WO2014199769A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2014199769A1
WO2014199769A1 PCT/JP2014/062926 JP2014062926W WO2014199769A1 WO 2014199769 A1 WO2014199769 A1 WO 2014199769A1 JP 2014062926 W JP2014062926 W JP 2014062926W WO 2014199769 A1 WO2014199769 A1 WO 2014199769A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
angle
magnet
small
rotor portion
Prior art date
Application number
PCT/JP2014/062926
Other languages
English (en)
French (fr)
Inventor
盛幸 枦山
大穀 晃裕
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112014002763.4T priority Critical patent/DE112014002763B8/de
Priority to JP2015522668A priority patent/JP5951131B2/ja
Priority to CN201480033032.XA priority patent/CN105324918B/zh
Priority to US14/895,776 priority patent/US9825495B2/en
Publication of WO2014199769A1 publication Critical patent/WO2014199769A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • a rotor core in which two permanent magnets are embedded in a V shape per pole is composed of first and second divided rotor cores divided in the axial direction, and the circumferential width of the magnetic path forming portion Is known as an interior magnet type motor set differently between the first and second divided rotor cores (see, for example, Patent Document 1).
  • the embedded magnet type motor can reduce the cogging torque, but the permanent magnet at the center in the axial direction has a smaller heat dissipation path than other parts, and the temperature rises easily. There was a problem of demagnetization due to the temperature rise of the magnet. Also, when the temperature distribution in the axial direction of the permanent magnet is large, there is a correlation between the temperature of the permanent magnet and the induced voltage of the motor, but the induced voltage can be measured only by the magnetic flux due to the average temperature of the permanent magnet. Therefore, if the temperature distribution of the permanent magnets in the axial direction is large, the temperature of each permanent magnet cannot be predicted.
  • the rotating electrical machine since the rotor portion having a large heat generation angle and a large magnet end angle is disposed toward the center of the axis, demagnetization due to a temperature increase of the permanent magnet is suppressed, and The temperature distribution of the permanent magnet in the axial direction can be reduced.
  • the rotating electrical machine according to the present invention since the rotor portion having a large heat generation angle and a large magnet end angle is arranged from the upstream to the downstream of the ventilation path, the demagnetization due to the temperature rise of the permanent magnet is reduced. It is possible to suppress the temperature distribution of the permanent magnet in the axial direction.
  • FIG. 1 It is a principal part front sectional view which shows the motor in Embodiment 1 of this invention. It is a principal part enlarged view which shows the motor of FIG. (A) is a cross-sectional side view of a main part showing the rotor of FIG. 1, (b) is a main cross-sectional view showing a small rotor part of FIG. 3 (a), and (c) is a cross-sectional view of FIG. It is a principal part front sectional view which shows a square large and small rotor part. It is a figure which shows the relationship between the magnet both-ends angle and cogging torque amplitude in each frequency component. It is a figure which shows the relationship between a magnet both-ends angle and the torque per magnet eddy current loss.
  • FIG. 10 is a diagram illustrating a relationship between magnet end angles and torque per magnet eddy current loss in the motor of FIG. 9. It is a figure which shows the relationship between the electrical angle position and cogging torque in the motor of FIG. It is a principal part front sectional view which shows the motor in Embodiment 3 of this invention. It is a figure which shows the heat path
  • the stator coil is composed of three-phase windings (U-phase, V-phase, W-phase) wound on the teeth 5, one of the windings of each phase being on the inverter side and the other of the leads being a It is connected to the neutral wire of another phase as a sex wire.
  • the rotor 2 is embedded in a rotating shaft 7, a rotor core 8 fixed to the rotating shaft 7 by press-fitting, shrink fitting, or a key, and an outer peripheral side of the rotor core 8 with a circumferential interval.
  • a permanent magnet group 9 including a first permanent magnet 10 and a second permanent magnet 11 having two rectangular shapes per pole.
  • the rotor core 8 formed by laminating thin steel plates is formed with a plurality of magnet housing holes 25 extending in the axial direction and housing the first permanent magnet 10 and the second permanent magnet 11.
  • the first permanent magnet 10 and the second permanent magnet 11 housed in the respective magnet housing holes 25 are arranged such that the circumferential distance between them is increased along the radially outer direction.
  • N poles and S poles are alternately set along the circumferential direction as shown in FIG. 2, and the arrows in the figure indicate the orientations of the permanent magnets 10 and 11. ing.
  • a gap 26 is formed at both ends of the magnet housing hole 25, and the so-called leakage magnetic flux that goes directly from the N pole to the S pole adjacent to each other between the adjacent permanent magnet groups 9 by the gap 26. Is suppressed.
  • FIG. 3A is a side sectional view of the main part showing the rotor 2 of FIG. 1
  • FIG. 3B is a front sectional view of the main part showing the small rotor part 13 of FIG. 3A
  • FIG. It is a principal part front sectional view which shows the square large rotor part 12 of the motor of (a).
  • the rotor 2 has magnet end angles ⁇ 1 and ⁇ 2 that are plane angles between lines connecting the outermost peripheral ends of the first permanent magnet 10 and the second permanent magnet 11 facing each other and the axis of the rotor 2. Are formed by stacking the small-angle rotor portion 13 and the large-angle rotor portion 12 which are different from each other.
  • the rotor 2 of the motor of FIG. 1 is laminated in three layers in the order of a small-angle rotor portion 13, a large-angle rotor portion 12, and a small-angle rotor portion 13 along the axial direction.
  • FIG. 6 shows respective cogging torque waveforms of a motor having a magnet end angle of 123 degrees in electrical angle and a motor in which the magnet end angle is in combination of 104 degrees and 138 degrees.
  • the thick line in the figure is a rotor with a magnet end angle of 123 degrees
  • the broken line is a stack of a small rotor part 13 with a magnet end angle of 104 degrees and a large rotor part 12 with a magnet end angle of 138 degrees with the same axial length. Shows the case.
  • the cogging torque is smaller in the case where the small-angle rotor portion 13 and the large-angle rotor portion 12 are laminated than in the case where the magnet end angle is 123 degrees in electrical angle.
  • FIG. 7 is a cross-sectional view of the motor cut along the axial direction.
  • the motor in this figure is a so-called fully-closed motor, not a configuration that directly cools the outside air.
  • the rotor 2 stacked in three layers in the order of the small-angle rotor portion 13, the large-angle rotor portion 12, and the small-angle rotor portion 13 along the axial direction is housed in a cylindrical frame 15. .
  • the axial length of the large-angle rotor portion 12 and the total axial length of the pair of small-angle rotor portions 13 are the same.
  • the rotor 2 is rotatably supported by the frame 15 at both ends of the rotating shaft 7 via bearings 16.
  • reference numeral 14 denotes a coil end of the stator coil.
  • the middle part of the rotor is compared with both sides. As a result, the heat dissipation path is restricted, and the temperature becomes higher than both sides.
  • the permanent magnet using neodymium there is a problem that the magnet is demagnetized as the temperature increases, and the permanent magnet eddy current loss generated by the magnetic flux of the stator coil generated in the stator 1 depends on the position in the axial direction. does not change. Therefore, since there are few heat dissipation paths in the central portion of the rotor in the axial direction, the permanent magnet temperature becomes high, and the permanent magnet is easily demagnetized.
  • the small rotor 13 having a larger amount of heat generation than the large rotor 12 is provided on both sides of the rotor 2 having the heat dissipation paths A and B and excellent in heat dissipation.
  • the large-angle rotor portion 12 having a heat generation amount smaller than that of the small-angle rotor portion 13 is disposed in the intermediate portion of the rotor 2 having poor heat dissipation. Therefore, the temperature rise at the intermediate portion in the axial direction of the rotor 2 can be suppressed, and the heat from the small-angle rotor portion 13 having a large calorific value is also efficiently released from the heat radiation paths i and b.
  • FIG. 8 shows a small angle rotor portion 13 when the magnet end angle ⁇ 1 is 123 degrees in electrical angle and a large angle rotor portion 12 when the magnet end angle ⁇ 2 is 138 degrees in electrical angle.
  • the motor of the first embodiment which is laminated in the order of the section 13, the large-angle rotor section 12, and the small-corner rotor section 13, and the motor of the comparative example in which both end angles of the magnet are equal to the electrical angle of 123 degrees along the axial direction.
  • FIG. 2 is a diagram showing the relationship between the axial length and the permanent magnet temperature.
  • the motor of the first embodiment can reduce the temperature distribution of the permanent magnets 10 and 11 in the axial direction as compared with the motor of the comparative example, and as shown in FIG. Torque can be reduced.
  • FIG. FIG. 9 is a front sectional view of an essential part showing a motor according to Embodiment 2 of the present invention.
  • the rotor 2 includes a rotor core 8 and a plurality of permanent magnets having one rectangular shape per pole embedded in the circumferential direction on the outer peripheral side of the rotor core 8 at intervals in the circumferential direction. 18.
  • the rotor core 8 formed by laminating thin steel plates is formed with a plurality of magnet housing holes 25 that house the permanent magnets 18 extending in the axial direction.
  • the permanent magnets 18 housed in the magnet housing holes 25 are arranged so that the perpendicular bisector of the permanent magnet 18 passes through the axis of the rotor 2.
  • the permanent magnet 18 has N poles and S poles alternately set along the circumferential direction. Note that gaps 26 are formed at both ends of the magnet housing hole 25, and so-called leakage magnetic flux that directly goes from the N pole to the adjacent S pole between the adjacent permanent magnets 18 by the gap 26. It is suppressed.
  • FIG. 10 is a diagram showing the relationship between the magnet end angles and the cogging torque amplitude in each frequency component in the rotor 2 having the permanent magnet 18.
  • the cogging torque is the smallest when the magnet end angle ⁇ 3 is around 123 degrees at each frequency.
  • the cogging torque increases negatively, and when the magnet end angle is less than ⁇ 3.
  • the cogging torque is positively increasing.
  • FIG. 11 shows the relationship between the torque per magnet eddy current loss and the both end angles of the magnet. Torque condition 1 shows the case of low rotation, and torque condition 2 shows the case of high rotation. The larger the value of the torque per magnet eddy current loss, the more the heat generated by the magnet per torque. It is small.
  • the torque per magnet eddy current loss is the smallest in the vicinity of the magnet end angle of 120 degrees, and the torque per eddy current loss of the permanent magnet 18 is large in both cases smaller and larger than 120 degrees.
  • the calorific value is the largest in the vicinity of the magnet end angle of 120 degrees.
  • torque condition 2 (during high rotation), the rate of increase in torque per magnet eddy current loss is greater when the magnet end angle is greater than 120 degrees compared to when it is smaller.
  • FIG. 12 shows a motor having a rotor with a magnet end angle of 120 degrees in electrical angle, a small rotor section 13 with a magnet end angle of 104 degrees and a large rotor section 12 with a magnet end angle of 138 degrees.
  • FIG. 4 is a diagram showing cogging torque waveforms with a motor having the same axis length and stacked. As in the motor of the first embodiment, the case where the small-angle rotor portion 13 and the large-angle rotor portion 12 are combined at a length of 1: 1 in the axial direction is shown. From this figure, it can be seen that the cogging torque is smaller in the motor of this embodiment than in the motor having the same magnet end angle.
  • the small rotor portion 13, the large rotor portion 12, and the small rotor portion 13 are laminated in this order in the axial direction in three layers, and the rotor 2 with poor heat dissipation efficiency is stacked. Since the large-angle rotor portion 12 having a smaller heat generation amount than that of the small-angle rotor portion 13 is arranged in the middle portion of the rotor 2 at a high speed, the temperature in the axial direction of the rotor 2 is the same as in the first embodiment. The distribution is reduced and local thermal demagnetization can be suppressed.
  • both-ends angle of the magnet of the large-angle rotor portion 12 is 130 degrees
  • the both-end angles of the small-rotor portion 13 are 110 degrees. It is a sandwiched value, and the cogging of the motor can be greatly reduced.
  • FIG. 13 is a front sectional view of an essential part showing a motor according to Embodiment 3 of the present invention.
  • the rotor 2 is embedded in a rotating shaft 7, a rotor core 8 fixed to the rotating shaft 7 by press-fitting, shrink fitting, or a key, and an outer peripheral side of the rotor core 8 with a circumferential interval.
  • a permanent magnet group 33 including a first permanent magnet 30, a second permanent magnet 31, and a third permanent magnet 32 having three rectangular shapes per pole is provided.
  • the rotor core 8 formed by laminating thin steel plates has a plurality of magnet housing holes 25 extending in the axial direction and housing the first permanent magnet 30, the second permanent magnet 31, and the third permanent magnet 32. Is formed.
  • the first permanent magnet 30 and the third permanent magnet 32 positioned on both sides of the second permanent magnet 31 are opposed to each other along the radially outward direction with a circumferential distance increased.
  • the concave-shaped permanent magnet group 33 has N poles and S poles alternately set along the circumferential direction, and the arrows in the figure indicate the orientations of the permanent magnets 30, 31, and 32. Is shown.
  • a gap 26 is formed at both ends of the magnet housing hole 25, and the gap 26 suppresses leakage magnetic flux from the N pole to the S pole immediately adjacent to the adjacent permanent magnet group 33. Is done.
  • the rotor 2 includes two types of large-diameter rotor portions 12 having different corner angles, which are plane angles between lines connecting the outermost end portions of the permanent magnet group 33 and the axis of the rotor 2, respectively.
  • the rotor portion 13 is laminated.
  • the rotor 2 of this embodiment is laminated in three layers in the order of the small-angle rotor portion 13, the large-angle rotor portion 12, and the small-angle rotor portion 13 along the axial direction. Further, the values of the magnet end angles of the large angle rotor portion 12 and the small angle rotor portion 13 are values sandwiching the magnet end angles at which the cogging torque is minimized.
  • Other configurations are the same as those of the motor of the first embodiment.
  • the motor of this embodiment also has a smaller temperature distribution in the axial direction of the rotor 2 and can suppress local thermal demagnetization.
  • the value of the magnet end angle of each of the large angle rotor portion 12 and the small angle rotor portion 13 is a value sandwiching the magnet end angle at which the cogging torque is minimized, which can greatly reduce the cogging of the motor. it can.
  • FIG. FIG. 14 is a cross-sectional view of the motor of the fourth embodiment cut along the axial direction.
  • the rotor 2 in which the small-angle rotor portion 13 and the large-angle rotor portion 12 are stacked in two layers along the axial direction is housed in a cylindrical frame 15.
  • the rotor 2 is rotatably supported by the frame 15 at both ends of the rotating shaft 7 via bearings 16.
  • the lengths of the small-angle rotor portion 13 and the large-angle rotor portion 12 in the axial direction are the same.
  • cooling fans (not shown) are fixed to both end faces of the rotor core 8.
  • a plurality of ventilation paths 20 extending in the axial direction are formed at equal intervals in the circumferential direction inside the permanent magnet group 9.
  • a plurality of grooves 21 extending in the axial direction are formed on the inner wall surface of the frame 15 at equal intervals in the circumferential direction.
  • the cooling air generated by the rotation of the cooling fan is guided by the guide 19 and circulates through the ventilation path 20, the groove 21 and the ventilation path 20, and heat from the rotor 2 and the stator 1 passes through the frame 15. Released to the outside.
  • the small-angle rotor portion 13 of this embodiment is the same as the small-angle rotor portion 13 of the first embodiment having the permanent magnet group 9, and the large-angle rotor portion 12 has the permanent magnet group 9. This is the same as the large-angle rotor portion 12 of the first embodiment.
  • the heat generation amount of the small rotor portion 13 is larger than the heat generation amount of the large rotor portion 12, and the small rotor portion 13 is located upstream of the cooling air.
  • the large-angle rotor portion 12 is disposed on the downstream side.
  • Other configurations are the same as those of the motor of the first embodiment.
  • the small-angle rotor portion 13 having a large heat generation amount is arranged on the upstream side of the cooling air fan C, and the small-angle rotor portion 13 is located on the upstream side where the temperature of the cooling air air is low. Therefore, the cooling is performed more efficiently, and the temperature increase of the small rotor portion 13 is suppressed. Therefore, as in the first embodiment, the temperature distribution in the axial direction of the rotor 2 is reduced, and local thermal demagnetization can be suppressed. Further, since the difference between the maximum temperature and the average temperature of the permanent magnet group 9 is small, it is easy to estimate the temperatures of the permanent magnets 10 and 11 from the induced voltage of the motor and the amount of magnetic flux.
  • the permanent magnet is composed of three rectangular permanent magnets 30, 31, 32 per pole.
  • the small-angle rotor portion 13 and the large-angle rotor portion 12 having the magnet group 33 Even in the small-angle rotor portion 13 and the large-angle rotor portion 12 having the magnet group 33, the small-angle rotor portion 13 on the upstream side and the large-angle rotor portion coaxial with the small-angle rotor portion 13 on the downstream side.
  • positioned 12 may be sufficient.
  • the rotor 2 according to the first to third embodiments described above is a structure in which the small-angle rotor portion 13, the large-angle rotor portion 12, and the small-angle rotor portion 13 are stacked in three layers in this order.
  • Three types of rotor parts, small-angle rotor part, small-corner rotor part, and large-corner rotor part, with different angle at both ends are aligned, small-rotor part, small-corner rotor part, large-angle rotor part, large-angle rotor part It may be a rotor composed of a 5-layer rotor portion in which the rotor portion and the small-angle rotor portion are stacked.
  • the angled rotor part means that the size of the magnet end angle is between the magnet end angle of the large rotor part and the magnet end angle of the small rotor part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 このモータでは、回転子は、対向した永久磁石のそれぞれの最外周側端部と回転子の軸心とを結ぶ線間の平面角である磁石両端角がそれぞれ異なる角小回転子部及び角大回転子部で構成され、かつ軸線に沿って角小回転子部、角大回転子部及び角小回転子部の順序で3層に積層して構成されているので、永久磁石の温度上昇による減磁を抑制し、また軸線方向の永久磁石の温度分布を小さくした回転電気を得る。

Description

回転電機
 この発明は、例えば電気自動車、ハイブリッド車等の駆動用モータに関し、特に回転子コアの外周部に永久磁石が埋設された回転電機に関するものである。
 従来、永久磁石が1極当り2個V字状に埋め込まれた回転子コアが、軸方向に分割された第1及び第2の分割回転子コアで構成され、磁路形成部の周方向幅は、第1及び第2の分割回転子コアで異なるように設定された埋込磁石型モータが知られている(例えば、特許文献1参照)。
特開2006-115584号公報
 上記埋込磁石型モータは、コギングトルクの低減を図ることができるが、軸線方向の中心部の永久磁石については、他の部位と比較して放熱経路が少なく温度が上昇し易いために、永久磁石の温度上昇により減磁してしまうという問題点があった。
 また、永久磁石の軸線方向の温度分布が大きい場合に、永久磁石の温度とモータの誘起電圧との間には相間関係があるが、誘起電圧については永久磁石の平均温度による磁束でしか測定できないために軸線方向の永久磁石の温度分布が大きいと、各永久磁石の温度を予測できないという問題点もあった。
 この発明は、かかる問題点を解決することを課題とするものであって、永久磁石の温度上昇による減磁を抑制し、また軸線方向の永久磁石の温度分布を小さくした回転電気を得る。
 この発明に係る回転電機は、各永久磁石群は、1極の周方向中心に対して対称に配置され、回転子は、対向した前記永久磁石のそれぞれの最外周側端部と回転子の軸心とを結ぶ線間の平面角である磁石両端角がそれぞれ異なる複数の回転子部を積層して構成され、かつ軸線の中心部に向かうに従ってより前記磁石両端角の大きな前記回転子部が配置されている。
 また、この発明に係る回転電機は、各永久磁石群は、1極の周方向中心に対して対称に配置され、回転子は、対向した前記永久磁石のそれぞれの最外周側端部と回転子の軸心とを結ぶ線間の平面角である磁石両端角がそれぞれ異なる複数の回転子部を積層して構成され、かつ通風路の上流から下流に向かうに従ってより前記磁石両端角の大きな前記回転子部が配置されている。
 この発明に係る回転電機によれば、軸線の中心部に向かうに従って発熱量が小さい、磁石両端角の大きな回転子部が配置されているので、永久磁石の温度上昇による減磁が抑制され、また軸線方向の永久磁石の温度分布を小さくすることができる。
 また、この発明に係る回転電機によれば、通風路の上流から下流に向かうに従って発熱量が小さい、磁石両端角の大きな回転子部が配置されているので、永久磁石の温度上昇による減磁を抑制し、また軸線方向の永久磁石の温度分布を小さくすることができる。
この発明の実施の形態1におけるモータを示す要部正断面図である。 図1のモータを示す要部拡大図である。 (a)は図1の回転子を示す要部側断面図、(b)は図3(a)の角小回転子部を示す要部正断面図、(c)は図3(a)の角大小回転子部を示す要部正断面図である。 各周波数成分における磁石両端角とコギングトルク振幅との関係を示す図である。 磁石両端角と磁石渦電流損当りのトルクとの関係を示す図である。 図1のモータにおける電気角位置とコギングトルクとの関係を示す図である。 図1のモータの回転子における熱経路を示す図である。 図1のモータにおける軸長と永久磁石温度との関係を示す図である。 この発明の実施の形態2におけるモータを示す要部正断面図である。 図9のモータにおける磁石両端角とコギングトルク振幅との関係を示す図である。 図9のモータにおける磁石両端角と磁石渦電流損当りのトルクとの関係を示す図である。 図9のモータにおける電気角位置とコギングトルクとの関係を示す図である。 この発明の実施の形態3におけるモータを示す要部正断面図である。 この発明の実施の形態4のモータの回転子における熱経路を示す図である。
 以下、この発明の各実施の形態について図に基づいて説明するが、各図において、同一または相当部材、部位については同一符号を付して説明する。
 実施の形態1.
 図1はこの発明の実施の形態1における回転電機であるモータを示す要部正断面図、図2は図1のモータを示す要部拡大図である。
 このモータは、円環状のコアバック4から周方向に間隔をおいてそれぞれ径方向内方に延設された各ティース5によって形成された12個のスロット6を有する固定子コア3、及び各スロット6に巻装された固定子コイル(図示せず)を有する固定子1と、この固定子1の内周側に固定子コア3と同軸に回転可能に配設された回転子2と、を備えている。
 固定子コア3は、薄板鋼板を積層して構成されている。
 固定子コイルは、ティース5に券装された3相の巻線(U相、V相、W相)で構成され、各相の巻線の導線の一方はインバータ側に、導線の他方は中性線として他の相の中性線と接続されている。
 回転子2は、回転軸7と、この回転軸7に圧入、焼き嵌めもしくはキーなどで固定された回転子コア8と、この回転子コア8の外周側に周方向に間隔をおいて埋設され1極当り2個の矩形状をした、第1の永久磁石10及び第2の永久磁石11からなる永久磁石群9と、を有している。
 薄板鋼板を積層して構成された回転子コア8には、軸線方向に延び第1の永久磁石10及び第2の永久磁石11を収納した複数の磁石収納孔25が形成されている。各磁石収納孔25に収納された、第1の永久磁石10及び第2の永久磁石11は、径外側方向に沿って互いに周方向の離間距離が拡がって配置されている。
 V形状の永久磁石群9は、図2に示すように周方向に沿ってN極とS極とが交互に設定されており、図中の矢印は、各永久磁石10,11の配向を示している。
 なお、磁石収納孔25の両端部には、空隙部26が形成されているが、この空隙部26により、隣接した永久磁石群9間でN極から近接したS極に直接向かう、所謂洩れ磁束が抑制されている。
 図3(a)は図1の回転子2を示す要部側断面図、(b)は図3(a)の角小回転子部13を示す要部正断面図、(c)は図3(a)のモータの角大回転子部12を示す要部正断面図である。
 回転子2は、対向した第1の永久磁石10及び第2の永久磁石11の最外周側の両端部と回転子2の軸心とを結ぶ線間の平面角である磁石両端角θ1,θ2がそれぞれ異なる角小回転子部13、角大回転子部12を積層して構成されている。
 図3(b)に示す角小回転子部13の磁石両端角θ1は、図3(c)に示す角大回転子部12の磁石両端角θ2よりも小さい。
 図1のモータの回転子2は、軸線方向に沿って、角小回転子部13、角大回転子部12及び角小回転子部13の順序で3層に積層されている。
 上記構成のモータは、固定子1の固定子コイルに三相交流電流を流すことで固定子1には回転磁界が生じ、この回転磁界が回転子2の永久磁石群9を引っ張ることで、回転子2は、回転軸7を中心にして回転する。
 図4は、本願発明者が電磁気解析により求めた、各周波数成分における磁石両端角とコギングトルク振幅との関係を示す図である。
 図4において、磁石両端角を電気角換算で横軸に示しており、コギングトルクの各周波数成分は電気角120度付近(磁石両端角θ3)で最も小さくなり、電気角120度以下では正の方向、120度以上では負の方向に増加している。
 ここで、コギングトルクの正負については、各周波数成分の位相が180度反転していることを示したものであり、今回は磁石両端角が電気角100度の6f成分(f:基本周波数)を正方向と定義して示している。
 例えば、磁石両端角が電気角110度の回転子と130度の回転子とでは、コギングトルク6f、12f、18fの大きさがほぼ等しく、位相が180度反転(正負方向に同じ大きさ)のため、磁石両端角が例えば電気角110度のものと130度のものとを同じ軸長分積み重ねることにより、コギングトルクは低減される。
 図5は、本願発明者が電磁気解析により求めた、磁石両端角と永久磁石の渦電流損当りのトルクとの関係を示す図である。
 図5においては、トルク条件1は低回転の場合、トルク条件2は高回転の場合を示しており、2種類の条件は、ともに磁石両端角が電気角で123度の場合を基準として示したものである。
 同図より、永久磁石の渦電流損当りのトルクはトルク条件によらず単調に増加しており、磁石両端角が大きい程大きくなる。
 即ち、磁石両端角θ1が小の角小回転子部13は、磁石両端角θ2が大の角大回転子部12よりも発熱量が大である。
 次に、磁石両端角が電気角で123度のモータと磁石両端角が電気角で104度と138度の2種類を組み合わせたモータとのそれぞれのコギングトルク波形を図6に示す。
 同図の太線は磁石両端角123度の回転子であり、破線は磁石両端角104度の角小回転子部13及び磁石両端角138度の角大回転子部12を軸線長が同じで積層した場合を示している。
 コギングトルク波形を比較すると、磁石両端角が電気角で123度の場合に比べて、角小回転子部13及び角大回転子部12を積層したもののほうがコギングトルクは小さくなることが分かる。
 次に、回転子2の内部で発生する熱の放熱経路について図7を用いて説明する。
 図7はモータを軸線方向に沿った切断断面図であって、この図のモータは、外気とは直接冷却する構成ではなく、所謂全閉モータである。
 軸線方向に沿って、角小回転子部13、角大回転子部12及び角小回転子部13の順序で3層に積層された回転子2は、円筒形状のフレーム15内に収納されている。角大回転子部12の軸線長さと、一対の角小回転子部13の合計の軸線長さとは同じである。回転子2は、その回転軸7の両端部が軸受16を介してフレーム15に回転自在に支持されている。なお、図中14は、固定子コイルのコイルエンドである。
 回転子2の角大回転子部12の熱は、主に放熱経路イに示すように回転軸7に伝わり、回転軸7を通じて外部に放出される。
 一方、回転子2の角小回転子部13の熱は、回転軸7の放熱路イを通じて外部に放熱されるとともに、放熱経路ロに示すように直接周囲の空気中に放出され、空気、フレーム15等を介して外部に放熱される。
 なお、固定子1と回転子2との間にも隙間17が存在しているため、回転子2の発熱の一部は隙間17を介しても外部に放熱される。
 このように、回転子2の両側に配置された角小回転子部13では、放熱経路イ,ロがあるのに対して、回転子2の中間部に配置された角大回転子部12では放熱経路イが主である。
 ところで、回転子の軸線方向の長さが長い場合であって、磁石両端角の電気角が軸線に沿って一律の場合の回転子を用いた場合に、回転子の中間部では、両側と比較して放熱経路が制約され、両側と比較して温度が高くなってしまう。
 一方で、ネオジムを用いた永久磁石では、高温になるほど減磁してしまうという課題があり、また固定子1で発生する固定子コイルの磁束によって発生する永久磁石渦電流損失は、軸線方向位置によって変わらない。
 そのため、回転子の軸線方向の中央部では放熱経路が少ないために、永久磁石温度が高くなってしまい、永久磁石が減磁し易くなる。
 これに対して、この実施の形態のモータでは、発熱量が角大回転子部12よりも大きい角小回転子部13を、放熱経路イ,ロを有し放熱性の優れた回転子2の両側に配置し、発熱量が角小回転子部13よりも小さい角大回転子部12を、放熱性の劣った回転子2の中間部に配置している。
 従って、回転子2の軸線方向の中間部での温度上昇を抑えることができ、かつ発熱量が大きい角小回転子部13からの熱も放熱経路イ,ロから効率よく放出される。
 図8は、磁石両端角θ1が電気角で123度の場合の角小回転子部13と、磁石両端角θ2が電気角で138度の場合の角大回転子部12とを、角小回転子部13、角大回転子部12及び角小回転子部13の順序で積層した、実施の形態1のモータと、軸線方向に沿って磁石両端角が電気角123度で一律の比較例のモータとにおいて、軸長と永久磁石温度との関係を示した図である。
 図8から分かるように、実施の形態1のモータは、比較例のモータと比較して軸線方向の永久磁石10,11の温度分布を小さくすることができ、かつ図6に示すように、コギングトルクを低減することができる。
 また、永久磁石10,11の最高温度を低減することができるため、局所的な発熱による磁石減磁を抑えることができる。
 また、モータの永久磁石温度を磁束でモニタする場合には、磁束量はモータの平均温度(図8に図示)でしかモニタできない。
 このため、比較例のモータの場合には永久磁石の軸線方向の温度分布が大きく、最高温度と平均温度の差が大きくなってしまうが、実施の形態1のモータでは、永久磁石10,11の最高温度と平均温度の差が小さいため、モータの誘起電圧や磁束量から永久磁石10,11の温度を推定することが容易となる。
 実施の形態2.
 図9はこの発明の実施の形態2におけるモータを示す要部正断面図である。
 この実施の形態では、回転子2は、回転子コア8と、この回転子コア8の外周側に周方向に間隔をおいて埋設された1極当り1個の矩形状をした複数の永久磁石18と、を有している。
 薄板鋼板を積層して構成された回転子コア8には、軸線方向に延びた永久磁石18を収納した複数の磁石収納孔25が形成されている。各磁石収納孔25に収納された永久磁石18は、永久磁石18の垂直二等分線が回転子2の軸心を通るように配置されている。
 永久磁石18は、周方向に沿ってN極とS極とが交互に設定されている。
 なお、磁石収納孔25の両端部には、空隙部26が形成されているが、この空隙部26により、隣接した永久磁石18間でN極から近接したS極に直接向かう、所謂洩れ磁束が抑制される。
 回転子2は、永久磁石18の最外周側の両端部と回転子2の軸心とをそれぞれ結ぶ線間の平面角である磁石両端角θが異なる2種類の回転子部を積層して構成されている。
 この実施の形態の回転子2は、実施の形態1と同様に、角小回転子部13、角大回転子部12及び角小回転子部13の順序で3層に積層されている。
 他の構成は、実施の形態1のモータと同じである。
 図10は、永久磁石18を有する回転子2において、各周波数成分における磁石両端角とコギングトルク振幅との関係を示す図である。
 図10から分かるように、コギングトルクは各々の周波数ともに磁石両端角θ3が123度付近で最も小さくなっており、磁石両端角がθ3以上ではコギングトルクが負に増加、磁石両端角がθ3以下では、コギングトルクが正に増加している。
 また、磁石渦電流損当りのトルクと磁石両端角との関係を図11に示す。
 なお、トルク条件1は低回転時の場合を示しており、トルク条件2は高回転時の場合を示しており、磁石渦電流損当りのトルクで値が大きいほど、トルク当りの磁石発熱量が小さいことを示している。
 同図に示すように、磁石両端角120度付近が最も磁石渦電流損当りのトルクが小さく、120度よりも小さい場合、大きい場合ともに永久磁石18の渦電流損当りのトルクが大きくなっていることが分かる。
 即ち、磁石両端角120度付近が最も発熱量が大である。また、トルク条件2(高回転時)では、磁石両端角が120度よりも大きい場合の方が小さい場合と比較して、磁石渦電流損当りのトルクの増加率が大きい。
 図12は、磁石両端角が電気角で120度の回転子を有するモータと、磁石両端角が電気角で104度の角小回転子部13及び磁石両端角が138度の角大回転子部12を軸線長さが同じで積層したモータとのそれぞれのコギングトルク波形を示す図である。
 実施の形態1のモータと同様に、角小回転子部13と角大回転子部12とを軸線方向の長さにおいて1:1で組合せた場合を示している。
 この図からコギングトルクは、この実施の形態のモータが磁石両端角一律のモータと比較して小さくことが分かる。
 この実施の形態のモータでは、軸線方向に沿って角小回転子部13、角大回転子部12及び角小回転子部13の順序で3層に積層されており、放熱効率が悪い回転子2の中間部に、高回転時において特に発熱量が角小回転子部13と比較して小さい角大回転子部12を配置したので、実施の形態1と同様に、回転子2の軸線方向の温度分布が小さくなり、また局所的な熱減磁を抑制することができる。
 また、角大回転子部12の磁石両端角は130度、角小回転子部13の磁石両端角は110度であり、それぞれの磁石両端角は、コギングトルクが最小となる磁石両端角123度を挟んだ値であり、モータのコギングを大幅に低減することができる。
 実施の形態3.
 図13はこの発明の実施の形態3におけるモータを示す要部正断面図である。
 回転子2は、回転軸7と、この回転軸7に圧入、焼き嵌めもしくはキーなどで固定された回転子コア8と、この回転子コア8の外周側に周方向に間隔をおいて埋設され1極当り3個の矩形状をした、第1の永久磁石30、第2の永久磁石31及び第3の永久磁石32からなる永久磁石群33と、を有している。
 薄板鋼板を積層して構成された回転子コア8には、軸線方向に延び第1の永久磁石30、第2の永久磁石31及び第3の永久磁石32を収納した複数の磁石収納孔25が形成されている。第2の永久磁石31の両側に位置した第1の永久磁石30及び第3の永久磁石32は、径外側方向に沿って互いに周方向の離間距離が拡がって対向している。
 凹部形状の永久磁石群33は、図13に示すように周方向に沿ってN極とS極とが交互に設定されており、図中の矢印は、各永久磁石30,31,32の配向を示している。
 なお、磁石収納孔25の両端部には、空隙部26が形成されているが、この空隙部26により、隣接した永久磁石群33間でN極から直ぐに近接したS極に向かう洩れ磁束が抑制される。
 回転子2は、永久磁石群33の最外周側の両端部と回転子2の軸心とをそれぞれ結ぶ線間の平面角である磁石両端角が異なる2種類の角大回転子部12、角小回転子部13を積層して構成されている。
 この実施の形態の回転子2は、軸線方向に沿って角小回転子部13、角大回転子部12及び角小回転子部13の順序で3層に積層されている。
 また、角大回転子部12及び角小回転子部13のそれぞれの磁石両端角の値は、コギングトルクが最小となる磁石両端角を挟んだ値である。
 他の構成は、実施の形態1のモータと同じである。
 この実施の形態のモータも、実施の形態1と同様に、回転子2の軸線方向の温度分布が小さくなり、また局所的な熱減磁を抑制することができる。
 また、角大回転子部12及び角小回転子部13のそれぞれの磁石両端角の値は、コギングトルクが最小となる磁石両端角を挟んだ値であり、モータのコギングを大幅に低減することができる。
 実施の形態4.
 図14は、実施の形態4のモータを軸線方向に沿って切断した切断断面図である。
 軸線方向に沿って、角小回転子部13及び角大回転子部12が2層で積層された回転子2は、円筒形状のフレーム15内に収納されている。回転子2は、その回転軸7の両端部が軸受16を介してフレーム15に回転自在に支持されている。角小回転子部13及び角大回転子部12のそれぞれの軸線方向の長さは同一である。
 回転子2は、その回転子コア8の両側端面に冷却用ファン(図示せず)が固定されている。また、永久磁石群9の内側には、軸線方向に延びた通風路20が周方向に等分間隔をおいて複数形成されている。
 フレーム15の内壁面には、軸線方向に延びた溝21が周方向に等分間隔をおいて複数形成されている。
 冷却用ファンの回転により生じた冷却風ハは、途中、ガイド19に案内されて通風路20、溝21及び通風路20を循環し、回転子2及び固定子1からの熱は、フレーム15を通じて外部に放出される。
 この実施の形態の角小回転子部13は、永久磁石群9を有した実施の形態1の角小回転子部13と同一であり、また角大回転子部12は、永久磁石群9を有した実施の形態1の角大回転子部12と同一である。
 ここで、実施の形態1で示したように、角小回転子部13の発熱量は、角大回転子部12の発熱量よりも大きく、冷却風ハの上流側に角小回転子部13が配置され、下流側に角大回転子部12が配置されている。
 他の構成は、実施の形態1のモータと同じである。
 この実施の形態によるモータによれば、発熱量が大きい角小回転子部13が冷却風ハの上流側に配置されており、角小回転子部13は、冷却風ハの温度が低い上流側で冷却されるので、より効率良く冷却され、角小回転子部13の温度上昇が抑制される。
 従って、実施の形態1と同様に、回転子2の軸線方向の温度分布が小さくなり、また局所的な熱減磁を抑制することができる。
 また、永久磁石群9の最高温度と平均温度の差が少ないため、モータの誘起電圧や磁束量から永久磁石10,11の温度を推定することが容易となる。
 また、角大回転子部12及び角小回転子部13のそれぞれの磁石両端角の値は、コギングトルクが最小となる磁石両端角を挟んだ値であり、モータのコギングを大幅に低減することができる。
 なお、この実施の形態では、永久磁石群9を有した、角小回転子部13及び角大回転子部12を用いたが、実施の形態2で示したように、1極当り1個の矩形状の永久磁石18を用いたものであってもよい。
 この場合には、永久磁石18の渦電流損失当りのトルクの最小値は図11に示すように、磁石両端角120度付近が最も小さい。つまり、トルク当りの渦電流損失で見ると磁石両端角120度が最も大きくなる。
 従って、磁石両端角110度と130度を組み合わせる場合には、冷却風の上流側に磁石の渦電流損失が大きい磁石両端角の回転子コアを、冷却風の下流側に永久磁石の渦電流損が小さい磁石両端角の回転子コアを配置すればよい。
 また、実施の形態3で示した永久磁石群33を有する角小回転子部13及び角大回転子部12のように、1極当り3個の矩形状の永久磁石30,31,32からなる永久磁石群33を有する角小回転子部13及び角大回転子部12であっても、上流側に角小回転子部13を、下流側に角小回転子部13と同軸長の角大回転子部12を配置した回転子2でもよい。
 なお、上記実施の形態1~3の回転子2は、角小回転子部13、角大回転子部12及び角小回転子部13の順で3層に積層したものであったが、例えば磁石両端角が異なる、角小回転子部、角中回転子部及び角大回転子部の3種類の回転子部を揃え、角小回転子部、角中回転子部、角大回転子部、角中回転子部及び角小回転子部を積層した5層の回転子部からなる回転子であってもよい。なお、ここで、角中回転子部は、磁石両端角の大きさが、角大回転子部の磁石両端角と角小回転子部の磁石両端角との間のものをいう、
 また、上記各実施の形態では、回転電機としてモータの場合について説明したが、この発明は発電機にも適用できる。
1 固定子、2 回転子、3 固定子コア、4 コアバック、5 ティース、6 スロット、7 回転軸、8 固定子コア、9,33 永久磁石群、10 第1の永久磁石、11 第2の永久磁石、12 角大回転子部、13 角小回転子部、14 コイルエンド、15 フレーム、16 軸受、17 隙間、18 永久磁石、19 ガイド、20 通風路、21 溝、25 磁石収納孔、26 空隙部、30 第1の永久磁石、31 第2の永久磁石、32 第3の永久磁石、イ、ロ 放熱経路、ハ 冷却風。

Claims (8)

  1.  円環状のコアバックから周方向に間隔をおいてそれぞれ径方向内方に延設された各ティースによって形成されたスロットを有する固定子コア、及び各前記スロットに巻装された固定子コイルを有する固定子と、
     この固定子の内周側に前記固定子コアと同軸に回転可能に配設された回転子と、を備え、
     前記回転子は、回転子コアと、この回転子コアの外周側に周方向に間隔をおいて複数埋設され1極当り1個以上の矩形状をした永久磁石からなる永久磁石群と、を有する回転電機であって、
     各前記永久磁石群は、1極の周方向中心に対して対称に配置され、
     前記回転子は、対向した前記永久磁石のそれぞれの最外周側端部と前記回転子の軸心とを結ぶ線間の平面角である磁石両端角がそれぞれ異なる複数の回転子部を積層して構成され、かつ軸線の中心部に向かうに従ってより前記磁石両端角の大きな前記回転子部が配置されている回転電機。
  2.  円環状のコアバックから周方向に間隔をおいてそれぞれ径方向内方に延設された各ティースによって形成されたスロットを有する固定子コア、及び各前記スロットに巻装された固定子コイルを有する固定子と、
     この固定子の内周側に前記固定子コアと同軸に回転可能に配設された回転子と、を備え、
     前記回転子は、軸線方向に沿って貫通した通風路を有する回転子コアと、この回転子コアの外周側に周方向に間隔をおいて複数埋設され1極当り1個以上の矩形状をした永久磁石からなる永久磁石群と、を有する回転電機であって、
     各前記永久磁石群は、1極の周方向中心に対して対称に配置され、
     前記回転子は、対向した前記永久磁石のそれぞれの最外周側端部と前記回転子の軸心とを結ぶ線間の平面角である磁石両端角がそれぞれ異なる複数の回転子部を積層して構成され、かつ前記通風路の上流から下流に向かうに従ってより前記磁石両端角の大きな前記回転子部が配置されている回転電機。
  3.  複数の前記回転子部は、角大回転子部、及びこの角大回転子部よりも前記磁石両端角が小さい角小回転子部の2種類で構成され、前記軸線に沿って前記角小回転子部、前記角大回転子部及び前記角小回転子部の順序で積層されている請求項1に記載の回転電機。
  4.  複数の前記回転子部は、角大回転子部、及びこの角大回転子部よりも前記磁石両端角が小さい角小回転子部の2種類で構成され、前記上流から前記下流に沿って前記角小回転子部及び前記角大回転子部の順序で積層されている請求項2に記載の回転電機。
  5.  コギングトルクが最小となる前記磁石両端角の値をθとすると、前記角小回転子部の前記磁石両端角の値は、θよりも小さく、前記角大回転子部の前記磁石両端角の値は、θよりも大きい請求項3または4に記載の回転電機。
  6.  前記回転子コアは、前記永久磁石を収納するとともに収納した前記永久磁石の両側に空隙部を有する磁石収納孔が形成されている請求項1~5の何れか1項に記載の回転電機。
  7.  前記永久磁石群は、V字形状であって、2個の前記永久磁石で構成されている請求項1または2に記載の回転電機。
  8.  前記永久磁石群は、凹部形状であって、3個の前記永久磁石で構成されている請求項1または2に記載の回転電機。
PCT/JP2014/062926 2013-06-10 2014-05-15 回転電機 WO2014199769A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014002763.4T DE112014002763B8 (de) 2013-06-10 2014-05-15 Elektrische Rotationsmaschine
JP2015522668A JP5951131B2 (ja) 2013-06-10 2014-05-15 回転電機
CN201480033032.XA CN105324918B (zh) 2013-06-10 2014-05-15 旋转电机
US14/895,776 US9825495B2 (en) 2013-06-10 2014-05-15 Rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-121601 2013-06-10
JP2013121601 2013-06-10

Publications (1)

Publication Number Publication Date
WO2014199769A1 true WO2014199769A1 (ja) 2014-12-18

Family

ID=52022070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062926 WO2014199769A1 (ja) 2013-06-10 2014-05-15 回転電機

Country Status (5)

Country Link
US (1) US9825495B2 (ja)
JP (1) JP5951131B2 (ja)
CN (1) CN105324918B (ja)
DE (1) DE112014002763B8 (ja)
WO (1) WO2014199769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324522A4 (en) * 2015-06-17 2019-04-03 Valeo Japan Co., Ltd. ELECTRIC MOTOR
EP3317947B1 (de) 2015-06-30 2019-11-27 Robert Bosch GmbH Permanent erregte elektrische maschine mit optimierter geometrie
WO2022044534A1 (ja) * 2020-08-28 2022-03-03 日立Astemo株式会社 回転電機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015215977A1 (de) * 2015-08-21 2017-02-23 Robert Bosch Gmbh Verfahren zum Herstellen eines metallischen Rotors und solch ein Rotor
JP6503016B2 (ja) * 2017-06-21 2019-04-17 ファナック株式会社 ロータおよび回転電機
US10873227B2 (en) * 2017-11-30 2020-12-22 Steering Solutions Ip Holding Corporation Interior permanent magnet synchronous machine
KR102172260B1 (ko) * 2019-01-11 2020-10-30 엘지전자 주식회사 구동 모터 및 이를 구비하는 압축기
DE112020003204T5 (de) * 2019-07-01 2022-03-17 Nidec Corporation Motor und Motoreinheit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312898A (ja) * 2003-04-08 2004-11-04 Shinko Electric Co Ltd 回転子、固定子および回転機
JP2006115584A (ja) * 2004-10-13 2006-04-27 Asmo Co Ltd 埋込磁石型モータ
JP2010200510A (ja) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd 永久磁石式回転電機
JP2011015484A (ja) * 2009-06-30 2011-01-20 Mitsubishi Electric Corp 永久磁石回転電機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629840B2 (ja) 2000-08-09 2011-02-09 アイチエレック株式会社 ブラシレスdcモータ
JP2005051982A (ja) 2003-07-17 2005-02-24 Asmo Co Ltd 埋込磁石型モータ
JP3638944B1 (ja) 2004-02-04 2005-04-13 山洋電気株式会社 永久磁石内蔵型回転モータの極弧率の決定方法及び永久磁石内蔵型回転モータ
JP2006115684A (ja) 2004-09-15 2006-04-27 Nissan Motor Co Ltd 回転電機の磁気回路構造
JP5147343B2 (ja) 2007-09-25 2013-02-20 日立アプライアンス株式会社 洗濯機ファン駆動用永久磁石式回転電動機
JP5467808B2 (ja) * 2009-06-30 2014-04-09 株式会社オティックス ロータシャフト
JP5469955B2 (ja) * 2009-08-12 2014-04-16 日立オートモティブシステムズ株式会社 車両用回転電機
JP5533879B2 (ja) * 2010-04-01 2014-06-25 富士電機株式会社 永久磁石形回転電機の回転子
KR101403831B1 (ko) 2010-09-20 2014-06-03 한라비스테온공조 주식회사 차량용 전동 압축기
JP5857627B2 (ja) 2011-10-27 2016-02-10 スズキ株式会社 電動回転機
US8933606B2 (en) * 2011-12-09 2015-01-13 GM Global Technology Operations LLC Interior permanent magnet machine with pole-to-pole asymmetry of rotor slot placement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312898A (ja) * 2003-04-08 2004-11-04 Shinko Electric Co Ltd 回転子、固定子および回転機
JP2006115584A (ja) * 2004-10-13 2006-04-27 Asmo Co Ltd 埋込磁石型モータ
JP2010200510A (ja) * 2009-02-26 2010-09-09 Nissan Motor Co Ltd 永久磁石式回転電機
JP2011015484A (ja) * 2009-06-30 2011-01-20 Mitsubishi Electric Corp 永久磁石回転電機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3324522A4 (en) * 2015-06-17 2019-04-03 Valeo Japan Co., Ltd. ELECTRIC MOTOR
EP3317947B1 (de) 2015-06-30 2019-11-27 Robert Bosch GmbH Permanent erregte elektrische maschine mit optimierter geometrie
WO2022044534A1 (ja) * 2020-08-28 2022-03-03 日立Astemo株式会社 回転電機

Also Published As

Publication number Publication date
DE112014002763T5 (de) 2016-03-03
CN105324918A (zh) 2016-02-10
JPWO2014199769A1 (ja) 2017-02-23
DE112014002763B8 (de) 2024-05-16
DE112014002763B4 (de) 2024-03-07
US9825495B2 (en) 2017-11-21
CN105324918B (zh) 2017-12-01
US20160126791A1 (en) 2016-05-05
JP5951131B2 (ja) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5951131B2 (ja) 回転電機
JP6042976B2 (ja) 回転電機
EP2980969B1 (en) Synchronous reluctance motor and rotor for synchronous reluctance motor
JP5774081B2 (ja) 回転電機
JP6507273B2 (ja) 永久磁石埋込型電動機のためのロータ及びそれを用いた電動機
US20150162805A1 (en) Rotor of rotating electrical machine and rotating electrical machine
JP2016220298A (ja) アキシャルギャップ型回転電機
JP6025998B2 (ja) 磁気誘導子型電動機
WO2016060232A1 (ja) ダブルステータ型回転機
JP2014155373A (ja) マルチギャップ型回転電機
WO2014020756A1 (ja) 回転電機
JP6760014B2 (ja) 回転電機
JP2017050918A (ja) 同期リラクタンスモータ
JP5885846B2 (ja) 電動機
JP6164506B2 (ja) 回転電機
KR200462692Y1 (ko) 자속 집중형 전동기
JP2014017943A (ja) 回転電機
JP2015216715A (ja) アキシャルギャップ型回転電機
JP2019161828A (ja) 回転電機
JP6169496B2 (ja) 永久磁石式回転電機
JP2013153608A (ja) 回転電機
JP2006174552A (ja) アキシャルギャップ型回転電機のロータ構造
JP2019161786A (ja) 永久磁石式回転電機
JP2013153609A (ja) 回転電機
JP2017108516A (ja) 回転電機のロータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033032.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522668

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14895776

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002763

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810609

Country of ref document: EP

Kind code of ref document: A1