WO2014196785A1 - 중공 금속 나노입자 - Google Patents

중공 금속 나노입자 Download PDF

Info

Publication number
WO2014196785A1
WO2014196785A1 PCT/KR2014/004934 KR2014004934W WO2014196785A1 WO 2014196785 A1 WO2014196785 A1 WO 2014196785A1 KR 2014004934 W KR2014004934 W KR 2014004934W WO 2014196785 A1 WO2014196785 A1 WO 2014196785A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
hollow
metal nanoparticles
present specification
surfactant
Prior art date
Application number
PCT/KR2014/004934
Other languages
English (en)
French (fr)
Inventor
김광현
황교현
김상훈
조준연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP14807874.4A priority Critical patent/EP2990138B1/en
Priority to US14/893,811 priority patent/US9776173B2/en
Priority to CN201480032619.9A priority patent/CN105307799B/zh
Priority to JP2016518261A priority patent/JP6191764B2/ja
Publication of WO2014196785A1 publication Critical patent/WO2014196785A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • B22F1/0655Hollow particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/777Metallic powder or flake

Definitions

  • the present disclosure relates to hollow metal nanoparticles.
  • Nanoparticles are nanoscale particle size particles, which are completely different from bulk materials due to their large specific surface area and quantumconfinement effect, in which the energy required for electron transfer varies with the size of the material. Electrical and magnetic properties. Therefore, because of these properties, much attention has been focused on its application in the field of catalysts, electromagnetism, optics, medicine, and the like. Nanoparticles are intermediates between bulk and molecules, and are capable of synthesizing nanoparticles in terms of a two-way approach, a "top-down” approach and a “bottom-up” approach.
  • Synthesis methods of metal nanoparticles include a method of reducing metal ions with a reducing agent in a solution, a method using gamma rays, and an electrochemical method, but conventional methods are difficult to synthesize nanoparticles having a uniform size and shape, or organic solvents.
  • the economical mass production of high quality nanoparticles has been difficult due to various reasons, such as environmental pollution and high cost. Therefore, development of high quality nanoparticles of uniform size has been required.
  • the problem to be solved by the present specification is to provide a high quality hollow metal nanoparticles of uniform size.
  • Hollow core portion A shell part including a first metal and a second metal; And a cavity extending from the outer surface of the shell portion to the hollow core in at least one region of the shell portion.
  • one embodiment of the present specification provides a catalyst including the hollow metal nanoparticles.
  • Hollow metal nanoparticles of the present specification has the advantage that can be applied in various fields by providing hollow metal nanoparticles of uniform size to a few nanometers. Furthermore, since the hollow metal nanoparticles of the present specification include a cavity and can utilize a contact area up to the inner surface area of the shell through the cavity, the hollow metal nanoparticles have an advantage of increasing catalyst efficiency when included in a catalyst.
  • FIG 1 illustrates an example of the hollow metal nanoparticles according to one embodiment of the present specification.
  • TEM 4 and 5 show transmission electron microscope (TEM) images of the hollow metal nanoparticles prepared by Example 2 of the present specification.
  • FIGS 6 and 7 show transmission electron microscope (TEM) images of the hollow metal nanoparticles prepared by Example 3 of the present specification.
  • TEM 8 and 9 show transmission electron microscope (TEM) images of the hollow metal nanoparticles prepared by Example 4 of the present specification.
  • One embodiment of the present specification comprises a hollow core; A shell part including a first metal and a second metal; And a cavity extending from the outer surface of the shell portion to the hollow core in at least one region of the shell portion.
  • a surfactant may be included in the inner hollow, or the surfactant may be removed in the inner hollow.
  • FIG. 1 illustrates an example in which two or more surfactants are mixed in an internal hollow as a step before forming a shell part by a reducing agent in the manufacture of the hollow metal nanoparticles of the present specification.
  • the hollow may include a surfactant.
  • the hollow may have a surfactant removed.
  • the hollow means that the core portion of the metal nanoparticle is empty.
  • the hollow may be used in the same sense as the hollow core.
  • the hollow may include terms such as hollow, hole, void, and the like.
  • the hollow core may be 50% by volume or more and less than 100% by volume of the hollow metal nanoparticles. Specifically, the hollow core may be 70 volume% or more, more specifically 80 volume% or more of the hollow metal nanoparticles.
  • the hollow may include a space in which no internal material is present at 50% by volume or more, specifically 70% by volume or more, more specifically 80% by volume or more.
  • at least 50% by volume, specifically 70% by volume, more specifically 80% by volume may include an empty space.
  • it may include a space having an internal porosity of at least 50 vol%, specifically at least 70 vol%, more specifically at least 80 vol%.
  • the hollow metal nanoparticles may have a spherical shape.
  • the spherical shape of the present specification does not mean only a perfect spherical shape, but may include an approximately spherical shape.
  • the hollow metal nanoparticles may not have a flat outer surface, and the radius of curvature of one hollow metal nanoparticle may not be constant.
  • the hollow metal nanoparticles may have a particle diameter of 1 nm or more and 30 nm or less, more specifically 20 nm or less, or 12 nm or less, or 10 nm or less.
  • the average particle diameter of the metal nanoparticles may be 6 nm or less.
  • the average particle diameter of the hollow metal nanoparticles may be 1 nm or more.
  • the particle diameter of the hollow metal nanoparticles is 30 nm or less, there is a great advantage that the nanoparticles can be used in various fields.
  • the particle diameter of a hollow metal nanoparticle is 20 nm or less, it is more preferable.
  • the particle diameter of the hollow metal nanoparticles is 10 nm or less, the surface area of the particles becomes wider, and thus, there is an advantage in that the application possibility that can be used in various fields becomes larger.
  • the efficiency can be significantly increased.
  • the average particle diameter of the hollow metal nanoparticles is measured for 200 or more hollow metal nanoparticles using graphic software (MAC-View), and the average particle diameter is measured through the obtained statistical distribution. It means the value.
  • MAC-View graphic software
  • the average particle diameter of the hollow metal nanoparticles may be 1 nm or more and 30 nm or less.
  • the average particle diameter of the hollow metal nanoparticles may be 1 nm or more and 20 nm or less.
  • the average particle diameter of the hollow metal nanoparticles may be 1 nm or more and 12 nm or less.
  • the average particle diameter of the hollow metal nanoparticles may be 1 nm or more and 10 nm or less.
  • the average particle diameter of the hollow metal nanoparticles may be 1 nm or more and 6 nm or less.
  • the thickness of the shell part in the hollow metal nanoparticle may be greater than 0 nm and 5 nm or less, more specifically greater than 0 nm and 3 nm or less.
  • the average particle diameter may be 30 nm or less
  • the thickness of the shell portion may be more than 0 nm and 5 nm or less
  • the average particle diameter of the hollow metal nanoparticles is 20 It may be less than or equal to 10 nm and less than a thickness of the shell portion greater than 0 nm and less than or equal to 3 nm.
  • the hollow particle diameter of the hollow metal nanoparticles may be 1 nm or more and 10 nm or less, specifically 1 nm or more and 4 nm or less.
  • each shell may be 0.2 nm or more and 5 nm or less, specifically 0.25 nm or more and 3 nm or less.
  • the shell portion may be a shell formed by mixing the first metal and the second metal, or may be a plurality of shells including a first shell and a second shell, each having a different mixing ratio of the first metal and the second metal.
  • the plurality of shells may include a first shell including only the first metal and a second shell including only the second metal.
  • one or more hollow metal nanoparticles may be manufactured when the hollow metal nanoparticles are prepared.
  • the particle diameter of the hollow metal nanoparticles may be within a range of 80% to 120% of the average particle diameter of the hollow metal nanoparticles.
  • the particle diameter of the hollow metal nanoparticles may be in the range of 90% to 110% of the average particle diameter of the hollow metal nanoparticles. If it is out of the above range, since the size of the hollow metal nanoparticles becomes entirely non-uniform, it may be difficult to secure the unique physical properties required by the hollow metal nanoparticles.
  • the effect of improving the efficiency may be somewhat insufficient. Therefore, when within the range of 80% to 120% of the average particle diameter of the hollow metal nanoparticles of the present disclosure, by forming a nanoparticle of a uniform size, it can exhibit excellent physical properties as nanoparticles.
  • the content of the hollow metal nanoparticles including a cavity from the outer surface of the shell portion to the hollow core is contained in one or two or more regions of the shell portion of the present specification. It may be more than 50% and less than 100% of the total nanoparticles. Specifically, the content of the hollow metal nanoparticles including a cavity continuous from the outer surface of the shell portion to the hollow core portion may be 70% or more and 100% or less of the total nanoparticles.
  • the hollow metal nanoparticle may include one cavity.
  • the shell part may be a single layer.
  • the shell portion of the single layer may include both the first metal and the second metal.
  • the first metal and the second metal when the shell part is a single layer, the first metal and the second metal may be present in a mixed form. Further, when the shell portion is a single layer, the first metal and the second metal may be mixed uniformly or non-uniformly.
  • the shell part may be two or more layers. Specifically, according to one embodiment of the present specification, when the shell portion is two or more layers, a first shell including the first metal; And a second shell including the second metal.
  • the first shell may include the first metal and may not include the second metal.
  • the second shell may include the second metal and may not include the first metal.
  • the first shell may have a higher content of the first metal than the content of the second metal.
  • the second shell may have a higher content of the second metal than that of the first metal.
  • the first shell may be formed to surround the hollow, and the second shell may be formed to surround the first shell.
  • the shell part may include: a first shell having a content of the first metal higher than that of the second metal; And a second shell in which the content of the second metal is higher than the content of the first metal.
  • the content of the first metal in the first shell is the highest in the region close to the center of the hollow, and the content of the first metal gradually increases as the distance from the center of the hollow is increased. Can be small.
  • the content of the second metal in the first shell may increase as the distance from the center of the hollow.
  • the content of the second metal in the second shell is the highest in the region farthest from the center of the hollow, and the closer to the center of the hollow, the content of the second metal is gradually increased. Can be small.
  • the content of the first metal in the second shell may decrease as the distance from the center of the hollow.
  • the shell portion may be present in a state in which the first metal and the second metal are gradated, and the portion of the shell portion adjacent to the core may be present in a volume of 50 vol% or more, or 70 vol% or more. In the surface portion in contact with the outside of the nanoparticles in the second metal may be present in more than 50% by volume, or more than 70% by volume.
  • an atomic percentage ratio of the first metal and the second metal of the shell part may be 1: 5 to 10: 1.
  • the atomic percentage ratio may be an atomic percentage ratio of the first metal of the first shell and the second metal of the second shell when the shell portion is formed of the first shell and the second shell.
  • the atomic percentage ratio may be an atomic percentage ratio of the first metal and the second metal when the shell portion is formed of a single layer including the first metal and the second metal.
  • the shell part of the present specification may mean an outer material layer surrounding the hollow.
  • the shape of the hollow metal nanoparticles may be determined by the shell portion.
  • the thickness of the shell part may be greater than 0 nm and 5 nm or less.
  • the thickness of the shell portion may be greater than 0 nm and 3 nm or less.
  • the thickness of the shell portion may be greater than 0 nm and 5 nm or less.
  • the thickness of the shell portion may be greater than 0 nm and 3 nm or less.
  • the first metal may be selected from the group consisting of metals, metalloids, lanthanum group metals, and actinium group metals belonging to Groups 3 to 15 of the periodic table.
  • the first metal is platinum (Pt); Ruthenium (Ru); Rhodium (Rh); Molybdenum (Mo); Osmium (Os); Iridium (Ir); Rhenium (Re); Palladium (Pd); Vanadium (V); Tungsten (W); Cobalt (Co); Iron (Fe); Selenium (Se); Nickel (Ni); Bismuth (Bi); Tin (Sn); Chromium (Cr); Titanium (Ti); Gold (Au); Cerium (Ce); Silver (Ag); And it may be selected from the group consisting of copper (Cu).
  • the second metal may be different from the first metal.
  • the second metal may be selected from the group consisting of metals, metalloids, lanthanum group metals, and actinium group metals belonging to groups 3 to 15 of the periodic table.
  • the second metal is platinum (Pt); Ruthenium (Ru); Rhodium (Rh); Molybdenum (Mo); Osmium (Os); Iridium (Ir); Rhenium (Re); Palladium (Pd); Vanadium (V); Tungsten (W); Cobalt (Co); Iron (Fe); Selenium (Se); Nickel (Ni); Bismuth (Bi); Tin (Sn); Chromium (Cr); Titanium (Ti); Gold (Au); Cerium (Ce); Silver (Ag); And it may be selected from the group consisting of copper (Cu).
  • the first metal may be selected from the group consisting of platinum (Pt), silver (Ag), palladium (Pd), and gold (Au), and more specifically, platinum (Pt).
  • the second metal is ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), tungsten ( W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium (Cr), titanium (Ti), cerium (Ce), silver ( Ag) and copper (Cu) may be selected from the group consisting of, and more specifically, may be nickel (Ni).
  • the first metal may be ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium (Cr), titanium It may be selected from the group consisting of (Ti), cerium (Ce), silver (Ag) and copper (Cu), more specifically may be nickel (Ni).
  • the second metal may be selected from the group consisting of platinum (Pt), silver (Ag), palladium (Pd), and gold (Au), and more specifically, platinum (Pt).
  • the first metal or the second metal may be different from each other, and the first metal or the second metal may be nickel.
  • the first metal or the second metal may be different from each other, and the first metal or the second metal may be platinum.
  • the first metal may be nickel, and the second metal may be platinum.
  • the cavity may mean an empty space continuous from one region of the outer surface of the hollow metal nanoparticle.
  • the cavity of the present specification may be formed in the form of one tunnel from the outer surface of the shell portion to the hollow core in one or more regions of the shell portion.
  • the tunnel form may be a straight line, a continuous form of a curve or a straight line, it may be a continuous form of a mixture of curves and straight lines.
  • the cavity may be an empty space extending from the outer surface of the shell portion to the hollow.
  • the hollow metal nanoparticles may include a hollow region connected to the center of the hollow nanoparticles by at least one surface of the outside by the cavity.
  • the cavity of the present specification may serve to utilize the inner surface area of the hollow metal nanoparticles. Specifically, when the hollow metal nanoparticles are used for the purpose of a catalyst or the like, the cavity may serve to increase the surface area in contact with the reactants. Therefore, the cavity may serve to exhibit high activity of the hollow metal nanoparticles.
  • the hollow metal nanoparticles of the present disclosure may increase the surface area by 20% to 100% compared to the hollow metal nanoparticles when there is no cavity due to the inclusion of the cavity.
  • the diameter of the cavity may be 5% or more and 30% or less of the hollow metal nanoparticle particle diameter.
  • the diameter of the cavity is less than 5% of the particle diameter of the hollow metal nanoparticles, the activity of the hollow metal nanoparticles may not be sufficiently exhibited.
  • the cavity diameter exceeds 30% of the particle diameter of the hollow metal nanoparticles, the shape of the hollow metal nanoparticles may not be maintained. Therefore, when the diameter of the cavity is 5% or more and 30% or less of the particle diameter of the hollow metal nanoparticles, the contact area with the reactant material through the cavity may be sufficiently widened.
  • One embodiment of the present specification is a solvent; A first metal salt which provides a first metal ion or an atomic group ion containing the first metal ion in the solvent; A second metal salt which provides a second metal ion or an atomic group ion containing the second metal ion in the solvent; A first surfactant forming a micelle in the solvent; And forming a solution comprising the second surfactant together with the first surfactant to form a micelle in the solvent; And
  • It provides a method for producing metal nanoparticles comprising the step of adding a reducing agent to the solution to form metal nanoparticles.
  • the manufacturing method may include forming an inner region of the micelle formed by the first surfactant in a hollow form.
  • the method of manufacturing metal nanoparticles according to the exemplary embodiment of the present specification does not use a reduction potential, there is an advantage in that the reduction potential between the first metal ion and the second metal ion forming the shell is not considered. Since the manufacturing method of the present specification uses a charge between metal ions, it is simpler than the manufacturing method of metal nanoparticles using a conventional reduction potential. Therefore, the production method of the metal nanoparticles of the present specification is easy to mass production, it is possible to produce metal nanoparticles at a low cost. Furthermore, since the reduction potential is not used, there is an advantage in that various metal salts can be used because the restriction of the metal salt to be used is reduced as compared with the conventional method for preparing metal nanoparticles.
  • the manufacturing method may be one in which a hollow core is formed inside the metal nanoparticle.
  • the forming of the solution may include forming the micelle in the solution by the first and second surfactants.
  • the manufacturing method may include an atomic group ion including the first metal ion or the first metal ion; And the atomic group ion including the second metal ion or the second metal ion may form a shell portion of the metal nanoparticle.
  • the first metal ion or the atomic group ion including the first metal ion has a charge opposite to that of the outer end portion of the first surfactant
  • the second metal ion or the first ion Atomic ion, including the bimetallic ion may have a charge equal to that at the outer end of the first surfactant
  • the first metal ion or the atomic group ion including the first metal ion may be positioned at an outer end of the first surfactant forming the micelle in a solution to surround the outer surface of the micelle. Furthermore, the atomic group ion including the second metal ion or the second metal ion may have a form surrounding the outer surface of the atomic group ion including the first metal ion or the first metal ion.
  • the first metal salt and the second metal salt may form a shell part including the first metal and the second metal, respectively, by a reducing agent.
  • the surfactant outer end may refer to the micelle outer part of the first or second surfactant forming the micelle.
  • the surfactant outer end of the present specification may mean the head of the surfactant.
  • the outer end of the present specification can determine the charge of the surfactant.
  • the surfactant herein may be classified as ionic or nonionic according to the type of the outer end, and the ionicity may be positive, negative, zwitterionic or amphoteric.
  • the zwitterionic surfactant contains both positive and negative charges. If the positive and negative charge of a surfactant herein is pH dependent, it may be an amphoteric surfactant, which may be zwitterionic in a range of pH.
  • the anionic surfactant in the present specification may mean that the outer end of the surfactant is negatively charged, the cationic surfactant may mean that the outer end of the surfactant is positively charged.
  • the metal nanoparticles manufactured by the manufacturing method may have a cavity formed in one or two or more regions of the shell portion.
  • the cavity of the present specification may mean an empty space continuous from one region of the outer surface of the metal nanoparticle.
  • the cavity of the present specification may be formed in the form of a tunnel from one region of the outer surface of the shell portion.
  • the tunnel form may be a straight line, a continuous form of a curve or a straight line, it may be a continuous form of a mixture of curves and straight lines.
  • the cavity may be an empty space extending from the outer surface of the shell portion to the hollow.
  • the preparation method may include a concentration of the second surfactant; Chain length; The size of the outer end; Alternatively, by adjusting the type of charge, a cavity may be formed in one or two or more regions of the shell portion.
  • the shell part may mean a region of the nanoparticle including a metal.
  • the shell part may mean a region of the metal particles except for the hollow and the cavity.
  • the first surfactant may serve to form a micelle in a solution such that the metal ion or the atomic group ion including the metal ion forms a shell portion, and the second surfactant It may serve to form a cavity of the metal nanoparticles.
  • the shell portion of the metal nanoparticles is formed in the micelle region formed by the first surfactant, and the metal nanoparticles are formed in the micelle region formed by the second surfactant.
  • the cavity may be formed.
  • the forming of the solution may include adjusting the size or number of the cavities by varying concentrations of the first and second surfactants.
  • the molar concentration of the second surfactant may be 0.01 to 1 times the molar concentration of the first surfactant.
  • the molar concentration of the second surfactant may be 1/30 to 1 times the molar concentration of the first surfactant.
  • the first surfactant and the second surfactant may form micelles according to the concentration ratio.
  • the cavity size or the number of the cavity of the metal nanoparticles may be adjusted.
  • the metal nanoparticles including one or more bowl-type particles may be prepared by continuously forming the cavity.
  • the forming of the solution may include adjusting the size of the cavity by adjusting the size of the outer end of the second surfactant.
  • the forming of the solution may include adjusting the chain length of the second surfactant differently from the chain length of the first surfactant to form a cavity in the second surfactant region. It may include the step.
  • the chain length of the second surfactant may be 0.5 to 2 times the chain length of the first surfactant. Specifically, the chain length may be determined by the number of carbons.
  • the chain length of the second surfactant is different from the chain length of the first surfactant, so that the metal salt bonded to the outer end of the second surfactant forms the shell portion of the metal nanoparticle. It can be prevented from forming.
  • the forming of the solution may include controlling the charge of the second surfactant differently from the charge of the first surfactant to form a cavity.
  • a first metal ion or a first metal ion having a charge opposite to the first and second surfactants is formed at the outer ends of the first and second surfactants that form micelles in a solvent.
  • Atom containing ion may be located.
  • the second metal ion opposite to the charge of the first metal ion may be positioned on an outer surface of the first metal ion.
  • the first metal ion and the second metal ion formed at the outer end of the first surfactant may form a shell portion of the metal nanoparticle, and the outer side of the second surfactant
  • the first metal ion and the second metal ion positioned at the end may not form the shell and may form a cavity.
  • the first surfactant when the first surfactant is an anionic surfactant, in the forming of the solution, the first surfactant forms a micelle, and the micelle is a first metal ion or a first It may be surrounded by cations of atomic monoions including metal ions. Furthermore, atomic monoions including the second metal ion of the anion may surround the cation. Further, in the step of forming a metal nanoparticle by adding a reducing agent, the cation surrounding the micelles may form a first shell, the anion surrounding the cation may form a second shell.
  • the first surfactant when the first surfactant is a cationic surfactant, in the forming of the solution, the first surfactant forms a micelle, and the micelle is a first metal ion. It may be surrounded by the anion of the atom containing ion. Further, the atomic monoion including the second metal ion or the second metal ion of the cation may surround the anion. In addition, in the step of forming a metal nanoparticle by adding a reducing agent, the anion surrounding the micelle may form a first shell, the cation surrounding the anion may form a second shell.
  • the forming of the metal nanoparticle may include forming the first and second surfactant regions forming the micelle in the hollow.
  • both the first surfactant and the second surfactant may be cationic surfactants.
  • both the first surfactant and the second surfactant may be an anionic surfactant.
  • micelles may be formed by making the chain length of the second surfactant different from the chain length of the first surfactant. Specifically, due to the difference in the chain length of the second surfactant, the first and second metal ions located at the outer end of the second surfactant are positioned at the outer ends of the first surfactant. It is not adjacent to the ions and no shell portion is formed.
  • any one of the first surfactant and the second surfactant may be an anionic surfactant, and the other may be a cationic surfactant. That is, in one embodiment of the present specification, the first and second surfactants may have different charges.
  • the length of the chain may be different to form a cavity of the metal nanoparticle.
  • the principle in which the cavities are formed is the same as when the aforementioned first and second surfactants have the same charge.
  • the cavity of the metal nanoparticles may be formed even if the chains of the first and second surfactants have the same length. have.
  • the outer end of the first surfactant adjacent to the second end of the second surfactant of the micelle is charged with each other to form a neutral, the metal ion is not located. Therefore, the portion where the metal ion is not located does not form the shell portion, thereby forming the cavity of the metal nanoparticles.
  • the first surfactant may be an anionic surfactant or a cationic surfactant
  • the second surfactant may be a nonionic surfactant
  • the second surfactant when the second surfactant is a nonionic surfactant, since the metal ion is not positioned at the outer end of the second surfactant, the cavity of the metal nanoparticle may be formed. Therefore, when the second surfactant is nonionic, it is possible to form a cavity of the metal nanoparticle even when the length of the chain is the same or different from the first surfactant.
  • the first surfactant may be an anionic surfactant or a cationic surfactant
  • the second surfactant may be an amphoteric ionic surfactant
  • the second surfactant is an amphoteric ionic surfactant
  • the metal ion since the metal ion is not located at the outer end of the second surfactant, the cavity of the metal nanoparticle may be formed. . Therefore, when the second surfactant is zwitterionic, it is possible to form a cavity of the metal nanoparticle even when the length of the chain is the same or different from the first surfactant.
  • the anionic surfactants herein are ammonium lauryl sulfate, sodium 1-heptanesulfonate, sodium hexanesulfonate, Sodium dodecyl sulfate, triethanol ammonium dodecylbenzene sulfate, potassium laurate, triethanolamine stearate, lithium dodecyl sulfate, sodium lauryl sulfate, alkyl polyoxyethylene sulfate, sodium alginate, dioctyl sodium sulfosuccinate, phosphatidyl Glycerol, phosphatidyl inositol, phosphatidylserine, phosphatidic acid and salts thereof, glyceryl esters, sodium carboxymethylcellulose, bile acids and salts thereof, cholic acid, deoxycholic acid, glycocholic acid, taurocholic acid, glycodeoxycholic acid, alkyl sulfonates , Aryl sul
  • the cationic surfactants herein are quaternary ammonium compounds, benzalkonium chloride, cetyltrimethylammonium bromide, chitosan, lauryldimethylbenzylammonium chloride, acyl carnitine hydrochloride, alkylpyridinium halides, cetyl pyridinium chloride , Cationic lipids, polymethylmethacrylate trimethylammonium bromide, sulfonium compounds, polyvinylpyrrolidone-2-dimethylaminoethyl methacrylate dimethyl sulfate, hexadecyltrimethyl ammonium bromide, phosphonium compounds, benzyl-di ( 2-chloroethyl) ethylammonium bromide, coconut trimethyl ammonium chloride, coconut trimethyl ammonium bromide, coconut methyl dihydroxyethyl ammonium chloride, coconut methyl dihydroxyethyl am
  • the nonionic surfactants herein are SPAN 60, polyoxyethylene fatty alcohol ethers, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, sorbents Non-ester, glyceryl ester, glycerol monostearate, polyethylene glycol, polypropylene glycol, polypropylene glycol ester, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, arylalkyl polyether alcohol, polyoxyethylene polyoxypropylene copolymer , Poloxamer, poloxamine, methylcellulose, hydroxycellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxy propylcellulose, hydroxy propylmethylcellulose, hydroxypropylmethylcellulose phthalate, amorphous cellulose, polysaccharides, starch, I'm It may be selected from a derivative, hydroxyethyl starch, polyvinyl alcohol,
  • the zwitterionic surfactants herein are N-dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate, betaine, alkyl betaine, alkylamido betaine, amido propyl betaine , Coco ampocarboxyglycinate, sacosinate aminopropionate, aminoglycinate, imidazolinium betaine, zwitteridamidolin, N-alkyl-N, N-dimethylammonio-1-propanesulfone Ate, 3-cholamido-1-propyldimethylammonio-1-propanesulfonate, dodecylphosphocholine and sulfo-betaine.
  • the present invention is not limited thereto.
  • the concentration of the first surfactant may be at least 1 times and at most 5 times the critical micelle concentration with respect to the solvent. Specifically, the concentration of the first surfactant may be two times the critical micelle concentration with respect to the solvent.
  • the critical micelle concentration means a lower limit of the concentration at which the surfactant forms a group of molecules or ions (micro micelles) in a solution.
  • the most important property of a surfactant is that the surfactant has a tendency to adsorb on the interface, such as the air-liquid interface, the air-solid interface and the liquid-solid interface. If the surfactants are free in the sense that they do not exist in agglomerated form, they are called monomers or unimers, and as the unimer concentration is increased they aggregate to form the entity of small agglomerates, ie Form micelles. Such concentration may be referred to as critical micelle concentration.
  • the concentration of the first surfactant When the concentration of the first surfactant is less than one times the critical micelle concentration, the concentration of the first surfactant adsorbed to the first metal salt may be relatively low. Accordingly, the amount of core particles formed may also be reduced as a whole.
  • the concentration of the first surfactant exceeds 5 times the critical micelle concentration, the concentration of the first surfactant is relatively increased so that the metal nanoparticles forming the hollow core and the metal particles not forming the hollow core are mixed and aggregated. Can be. Therefore, when the concentration of the first surfactant is not less than 1 times and not more than 5 times the critical micelle concentration with respect to the solvent, the formation of the metal nanoparticles may be smoothly performed.
  • the size of the metal nanoparticles may be controlled by adjusting the first and second metal salts surrounding the first surfactant and / or micelle forming the micelle.
  • the size of the metal nanoparticle may be adjusted by the chain length of the first surfactant forming the micelle. Specifically, when the chain length of the first surfactant is short, the size of the micelle is reduced, and thus the size of the metal nanoparticles may be reduced.
  • the number of carbon atoms of the chain of the first surfactant may be 15 or less.
  • the carbon number of the chain may be 8 or more and 15 or less.
  • the carbon number of the chain may be 10 or more and 12 or less.
  • the size of the metal nanoparticle may be adjusted by adjusting the type of counter ions of the first surfactant forming the micelle. Specifically, the larger the size of the counter ion of the first surfactant, the weaker the bonding force with the head portion of the outer end of the first surfactant may be the size of the micelle, thereby increasing the size of the metal nanoparticles. .
  • the first surfactant when the first surfactant is an anionic surfactant, the first surfactant includes NH 4 + , K + , Na + or Li + as a counter ion. It may be.
  • the first surfactant when the counter ion of the first surfactant is NH 4 + , when the counter ion of the first surfactant is K + , when the counter ion of the first surfactant is Na + , the first surfactant
  • the size of the metal nanoparticles may be reduced in the order of the counter ion of Li + .
  • the first surfactant when the first surfactant is a cationic surfactant, the first surfactant may include I ⁇ , Br ⁇ , or Cl ⁇ as a counter ion.
  • the metal nanoparticles in the order of the counter ion of the first surfactant is Cl ⁇
  • the size of can be made smaller.
  • the size of the metal nanoparticle may be controlled by adjusting the size of the head portion of the outer end of the first surfactant forming the micelle. Furthermore, when the size of the head portion of the first surfactant formed on the outer surface of the micelle is increased, the repulsive force between the head portions of the first surfactant is increased, thereby increasing the micelle, and thus the size of the metal nanoparticles is increased. Can grow.
  • the size of the metal nanoparticles may be determined by the complex action of the above-described elements.
  • the metal salt is not particularly limited as long as it can be ionized in a solution to provide metal ions.
  • the metal salt may be ionized in a solution state to provide an anion of a cation including a metal ion or an atomic monoion including a metal ion.
  • the first metal salt and the second metal salt may be different from each other.
  • the first metal salt may provide a cation including a metal ion
  • the second metal salt may provide an anion of atomic group ions including a metal ion.
  • the first metal salt may provide a cation of Ni 2+
  • the second metal salt may provide an anion of PtCl 4 2 ⁇ .
  • the first metal salt and the second metal salt are not particularly limited as long as they can be ionized in a solution to provide a metal ion or an atomic group ion including a metal ion.
  • the first metal salt and the second metal salt are each independently selected from the group consisting of metals, metalloids, lanthanum group metals, and actinium group metals belonging to Groups 3 to 15 of the periodic table. It may be a salt of the thing.
  • the first metal salt and the second metal salt are different from each other, and each independently, platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir) , Rhenium (Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn) It may be a salt of a metal selected from the group consisting of Cr (chromium), titanium (Ti), gold (Au), cerium (Ce), silver (Ag) and copper (Cu).
  • the first metal salt is ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium ( Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium (Cr), titanium ( It may be a salt of a metal selected from the group consisting of Ti), cerium (Ce), silver (Ag), and copper (Cu), and more particularly, may be a salt of nickel (Ni).
  • the second metal salt is platinum (Pt), ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium ( Re), palladium (Pd), vanadium (V), tungsten (W), cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), chromium ( It may be a salt of a metal selected from the group consisting of Cr), titanium (Ti), gold (Au), cerium (Ce), silver (Ag) and copper (Cu). More specifically, it may be a salt of a metal consisting of platinum (Pt), palladium (Pd) and gold (Au), and even more specifically, may be a salt of platinum (Pt).
  • the first metal salt and the second metal salt may each independently be a halide such as nitrate, chloride, bromide, or iodide of a metal.
  • Halide such as nitrate, chloride, bromide, or iodide of a metal.
  • Halide nitrate, chloride, bromide, or iodide of a metal.
  • Halide hydroxide
  • sulfur oxides Sulfate
  • the molar ratio of the first metal salt and the second metal salt in the forming of the solution may be 1: 5 to 10: 1.
  • the molar ratio of the first metal salt and the second metal salt may be 2: 1 to 5: 1.
  • the first and second metal ions may smoothly form the shell portion of the metal nanoparticles.
  • the shell unit may include a first shell including the first metal ion; And a second shell including the second metal ion.
  • an atomic percentage ratio of the first metal and the second metal of the shell part may be 1: 5 to 10: 1.
  • the atomic percentage ratio may be an atomic percentage ratio of the first metal of the first shell and the second metal of the second shell when the shell portion is formed of the first shell and the second shell.
  • the atomic percentage ratio may be an atomic percentage ratio of the first metal and the second metal when the shell portion is formed of one shell including the first metal and the second metal.
  • the forming of the solution may further include adding a stabilizer.
  • the stabilizer may be, for example, one or two or more mixtures selected from the group consisting of disodium phosphate, dipotassium phosphate, disodium citrate and trisodium citrate.
  • the forming of the metal nanoparticles may include adding a nonionic surfactant together with the reducing agent.
  • the nonionic surfactant is adsorbed on the surface of the shell, and serves to uniformly disperse the metal nanoparticles formed in the solution. Therefore, the metal particles are prevented from being agglomerated or precipitated, and the metal nanoparticles can be formed to a uniform size.
  • Specific examples of the nonionic surfactant are the same as those of the nonionic surfactant described above.
  • the solvent may be a solvent including water.
  • the solvent may be water or a mixture of water and an alcohol having 1 to 6 carbon atoms by dissolving the first metal salt and the second metal salt, and more specifically, may be water. . Since the manufacturing method according to the present specification does not use an organic solvent as a solvent, a post-treatment step of treating an organic solvent in a manufacturing process is not required, and thus, there is a cost saving effect and an environmental pollution prevention effect.
  • the manufacturing method may be performed at room temperature.
  • the temperature may be performed at a temperature in the range of 4 ° C to 35 ° C, more specifically at 12 ° C to 28 ° C.
  • Forming the solution in one embodiment of the present specification may be carried out at room temperature, specifically 4 ° C or more and 35 ° C or less, more specifically 12 ° C or more and 28 ° C or less.
  • the solvent is an organic solvent, there is a problem that the solvent must be prepared at a high temperature of more than 100 ° C. Since the present application can be manufactured at room temperature, the manufacturing method is simple, there is a process advantage, and the cost reduction effect is large.
  • the forming of the solution may be performed for 5 minutes to 120 minutes, more specifically for 10 minutes to 90 minutes, and even more specifically for 20 minutes to 60 minutes.
  • the step of forming a metal nanoparticle comprising a cavity for adding a reducing agent and / or a nonionic surfactant to the solution may also be carried out at room temperature, specifically 4 ° C. to 35 ° C., More specifically, it may be performed at 12 ° C. or higher and 28 ° C. or lower. Since the manufacturing method of the present specification can be manufactured at room temperature, the manufacturing method is simple, there are advantages in the process, and the cost reduction effect is large.
  • Forming the metal nanoparticles comprising the cavity may react the solution with a reducing agent and / or a nonionic surfactant for a period of time, specifically for 5 to 120 minutes, more specifically for 10 to 90 minutes, even more Specifically, the reaction can be carried out for 20 to 60 minutes.
  • the standard reduction potential of the reducing agent may be -0.23V or less.
  • the reducing agent is not particularly limited as long as it is a standard reducing agent of -0.23V or less, specifically, -4V or more and -0.23V or less, and has a reducing power capable of reducing dissolved metal ions to precipitate as metal particles.
  • the reducing agent may be at least one selected from the group consisting of NaBH 4 , NH 2 NH 2 , LiAlH 4 and LiBEt3H.
  • the manufacturing method may further include removing a surfactant inside the hollow after forming the metal nanoparticle including the cavity.
  • the removal method is not particularly limited and may be, for example, a method of washing with water.
  • the surfactant may be an anionic surfactant and / or a cationic surfactant.
  • adding acid to the metal nanoparticles to remove the cationic metal may further include.
  • adding acid to the metal nanoparticle when an acid is added to the metal nanoparticle, a 3d band metal is eluted.
  • the cationic metal is specifically ruthenium (Ru), rhodium (Rh), molybdenum (Mo), osmium (Os), iridium (Ir), rhenium (Re), palladium (Pd), vanadium (V), tungsten (W) ), Cobalt (Co), iron (Fe), selenium (Se), nickel (Ni), bismuth (Bi), tin (Sn), Cr (chromium), titanium (Ti), cerium (Ce), silver (Ag) ) And copper (Cu).
  • the acid is not particularly limited, and for example, one selected from the group consisting of sulfuric acid, nitric acid, hydrochloric acid, perchloric acid, hydroiodic acid and hydrobromic acid may be used.
  • the solution including the metal nanoparticles may be centrifuged to precipitate the metal nanoparticles included in the solution. Only metal nanoparticles separated after centrifugation can be recovered. If necessary, the firing process of the metal nanoparticles may be additionally performed.
  • metal nanoparticles having a uniform size in the order of several nanometers may be manufactured. Conventional methods have made it difficult to produce nanoscale metal nanoparticles, as well as to produce uniform sizes.
  • the metal nanoparticles of the present specification may generally be used to replace existing nanoparticles in the field where nanoparticles may be used. Since the metal nanoparticles of the present specification are very small in size and have a larger specific surface area than the conventional nanoparticles, the metal nanoparticles may exhibit excellent activity as compared to the conventional nanoparticles. Specifically, the metal nanoparticles of the present specification may be used in various fields such as catalysts, drug delivery, gas sensors, and the like. The metal nanoparticles may be used as active substance preparations in cosmetics, pesticides, animal nutrition or food supplements as catalysts, and may also be used as pigments in electronics, optical articles or polymers.
  • One embodiment of the present specification provides a catalyst including the hollow metal nanoparticles.
  • the first metal salt may be a salt including a first metal ion, which is a precursor of the first metal, or an atomic group ion including the first metal ion, and may serve to provide a first metal.
  • the second metal salt is a salt including a second metal ion that is a precursor of the second metal or an atomic group ion including the second metal ion, and may serve to provide a second metal.
  • NaBH 4 as a reducing agent and polyvinylpyrrolidone (PVP) as a nonionic surfactant were added and reacted for 30 minutes.
  • the supernatant of the upper layer was discarded by centrifugation at 10,000 rpm for 10 minutes, and the remaining precipitate was redispersed in distilled water, followed by repeated centrifugation to prepare hollow metal nanoparticles including the cavity of the present specification.
  • the manufacturing process of the metal nanoparticles was carried out in an atmosphere of 14 °C.
  • FIGS. 2 and 3 Transmission electron microscope (TEM) images of the hollow metal nanoparticles of the present disclosure prepared according to Example 1 are shown in FIGS. 2 and 3. 3 is an inverted color of FIG. 2. That is, FIG. 2 shows the dark field of the TEM, and FIG. 3 shows the bright field of the TEM.
  • the dark field TEM image of the present specification when the electron bunches of the TEM touch the hollow metal nanoparticles, the diffraction occurs at a large mass of the shell, thereby showing a bright image.
  • the hollow areas of the nanoparticles show slightly darker images because the electron bunches of the TEM have less diffraction.
  • the area with the cavity of the shell part is transmitted through the electron bunches of the TEM as it is, resulting in a black image.
  • Ni (NO 3 ) 2 as the first metal salt, K 2 PtCl 4 as the second metal salt, ammonium lauryl sulfate (ALS) as the first surfactant, sodium 1-heptanesulfonate as the second surfactant 1-heptanesulfonate (SHS), trisodium citrate as a stabilizer was added to distilled water to form a solution, and stirred for 30 minutes.
  • the molar ratio of K 2 PtCl 4 to Ni (NO 3 ) 2 was 1: 3
  • ALS was twice the critical micelle concentration (CMC) for water
  • SHS was 1/30 mol of ALS. It was.
  • NaBH 4 as a reducing agent and polyvinylpyrrolidone (PVP) as a nonionic surfactant were added and reacted for 30 minutes.
  • the supernatant of the upper layer was discarded by centrifugation at 10,000 rpm for 10 minutes, and the remaining precipitate was redispersed in distilled water, followed by repeated centrifugation to prepare hollow metal nanoparticles including the cavity of the present specification.
  • the manufacturing process of the metal nanoparticles was carried out in an atmosphere of 14 °C.
  • FIGS. 4 and 5 Transmission electron microscope (TEM) images of the hollow metal nanoparticles of the present disclosure prepared according to Example 2 are shown in FIGS. 4 and 5. 5 is an inverted color of FIG. That is, FIG. 4 shows the dark field of the TEM, and FIG. 5 shows the bright field of the TEM.
  • Trisodium citrate was added to distilled water as a stabilizer to form a solution and stirred for 30 minutes.
  • the molar ratio of K 2 PtCl 4 and Ni (NO 3 ) 2 was 1: 3
  • ALS was twice the critical micelle concentration (CMC) to water
  • sodium hexanesulfonate was 1 / A of ALS. 30 moles.
  • NaBH 4 as a reducing agent and polyvinylpyrrolidone (PVP) as a nonionic surfactant were added and reacted for 30 minutes.
  • the supernatant of the upper layer was discarded by centrifugation at 10,000 rpm for 10 minutes, and the remaining precipitate was redispersed in distilled water, followed by repeated centrifugation to prepare hollow metal nanoparticles including the cavity of the present specification.
  • the manufacturing process of the metal nanoparticles was carried out in an atmosphere of 14 °C.
  • FIG. 6 and 7 show transmission electron microscope (TEM) images of hollow metal nanoparticles of the present disclosure prepared according to Example 3.
  • FIG. 7 is an inverted color of FIG. 6. That is, FIG. 6 shows the dark field of the TEM, and FIG. 7 shows the bright field of the TEM.
  • K 2 PtCl 4 as the second metal salt
  • sodium dodecyl sulfate (SDS) as the first surfactant
  • N-dodecyl-N, N as the second surfactant -Dimethyl-3-ammonio-1-propanesulfonate
  • DDAPS dimethyl-3-ammonio-1-propane sulfonate
  • trisodium citrate as a stabilizer added to distilled water
  • the solution was formed and stirred for 30 minutes.
  • the molar ratio of K 2 PtCl 4 to Ni (NO 3 ) 2 was 1: 3
  • ALS was twice the critical micelle concentration (CMC) for water
  • DDAPS was 1/30 mol of SDS. It was.
  • NaBH 4 as a reducing agent and polyvinylpyrrolidone (PVP) as a nonionic surfactant were added and reacted for 30 minutes.
  • the supernatant of the upper layer was discarded by centrifugation at 10,000 rpm for 10 minutes, and the remaining precipitate was redispersed in distilled water, followed by repeated centrifugation to prepare hollow metal nanoparticles including the cavity of the present specification.
  • the manufacturing process of the metal nanoparticles was carried out in an atmosphere of 14 °C.
  • FIGS. 8 and 9 Transmission electron microscope (TEM) images of the hollow metal nanoparticles of the present specification prepared according to Example 4 are shown in FIGS. 8 and 9.
  • FIG. 9 is an inverted color of FIG. 8. That is, FIG. 8 shows the dark field of the TEM, and FIG. 9 shows the bright field of the TEM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 명세서는 중공 금속 나노입자에 관한 것이다. 구체적으로, 공동(cavity)를 포함하는 중공 금속 나노입자에 관한 것이다.

Description

중공 금속 나노입자
본 명세서는 2013년 6월 7일에 한국특허청에 제출된 한국 특허 출원 제 10-2013-0065446호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 중공 금속 나노입자에 관한 것이다.
나노 입자는 나노 스케일의 입자 크기를 가지는 입자로서, 전자전이에 필요한 에너지가 물질의 크기에 따라 변화되는 양자 크기 제한 현상(quantumconfinement effect) 및 넓은 비표면적으로 인하여 벌크 상태의 물질과는 전혀 다른 광학적, 전기적, 자기적 특성을 나타낸다. 따라서, 이러한 성질 때문에 촉매 분야, 전기자기 분야, 광학 분야, 의학 분야 등에서의 이용가능성에 대한 많은 관심이 집중되어 왔다. 나노 입자는 벌크와 분자의 중간체라고 할 수 있으며, 두 가지 방향에서의 접근방법, 즉 "Top-down" 접근방법과 "Bottom-up" 접근방법의 측면에서 나노 입자의 합성이 가능하다.
금속 나노 입자의 합성방법에는 용액 상에서 환원제로 금속 이온을 환원시키는 방법, 감마선을 이용한 방법, 전기화학적 방법 등이 있으나, 기존의 방법들은 균일한 크기와 모양을 갖는 나노 입자 합성이 어렵거나, 유기 용매를 이용함으로써 환경 오염, 고비용(high cost) 등이 문제되는 등 여러 가지 이유로 고품질 나노 입자의 경제적인 대량 생산이 힘들었다. 따라서, 균일한 크기의 고품질 나노입자의 개발이 요구되었다.
본 명세서가 해결하고자 하는 과제는 균일한 크기의 고품질의 중공 금속 나노입자를 제공하는 것이다.
중공 코어(core)부; 제1 금속 및 제2 금속을 포함하는 쉘(shell)부; 및 상기 쉘부의 1 또는 2 이상의 영역에 쉘부 외면으로부터 상기 중공 코어에 이르는 공동(cavity)을 포함하는 중공 금속 나노입자를 제공한다.
또한, 본 명세서의 일 구현예는 상기 중공 금속 나노입자를 포함하는 촉매를 제공한다.
본 명세서의 중공 금속 나노입자는 수 나노미터로 균일한 크기의 중공 금속 나노입자를 제공하여 다양한 분야에서 응용할 수 있는 장점이 있다. 나아가, 본 명세서의 중공 금속 나노입자는 공동(cavity)을 포함하고, 공동을 통하여 쉘의 내부 표면적까지 접촉면적을 활용할 수 있으므로, 촉매에 포함하는 경우 촉매 효율이 증가하는 장점이 있다.
도 1은 본 명세서의 일 구현예에 따른 상기 중공 금속 나노입자의 일 예를 도시한 것이다.
도 2 및 도 3은 본 명세서의 실시예 1에 의하여 제조된 상기 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 4 및 도 5는 본 명세서의 실시예 2에 의하여 제조된 상기 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 6 및 도 7은 본 명세서의 실시예 3에 의하여 제조된 상기 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
도 8 및 도 9는 본 명세서의 실시예 4에 의하여 제조된 상기 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 나타낸 것이다.
본 출원의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시상태들을 참조하면 명확해질 것이다. 그러나, 본 출원은 이하에서 개시되는 실시상태들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시상태들은 본 출원의 개시가 완전하도록 하며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 출원은 청구항의 범주에 의해 정의될 뿐이다. 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 구현예는 중공 코어(core)부; 제1 금속 및 제2 금속을 포함하는 쉘(shell)부; 및 상기 쉘부의 1 또는 2 이상의 영역에 쉘부 외면으로부터 상기 중공 코어에 이르는 공동(cavity)을 포함하는 중공 금속 나노입자를 제공한다. 본 명세서의 상기 중공 금속 나노입자는 내부 중공에 계면활성제가 포함되어 있을 수도 있고, 내부 중공에 계면활성제가 제거되어 있을 수도 있다. 도 1은 본 명세서의 중공 금속 나노입자의 제조시, 환원제에 의하여 쉘부를 형성하기 전의 단계로서, 내부 중공에 2종 이상의 계면활성제가 혼합되어 있는 경우의 일 예를 도시한 것이다.
본 명세서의 일 구현예에 따르면, 상기 중공은 계면활성제가 포함되어 있을 수 있다. 또한, 본 명세서의 일 구현예에 따르면, 상기 중공은 계면활성제가 제거되어 있을 수 있다.
본 명세서에서, 상기 중공이란 금속 나노입자의 코어 부분이 비어있는 것을 의미한다. 또한, 상기 중공은 중공 코어와 동일한 의미로 쓰일 수 있다. 상기 중공은 할로우(hollow), 구멍, 보이드(void) 등의 용어를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 코어는 상기 중공 금속 나노입자의 50 부피% 이상 100 부피% 미만일 수 있다. 구체적으로, 상기 중공 코어는 상기 중공 금속 나노입자의 70 부피% 이상, 더욱 구체적으로 80 부피% 이상일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공은 내부 물질이 50 부피% 이상, 구체적으로 70 부피% 이상, 더욱 구체적으로 80 부피% 이상 존재하지 않는 공간을 포함할 수 있다. 또는, 내부의 50 부피% 이상, 구체적으로 70 부피% 이상, 더욱 구체적으로 80 부피% 이상이 비어 있는 공간을 포함할 수도 있다. 또는, 내부의 공극률이 50 부피% 이상, 구체적으로 70 부피% 이상, 더욱 구체적으로 80 부피% 이상인 공간을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자는 구 형상일 수 있다. 본 명세서의 상기 구 형상이란, 완전한 구형만을 의미하는 것은 아니고, 대략적으로 구 형태의 모양인 것을 포함할 수 있다. 예를 들면, 상기 중공 금속 나노입자는 구 형상의 외표면이 평탄하지 않을 수 있으며, 하나의 중공 금속 나노입자에서 곡률반경이 일정하지 않을 수도 있다.
본 명세서의 일 실시상태에서 상기 중공 금속 나노입자의 입경은 1 ㎚ 이상 30 ㎚ 이하일 수 있고, 더욱 구체적으로 20 ㎚ 이하일 수 있고, 또는 12 ㎚ 이하, 또는 10 ㎚ 이하일 수 있다. 또는, 상기 금속 나노입자의 평균 입경은 6 nm 이하일 수 있다. 상기 중공 금속 나노입자의 평균 입경은 1 ㎚ 이상일 수 있다. 중공 금속 나노입자의 입경이 30 ㎚ 이하인 경우, 나노입자를 여러 분야에서 이용할 수 있는 장점이 크다. 또한, 중공 금속 나노입자의 입경이 20 ㎚ 이하인 경우, 더욱 바람직하다. 또한, 중공 금속 나노입자의 입경이 10 ㎚ 이하인 경우 입자의 표면적이 더욱 넓어지므로, 여러 분야에서 이용할 수 있는 응용 가능성이 더욱 커지는 장점이 있다. 예를 들어, 상기 입경 범위로 형성된 중공 금속 나노입자가 촉매로 사용되면, 그 효율이 현저하게 상승될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 평균 입경은 그래픽 소프트웨어(MAC-View)를 사용하여 200개 이상의 중공 금속 나노입자에 대해 측정하고, 얻어진 통계 분포를 통해 평균 입경을 측정한 값을 의미한다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 평균 입경은 1 nm 이상 30 nm 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 평균 입경은 1 nm 이상 20 nm 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 평균 입경은 1 nm 이상 12 nm 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 평균 입경은 1 nm 이상 10 nm 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 평균 입경은 1 nm 이상 6 nm 이하일 수 있다.
본 명세서의 일 실시상태에서 상기 중공 금속 나노입자에서 쉘부의 두께는 0 nm 초과 5 nm 이하, 더욱 구체적으로 0 nm 초과 3 nm 이하일 수 있다.
예를 들어, 상기 중공 금속 나노입자가 중공을 포함하는 경우, 평균 입경은 30 nm 이하이고, 쉘부의 두께가 0 nm 초과 5 nm 이하일 수 있고, 더욱 구체적으로 상기 중공 금속 나노입자의 평균 입경은 20 nm 이하 또는 10 nm 이하이고, 쉘부의 두께가 0 nm 초과 3 nm 이하일 수 있다. 본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 중공의 입경은 1 nm 이상 10 nm 이하, 구체적으로 1 nm 이상 4 nm 이하일 수 있다. 또한, 각각의 쉘의 두께는 0.2 nm 이상 5 nm 이하, 구체적으로 0.25 nm 이상 3 nm 이하일 수 있다. 상기 쉘부는 제1 금속 및 제2 금속이 혼합되어 형성된 쉘일 수도 있고, 각각 제1 금속 및 제2 금속의 혼합 비율이 다르게 별도로 형성된 제1 쉘 및 제2 쉘을 포함하는 복수의 쉘일 수 있다. 또는 제1 금속만을 포함하는 제1 쉘 및 제2 금속만을 포함하는 제2 쉘을 포함하는 복수의 쉘일 수도 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 제조시 하나 이상의 중공 금속 나노입자를 제조할 수 있다. 이 경우, 본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자의 입경은 중공 금속 나노입자들의 평균 입경의 80% 내지 120% 범위 이내일 수 있다. 구체적으로, 상기 중공 금속 나노입자의 입경은 중공 금속 나노입자들의 평균 입경의 90% 내지 110% 범위 이내일 수 있다. 상기 범위를 벗어나는 경우, 중공 금속 나노입자의 크기가 전체적으로 불균일해지므로, 중공 금속 나노입자들에 의해 요구되는 특유의 물성치를 확보하기 어려울 수 있다. 예를 들어, 상기 중공 금속 나노입자들의 평균 입경의 80% 내지 120% 범위를 벗어나는 중공 금속 나노입자들이 촉매로 사용될 경우, 그 효율 개선 효과가 다소 미흡해질 수 있다. 그러므로, 본원 명세서의 상기 중공 금속 나노입자들의 평균 입경의 80% 내지 120% 범위 이내인 경우, 균일한 크기의 나노입자를 형성하여, 나노입자로서의 우수한 물성을 나타낼 수 있다.
본 명세서에 따른 상기 중공 금속 나노입자를 2이상 제조하는 경우, 본원 명세서의 상기 쉘부의 1 또는 2 이상의 영역에 쉘부 외면으로부터 상기 중공 코어에 이르는 공동(cavity)을 포함하는 중공 금속 나노입자의 함량이 전체 나노입자의 50 % 이상 100 %이하일 수 있다. 구체적으로, 상기 쉘부 외면으로부터 상기 중공 코어부까지 연속되는 공동(cavity)을 포함하는 중공 금속 나노입자의 함량이 전체 나노입자의 70 % 이상 100 %이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 중공 금속 나노입자는 상기 공동을 1개 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부는 단일층일 수 있다. 이 경우, 상기 단일층의 쉘부는 상기 제1 금속 및 상기 제2 금속을 모두 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부가 단일층인 경우, 상기 제1 금속 및 상기 제2 금속이 혼합된 형태로 존재할 수 있다. 나아가, 상기 쉘부가 단일층인 경우, 상기 제1 금속 및 상기 제2 금속은 균일 또는 불균일하게 혼합되어 있을 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부는 2층 이상일 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 쉘부가 2층 이상인 경우, 상기 제1 금속을 포함하는 제1 쉘; 및 상기 제2 금속을 포함하는 제2 쉘을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 쉘은 상기 제1 금속을 포함하고, 상기 제2 금속을 포함하지 않을 수 있다. 또한, 상기 제2 쉘은 상기 제2 금속을 포함하고, 상기 제1 금속을 포함하지 않을 수 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 제1 쉘은 상기 제2 금속의 함량보다 상기 제1 금속의 함량이 높을 수 있다. 또한, 상기 제2 쉘은 상기 제1 금속의 함량보다 상기 제2 금속의 함량이 높을 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 쉘은 상기 중공을 감싸는 형태로 형성되고, 상기 제2 쉘은 상기 제1 쉘을 감싸는 형태로 형성될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부는 상기 제 1 금속의 함량이 상기 제2 금속의 함량보다 높은 제1 쉘; 및 상기 제2 금속의 함량이 상기 제1 금속의 함량보다 높은 제2 쉘을 포함할 수 있다.
구체적으로, 본 명세서의 일 구현예에 따르면, 상기 제1 쉘에서의 상기 제1 금속의 함량은 중공의 중심과 가까운 영역에서 가장 높고, 중공의 중심에서 멀어질수록 상기 제1 금속의 함량이 점차로 작아질 수 있다. 또한, 상기 제1 쉘에서의 상기 제2 금속의 함량은 중공의 중심에서 멀어질수록 증가할 수 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 제2 쉘에서의 상기 제2 금속의 함량은 중공의 중심과 가장 멀리 떨어진 영역에서 가장 높고, 중공의 중심에서 가까울수록 상기 제2 금속의 함량은 점차로 작아질 수 있다. 또한, 상기 제2 쉘에서의 상기 제1 금속의 함량은 중공의 중심에서 멀어질수록 감소할 수 있다. 구체적으로, 상기 쉘부는 제1 금속 및 제2 금속이 그라데이션된 상태로 존재할 수 있고, 쉘부의 코어와 인접하는 부분에는 제1 금속이 50 부피% 이상, 또는 70 부피% 이상으로 존재할 수 있고, 쉘부에서 나노입자의 외부와 접하는 표면 부분에는 제2 금속이 50 부피% 이상, 또는 70 부피% 이상으로 존재할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부의 제1 금속과 제2 금속의 원자 백분율 비는 1:5 내지 10:1일 수 있다. 상기 원자 백분율 비는 상기 쉘부가 제1 쉘 및 제2 쉘로 형성되는 경우, 제1 쉘의 제1 금속과 제2 쉘의 제2 금속의 원자 백분율 비 일 수 있다. 또는, 상기 원자 백분율 비는 상기 쉘부가 제1 금속 및 제2 금속을 포함하는 단일층으로 형성되는 경우의 제1 금속과 제2 금속의 원자 백분율비 일 수 있다.
본 명세서의 상기 쉘(shell)부는 상기 중공을 감싸는 외부의 물질층을 의미할 수 있다. 구체적으로, 상기 쉘부에 의하여 상기 중공 금속 나노입자의 형태가 결정될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부의 두께는 0 ㎚ 초과 5 ㎚ 이하일 수 있다. 구체적으로, 상기 쉘부의 두께는 0 ㎚ 초과 3 ㎚ 이하일 수 있다. 예를들어, 상기 중공 금속 나노입자의 평균 입경이 30 ㎚ 이하인 경우, 상기 쉘부의 두께는 0 ㎚ 초과 5 ㎚ 이하일 수 있다. 또는, 상기 중공 금속 나노입자의 평균 입경이 20 ㎚ 이하 또는 10 ㎚ 이하인 경우, 상기 쉘부의 두께는 0 ㎚ 초과 3 ㎚ 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속은 주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택되는 것일 수 있다. 구체적으로, 상기 제1 금속은 백금(Pt); 루테늄(Ru); 로듐(Rh); 몰리브덴(Mo); 오스뮴(Os); 이리듐(Ir); 레늄(Re); 팔라듐(Pd); 바나듐(V); 텅스텐(W); 코발트(Co); 철(Fe); 셀레늄(Se); 니켈(Ni); 비스무트(Bi); 주석(Sn); 크롬(Cr); 타이타늄(Ti); 금(Au); 세륨(Ce); 은(Ag); 및 구리(Cu)로 이루어진 군에서 선택되는 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 금속은 상기 제1 금속과 상이할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 금속은 주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택되는 것일 수 있다. 구체적으로, 상기 제2 금속은 백금(Pt); 루테늄(Ru); 로듐(Rh); 몰리브덴(Mo); 오스뮴(Os); 이리듐(Ir); 레늄(Re); 팔라듐(Pd); 바나듐(V); 텅스텐(W); 코발트(Co); 철(Fe); 셀레늄(Se); 니켈(Ni); 비스무트(Bi); 주석(Sn); 크롬(Cr); 타이타늄(Ti); 금(Au); 세륨(Ce); 은(Ag); 및 구리(Cu)로 이루어진 군에서 선택되는 것일 수 있다.
구체적인 예로서, 본 명세서의 일 구현예에 따르면, 상기 제1 금속은 백금(Pt), 은(Ag), 팔라듐(Pd) 및 금(Au)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 백금(Pt)일 수 있다. 이 경우, 상기 제2 금속은 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 니켈(Ni)일 수 있다.
구체적인 다른 예로서, 본 명세서의 일 구현예에 따르면, 상기 제1 금속은 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 니켈(Ni)일 수 있다. 이 경우, 상기 제2 금속은 백금(Pt), 은(Ag), 팔라듐(Pd) 및 금(Au)로 이루어진 군에서 선택된 것일 수 있고, 더욱 구체적으로 백금(Pt)일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 니켈일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 백금일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속은 니켈이고, 상기 제2 금속은 백금일 수 있다.
본 명세서에의 일 구현예에 따르면, 상기 공동(cavity)은 상기 중공 금속 나노입자의 외측 표면의 일 영역으로부터 연속되는 빈 공간을 의미할 수 있다. 본 명세서의 상기 공동은 쉘부의 1 또는 2 이상의 영역에 쉘부 외측 표면으로부터 상기 중공 코어에 이르기까지 하나의 터널의 형태로 형성될 수 있다. 상기 터널형태는 일직선이 될 수 있고 곡선 또는 직선의 연속적인 형태일 수 있으며, 곡선과 직선이 혼합된 연속적인 형태가 될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 공동은 상기 쉘부 외면으로부터 중공에 이르는 빈 공간일 수 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 공동(cavity)에 의하여 상기 중공 금속 나노입자는 외측의 일 표면 이상에서 상기 중공 나노입자의 중심까지 연결되는 빈 영역을 포함할 수 있게 된다.
본 명세서의 상기 공동은 상기 중공 금속 나노입자의 내부 표면적을 활용할 수 있도록 하는 역할을 할 수 있다. 구체적으로, 상기 공동은 상기 중공 금속 나노입자가 촉매 등의 용도로 사용되는 경우, 반응물질과 접할 수 있는 표면적을 증가시키는 역할을 할 수 있다. 그러므로, 상기 공동은 상기 중공 금속 나노입자의 높은 활성을 나타내도록 하는 역할을 할 수 있다.
구체적으로, 본 명세서의 상기 중공 금속 나노입자는 상기 공동(cavity)을 포함함으로 인하여, 공동(cavity)이 없는 경우의 중공 금속 나노입자에 비하여 표면적이 20% 내지 100% 증가할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 공동(cavity)의 직경은 상기 중공 금속 나노입자 입경의 5 % 이상 30 % 이하일 수 있다.
상기 공동(cavity)의 직경이 중공 금속 나노입자 입경의 5 % 미만인 경우, 상기 중공 금속 나노입자의 활성이 충분히 발휘되지 않을 수 있다. 또한, 상기 공동(cavity)의 직경이 중공 금속 나노입자 입경의 30 %를 초과하는 경우, 상기 중공 금속 나노입자의 형태가 유지되지 않을 수 있다. 그러므로, 상기 공동(cavity)의 직경이 상기 중공 금속 나노입자 입경의 5 % 이상 30 % 이하일 경우, 상기 공동(cavity)을 통한 반응물질과의 접촉면적을 충분히 넓힐 수 있는 장점을 가질 수 있다.
이하, 상기 중공 금속 나노입자의 제조방법에 대하여 기술한다.
본 명세서의 일 구현예는 용매; 상기 용매 중에서 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온을 제공하는 제1 금속염; 상기 용매 중에서 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온을 제공하는 제2 금속염; 상기 용매 중에서 미셀을 형성하는 제1 계면활성제; 및 상기 제1 계면활성제와 함께 상기 용매 중에서 미셀을 형성하는 제2 계면활성제를 포함하는 용액을 형성하는 단계; 및
상기 용액에 환원제를 첨가하여 금속 나노입자를 형성하는 단계를 포함하는 금속 나노입자의 제조방법을 제공한다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상기 제1 계면활성제에 의하여 형성된 미셀의 내부 영역이 중공으로 형성되는 것을 포함할 수 있다.
본 명세서의 일 구현예에 따른 금속 나노입자의 제조방법은 환원전위차를 이용하지 않기 때문에 쉘을 형성하는 제1 금속이온과 제2 금속이온 간의 환원전위를 고려하지 않는다는 장점이 있다. 본 명세서의 상기 제조방법은 금속 이온 간의 전하(charge)를 이용하기 때문에, 종래 환원전위차를 이용하는 금속 나노입자의 제조방법에 비해 단순하다. 그러므로, 본 명세서의 상기 금속 나노입자의 제조방법은 대량 생산이 용이하고, 저렴한 비용으로 금속 나노입자를 제조할 수 있다. 나아가, 환원전위차를 이용하지 않으므로, 종래의 금속 나노입자의 제조방법에 비하여 사용하는 금속염의 제약이 줄어들어 다양한 금속염을 사용할 수 있는 장점이 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상기 금속 나노입자의 내부에 중공 코어가 형성되는 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 제1 및 제2 계면활성제가 용액상에서 미셀(micelle)을 형성하는 단계를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상기 제1 금속이온 또는 제1 금속이온을 포함하는 원자단이온; 및 상기 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온이 상기 금속 나노입자의 쉘부를 형성할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온은 상기 제1 계면활성제 외측 단부의 전하와 반대되는 전하를 갖고, 상기 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온은 상기 제1 계면활성제 외측 단부의 전하와 같은 전하를 가질 수 있다.
그러므로, 용액에서 미셀을 형성하는 상기 제1 계면활성제의 외측 단부에 상기 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온이 위치하여 상기 미셀의 외면을 둘러싸는 형태가 될 수 있다. 나아가, 상기 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온이, 상기 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온의 외면을 둘러싸는 형태가 될 수 있다. 상기 제1 금속염 및 상기 제2 금속염은 환원제에 의하여 각각 제1 금속 및 제2 금속을 포함하는 쉘부를 형성할 수 있다.
본 명세서에서 상기 계면활성제 외측 단부는 미셀을 형성하는 상기 제1 또는 제2 계면활성제의 미셀 외측부를 의미할 수 있다. 본 명세서의 상기 계면활성제 외측 단부는 계면활성제의 머리를 의미할 수 있다. 또한, 본 명세서의 상기 외측 단부는 상기 계면활성제의 전하를 결정할 수 있다.
또한, 본 명세서의 계면활성제는 외측 단부의 종류에 따라 이온성 또는 비이온성으로 분류될 수 있으며, 상기 이온성은 양성, 음성, 양쪽이온성(zwitterionic) 또는 양쪽성(amphoteric)일 수 있다. 상기 양쪽이온성 계면활성제는 양성 및 음성 전하를 모두 함유한다. 본 명세서의 계면활성제의 양성 및 음성 전하가 pH에 의존적이라면, 양쪽성 계면활성제일 수 있으며, 이는 일정 pH 범위에서 양쪽이온성일 수 있다. 구체적으로, 본 명세세에서의 음이온성 계면활성제는 계면활성제의 외측 단부가 음전하를 띠는 것을 의미할 수 있고, 양이온성 계면활성제는 계면활성제의 외측 단부가 양전하를 띠는 것을 의미할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법에 의하여 제조되는 금속 나노입자는 상기 쉘부의 1 또는 2 이상의 영역에 공동(cavity)이 형성될 수 있다.
본 명세서의 상기 공동(cavity)은 상기 금속 나노입자의 외측 표면의 일 영역으로부터 연속되는 빈 공간을 의미할 수 있다. 본 명세서의 상기 공동은 상기 쉘부 외측 표면의 일 영역으로부터 하나의 터널의 형태로 형성될 수 있다. 상기 터널형태는 일직선이 될 수 있고 곡선 또는 직선의 연속적인 형태일 수 있으며, 곡선과 직선이 혼합된 연속적인 형태가 될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 금속 나노입자가 중공을 포함하는 경우, 상기 공동은 상기 쉘부 외면으로부터 중공에 이르는 빈 공간일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상기 제2 계면활성제의 농도; 체인 길이; 외측 단부의 크기; 또는 전하 종류를 조절하여, 상기 쉘부의 1 또는 2이상의 영역에 공동(cavity)을 형성할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부는 금속을 포함하는 상기 나노입자의 영역을 의미할 수 있다. 구체적으로, 상기 쉘부는 상기 중공 및 상기 공동을 제외한 상기 금속 입자의 영역을 의미할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제는 용액에서 미셀을 형성하여 상기 금속이온 또는 금속이온을 포함하는 원자단이온이 쉘부를 형성하도록 하는 역할을 할 수 있고, 상기 제2 계면활성제는 상기 금속 나노입자의 공동을 형성하도록 하는 역할을 할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상기 제1 계면활성제가 형성하는 미셀 영역에 상기 금속 나노입자의 쉘부가 형성되고, 상기 제2 계면활성제가 형성하는 미셀 영역에 상기 금속 나노입자의 공동이 형성되는 것을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 상기 제1 및 제2 계면활성제의 농도를 달리하여 상기 공동의 크기 또는 개수를 조절하는 단계를 포함할 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 제2 계면활성제의 몰농도는 상기 제1 계면활성제 몰농도의 0.01 내지 1 배일 수 있다. 구체적으로, 상기 제2 계면활성제의 몰농도는 상기 제1 계면활성제 몰농도의 1/30 내지 1 배일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계에서 상기 제1 계면활성제와 상기 제2 계면활성제는 상기 농도비에 따라 미셀을 형성할 수 있다. 상기 제1 및 제2 계면활성제의 몰농도비를 조절하여 상기 금속 나노입자의 공동 크기 또는 공동의 개수를 조절할 수 있다. 나아가, 상기 공동이 연속적으로 형성되게 하여 보울형 입자를 1 이상 포함하는 금속 나노입자를 제조할 수도 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 상기 제2 계면활성제의 외측 단부의 크기를 조절하여 상기 공동의 크기를 조절하는 단계를 포함할 수 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 상기 제2 계면활성제의 체인 길이를 상기 제1 계면활성제의 체인 길이와 상이하게 조절하여 상기 제2 계면활성제 영역에 공동을 형성하는 단계를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 계면활성제의 체인 길이는 상기 제1 계면활성제의 체인 길이의 0.5 내지 2 배일 수 있다. 구체적으로, 상기 체인 길이는 탄소의 개수에 의하여 결정될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 계면활성제의 체인길이를 제1 계면활성제의 체인 길이와 상이하게 함으로서, 상기 제2 계면활성제의 외측 단부에 결합되는 금속염이 상기 금속 나노입자의 쉘부를 형성하지 않도록 할 수 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 상기 제2 계면활성제의 전하를 상기 제1 계면활성제의 전하와 상이하게 조절하여 공동을 형성하는 단계를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 용매 중에서 미셀을 형성하는 상기 제1 및 제2 계면활성제의 외측 단부에 상기 제1 및 제2 계면활성제와 반대되는 전하의 제1 금속이온 또는 제1 금속이온을 포함하는 원자단이온이 위치할 수 있다. 또한, 상기 제1 금속이온 외면에는 상기 제1 금속이온의 전하와 반대되는 상기 제2 금속이온이 위치할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제의 외측 단부에 형성된 상기 제1 금속이온 및 상기 제2 금속이온은 상기 금속 나노입자의 쉘부를 형성할 수 있으며, 상기 제2 계면활성제의 외측 단부에 위치하는 제1 금속이온 및 상기 제2 금속이온은 상기 쉘을 형성하지 못하며 공동을 형성할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제가 음이온성 계면활성제인 경우, 상기 용액을 형성하는 단계에서 상기 제1 계면활성제는 미셀을 형성하고, 상기 미셀은 제1 금속이온 또는 제1 금속이온을 포함하는 원자단이온의 양이온으로 둘러싸일 수 있다. 나아가, 음이온의 제2 금속이온을 포함하는 원자단이온이 상기 양이온을 둘러쌀 수 있다. 나아가, 환원제를 첨가하여 금속 나노입자를 형성하는 단계에서, 상기 미셀을 둘러싼 양이온이 제1 쉘을 형성하고, 상기 양이온을 둘러싸는 음이온이 제2 쉘을 형성할 수 있다.
또한, 본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제가 양이온성 계면활성제인 경우, 상기 용액을 형성하는 단계에서 상기 제1 계면활성제는 미셀을 형성하고, 상기 미셀은 제1 금속이온을 포함하는 원자단이온의 음이온으로 둘러싸일 수 있다. 나아가, 양이온의 제2 금속이온 또는 제2 금속이온을 포함하는 원자단이온이 상기 음이온을 둘러쌀 수 있다. 나아가, 환원제를 첨가하여 금속 나노입자를 형성하는 단계에서, 상기 미셀을 둘러싼 음이온이 제1 쉘을 형성하고, 상기 음이온을 둘러싸는 양이온이 제2 쉘을 형성할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 금속 나노입자를 형성하는 단계는 상기 미셀을 형성하는 제1 및 제2 계면활성제 영역을 중공으로 형성하는 단계를 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제 및 상기 제2 계면활성제는 모두 양이온성 계면활성제일 수 있다.
또는, 본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제 및 상기 제2 계면활성제는 모두 음이온성 계면활성제일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 및 제2 계면활성제가 동일한 전하를 갖는 경우, 제2 계면활성제의 체인 길이를 상기 제1 계면활성제의 체인 길이와 상이하게 하여 미셀을 형성할 수 있다. 구체적으로, 제2 계면활성제의 체인 길이의 차이에 의하여, 제2 계면활성제의 외측 단부에 위치하는 제1 및 제2 금속이온은 상기 제1 계면활성제의 외측 단부에 위치하는 제1 및 제2 금속이온과 인접하지 않게 되어 쉘부를 형성하지 않게 된다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제 및 상기 제2 계면활성제 중 어느 하나는 음이온성 계면활성제이고, 나머지 하나는 양이온성 계면활성제일 수 있다. 즉, 본 명세서의 일 구현예는 상기 제1 및 제2 계면활성제는 서로 다른 전하를 가질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 및 제2 계면활성제가 서로 다른 전하를 갖는 경우, 체인의 길이를 상이하게 하여 상기 금속 나노입자의 공동을 형성할 수 있다. 이 경우, 공동이 형성되는 원리는 상기 전술한 제1 및 제2 계면활성제가 동일한 전하를 가질 경우와 같다.
본 명세서의 일 구현예에 따르면, 상기 제1 및 제2 계면활성제가 서로 다른 전하를 갖는 경우, 상기 제1 및 제2 계면활성제의 체인의 길이가 동일하더라도 상기 금속 나노입자의 공동을 형성할 수 있다. 이 경우, 미셀의 상기 제2 계면활성제의 외측 단부와 인접하는 상기 제1 계면활성제의 외측 단부는 서로 전하를 주고 받아 중성을 이루게 되어, 금속이온이 위치하지 않게 된다. 그러므로, 금속이온이 위치하지 않은 부분은 쉘부를 형성하지 않게 되어, 상기 금속 나노입자의 공동을 형성할 수 있게 된다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제는 음이온성 계면활성제 또는 양이온성 계면활성제이고, 상기 제2 계면활성제는 비이온성 계면활성제일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 계면활성제가 비이온성 계면활성제인 경우, 제2 계면활성제의 외측 단부에는 금속이온이 위치하지 않기 때문에 상기 금속 나노입자의 공동을 형성할 수 있게 된다. 그러므로, 상기 제2 계면활성제가 비이온성인 경우, 체인의 길이가 제1 계면활성제와 동일 또는 상이한 경우에도 상기 금속 나노입자의 공동을 형성할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제는 음이온성 계면활성제 또는 양이온성 계면활성제이고, 상기 제2 계면활성제는 양쪽 이온성 계면활성제일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제2 계면활성제가 양쪽 이온성 계면활성제인 경우, 제2 계면활성제의 외측 단부에는 금속이온이 위치하지 않기 때문에 상기 금속 나노입자의 공동을 형성할 수 있게 된다. 그러므로, 상기 제2 계면활성제가 양쪽 이온성인 경우, 체인의 길이가 제1 계면활성제와 동일 또는 상이한 경우에도 상기 금속 나노입자의 공동을 형성할 수 있다.
본 명세서의 상기 음이온성 계면활성제는 암모늄 라우릴 설페이트, 소듐 1-헵탄설포네이트, 소듐 헥산설포네이트, 소듐 도데실설페이트, 트리에탄올암모늄도데실벤젠설페이트, 칼륨 라우레이트, 트리에탄올아민 스테아레이트, 리튬 도데실설페이트, 소듐 라우릴설페이트, 알킬 폴리옥시에틸렌 설페이트, 소듐 알기네이트, 디옥틸 소듐 술포숙시네이트, 포스파티딜 글리세롤, 포스파티딜 이노시톨, 포스파티딜세린, 포스파티드산 및 그의 염, 글리세릴 에스테르, 소듐 카르복시메틸셀룰로즈, 담즙산 및 그의 염, 콜산, 데옥시콜산, 글리코콜산, 타우로콜산, 글리코데옥시콜산, 알킬 술포네이트, 아릴 술포네이트, 알킬 포스페이트, 알킬 포스포네이트, 스테아르산 및 그의 염, 칼슘 스테아레이트, 포스페이트, 카르복시메틸셀룰로스 나트륨, 디옥틸술포숙시네이트, 소듐 술포숙신산의 디알킬에스테르, 인지질 및 칼슘 카르복시메틸셀룰로즈로 구성된 군으로부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서의 상기 양이온성 계면활성제는 4급(quaternary) 암모늄 화합물, 벤즈알코늄 클로라이드, 세틸트리메틸암모늄 브로마이드, 키토산, 라우릴디메틸벤질암모늄 클로라이드, 아실 카르니틴 히드로클로라이드, 알킬피리디늄 할라이드, 세틸 피리디늄 클로라이드, 양이온성 지질, 폴리메틸메타크릴레이트 트리메틸암모늄 브로마이드, 술포늄 화합물, 폴리비닐피롤리돈-2-디메틸아미노에틸 메타크릴레이트 디메틸 술페이트, 헥사데실트리메틸 암모늄 브로마이드, 포스포늄 화합물, 벤질-디(2-클로로에틸)에틸암모늄브로마이드, 코코넛 트리메틸 암모늄 클로라이드, 코코넛 트리메틸 암모늄 브로마이드, 코코넛 메틸 디히드록시에틸 암모늄 클로라이드, 코코넛 메틸 디히드록시에틸 암모늄 브로마이드, 데실 트리에틸 암모늄 클로라이드, 데실 디메틸 히드록시에틸 암모늄 클로라이드 브로마이드, (C12-C15)디메틸 히드록시에틸 암모늄 클로라이드, (C12-C15)디메틸 히드록시에틸 암모늄 클로라이드 브로마이드, 코코넛 디메틸 히드록시 에틸 암모늄 클로라이드, 코코넛 디메틸 히드록시에틸 암모늄 브로마이드, 미리스틸 트리메틸 암모늄 메틸술페이트, 라우릴 디메틸 벤질 암모늄 클로라이드, 라우릴디메틸 벤질 암모늄 브로마이드, 라우릴 디메틸 (에테녹시)4 암모늄 클로라이드, 라우릴 디메틸 (에테녹시)4 암모늄 브로마이드, N-알킬 (C12-C18)디메틸벤질 암모늄클로라이드, N-알킬 (C14-C18)디메틸-벤질 암모늄 클로라이드, N-테트라데실디메틸벤질 암모늄 클로라이드 일수화물, 디메틸 디데실 암모늄 클로라이드, N-알킬 (C12-C14)디메틸 1-나프틸메틸 암모늄 클로라이드, 트리메틸암모늄 할라이드 알킬-트리메틸암모늄 염, 디알킬-디메틸암모늄 염, 라우릴 트리메틸 암모늄 클로라이드, 에톡실화 알킬아미도알킬디알킬암모늄 염, 에톡실화 트리알킬 암모늄 염, 디알킬벤젠 디알킬암모늄 클로라이드, N-디데실디메틸 암모늄 클로라이드, N-테트라데실디메틸벤질 암모늄 클로라이드 일수화물, N-알킬(C12-C14) 디메틸 1-나프틸메틸 암모늄클로라이드, 도데실디메틸벤질 암모늄 클로라이드, 디알킬 벤젠알킬 암모늄클로라이드, 라우릴 트리메틸 암모늄 클로라이드, 알킬벤질 메틸 암모늄 클로라이드, 알킬 벤질 디메틸 암모늄브로마이드, C12 트리메틸 암모늄 브로마이드, C15 트리메틸암모늄 브로마이드, C17 트리메틸 암모늄 브로마이드, 도데실벤질 트리에틸 암모늄 클로라이드, 폴리디알릴디메틸암모늄 클로라이드, 디메틸 암모늄 클로라이드, 알킬디메틸암모늄 할로게니드, 트리세틸 메틸 암모늄 클로라이드, 데실트리메틸암모늄 브로마이드, 도데실트리에틸암모늄 브로마이드, 테트라데실트리메틸암모늄 브로마이드, 메틸 트리옥틸암모늄 클로라이드, 폴리쿼트(POLYQUAT) 10, 테트라부틸암모늄브로마이드, 벤질 트리메틸암모늄 브로마이드, 콜린 에스테르, 벤즈알코늄 클로라이드, 스테아르알코늄 클로라이드, 세틸 피리디늄 브로마이드, 세틸 피리디늄 클로라이드, 4급화(quaternized) 폴리옥시에틸알킬아민의 할라이드 염, "미라폴(MIRAPOL)" (폴리쿼터늄-2), "알카쿼트(Alkaquat)" (알킬 디메틸 벤질암모늄 클로라이드, 로디아(Rhodia)에 의해 제조됨), 알킬 피리디늄 염, 아민, 아민 염, 이미드 아졸리늄 염, 양성자화 4급 아크릴아미드, 메틸화 4급 중합체, 양이온성구아 검, 벤즈알코늄 클로라이드, 도데실 트리메틸 암모늄 브로마이드, 트리에탄올아민 및 폴옥사민으로 구성된 군으로부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서의 상기 비이온성 계면활성제는 SPAN 60, 폴리옥시에틸렌 지방(fatty) 알코올 에테르, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 지방산 에스테르, 폴리옥시에틸렌 알킬에테르, 폴리옥시에틸렌 피마자유 유도체, 소르비탄 에스테르, 글리세릴 에스테르, 글리세롤 모노스테아레이트, 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리프로필렌 글리콜 에스테르, 세틸 알코올, 세토스테아릴 알코올, 스테아릴 알코올, 아릴알킬 폴리에테르 알코올, 폴리옥시에틸렌폴리옥시프로필렌 공중합체, 폴록사머, 폴락사민, 메틸셀룰로즈, 히드록시셀룰로즈, 히드록시메틸셀룰로스, 히드록시에틸셀룰로스, 히드록시 프로필셀룰로즈, 히드록시 프로필메틸셀룰로즈, 히드록시프로필메틸셀룰로스 프탈레이트, 비결정성 셀룰로즈, 다당류, 전분, 전분 유도체, 히드록시에틸 전분, 폴리비닐 알코올, 트리에탄올아민 스테아레이트, 아민 옥시드, 덱스트란, 글리세롤, 아카시아 검, 콜레스테롤, 트래거캔스, 및 폴리비닐피롤리돈으로 구성된 군으로부터 선택되는 것일 수 있다.
본 명세서의 상기 양쪽 이온성 계면활성제는 N-도데실-N,N-디메틸-3-암모니오-1-프로판설포네이트, 베타인, 알킬 베타인, 알킬아미도 베타인, 아미도 프로필 베타인, 코코암포카르복시글리시네이트, 사코시네이트 아미노프로피오네이트, 아미노글리시네이트, 이미다졸리늄 베타인, 양쪽성이미다졸린, N-알킬-N,N-디메틸암모니오-1-프로판술폰에이트, 3-콜아미도-1-프로필디메틸암모니오-1-프로판술폰에이트, 도데실포스포콜린 및 설포-베타인으로 구성된 군으로부터 선택되는 것일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제의 농도는 용매에 대한 임계미셀농도의 1배 이상 5배 이하일 수 있다. 구체적으로, 상기 제1 계면활성제의 농도는 용매에 대한 임계미셀농도의 2배일 수 있다.
본 명세서에서 상기 임계미셀농도(critical micelle concentration, CMC)는 계면활성제가 용액 중에서 분자 또는 이온의 집단(미셀)을 형성하게 되는 농도의 하한을 의미한다.
계면활성제의 가장 중요한 특성은 계면활성제가 계면, 예를 들면 공기-액체 계면, 공기-고체 계면 및 액체-고체 계면상에서 흡착하는 경향을 갖는 것이다. 계면활성제가 응집된 형태로 존재하지 않는다는 의미에서 유리(free)되어 있는 경우, 그들은 모노머 또는 유니머(unimer)로 불리며, 유니머 농도를 증가시키면 그들은 응집하여 작은 응집체의 실체(entity), 즉, 미셀(micelle)을 형성한다. 이러한 농도를 임계 미셀 농도(Critical Micell Concentration)라 할 수 있다.
상기 제1 계면 활성제의 농도가 임계 미셀농도의 1배 미만이면, 제1 금속염에 흡착되는 제1 계면 활성제의 농도가 상대적으로 적어질 수 있다. 이에 따라, 형성되는 코어 입자의 양도 전체적으로 적어질 수 있다. 한편, 제1 계면활성제의 농도가 임계 미셀농도의 5배를 초과하면, 제1 계면활성제의 농도가 상대적으로 많아져서 중공 코어를 형성하는 금속 나노입자와 중공 코어를 형성하지 않는 금속입자가 섞여서 응집될 수 있다. 그러므로, 상기 제1 계면활성제의 농도가 용매에 대한 임계미셀농도의 1배 이상 5배 이하인 경우, 상기 금속 나노입자의 형성이 원활하게 이루어질 수 있다.
본 명세서의 일 구현예에 따르면, 미셀을 형성하는 상기 제1 계면활성제 및/또는 미셀을 둘러싸는 제1 및 제2 금속염을 조절하여 상기 금속 나노입자의 크기를 조절할 수 있다.
본 명세서의 일 구현예에 따르면, 미셀을 형성하는 상기 제1 계면활성제의 체인 길이에 의하여 금속 나노입자의 크기를 조절할 수 있다. 구체적으로, 제1 계면활성제의 체인 길이가 짧으면 미셀의 크기가 작아지게 되어, 이에 따라 금속 나노입자의 크기가 작아질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제의 체인의 탄소수는 15개 이하일 수 있다. 구체적으로, 상기 체인의 탄소수는 8개 이상 15개 이하일 수 있다. 또는 상기 체인의 탄소수는 10개 이상 12개 이하일 수 있다.
본 명세서의 일 구현예에 따르면, 미셀을 형성하는 제1 계면활성제의 카운터 이온(counter ion)의 종류를 조절하여 상기 금속 나노입자의 크기를 조절할 수 있다. 구체적으로, 제1 계면활성제의 카운터 이온의 크기가 클수록, 제1 계면활성제의 외측 단부의 머리 부분과의 결합력이 약해져서 미셀의 크기가 커질 수 있으며, 이에 따라 상기 금속 나노입자의 크기가 커질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제가 음이온성 계면활성제인 경우, 상기 제1 계면활성제는 카운터 이온(counter ion)으로서 NH4 +, K+, Na+ 또는 Li+을 포함하는 것일 수 있다.
구체적으로, 상기 제1 계면활성제의 카운터 이온이 NH4 +인 경우, 제1 계면활성제의 카운터이온이 K+인 경우, 상기 제1 계면활성제의 카운터 이온이 Na+인 경우, 상기 제1 계면활성제의 카운터이온이 Li+인 경우의 순서로 금속 나노입자의 크기가 작아질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 계면활성제가 양이온성 계면활성제인 경우, 상기 제1 계면활성제는 카운터 이온으로서 I-, Br- 또는 Cl-을 포함하는 것일 수 있다.
구체적으로, 상기 제1 계면활성제의 카운터 이온이 I-인 경우, 상기 제1 계면활성제의 카운터 이온이 Br-인 경우, 상기 제1 계면활성제의 카운터 이온이 Cl-인 경우의 순서로 금속 나노입자의 크기가 작아질 수 있다.
본 명세서의 일 구현예에 따르면, 미셀을 형성하는 상기 제1 계면활성제의 외측 단부의 머리 부분의 크기를 조절하여 상기 금속 나노입자의 크기를 조절할 수 있다. 나아가, 미셀의 외면에 형성된 제1 계면활성제의 머리 부분의 크기를 크게 하는 경우, 제1 계면활성제의 머리부분간의 반발력이 커지게 되어, 미셀이 커질 수 있으며, 이에 따라 상기 금속 나노입자의 크기가 커질 수 있다.
본 명세서의 일 구현예에 따르면, 상기 금속 나노입자의 크기는 상기 기술된 요소들이 복합적으로 작용하여 결정될 수 있다.
본 명세서의 일 구현예에 따르면, 상기 금속염은 용액상에서 이온화하여 금속이온을 제공할 수 있는 것이라면 특별히 한정되지 않는다. 상기 금속염은 용액 상태에서 이온화하여 금속이온을 포함하는 양이온 또는 금속이온을 포함하는 원자단이온의 음이온을 제공할 수 있다. 상기 제1 금속염과 상기 제2 금속염은 서로 상이할 수 있다. 구체적으로, 상기 제1 금속염은 금속이온을 포함하는 양이온을 제공하고, 상기 제2 금속염은 금속이온을 포함하는 원자단 이온의 음이온을 제공할 수 있다. 구체적으로, 상기 제1 금속염은 Ni2+의 양이온을 제공할 수 있고, 상기 제2 금속염은 PtCl4 2-의 음이온을 제공할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속염 및 제2 금속염은 용액상에서 이온화하여 금속이온 또는 금속이온을 포함하는 원자단이온을 제공할 수 있는 것이면 특별히 한정되지 않는다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속염 및 제2 금속염은 각각 독립적으로, 주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택된 것의 염일 수 있다.
구체적으로, 상기 제1 금속염 및 상기 제2 금속염은 서로 상이하고, 각각 독립적으로, 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), Cr(크롬), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 금속의 염일 수 있다.
더욱 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 제1 금속염은 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 금속의 염일 수 있고, 더욱 더 구체적으로 니켈(Ni)의 염일 수 있다.
더욱 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 제2 금속염은 백금(Pt), 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), 크롬(Cr), 타이타늄(Ti), 금(Au), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 금속의 염일 수 있다. 더욱 구체적으로, 백금(Pt), 팔라듐(Pd) 및 금(Au)으로 이루어진 금속의 염일 수 있고, 더욱 더 구체적으로 백금(Pt)의 염일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제1 금속염 및 제2 금속염은 각각 독립적으로, 금속의 질산화물(Nitrate), 염화물(Chloride), 브롬화물(Bomide), 요오드화물(Iodide)과 같은 할로겐화물(Halide), 수산화물(Hydroxide) 또는 황산화물(Sulfate)일 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계에서의 상기 제1 금속염과 상기 제2 금속염의 몰비는 1:5 내지 10:1일 수 있다. 구체적으로, 상기 제1 금속염과 상기 제2 금속염의 몰비는 2:1 내지 5:1일 수 있다.
상기 제1 금속염의 몰수가 상기 제2 금속염의 몰수보다 적으면 제1 금속이온이 중공을 포함하는 제1 쉘을 형성하기 어렵다. 또한, 제1 금속염의 몰수가 제2 금속염의 몰수보다 10배가 초과하면 제2 금속이온이 제1 쉘을 둘러싸는 제2 쉘을 형성하기 어렵다. 그러므로, 상기 범위 내에서 제1 및 제2 금속이온이 원활하게 상기 금속 나노입자의 쉘부를 형성할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부는 상기 제1 금속이온을 포함하는 제1 쉘; 및 상기 제2 금속이온을 포함하는 제2 쉘을 포함할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 쉘부의 제1 금속과 제2 금속의 원자 백분율 비는 1:5 내지 10:1일 수 있다. 상기 원자 백분율 비는 상기 쉘부가 제1 쉘 및 제2 쉘로 형성되는 경우, 제1 쉘의 제1 금속과 제2 쉘의 제2 금속의 원자 백분율 비 일 수 있다. 또는, 상기 원자 백분율 비는 상기 쉘부가 제1 금속 및 제2 금속을 포함하는 하나의 쉘로 형성되는 경우의 제1 금속과 제2 금속의 원자 백분율비 일 수 있다
본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 안정화제를 더 첨가하는 단계를 더 포함할 수 있다.
안정화제로는 예를 들어, 인산이나트륨, 인산이칼륨, 시트르산이나트륨 및 트리소듐시트레이트로 이루어지는 군에서 선택되는 하나 또는 둘 이상의 혼합물일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 금속 나노입자를 형성하는 단계는 상기 환원제와 함께 비이온성 계면활성제를 더 첨가하는 것을 포함할 수 있다.
상기 비이온성 계면활성제는 쉘의 표면에 흡착되어, 용액 내에서 형성된 금속 나노입자가 균일하게 분산될 수 있게 하는 역할을 한다. 그러므로, 금속입자가 뭉치거나 응집되어 침전되는 것을 방지하고 금속 나노입자가 균일한 크기로 형성될 수 있게 한다. 상기 비이온성 계면활성제의 구체적인 예시는 전술한 비이온성 계면활성제의 예시와 같다.
본 명세서의 일 구현예에 따르면, 상기 용매는 물을 포함하는 용매일 수 있다. 구체적으로, 본 명세서의 일 구현예에 따르면, 상기 용매는 제1 금속염 및 제2 금속염을 용해시키는 것으로써, 물 또는 물과 탄소수 1 내지 6의 알코올의 혼합물일 수 있고, 보다 구체적으로 물일 수 있다. 본 명세서에 따른 상기 제조방법은 용매로 유기 용매를 사용하지 않으므로, 제조 공정 중에서 유기 용매를 처리하는 후처리 공정이 필요하지 않게 되고, 따라서 비용 절감 효과 및 환경 오염 방지 효과가 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상온에서 수행될 수 있다. 구체적으로, 4 ℃ 이상 35 ℃ 이하의 범위의 온도, 보다 구체적으로 12 ℃ 이상 28 ℃ 이하에서 수행할 수 있다.
본 명세서의 일 구현예에서 상기 용액을 형성하는 단계는 상온, 구체적으로 4 ℃ 이상 35 ℃ 이하의 범위의 온도, 보다 구체적으로 12 ℃ 이상 28 ℃ 이하에서 수행할 수 있다. 용매를 유기용매를 사용하면 100 ℃가 넘는 고온에서 제조해야 하는 문제가 있다. 본 출원은 상온에서 제조할 수 있으므로, 제조 방법이 단순하여 공정상의 이점이 있고, 비용 절감 효과가 크다.
본 명세서의 일 구현예에 따르면, 상기 용액을 형성하는 단계는 5분 내지 120분 동안, 더욱 구체적으로 10분 내지 90분 동안, 더욱 더 구체적으로 20분 내지 60분 동안 수행할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 용액에 환원제 및/또는 비이온성 계면활성제를 첨가하는 공동을 포함하는 금속 나노입자를 형성하는 단계도 상온, 구체적으로 4 ℃ 이상 35 ℃ 이하의 범위의 온도, 보다 구체적으로 12 ℃ 이상 28 ℃ 이하에서 수행할 수 있다. 본 명세서의 상기 제조방법은 상온에서 제조할 수 있으므로, 제조 방법이 단순하여 공정상의 이점이 있고, 비용 절감 효과가 크다.
상기 공동을 포함하는 금속 나노입자를 형성하는 단계는 용액과 환원제 및/또는 비이온성 계면활성제를 일정시간 반응시켜서, 구체적으로 5분 내지 120분 동안, 더욱 구체적으로 10분 내지 90분 동안, 더욱 더 구체적으로 20분 내지 60분 동안 반응시켜서 수행할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 환원제의 표준 환원 전위는 -0.23V 이하일 수 있다.
상기 환원제는 표준 환원 -0.23V 이하, 구체적으로, -4V 이상 -0.23V 이하의 강한 환원제이면서, 용해된 금속 이온을 환원시켜 금속 입자로 석출시킬 수 있는 환원력을 갖는 것이라면 특별히 한정되지 않는다. 구체적으로, 상기 환원제는 NaBH4, NH2NH2, LiAlH4 및 LiBEt3H 로 이루어진 군에서 선택된 적어도 어느 하나일 수 있다.
약한 환원제를 사용할 경우, 반응속도가 느리고, 용액의 후속적인 가열이 필요하는 등 연속공정화 하기 어려워 대량생산에 문제가 있을 수 있으며, 특히, 약한 환원제의 일종인 에틸렌 글리콜을 사용할 경우, 높은 점도에 의한 흐름 속도 저하로 연속공정에서의 생산성이 낮은 문제점이 있다. 그러므로 본 명세서의 상기 환원제를 사용하는 경우에는 상기 문제점을 극복할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 공동을 포함하는 금속 나노입자를 형성하는 단계 이후에 중공 내부의 계면활성제를 제거하는 단계를 더 포함할 수 있다. 제거 방법은 특별히 제한되지 않고, 예를 들어, 물로 세척하는 방법을 사용할 수 있다. 상기 계면활성제는 음이온성 계면활성제 및/또는 양이온성 계면활성제일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 제조방법은 상기 금속 나노입자를 형성하는 단계 이후, 또는 중공 내부의 계면활성제를 제거하는 단계 이후에 상기 금속 나노입자에 산을 가하여 양이온성 금속을 제거하는 단계를 더 포함할 수 있다. 이 단계에서 금속 나노입자에 산을 가하면 3d 밴드(band) 금속이 용출된다. 상기 양이온성 금속은 구체적으로 루테늄(Ru), 로듐(Rh), 몰리브덴(Mo), 오스뮴(Os), 이리듐(Ir), 레늄(Re), 팔라듐(Pd), 바나듐(V), 텅스텐(W), 코발트(Co), 철(Fe), 셀레늄(Se), 니켈(Ni), 비스무트(Bi), 주석(Sn), Cr(크롬), 타이타늄(Ti), 세륨(Ce), 은(Ag) 및 구리(Cu)로 이루어진 군에서 선택된 것일 수 있다.
본 명세서의 일 구현예에 따르면, 상기 산은 특별히 한정되지 않고, 예를 들어 황산, 질산, 염산, 과염소산, 요오드화수소산 및 브롬화수소산으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
본 명세서의 일 구현예에 따르면, 상기 금속 나노입자가 형성된 후, 용액에 포함된 금속 나노입자를 석출하기 위하여 금속 나노입자를 포함하는 용액을 원심 분리할 수 있다. 원심 분리 후 분리된 금속 나노입자만을 회수할 수 있다. 필요에 따라, 금속 나노입자의 소성 공정을 추가적으로 수행할 수 있다.
본 명세서의 일 구현예에 따르면, 수 나노크기로 균일한 크기를 가지는 금속 나노입자를 제조할 수 있다. 종래의 방법으로는 수 나노크기의 금속 나노입자를 제조하기 어려웠을 뿐만 아니라 균일한 크기로 제조하는 것은 더욱 어려웠다.
본 명세서의 상기 금속 나노입자는 일반적으로 나노입자가 사용될 수 있는 분야에서 기존의 나노입자를 대체하여 사용될 수 있다. 본 명세서의 상기 금속 나노입자는 종래의 나노입자에 비하여 크기가 매우 작고, 비표면적이 더 넓으므로, 종래의 나노입자에 비하여 우수한 활성을 나타낼 수 있다. 구체적으로, 본 명세서의 상기 금속 나노입자는 촉매, 드러그 딜리버리(drug delivery), 가스 센서 등 다양한 분야에서 사용될 수 있다. 상기 금속 나노입자는 촉매로서 화장품, 살충제, 동물 영양제 또는 식품 보충제에서 활성 물질 제제로서 사용될 수도 있으며, 전자 제품, 광학 용품 또는 중합체에서 안료로서 사용될 수도 있다.
본 명세서의 일 구현예는 상기 중공 금속 나노입자를 포함하는 촉매를 제공한다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
하기 실시예에서의 제1 금속염은 상기 제1 금속의 전구체인 제1 금속이온 또는 상기 제1 금속이온을 포함하는 원자단이온을 포함하는 염으로서, 제1 금속을 제공하는 역할을 할 수 있다. 또한, 제2 금속염은 상기 제2 금속의 전구체인 제2 금속이온 또는 상기 제2 금속이온을 포함하는 원자단이온을 포함하는 염으로서, 제2 금속을 제공하는 역할을 할 수 있다.
[실시예 1]
제1 금속염으로 Ni(NO3)2, 제2 금속염으로 K2PtCl4, 제1 계면활성제로 암모늄라우릴설페이트(ammonium lauryl sulfate: ALS), 제2 계면활성제로 N-도데실-N,N-디메틸-3-암모니오-1-프로판설포네이트(N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate: DDAPS), 안정화제로 트리소듐시트레이트(trisodium citrate)를 증류수에 첨가하여 용액을 형성하여, 30분 교반하였다. 이때, K2PtCl4과 Ni(NO3)2의 몰비는 1:3이었고, ALS는 물에 대한 임계 미셸농도(critical micelle concentration: CMC)의 2배이며, DDAPS는 ALS의 1/30몰이었다.
계속하여, 환원제로 NaBH4 및 비이온성 계면활성제로 폴리비닐피롤리돈(polyvinyl pyrrolidone: PVP)을 첨가하여 30분 동안 반응시켰다.
이후, 10,000 rpm에서 10분간 원심분리를 하여 위층의 상청액을 버리고 남은 침전물을 증류수에 재분산한 후 원심분리 과정을 반복하여 본원 명세서의 공동(cavity)을 포함하는 중공 금속 나노입자를 제조하였다. 상기 금속 나노입자의 제조과정은 14 ℃의 분위기 하에서 실시되었다.
상기 실시예 1에 따라 제조된 본원 명세서의 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 도 2 및 도 3에 도시하였다. 도 3은 도 2의 색을 반전시킨 것이다. 즉, 도 2는 TEM의 암시야(dark field)를 나타낸 것이고, 도 3은 TEM의 명시야(bright field)를 나타낸 것이다.
본 명세서의 암시야(dark field) TEM 이미지의 경우, TEM의 전자 다발이 중공 금속 나노입자에 닿을 때 질량이 큰 쉘부에서 회절이 많이 되어 밝은 이미지를 나타낸다. 또한, 나노입자의 중공이 있는 영역은 TEM의 전자 다발이 회절을 적게 하므로 약간 어두운 이미지를 나타낸다. 또한, 쉘부의 공동(cavity)이 있는 영역은 TEM의 전자 다발이 그대로 투과되어 검은 이미지로 나타나게 된다.
[실시예 2]
제1 금속염으로 Ni(NO3)2, 제2 금속염으로 K2PtCl4, 제1 계면활성제로 암모늄라우릴설페이트(ammonium lauryl sulfate: ALS), 제2 계면활성제로 소듐1-헵탄설포네이트(sodium 1-heptanesulfonate: SHS), 안정화제로 트리소듐시트레이트(trisodium citrate)를 증류수에 첨가하여 용액을 형성하여, 30분 교반하였다. 이 때, K2PtCl4과 Ni(NO3)2의 몰비는 1:3이었고, ALS는 물에 대한 임계 미셸농도(critical micelle concentration: CMC)의 2배이며, SHS는 ALS의 1/30몰이었다.
계속하여, 환원제로 NaBH4 및 비이온성 계면활성제로 폴리비닐피롤리돈(polyvinyl pyrrolidone: PVP)을 첨가하여 30분 동안 반응시켰다.
이후, 10,000 rpm에서 10분간 원심분리를 하여 위층의 상청액을 버리고 남은 침전물을 증류수에 재분산한 후 원심분리 과정을 반복하여 본원 명세서의 공동(cavity)을 포함하는 중공 금속 나노입자를 제조하였다. 상기 금속 나노입자의 제조과정은 14 ℃의 분위기 하에서 실시되었다.
상기 실시예 2에 따라 제조된 본원 명세서의 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 도 4 및 도 5에 도시하였다. 도 5는 도4의 색을 반전시킨 것이다. 즉, 도 4는 TEM의 암시야(dark field)를 나타낸 것이고, 도 5은 TEM의 명시야(bright field)를 나타낸 것이다.
[실시예 3]
제1 금속염으로 Ni(NO3)2, 제2 금속염으로 K2PtCl4, 제1 계면활성제로 암모늄라우릴설페이트(ammonium lauryl sulfate: ALS), 제2 계면활성제로 소듐헥산설포네이트(sodium hexanesulfonate), 안정화제로 트리소듐시트레이트(trisodium citrate)를 증류수에 첨가하여 용액을 형성하여, 30분 교반하였다. 이때, K2PtCl4과 Ni(NO3)2의 몰비는 1:3이었고, ALS는 물에 대한 임계 미셸농도(critical micelle concentration: CMC)의 2배이며, 소듐헥산설포네이트는 ALS의 1/30몰이었다.
계속하여, 환원제로 NaBH4 및 비이온성 계면활성제로 폴리비닐피롤리돈(polyvinyl pyrrolidone: PVP)을 첨가하여 30분 동안 반응시켰다.
이후, 10,000 rpm에서 10분간 원심분리를 하여 위층의 상청액을 버리고 남은 침전물을 증류수에 재분산한 후 원심분리 과정을 반복하여 본원 명세서의 공동(cavity)을 포함하는 중공 금속 나노입자를 제조하였다. 상기 금속 나노입자의 제조과정은 14 ℃의 분위기 하에서 실시되었다.
상기 실시예 3에 따라 제조된 본원 명세서의 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 도 6 및 도 7에 도시하였다. 도 7은 도 6의 색을 반전시킨 것이다. 즉, 도 6는 TEM의 암시야(dark field)를 나타낸 것이고, 도 7은 TEM의 명시야(bright field)를 나타낸 것이다.
[실시예 4]
제1 금속염으로 Ni(NO3)2, 제2 금속염으로 K2PtCl4, 제1 계면활성제로 소듐도데실설페이트(sodium dodecyl sulfate: SDS), 제2 계면활성제로 N-도데실-N,N-디메틸-3-암모니오-1-프로판설포네이트(N-dodecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate: DDAPS), 안정화제로 트리소듐시트레이트(trisodium citrate)를 증류수에 첨가하여 용액을 형성하여, 30분 교반하였다. 이 때, K2PtCl4과 Ni(NO3)2의 몰비는 1:3이었고, ALS는 물에 대한 임계 미셸농도(critical micelle concentration: CMC)의 2배이며, DDAPS는 SDS의 1/30몰이었다.
계속하여, 환원제로 NaBH4 및 비이온성 계면활성제로 폴리비닐피롤리돈(polyvinyl pyrrolidone: PVP)을 첨가하여 30분 동안 반응시켰다.
이후, 10,000 rpm에서 10분간 원심분리를 하여 위층의 상청액을 버리고 남은 침전물을 증류수에 재분산한 후 원심분리 과정을 반복하여 본원 명세서의 공동(cavity)을 포함하는 중공 금속 나노입자를 제조하였다. 상기 금속 나노입자의 제조과정은 14 ℃의 분위기 하에서 실시되었다.
상기 실시예 4에 따라 제조된 본원 명세서의 중공 금속 나노입자의 투과전자현미경(TEM) 이미지를 도 8 및 도 9에 도시하였다. 도 9은 도 8의 색을 반전시킨 것이다. 즉, 도 8는 TEM의 암시야(dark field)를 나타낸 것이고, 도 9은 TEM의 명시야(bright field)를 나타낸 것이다.

Claims (20)

  1. 중공 코어(core)부;
    제1 금속 및 제2 금속을 포함하는 쉘(shell)부; 및
    상기 쉘부의 1 또는 2 이상의 영역에 쉘부 외면으로부터 상기 중공 코어에 이르는 공동(cavity)을 포함하는 중공 금속 나노입자.
  2. 청구항 1에 있어서,
    상기 중공 금속 나노입자는 상기 공동을 1개 포함하는 것인 중공 금속 나노입자.
  3. 청구항 1에 있어서,
    상기 중공 금속 나노입자의 입경은 1 ㎚ 이상 30 ㎚ 이하인 것인 중공 금속 나노입자.
  4. 청구항 1에 있어서,
    상기 중공 금속 나노입자의 입경은 1 ㎚ 이상 20 ㎚ 이하인 것인 중공 금속 나노입자.
  5. 청구항 1에 있어서,
    상기 중공 금속 나노입자의 입경은 1 ㎚ 이상 12 ㎚ 이하인 것인 중공 금속 나노입자.
  6. 청구항 1에 있어서,
    상기 중공 금속 나노입자의 입경은 1 ㎚ 이상 6 ㎚ 이하인 것인 중공 금속 나노입자.
  7. 청구항 1에 있어서,
    상기 중공 금속 나노입자는 구 형상인 것인 중공 금속 나노입자.
  8. 청구항 1에 있어서,
    상기 공동의 직경은 상기 중공 금속 나노입자 입경의 5 % 이상 30 % 이하인 것인 중공 금속 나노입자.
  9. 청구항 1에 있어서,
    상기 쉘부의 두께는 0 ㎚ 초과 5 ㎚ 이하인 것인 중공 금속 나노입자.
  10. 청구항 1에 있어서,
    상기 중공 금속 나노입자의 입경은 중공 금속 나노입자들의 평균 입경의 80% 내지 120% 범위 이내인 것인 중공 금속 나노입자.
  11. 청구항 1에 있어서,
    상기 중공 코어는 상기 중공 금속 나노입자의 50 부피% 이상인 것인 중공 금속 나노입자.
  12. 청구항 1에 있어서,
    상기 중공은 계면활성제가 포함되어 있는 것인 중공 금속 나노입자.
  13. 청구항 1에 있어서,
    상기 쉘부의 제1 금속과 제2 금속의 원자 백분율 비는 1:5 내지 10:1인 것인 중공 금속 나노입자.
  14. 청구항 1에 있어서,
    상기 쉘부는 상기 제1 금속을 포함하는 제1 쉘; 및 상기 제2 금속을 포함하는 제2 쉘을 포함하는 것인 중공 금속 나노입자.
  15. 청구항 1에 있어서,
    상기 쉘부는 상기 제 1 금속의 함량이 상기 제2 금속의 함량보다 높은 제1 쉘; 및 상기 제2 금속의 함량이 상기 제1 금속의 함량보다 높은 제2 쉘을 포함하는 것인 중공 금속 나노입자.
  16. 청구항 1에 있어서,
    상기 제1 금속 및 상기 제2 금속은 각각 독립적으로,
    주기율표상 3 ~ 15족에 속하는 금속, 준금속(metalloid), 란타늄족 금속 및 악티늄족 금속으로 이루어진 군에서 선택되는 것인 중공 금속 나노입자.
  17. 청구항 1에 있어서,
    상기 제1 금속 및 상기 제2 금속은 각각 독립적으로,
    백금(Pt); 루테늄(Ru); 로듐(Rh); 몰리브덴(Mo); 오스뮴(Os); 이리듐(Ir); 레늄(Re); 팔라듐(Pd); 바나듐(V); 텅스텐(W); 코발트(Co); 철(Fe); 셀레늄(Se); 니켈(Ni); 비스무트(Bi); 주석(Sn); 크롬(Cr); 타이타늄(Ti); 금(Au); 세륨(Ce); 은(Ag); 및 구리(Cu)로 이루어진 군에서 선택되는 것인 중공 금속 나노입자.
  18. 청구항 1에 있어서,
    상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 니켈인 것인 중공 금속 나노입자.
  19. 청구항 1에 있어서,
    상기 제1 금속 또는 상기 제2 금속은 서로 상이하며, 상기 제1 금속 또는 상기 제2 금속은 백금인 것인 중공 금속 나노입자.
  20. 청구항 1에 있어서,
    상기 제1 금속은 니켈이고, 상기 제2 금속은 백금인 것인 중공 금속 나노입자.
PCT/KR2014/004934 2013-06-07 2014-06-03 중공 금속 나노입자 WO2014196785A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14807874.4A EP2990138B1 (en) 2013-06-07 2014-06-03 Hollow metal nanoparticles
US14/893,811 US9776173B2 (en) 2013-06-07 2014-06-03 Hollow metal nanoparticles
CN201480032619.9A CN105307799B (zh) 2013-06-07 2014-06-03 中空金属纳米粒子
JP2016518261A JP6191764B2 (ja) 2013-06-07 2014-06-03 中空金属ナノ粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130065446 2013-06-07
KR10-2013-0065446 2013-06-07

Publications (1)

Publication Number Publication Date
WO2014196785A1 true WO2014196785A1 (ko) 2014-12-11

Family

ID=52008366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004934 WO2014196785A1 (ko) 2013-06-07 2014-06-03 중공 금속 나노입자

Country Status (6)

Country Link
US (1) US9776173B2 (ko)
EP (1) EP2990138B1 (ko)
JP (1) JP6191764B2 (ko)
KR (1) KR101858304B1 (ko)
CN (1) CN105307799B (ko)
WO (1) WO2014196785A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684768B1 (ko) 2015-02-13 2016-12-08 고려대학교 산학협력단 속이 빈 나노 금속 산화물 입자 응집체 및 그 제조방법
KR102432090B1 (ko) * 2018-06-08 2022-08-12 한국과학기술연구원 비정질 나노구조체를 이용하여 제조된 초소형 나노구조체 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752979B1 (en) * 2000-11-21 2004-06-22 Very Small Particle Company Pty Ltd Production of metal oxide particles with nano-sized grains
US20100258759A1 (en) * 2006-06-06 2010-10-14 Cornell Research Foundation, Inc. Nanostructured Metal Oxides Comprising Internal Voids and Methods of Use Thereof
KR20110040006A (ko) * 2009-10-13 2011-04-20 경희대학교 산학협력단 나노래틀 구조물 및 그의 제조방법
KR101044392B1 (ko) * 2008-05-28 2011-06-27 주식회사 엘지화학 코어-쉘 나노 입자 및 이의 제조 방법
US20110311635A1 (en) * 2009-02-12 2011-12-22 The Regents Of The University Of California Hollow metal oxide spheres and nanoparticles encapsulated therein

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552533B1 (ko) 2001-10-17 2006-02-14 미츠비시 쥬고교 가부시키가이샤 배연 탈황 장치, 배연 탈황 시스템, 및 배연 탈황 장치의운전 방법
JP2008284411A (ja) * 2007-05-15 2008-11-27 Osaka Univ 中空状多孔質シェル層に包含される光触媒及びその作製方法
WO2012123435A1 (en) * 2011-03-14 2012-09-20 Fundació Privada Institut Català De Nanotecnologia Platinium/silver noble metal single wall hollow nanoparticles and their preparation process
US8962075B2 (en) * 2011-06-17 2015-02-24 National Tsing Hua University Hollow metal sphere with mesoporous structure and method for manufacturing the same
CN102430413B (zh) * 2011-10-08 2014-12-10 南京师范大学 一种空心结构PtNi合金/石墨烯复合纳米催化剂及其制备方法
WO2013069732A1 (ja) * 2011-11-08 2013-05-16 財団法人神奈川科学技術アカデミー 磁気ナノ粒子
CN102554262B (zh) * 2012-02-23 2013-10-09 山东大学 一种中空多孔球形铂银合金纳米材料及其制备方法
US9517460B2 (en) * 2012-12-27 2016-12-13 Lg Chem, Ltd. Method for fabricating hollow metal nano particles supported on carrier
JP6526635B2 (ja) * 2013-06-07 2019-06-05 エルジー・ケム・リミテッド 金属ナノ粒子
KR20160035941A (ko) * 2014-09-24 2016-04-01 주식회사 엘지화학 중공 금속 나노입자, 이를 포함하는 촉매 및 중공 금속 나노입자의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752979B1 (en) * 2000-11-21 2004-06-22 Very Small Particle Company Pty Ltd Production of metal oxide particles with nano-sized grains
US20100258759A1 (en) * 2006-06-06 2010-10-14 Cornell Research Foundation, Inc. Nanostructured Metal Oxides Comprising Internal Voids and Methods of Use Thereof
KR101044392B1 (ko) * 2008-05-28 2011-06-27 주식회사 엘지화학 코어-쉘 나노 입자 및 이의 제조 방법
US20110311635A1 (en) * 2009-02-12 2011-12-22 The Regents Of The University Of California Hollow metal oxide spheres and nanoparticles encapsulated therein
KR20110040006A (ko) * 2009-10-13 2011-04-20 경희대학교 산학협력단 나노래틀 구조물 및 그의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2990138A4 *

Also Published As

Publication number Publication date
KR101858304B1 (ko) 2018-05-16
EP2990138A4 (en) 2017-01-11
US20160107147A1 (en) 2016-04-21
US9776173B2 (en) 2017-10-03
CN105307799A (zh) 2016-02-03
CN105307799B (zh) 2018-02-02
KR20140143713A (ko) 2014-12-17
JP2016526108A (ja) 2016-09-01
EP2990138A1 (en) 2016-03-02
EP2990138B1 (en) 2021-03-03
JP6191764B2 (ja) 2017-09-06

Similar Documents

Publication Publication Date Title
WO2014196807A1 (ko) 금속 나노입자
WO2014196786A1 (ko) 금속 나노입자의 제조방법
WO2016047906A1 (ko) 중공 금속 나노입자, 이를 포함하는 촉매 및 중공 금속 나노입자의 제조방법
WO2016024830A2 (ko) 금속 나노입자의 제조방법
US8992660B2 (en) Method for fabricating hollow metal nano particles and hollow metal nano particles fabricated by the method
US20150328629A1 (en) METHOD FOR FABRICATING HOLLOW METAL NANO PARTICLES SUPPORTED ON CARRIER (As Amended)
WO2015065120A1 (ko) 연료전지 및 그의 제조방법
US9517450B2 (en) Hollow metal nano particles supported on carrier
WO2015065123A1 (ko) 연료전지 및 그의 제조방법
WO2014196785A1 (ko) 중공 금속 나노입자
WO2015080497A1 (ko) 연료전지 및 이의 제조방법
WO2014196806A1 (ko) 금속 나노입자
KR102010410B1 (ko) 금속 나노입자의 제조방법 및 이에 의하여 제조된 금속 나노입자
WO2023113556A1 (ko) 이차원 또는 삼차원 나노큐브 자가조립체, 및 이의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032619.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14893811

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016518261

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014807874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE