-에틸리덴 -3ᅳ 이소프로필리덴 -5ᅳ노보넨, 2-프로페닐 -2, 2-노보나디엔, 1, 4-핵사디엔 또는 디시클로펜타디엔 등을 들 수 있고, 이들 중에 선택된 디엔을 1종 이상 사 용할 수 있다. 이들 중에서도 5-에틸리덴 -2-노보넨, 5-메틸렌 -2-노보넨, 5- 비닐 -2-노보넨, 1,4-핵사디엔 또는 디시클로펜타디엔을 적절히 사용할 수 있다.
또한, 본 발명에서 탄성 공중합체 제조를 위해 사용하는 상기 메탈로 센 촉매는 하기 화학식 1로 표시되는 제 1 전이금속 화합물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조성물을 사용하는 것 이 바람직하다.
[화학식 1]
Figure imgf000016_0001
상기 화학식 1 및 2에서,
Ri 내지 Ri3은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소 수 6 내지 20의 아릴 라디칼; 실릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 또는 하이드로카르빌로 치환 된 4족 금속의 메탈로이드 라디칼이고; 상기 ¾ 내지 R13 중 이웃하는 서로 다른 2 개의 그룹은 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아 릴 라디칼을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 지방족 고리 또는 향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Qi 및 Q2는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐 라 디칼; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디 칼; 탄소수 6 내지 20의 아릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디 칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 탄소수 1 내지 20의 알킬 아미도 라디칼; 탄소수 6 내지 20의 아릴 아미도 라디칼; 또는 탄소수 1 내지 20의 알킬리덴 라디칼이다.
상기 화학식 1 및 2에서, 하이드로카르빌은 하이드로카르본으로부터 수소 원자를 제거한 형태의 1가 작용기를 지칭할 수 있으며, 예를 들어, 에 틸 등의 알킬기나, 페닐 등의 아릴기를 포괄하여 지칭할 수 있다.
또, 화학식 1 및 2에서, 메탈로이드는 준금속으로 금속과 비금속의 중간적 성질을 보이는 원소로서, 예를 들어, 비소, 붕소, 규소 또는 텔루르 등을 지칭할 수 있다. 그리고, 상기 M은, 예를 들어, 티타늄, 지르코늄 또 는 하프늄 등의 4족 전이금속 원소를 지칭할 수 있다.
이들 제 1 및 제 2 전이금속 화합물 중에서, 상기 화학식 1의 제 1 전이금속 화합물로는, 하기 식의 화합물들로 이루어진 군에서 선택된 1종 이상의 화합물을 적합하게 사용할 수 있다:
Figure imgf000018_0001
상기 식에서 , ¾ 및 R3은 서로 같거나 다를 수 있으며, 각각 독립적 으로 수소 또는 메틸 라디칼이고, M은 4족 전이금속이고, ¾ 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립 적으로 메틸 라디칼, 디 메틸이미도 라디 칼 또는 염소 라디칼이다 .
또한, 나머지 화학식 2의 제 2 전이금속 화합물로는, 하기 식의 화합 물들로 이루어진 군에서 선택된 1종 이상의 화합물을 적합하게 사용할 수 있다 :
Figure imgf000019_0001
상기 식 에서, ¾ 및 ¾은 서로 같거나 다를 수 있으며, 각각 독립적 으로 수소 또는 메틸 라디칼이고, M은 4족 전이금속이고, ¾ 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립 적으로 메틸 라디칼, 디 메틸이미도 라디 칼 또는 염소 라디칼이다 .
부가하여 , 상기 촉매 조성물은 하기 화학식 3, 화학식 4 및 화학식 5 로 이루어진 군에서 선택된 1종 이상의 조촉매 화합물을 더 포함할 수 있다. [화학식 3]
-[Al(R)-0]n- 상기 화학식 3에서,
R은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소 수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄 화수소이고; n은 2 이상의 정수이며;
[화학식 4]
3
상기 화학식 4에서, R은 상기 화학식 3에서 정의된 바와 같고; D는 알루미늄 또는 보론이며;
[화학식 5]
[L-H] + [ZA4]— 또는 [L] + [ZA4]—
상기 화학식 5에서, L은 중성 또는 양이온성 루이스 산이고; H는 수 소 원자이며; Z는 13족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각 각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
이러한 조촉매 화합물에서, 상기 화학식 3으로 표시되는 화합물의 예 로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루 미녹산 등을 들 수 있다.
또, 상기 화학식 4로 표시되는 화합물의 예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알 루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -S-부틸알루 미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루 미늄, 트리페닐알루미늄, 트리— P-를릴알루미늄, 디메틸알루미늄메록시드, 디메틸알루미늄에특시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론 또는 트리부틸보론 등을 들 수 있고, 이 중에서도 트리메틸 알루미늄, 트리에틸알루미늄 또는 트리이소부틸알루미늄을 적절히 사용할 수 있다.
그리고, 상기 화학식 5로 표시되는 화합물은 브론스테드 산인 양이온 과 양립 가능한 비배위 결합성 음이온을 포함한다. 적절한 음이온은 크기가 비교적 크며 준금속을 포함하는 단일 배위결합성 착화합물을 함유하는 것이 다. 특히, 음이온 부분에 단일 붕소 원자를 함유하는 화합물이 널리 사용되 고 있다. 이러한 관점에서, 상기 화학식 5로 표시되는 화합물로는 단일 붕 소 원자를 함유하는 배위결합성 착화합물을 포함하는 음이온을 함유한 염이 적절히 사용될 수 있다.
이러한 화합물의 구체적인 예로서, 트리알킬암모늄염의 경우에는 트 리메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄 테트 라키스 (펜타폴루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (펜타플루 오로페닐)보레이트, 트리 (n-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레 이트, 트리 (2-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디 메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 η-부틸트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 벤질트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트라키스 (4-(t-부틸디 메틸실릴) -2, 3, 5, 6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트 라키스 (4—트리이소프로필실릴 )-2, 3, 5, 6-테트라플루오로페닐)보레이트, Ν,Νᅳ 디메틸아닐리늄 펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디에틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸ᅳ 2,4,6-트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 트리메틸 암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트 라키스 (2,3, 4,6-테트라플루오로페닐)보레이트, 트리 (η-부틸)암모늄 테트라 키스 (2,3, 4,6-테트라플루오로페닐)보레이트, 디메틸 (t-부틸)암모늄 테트라 키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트라키 스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디에틸아닐리늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸 -2,4,6-트리메틸아닐리 늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 데실디메틸암모늄 테 트라키스 (펜타플루오로페닐)보레이트, 도데실디메틸암모늄 테트라키스 (펜타 플루오로페닐)보레이트, 테트라데실디메틸암모늄 테트라키스 (펜타플루오로 페닐)보레이트, 핵사데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이 트, 옥타데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 에이코 실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디데실암모늄 테트라키스 (펜타플투오로페닐)보레이트, 메틸디도데실암모늄 테트라키스 (펜 타플루오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타플루오 로페닐)보레이트, 메틸디핵사데실암모늄 테트라키스 (펜타플루오로페닐)보레 이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸 디에이코실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리도데실암모늄 테트라키스 (펜타 플루오로페닐)보레이트, 트리테트라데실암모늄 테트라키스 (펜타플루오로페 닐)보레이트, 트리핵사데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에이코실 암모늄 테트라키스 (펜타플루오로페닐)보레이트, 데실디 (n-부틸)암모늄 테트 라키스 (펜타플루오로페닐)보레이트, 도데실디 (n-부틸)암모늄 테트라키스 (펜 타플루오로페닐)보레이트, 옥타데실디 (n-부틸)암모늄 테트라키스 (펜타플루 오로페닐)보레이트, Ν,Ν-디도데실아닐리늄 테트라키스 (펜타플루오로페닐)보 레이트, Ν-메틸 -Ν-도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 또는 메틸디 (도데실)암모늄 테트라키스 (펜타플루오로페닐)보레이트 등을 예 로 들 수 있다.
- 또한, 디알킬암모늄염의 경우에는, 디 -(i-프로필)암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디시클로핵실암모늄 테트라키스 (펜타플루 오로페닐)보레이트 등을 예로 들 수 있다.
그리고, 카르보늄염의 경우에는 트로필륨 테트라키스 (펜타플루오로페 닐)보레이트, 트리페닐메틸륨 테트라키스 (펜타플루오로페닐)보레이트 또는 벤젠 (디아조늄) 테트라키스 (펜타플루오로페닐)보레이트 등을 예로 들 수 있 다. 한편, 상술한 제 1 및 제 2 전이금속 화합물과, 선택적으로 조촉매 화합물을 포함하는 촉매 조성물은, 예를 들어, 상기 제 1 및 제 2 전이금속 화합물과, 상기 화학식 3 또는 화학식 4의 조촉매 화합물을 접촉시켜 흔합 물을 얻는 단계; 및 상기 흔합물에 상기 화학식 5의 조촉매 화합물을 첨가 하는 단계를 포함하는 방법으로 제조될 수 있다.
또, 상기 촉매 조성물에서, 상기 제 1 전이금속 화합물 : 제 2 전이 금속 화합물의 몰비는 약 10 : 1 내지 1 : 10으로 될 수 있고, 상기 제 1 및 제 2 전이금속 화합물을 합한 전체 전이금속 화합물 : 상기 화학식 3 또 는 화학식 4의 조촉매 화합물의 몰비는 약 1 : 5 내지 1 : 500로 될 수 있 으며, 상기 전체 전이금속 화합물 : 상기 화학식 5의 조촉매 화합물의 몰비 는 약 1 : 1 내지 1 : 10으로 될 수 있다.
상기 촉매 조성물은 반웅 용매를 추가로 포함할 수 있고, 상기 반웅 용매로는 펜탄, 핵산 또는 헵탄 등과 같은 탄화수소계 용매; 벤젠 또는 를 루엔 등과 같은 방향족계 용매 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
또, 이미 상술한 바와 같이, 상기 단량체 조성물세 포함되는 알파올 레핀으로는, 프로필렌, 1-부텐, 1-핵센, 1-옥텐, 1ᅳ펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센 또는 1-도데센 둥을 사용할 수 있으며, 상기 디엔으로는 비공액 디엔계 단량체를 사용할 수 있다. 이중에서도, EPDM 고무의 제조에 통상적으로 사용되는 단량체, 예를 들어, 상기 알파을 레핀으로서 프로필렌과, 상기 디엔으로서 5-에틸리덴 -2-노보넨, 1,4-핵사디 엔 또는 디시클로펜타디엔 등의 비공액 디엔계 단량체를 적절히 사용할 수 있다.
이러한 본 발명의 일 구현예의 방법으로 제조된 탄성 공중합체는 에 틸렌, 알파올레핀 및 디엔의 3종의 단량체가 일정한 함량 범위로 공중합된 3원계 탄성 공중합체로서, GPC로 측정하였을 때 약 100,000 내지 500,000, 혹은 약 1500,000 내지 400,000, 혹은 200,000 내지 300, 000의 비교적 큰 중량 평균 분자량을 갖는다. 이러한 큰 중량 평균 분자량은 4족 전이금속 촉매, 예를 들어, 메탈로센 계열에 속하는 상술한 화학식 1 및 2의 제 1 및 제 2 전이금속 화합물의 우수한 활성에 기인하여 달성되는 것으로서, 일 구 현예의 3원계 탄성 공중합체가 이러한 큰 분자량을 가짐에 따라, 상기 3원 계 탄성 공중합체, 예를 들어, EPDM 고무는 우수한 기계적 물성을 나타낼 수 있다.
또한 본 발명에 따른 일 구현예의 3원계 탄성 공중합체는 우수한 기 계적 물성과 함께, 보다 향상된 탄성 및 유연성 등을 동시에 층족할 수 있 다. 따라서, 상기 일 구현예의 3원계 탄성 공중합체는, 예를 들어, 메탈로 센 계열에 속하는 4족 전이금속 촉매 특유의 우수한 생산성 및 수율로 제조 될 수 있으며, 큰 분자량 및 이에 따른 우수한 기계적 물성을 충촉하면서도, 종래에 메탈로센계 4족 전이금속 촉매로 제조된 EPDM 고무가 갖던 문제점을 해결하여 우수한 탄성 및 유연성 등을 동시에 층족할 수 있다.
또한 이러한 방법에 따라 얻어진 본 발명의 일 구현예의 탄성 공중합 체는 EPDM 고무 등으로서의 적절한 물성 층족이 가능한 무늬 점도 (1+4®
125 °C) 범위, 예를 들어, 약 5 내지 150, 혹은 약 10 내지 130, 혹은 약 10 내지 120의 무늬 점도를 가질 수 있다. 이하, 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기 의 실시예는 발명을 예시하는 것일 뿐, 발명의 내용이 하기의 실시예에 의 하여 한정되는 것은 아니다.
[실시예 1 내지 10] . '
도 3과 같이 원료, 용매 및 .촉매의 투입 장치가 연결되고 연속 교반 장치가 구비된 중합 반웅기 (1), 기액 분리기 (2), 수증기 (steam)이 투입 장 치가 설치된 스트리퍼 (3) 및 건조기 (4)가 순차적으로 설치되어 있는 제조 장치를 이용하여 EPDM 탄성 중합체를 제조하였다. 도 3은 본 발명에 따른 기액 분리기 및 스트리퍼를 구비한 EPDM 탄성 공중합체의 제조장치를 간략 히 도시한 것이다.
구체적으로, 상기 중합 반응기의 측면 하부로 표 1과 같은 원료 (에틸 렌 (C2H4), 프로필렌 (C3H6) 및 5-에틸리덴 -2-노보넨 (ENB))와 용매 (핵산)를 포함하는 조성물과 다음의 촉매 조성물 (메탈로센 촉매)을 연속적으로 투입 하였다.
즉, 제 1 및 제 2 전이금속 화합물로는, 상술한 [(1,2,3,4ᅳ테트라하 이드로퀴놀린 -8-일)테트라메틸시클로펜타디에닐 -에타 5,케파 -N]티타늄 디메 틸 및 [(2-메틸인돌린 -7-일)테트라메틸시클로펜타디에닐 -에타 5,케파 -N]티타 늄 디메틸을 핵산에 용해된 상태로 사용하여 반웅기에 투입하였다. 또, 조 촉매 화합물로는 Ν,Νᅳ디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이 트를 를루엔에 용해된 상태로 반응기에 투입하였다. 또, 추가적인 조촉매 화합물로서 트리이소부틸알루미늄을 핵산에 용해된 상태로 반응기에 투입하 였다.
또한, 각 단량체와 촉매 조성물의 연속 공급이 진행되고, 중합 반웅 기의 연속 교반이 이루어지면서 용액 중합이 진행되도록 하였다. 용액 중합 이 완료되면 에틸렌-프로필렌 -디엔 공중합체를 포함하는 중합체 용액을 중 합 반웅기 (1)의 측면 상부로부터 연속적으로 배출되도록 하고 펌프를 통해 기액 분리기 (2)로 이동시켰다. 또한, 기액 분리기에서는 상기 중합체 용액 으로부터 전체 용매와 미반웅 단량체 중 일부를 분리한 후, 이를 기액 분리 기의 상부를 통해 배출시켜 회수하였다. 또한, 기액 분리기에서의 나머지 의 중합체 용액은 기액 분리기의 하부를 통해 배출시켜 스트리퍼 (3)로 이동 시켰다. 스트리퍼 (3)에는 캐리어 가스로서 수증기가 연속적으로 투입되도 록 하여 상기 기액 분리기를 거친 중합체 용액으로부터 나머지의 용매와 미 반응 단량체를 분리하였다. 상기 중합체 용액으로부터 분리된 잔류 용매와 미반응 단량체는 스트리퍼의 상부를 통해 배출시켜 회수하였고, 잔류 용매 와 미반웅 단량체가 제거된 후의 공중합체 (EPDM 탄성 공중합체)는 스트리퍼 의 하부를 통해 배출하여 건조기 (4)로 이송시켰다. 상기 건조기 (4)에서 100 °C의 온도로 4시간 동안 공중합체를 건조한 후, 이를 회수하였다. 이렇 게 회수된 공중합체는 통상의 방법으로 펠렛 형태로 제품화에 사용하였다. 또한, 상기 기액 분리기와 스트리퍼를 통해 배출되어 회수된 용매와 미반웅 단량체는 원료 공급장치로 이송시켜 에틸렌-프로필렌 -디엔 공중합체의 제조 에 재사용하였다. 또한, 표 2는 원료 투입 조건 및 반웅기 내부 조건일 때의 전환율과 촉매의 활성을 나타낸 것이다. 그리고, EPDM 탄성 공중합체의 조성과 무늬 점도 (MV)를 측정하였고, 그 결과를 표 3에 나타내었다. 또한, 전체 공정에 서의 용매와 미반웅 단량체의 제거율은 표 4와 같다.
【표 1]
Figure imgf000026_0001
【표 2】
Figure imgf000026_0002
Figure imgf000027_0001
【표 3]
Figure imgf000027_0002
Figure imgf000028_0001
상기 표 3의 결과를 보면, 본 발명은 EPDM의 무늬점도가 30 이상 (1+4®125°C)을 나타내어 고점도를 가지는 3원계 탄성 공중합체가 얻어짐을 확인할 수 있었다.
【표 4】
Figure imgf000028_0002
Figure imgf000029_0001
표 4의 결과를 통해 본 발명은 EPDM 탄성 공중합체의 제조 공정에서 기액 분리기와 스트리퍼를 순차적으로 사용함으로서, 용액 중합후 얻어진 중합체 용액으로부터 압출기의 전단 없이 미반웅 단량체와 용매를 효과적으 로 제거함을 확인하였다. 따라서, 본 발명은 기존 대비 에너지 효율을 크 게 향상시킬 수 있으며 , 고분자량의 EPDM 제품을 적절히 제조할 수 있다.

Claims

【특허청구범위】
【청구항 1】
메탈로센 촉매 및 용매 존재 하에서, 40 내지 70 중량 %의 에틸렌, 15 내지 55 중량 %의 탄소수 3 내지 20의 알파올레핀 및 0.5 내지 20 중량 ¾의 디엔을 포함하는 단량체 조성물을 중합 반웅기에서 공중합하여 에틸렌 -알파 올레핀-디엔계 공중합체를 포함하는 중합체 용액을 제조하는 단계; 및
기액 분리기 및 스트리퍼를 순차적으로 사용하여 상기 중합체 용액으 로부터 용매 및 미반웅 단량체를 분리하고 에틸렌-알파을레핀-디엔계 공중 합체를 회수하는 단계 ;
를 포함하는, 3원계 탄성 공중합체의 제조방법 .
【청구항 2】
제 1 항에 있어서,
중합체 용액 내에 포함되어 있는 전체 플리머를 제외한 전체 물질의 총량 중 40 내지 70 중량 ¾를 분리하여 제거하고,
상기 스트리퍼에서는 중합체 용액 내에 포함되어 있는 폴리머를 제외 한 나머지 물질의 잔량의 용매 및 미반응 단량체를 분리하여 제거하는 단계 를 포함하는, 3원계 탄성 공중합체의 제조방법.
【청구항 3】
게 1 항에 있어서, 상기 스트리퍼에서는 공중합체 내에 포함되어 있 는 용매 및 미반웅 단량체를 전체 공중합체 함량 대비 10 중량 ¾> 이내가 되 도록 회수하는 단계를 포함하는, 3원계 탄성 공중합체의 제조방법.
【청구항 4】
제 1 항에 있어서,
기액 분리기를 거치기 전의 중합체 용액 내에 포함된 에틸렌-알파을 레핀-디엔계 공중합체의 함량은 10 내지 20 중량 %이고, 기액 분리기를 거친 후의 중합체 용액 내에 포함된 에틸렌-알파올레핀-디엔계 공중합체의 함량 은 20 내지 50 중량 %인, 3원계 탄성 공중합체의 제조방법 .
【청구항 5]
제 1 항에 있어서,
상기 기액 분리기에서는 기액 분리기 상부의 온도 150 내지 160 °C, 압력 5 내지 10 bar의 조건 하에 중합체 용액으로부터 용매 및 미반웅 단량 체를 제거하는 공정을 포함하는, 3원계 탄성 공중합체의 제조방법.
【청구항 6】
제 1 항에 있어서,
상기 스트리퍼에서는 온도 140 내지 180°C 및 압력 4 내지 lObar의 조건 하에 수증기를 캐리어 가스로 가하여 기액 분리기를 거친 중합체 용액 으로부터 나머지의 용매 및 미반응 단랑체를 제거하는 공정을 포함하는, 3 원계 탄성 공중합체의 제조방법.
【청구항 7】
제 1 항에 있어서,
상기 기액 분리기 및 스트리퍼에서 분리된 용매 및 미반응 단량체는 에틸렌-알파을레핀—디엔계 공중합체를 제조하기 위한 공중합 반웅에 재사용 되는, 3원계 탄성 공중합체의 제조방법.
【청구항 8]
제 1 항에 있어서, 상기 공중합체를 회수하는 단계 이후에, 공중합체 를 베일 또는 펠렛 형태로 제조하는 단계를 더 포함하는, 3원계 탄성 공중 합체의 제조방법 .
[청구항 9】
제 1 항에 있어서,
상기 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 전이금속 화합 물 및 하기 화학식 2로 표시되는 제 2 전이금속 화합물을 포함하는 촉매 조 성물을 사용하는, 3원계 탄성 공중합체의 제조방법.
[화학식 1]
Figure imgf000032_0001
상기 화학식 1 및 2에서,
Ri 내지 R13은 서로 같거나 다를 수 있으며, 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디칼; 탄소 수 6 내지 20의 아릴 라디칼; 실릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 또는 하이드로카르빌로 치환 된 4족 금속의 메탈로이드 라디칼이고; 상기 Ri 내지 R13 중 이웃하는 서로 다른 2 개의 그룹은 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아 릴 라디칼을 포함하는 알킬리딘 라디칼에 의해 서로 연결되어 지방족 고리 또는 방향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Qi 및 ¾는 서로 같거나 다를 수 있으며, 각각 독립적으로 할로겐 라 디칼; 탄소수 1 내지 20의 알킬 라디칼; 탄소수 2 내지 20의 알케닐 라디 칼; 탄소수 6 내지 20의 아릴 라디칼; 탄소수 7 내지 20의 알킬아릴 라디 칼; 탄소수 7 내지 20의 아릴알킬 라디칼; 탄소수 1 내지 20의 알킬 아미도 라디칼; 탄소수 6 내지 20의 아릴 아미도 라디칼; 또는 탄소수 1 내지 20의 알킬리덴 라디칼이다.
【청구항 10】
제 1 항에 있어서, 상기 촉매 조성물은 하기 화학식 화학식 4 및 화학식 5로 이루어진 군에서 선택된 1종 이상의 조촉매 화합물을 더 포함하 는, 3원계 탄성 공중합체의 제조방법.
[화학식 3]
-[Al(R)-0]n- 상기 화학식 3에서,
R은 서로 동일하거나 다를 수 있으며, 각각 독립적으로 할로겐; 탄소 수 1 내지 20의 탄화수소; 또는 할로겐으로 치환된 탄소수 1 내지 20의 탄 화수소이고; n은 2 이상의 정수이며 ;
[화학식 4]
D(R)3
상기 화학식 4에서, R은 상기 화학식 3에서 정의된 바와 같고; D는 알루미늄 또는 보론이며;
[화학식 5]
[L-H] + [ZA4]— 또는 [L] + [ZA4]—
상기 화학식 5에서, L은 중성 또는 양이온성 루이스 산이고; H는 수 소 원자이며; Z는 13족 원소이고; A는 서로 동일하거나 다를 수 있으며, 각 각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 탄화수소, 알콕시 또는 페녹시로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
【청구항 11] 제 1 항에 있어서, 알파을레핀은 프로필렌, 1-부텐, 1-핵센 및 1-옥 텐으로 이루어진 군에서 선택된 1종 이상이고, 디엔은 5-에틸리덴 -2-노보넨, 5-메틸렌 -2-노보넨, 5-비닐 -2-노보넨, 1, 4-핵사디엔 및 디시클로펜타디엔으 로 이루어진 군에서 선택된 1종 이상인, 3원계 탄성 공중합체의 제조방법.
PCT/KR2013/009158 2013-06-10 2013-10-14 3원계 탄성 공중합체의 제조 방법 WO2014200153A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380077279.7A CN105377916B (zh) 2013-06-10 2013-10-14 制备弹性三元共聚物的方法
EP13886690.0A EP3000832B1 (en) 2013-06-10 2013-10-14 Method for preparing elastic terpolymer
US14/888,992 US9611349B2 (en) 2013-06-10 2013-10-14 Method of preparing elastic terpolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130066091A KR20140144076A (ko) 2013-06-10 2013-06-10 3원계 탄성 공중합체의 제조 방법
KR10-2013-0066091 2013-06-10

Publications (1)

Publication Number Publication Date
WO2014200153A1 true WO2014200153A1 (ko) 2014-12-18

Family

ID=52022428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009158 WO2014200153A1 (ko) 2013-06-10 2013-10-14 3원계 탄성 공중합체의 제조 방법

Country Status (5)

Country Link
US (1) US9611349B2 (ko)
EP (1) EP3000832B1 (ko)
KR (1) KR20140144076A (ko)
CN (1) CN105377916B (ko)
WO (1) WO2014200153A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015532362A (ja) 2013-06-28 2015-11-09 エルジー・ケム・リミテッド ジエンを含む三元系弾性共重合体およびその製造方法
KR101585206B1 (ko) 2013-07-22 2016-01-13 주식회사 엘지화학 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
CN104797610A (zh) * 2013-06-28 2015-07-22 株式会社Lg化学 弹性二烯三元共聚物及其制备方法
US9650460B2 (en) 2013-06-28 2017-05-16 Lg Chem, Ltd. Elastic diene terpolymer and preparation method thereof
KR101585204B1 (ko) 2013-06-28 2016-01-13 주식회사 엘지화학 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
CN105920881B (zh) * 2016-06-07 2019-03-01 中国石油集团东北炼化工程有限公司吉林设计院 乙丙橡胶生产中的脱气方法
KR102166467B1 (ko) * 2016-10-05 2020-10-16 주식회사 엘지화학 용매 분리 장치 및 용매 분리 방법
EP3971221A4 (en) * 2020-07-22 2022-09-07 Lg Chem, Ltd. METHOD AND DEVICE FOR RECOVERING A SOLVENT
KR102535166B1 (ko) * 2020-07-22 2023-05-22 주식회사 엘지화학 용매의 회수 방법 및 회수 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590026A (en) 1969-01-03 1971-06-29 Phillips Petroleum Co Recovery of polymers from solution
WO1999045047A1 (en) * 1998-03-04 1999-09-10 Exxon Chemical Patents Inc. Method for increasing diene conversion in epdm type polymerizations
KR100226175B1 (ko) 1990-12-14 2000-03-15 고오사이 아끼오 에틸렌-α-올레핀공중합체의정제방법
KR20000023714A (ko) * 1996-07-12 2000-04-25 그레이스 스티븐 에스. 중합체 회수 방법
KR100280253B1 (ko) * 1992-06-18 2001-02-01 간디 지오프레이 에이치. 에틸렌 중합체의 제조방법
KR100347975B1 (ko) * 1994-10-04 2002-11-04 비피 케미칼즈 리미티드 에틸렌및프로필렌의회수방법
KR100496101B1 (ko) 1996-07-12 2005-06-17 다우 글로벌 테크놀로지스 인크. 탄성중합체 및 그의 제조 방법
KR20080101542A (ko) * 2007-05-18 2008-11-21 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3245967A (en) * 1966-04-12 Solvent and monqmer recovery
US5191062A (en) 1991-09-27 1993-03-02 Union Carbide Chemicals & Plastics Technology Corporation Steam purging of granular epdm resins
DE69710778T2 (de) * 1996-12-17 2002-08-22 Exxonmobil Chem Patents Inc Thermoplastische polyolefinzusammensetzungen
AU3791299A (en) 1998-06-12 1999-12-30 Dow Chemical Company, The Centrifugal method and apparatus for devolatilizing polymers
JP3797987B2 (ja) * 2003-07-11 2006-07-19 Jsr株式会社 ポリマー溶液の脱溶媒方法及びポリマーの製造方法
KR100515596B1 (ko) 2005-01-25 2005-09-16 주식회사 엘지화학 올레핀 공중합체의 제조방법
KR100976131B1 (ko) 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
US7880047B2 (en) 2008-05-06 2011-02-01 Chemtura Corporation Polyalphaolefins and processes for forming polyalphaolefins
KR101262305B1 (ko) * 2009-07-01 2013-05-08 주식회사 엘지화학 전이금속 촉매를 이용한 탄성 중합체의 제조방법
EP2368917B1 (en) 2010-03-25 2013-01-09 LANXESS International SA Process for the production of water and solvent-free hydrogenated nitrile rubbers
KR101216691B1 (ko) 2010-07-23 2012-12-28 한국과학기술원 에틸렌-프로필렌 및 에틸렌-프로필렌-디엔 공중합체 제조용 이핵 메탈로센 촉매 및 이를 이용한 중합방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590026A (en) 1969-01-03 1971-06-29 Phillips Petroleum Co Recovery of polymers from solution
KR100226175B1 (ko) 1990-12-14 2000-03-15 고오사이 아끼오 에틸렌-α-올레핀공중합체의정제방법
KR100280253B1 (ko) * 1992-06-18 2001-02-01 간디 지오프레이 에이치. 에틸렌 중합체의 제조방법
KR100347975B1 (ko) * 1994-10-04 2002-11-04 비피 케미칼즈 리미티드 에틸렌및프로필렌의회수방법
KR20000023714A (ko) * 1996-07-12 2000-04-25 그레이스 스티븐 에스. 중합체 회수 방법
KR100496101B1 (ko) 1996-07-12 2005-06-17 다우 글로벌 테크놀로지스 인크. 탄성중합체 및 그의 제조 방법
WO1999045047A1 (en) * 1998-03-04 1999-09-10 Exxon Chemical Patents Inc. Method for increasing diene conversion in epdm type polymerizations
KR20080101542A (ko) * 2007-05-18 2008-11-21 주식회사 엘지화학 공중합성이 뛰어난 전이금속 촉매를 이용한 올레핀중합체의 제조 방법

Also Published As

Publication number Publication date
CN105377916A (zh) 2016-03-02
US9611349B2 (en) 2017-04-04
US20160145367A1 (en) 2016-05-26
CN105377916B (zh) 2017-04-12
KR20140144076A (ko) 2014-12-18
EP3000832A4 (en) 2017-01-04
EP3000832A1 (en) 2016-03-30
EP3000832B1 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
WO2014200153A1 (ko) 3원계 탄성 공중합체의 제조 방법
RU2643149C2 (ru) Способы полимеризации для высокомолекулярных полиолефинов
WO2009064452A2 (en) Ethylene polymers
KR101339391B1 (ko) 올레핀계 공중합체 및 이의 제조방법
US10280293B2 (en) Thermoplastic elastomer composition and method for producing same
EP3223939B1 (en) Methods of controlling polyolefin melt index while increasing catalyst productivity
CN113498414A (zh) 包括遥爪聚烯烃的可固化组合物
KR101633076B1 (ko) 3원계 탄성 공중합체의 제조 방법
US8946362B2 (en) Process for preparation of olefin polymers
KR101011497B1 (ko) 초저밀도 폴리올레핀 공중합체의 제조 방법
WO2014208823A1 (ko) 디엔을 포함하는 3원계 탄성 공중합체 및 이의 제조 방법
KR101587189B1 (ko) 폴리올레핀계 삼원 공중합체 및 이의 제조방법
RU2494112C2 (ru) Этиленовые терполимеры
TWI667250B (zh) 金屬配位體錯合物、含有其的用於乙烯系聚合作用之催化劑組合物、以及使用其製備乙烯系聚合物的方法
CN113454091A (zh) 包括不饱和聚烯烃的可固化组合物
KR102214265B1 (ko) 증가된 생산성을 갖는 촉매 시스템의 제조 방법
KR101828001B1 (ko) 두 개의 중심 금속을 갖는 유기 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
KR101675150B1 (ko) 3원계 탄성 공중합체의 제조 방법
KR101367403B1 (ko) 점착성이 뛰어난 에틸렌-알파올레핀 공중합체 및 이의 제조 방법
CN114302899A (zh) 聚乙烯及其氯化聚乙烯
KR20140033760A (ko) 폴리올레핀계 공중합체 및 이의 제조방법
KR20130044641A (ko) 높은 실링강도를 가지는 탄성 폴리올레핀 공중합체를 이용한 음료 포장용 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013886690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14888992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE