WO2014194830A1 - 石英坩埚及其制作方法、p型硅铸锭及其制作方法 - Google Patents

石英坩埚及其制作方法、p型硅铸锭及其制作方法 Download PDF

Info

Publication number
WO2014194830A1
WO2014194830A1 PCT/CN2014/079184 CN2014079184W WO2014194830A1 WO 2014194830 A1 WO2014194830 A1 WO 2014194830A1 CN 2014079184 W CN2014079184 W CN 2014079184W WO 2014194830 A1 WO2014194830 A1 WO 2014194830A1
Authority
WO
WIPO (PCT)
Prior art keywords
quartz crucible
gallium
purity
crucible
quartz
Prior art date
Application number
PCT/CN2014/079184
Other languages
English (en)
French (fr)
Inventor
潘家明
Original Assignee
英利能源(中国)有限公司
英利集团有限公司
保定嘉盛光电科技有限公司
河北流云新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英利能源(中国)有限公司, 英利集团有限公司, 保定嘉盛光电科技有限公司, 河北流云新能源科技有限公司 filed Critical 英利能源(中国)有限公司
Publication of WO2014194830A1 publication Critical patent/WO2014194830A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes

Definitions

  • the present invention relates to the field of solar cell manufacturing, and in particular to a quartz crucible and a method for fabricating the same, a P-type silicon ingot, and a method of fabricating the same.
  • Crystalline silicon is first doped with crystalline silicon prior to fabrication of a solar cell, and a specific range of resistivity and a conductivity type silicon ingot are obtained by doping.
  • the primary consideration is the segregation coefficient of the dopant atoms inside the crystalline silicon.
  • the so-called partial condensation coefficient refers to the ratio of the solubility of the impurity in the solid phase to the solubility of the impurity in the liquid phase.
  • the solar cell manufacturing industry adopts a method of doping boron to produce a P-type silicon crystal as a substrate for a solar cell.
  • high-purity boron powder or high-purity borosilicate mother alloy is doped into the silicon material as a dopant, since the segregation coefficient of boron in the silicon liquid is only
  • the crystallization time of the silicon ingot is about 30 hours, and the segregation time is long, resulting in a gradient distribution of the top to bottom resistivity of the silicon ingot.
  • the bottom of the ingot is small due to the small concentration of boron and the top is high due to the high concentration of boron. This results in a small resistivity. Since the N-type portion of the PN junction is required to be diffused on the surface of the P-type silicon wafer during the cell fabrication process, the top-bottom resistivity of the silicon ingot is inconsistent, and the phosphorus diffusion concentration uniformity during the cell fabrication process is highly demanded, eventually resulting in The PN junctions of the silicon wafers made at different positions on the silicon ingot are inconsistent, affecting the solar cell power generation effect.
  • the residual oxygen in the boron and silicon crystals easily forms a B-0 complex under the illumination condition, and forms a B-Fe bond with the impurity iron Fe, which causes photo-induced attenuation of the battery, resulting in a decrease in conversion efficiency of the solar cell.
  • an appropriate amount of gallium is generally doped in boron-doped P-type polysilicon to reduce the photo-induced attenuation of the solar cell and improve the conversion efficiency of the battery.
  • the segregation coefficient of gallium in the silicon solution is very small, only about 0.008, using the existing polycrystalline ingot process or the Czochralski single crystal process, the high-purity gallium block (or powder) or the gallium directly
  • the silicon alloy is doped into a silicon material for ingot casting or drawing a single crystal rod, severe segregation occurs in the silicon ingot or the silicon rod, so that the concentration of gallium element is severely uneven in the silicon crystal, and at the same time, the silicon ingot or The resistivity of the silicon rod in the growth direction is not uniform, and it is difficult to obtain a silicon crystal having acceptable electrical properties.
  • the present invention is directed to a quartz crucible and a method for fabricating the same, a P-type silicon ingot, and a method for fabricating the same, to solve the problem of serious resistivity in a growth direction of a P-type polycrystalline silicon ingot obtained by using a quartz crucible in the prior art. Uneven problem.
  • a method for fabricating a quartz crucible comprises the steps of sequentially grouting, demolding, drying, and sintering a crucible raw material to obtain a quartz crucible, and the crucible raw material includes High-purity inorganic gallium salt and high-purity quartz sand, wherein the weight ratio of gallium to high-purity quartz sand in the raw material is 3.7 ⁇ 370g: 1000kg.
  • the above high-purity inorganic gallium salt is gallium oxide, gallium arsenide or gallium phosphide.
  • the above-mentioned high-purity inorganic gallium salt has a particle size of less than 0.1 mm; and the high-purity quartz sand has a particle size of less than 0.1 mm.
  • the manufacturing method further comprises: ball milling and homogenizing the high-purity quartz sand before the grouting; mixing the homogenized high-purity quartz sand, the high-purity inorganic gallium salt and the deionized water to obtain the antimony raw material. .
  • a quartz crucible which is produced by the above-described production method, and the quartz crucible comprises gallium having a weight content of 0.296 g to 29.6 g/100 kg.
  • the above quartz crucible includes gallium having a weight content of 10 g to 20 g/100 kg.
  • a method for preparing a P-type polycrystalline silicon ingot comprising the step of ingot casting a silicon material and a boron material in a quartz crucible, wherein the quartz crucible is the quartz crucible according to the invention.
  • the boron material is a borosilicate mother alloy.
  • the ingot casting process comprises: melting the silicon material and the boron material at 1500 to 1580 ° C for 10 to 20 hours; and cooling the bottom of the quartz crucible.
  • a P-type polycrystalline silicon ingot prepared by the above-described production method there is provided a P-type polycrystalline silicon ingot prepared by the above-described production method.
  • the manufacturing method of the above quartz crucible can adopt the existing process flow in the prior art, and only needs to add an appropriate amount of inorganic gallium salt to the antimony raw material and control the content of gallium in the antimony raw material at 3.7 ⁇ Between 370g/1000kg, the weight of gallium in the obtained quartz crucible is between 0.296g and 29.6g/100kg.
  • Gallium is present in the form of salt in the quartz crucible, so that the resistivity of the P-type polycrystalline silicon ingot prepared by the container can be improved, and the process is simple and the effect is obvious.
  • Figure 1 shows a process flow diagram for the production of quartz crucible by grouting.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments of the present invention and the features of the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • the quartz crucible used for the P-type polycrystalline silicon ingot when studying how to solve the problem of severe unevenness of the resistivity of the P-type polycrystalline silicon ingot, another approach is to start with the quartz crucible used for the P-type polycrystalline silicon ingot, and add gallium to the high-purity quartz sand for making the quartz crucible.
  • the material obtains a gallium-containing quartz crucible, and it is desired to supplement the prepared P-type polycrystalline silicon ingot with gallium by using the high diffusivity of gallium at a high temperature during the ingot process to balance the severe uneven resistance caused by the uneven distribution of the boron element. rate.
  • the method of producing the quartz crucible can be carried out by a method commonly used in the prior art such as grouting.
  • a method for fabricating a quartz crucible comprises sequentially passing a crucible raw material through a process of grouting, demolding, drying, and sintering to obtain a quartz crucible.
  • the raw materials include high-purity inorganic gallium salt and high-purity quartz sand, wherein the weight ratio of gallium to high-purity quartz sand in the raw material is 3.7-370g : 1000kg.
  • the above-mentioned quartz crucible can be prepared by using the prior art process, and only needs to add an appropriate amount of inorganic gallium salt to the niobium raw material and control the content of gallium in the niobium raw material between 3.7 and 370 g/1000 kg.
  • the weight content of gallium in the quartz crucible is between 0.296g and 29.6g/100kg, and the gallium is present in the quartz crucible in the form of gallium salt, and the uniformity of the resistivity of the P-type polycrystalline silicon ingot is effectively improved, and the improvement can be achieved.
  • the above-mentioned manufacturing method is simple in process and obvious in effect.
  • the inorganic gallium salt reacts differently and does not cause a quality impact on the ruthenium.
  • gallium is a group III element, it acts as an acceptor atom and acts as a boron element in the process of forming a P-type polycrystalline silicon ingot. the same.
  • the bottom position of the ingot is affected by the diffusion of gallium in the quartz crucible, resulting in a lower concentration of gallium in the ingot from bottom to top; Due to the segregation, the element has a higher concentration from bottom to top in the silicon ingot.
  • conductivity type the two elements act simultaneously, which ultimately leads to a smooth distribution of the third group element from bottom to top, ingot. The difference in resistivity from bottom to top becomes smaller.
  • the above-mentioned high-purity inorganic gallium salt and high-purity quartz sand are all known in the art to have a purity of 99.9% W ⁇ Inorganic gallium salt and quartz sand.
  • the high-purity inorganic gallium salt of the present invention is preferably gallium oxide, gallium arsenide or phosphorus.
  • Gallium oxide is further preferably gallium oxide.
  • the above-mentioned high-purity inorganic gallium salt has a particle size of less than 0.1 mm; preferably, the high-purity quartz sand has a particle size of less than 0.1 mm.
  • the manufacturing method further comprises: ball milling and homogenizing the high-purity quartz sand before the grouting; high-purity quartz sand and high-purity inorganic gallium salt after the homogenization treatment; It is mixed with deionized water to obtain a bismuth raw material.
  • a quartz crucible comprising a gallium element having a weight content of from 0.296 g to 29.6 g/100 kg.
  • gallium is a group III element, it acts as an acceptor atom in the process of forming a P-type polycrystalline silicon ingot, and functions the same as the boron element.
  • the bottom position of the ingot is affected by the diffusion of gallium in the quartz crucible, resulting in a lower concentration of gallium in the ingot from bottom to top; Due to the segregation, the element has a higher concentration from bottom to top in the silicon ingot.
  • the two elements act simultaneously, which ultimately leads to a smooth distribution of the third group element from bottom to top, ingot.
  • the difference in resistivity from bottom to top becomes smaller.
  • the content of gallium in the above quartz crucible varies with the amount of the inorganic gallium salt used in the raw material.
  • the quartz crucible includes gallium having a weight content of 10 g to 20 g/100 kg. .
  • a method for preparing a P-type polycrystalline silicon ingot is provided. The preparation method comprises the steps of ingot casting a silicon material and a boron material in a quartz crucible, and the ingot casting process is used.
  • the quartz crucible is the above quartz crucible.
  • the silicon material and the boron material are crystallized to form a main body of the P-type polycrystalline silicon ingot, and when the P-type polycrystalline silicon ingot is made by using the quartz crucible with the gallium element, the gallium element in the quartz crucible is formed into the P-type polycrystalline silicon.
  • the silicon in the ingot and the silicon solid diffuse, and the gallium element diffused into the silicon liquid has a small segregation coefficient in the recrystallization process of the silicon liquid, and only a small part remains in the silicon solid, and most of the final segregation is On the upper surface of the ingot; while the bottom of the crystallization stage has been crystallized, the gallium element diffused from the bottom of the crucible to the bottom edge of the ingot is diffused into the ingot under high temperature conditions, and finally a P having a small difference in resistivity along the crystal direction is obtained.
  • the type of polycrystalline silicon ingot thereby effectively reducing the photo-induced attenuation of the P-type polycrystalline silicon battery.
  • the boron material usable in the present invention includes, but is not limited to, boron oxide, a borosilicate mother alloy, and a silicon material having a resistivity of less than 1 ⁇ and a conductivity type of ⁇ .
  • the boron material has a resistivity of 0.001 ⁇ to 0.01 ⁇ .
  • the ingot casting process comprises heating the silicon material and the boron material at 1500 to 1580 ° C for 10 to 20 hours; and cooling the bottom of the quartz crucible.
  • the silicon material and the boron material are mixed and placed in the above quartz crucible, and heated in an ingot furnace, and the silicon material and the boron material can be completely melted after heating at 1500 to 1580 ° C for 10 to 20 hours. Then open the heat dissipation window at the bottom of the quartz crucible to cool down the bottom, so that the silicon liquid starts to crystallize at the bottom of the crucible. During the crystallization process, the silicon liquid first crystallizes from the bottom of the crucible to form a crystal nucleus, and then the solid surface gradually moves up until The entire ingot is crystallized.
  • the coagulation coefficient is small, only a small part remains in the silicon solids, most of which are finally condensed onto the upper surface of the ingot; while the bottom of the crystallization stage has been crystallized, the gallium element diffused from the bottom of the crucible to the bottom edge of the ingot is Diffusion into the silicon ingot under high temperature conditions, finally obtaining a P-type polycrystalline silicon ingot with uniform resistivity along the crystal direction, thereby effectively reducing the photo-induced attenuation of the P-type polycrystalline silicon battery.
  • the P-type polycrystalline silicon ingot obtained by the preparation method of the invention has a greatly reduced difference in resistivity of each part, so that after the P-type polycrystalline silicon battery is fabricated, the photo-induced attenuation effect of the P-type polycrystalline silicon battery is effectively reduced. Increased power generation efficiency of solar cells.
  • Advantageous effects of the present invention will be further described below in conjunction with the examples and comparative examples.
  • the purity of quartz sand is 99.99%, the particle size is between 0.01 ⁇ 0.1mm; the gallium oxide is powdery, the purity is 99.99%, the particle size is between 0.001 ⁇ 0.1mm, and the above gallium oxide is 1000g in the above-mentioned quartz sand.
  • a quartz crucible having a size of 840 mm * 840 mm * 420 mm was produced by the grouting method shown in Fig. 1 as the quartz crucible of Example 1.
  • the quartz crucible of Example 1 400 kg of polycrystalline silicon ingot of conductivity type P was cast, the raw material was 400 kg of primary silicon material and 313.8 g of borosilicate mother alloy having a resistivity of 0.007 ⁇ , and the specific casting process was to The quartz crucible of the above embodiment 1 is mixed; the quartz crucible is placed in an ingot furnace, and the raw material is completely melted to form a silicon liquid after heating at 1580 Torr for 10 hours; the heat dissipation window at the bottom of the quartz crucible is opened to dissipate heat to make the silicon liquid at the bottom of the quartz crucible Crystallization started; crystallization was completed after 27 hours to obtain the P-type polycrystalline silicon ingot of Example 1.
  • Example 2 The purity of quartz sand is 99.95%, the particle size is between 0.005 ⁇ 0.01mm; the gallium oxide is powdery, the purity is 99.99%, the particle size is between 0.01 ⁇ 0.1mm, and it is miscellaneous 500g to 1000kg of the above quartz sand.
  • a quartz crucible having a size of 840 mm * 840 mm * 420 mm was produced by the grouting method shown in Fig. 1 as a quartz crucible of Example 2.
  • Example 2 Using the quartz crucible of Example 2, 400 kg of polycrystalline silicon ingot of conductivity type P was cast, the raw material was 400 kg of primary silicon material and 313.4 g of borosilicate mother alloy having a specific resistance of 0.007 ⁇ , and the specific casting process was carried out in the above-mentioned raw materials.
  • the quartz crucible of Example 2 was mixed; the quartz crucible was placed in an ingot furnace, and the raw material was completely melted to form a silicon liquid after heating at 1500 Torr for 20 hours; the heat dissipation window at the bottom of the quartz crucible was opened to dissipate heat to start the silicon liquid at the bottom of the quartz crucible. Crystallization; crystallization was completed after 26.5 h to obtain the P-type polycrystalline silicon ingot of Example 2.
  • Example 3 Example 3
  • the purity of quartz sand is 99.99%, the particle size is between 0.01 ⁇ 0.1mm; the gallium arsenide is powdery, the purity is 99.99%, the particle size is between 0.005 ⁇ 0.01mm, and the above arsenic is 420g in 1000kg of the above quartz sand.
  • Gallium arsenide, a quartz crucible having a size of 840 mm * 840 mm * 420 mm was produced by the grouting method shown in Fig. 1 as a quartz crucible of Example 3.
  • the quartz crucible of Example 3 400 kg of polycrystalline silicon ingot of conductivity type P was cast, the raw material was 400 kg of primary silicon material and 313.4 g of borosilicate mother alloy having a specific resistance of 0.007 ⁇ , and the specific casting process was carried out in the above-mentioned raw materials.
  • the quartz crucible of Example 3 was mixed; the quartz crucible was placed in an ingot furnace, and the raw material was completely melted to form a silicon liquid after heating at 1550 Torr for 17 hours; the heat dissipation window at the bottom of the quartz crucible was opened to dissipate heat to start the silicon liquid at the bottom of the quartz crucible. Crystallization; completion of crystallization after 26.7 h gave the P-type polycrystalline silicon ingot of Example 3.
  • Example 4 The purity of quartz sand is 99.99%, the particle size is between 0.01 ⁇ 0.1mm; the gallium phosphide is powdery, the purity is 99.99%, the particle size is between 0.005 ⁇ 0.01mm, and it is uncomfortable to 1000kg of the above quartz sand.
  • 300 g of the above gallium phosphide was produced by the grouting method shown in Fig. 1 to prepare a quartz crucible having a size of 840 mm * 840 mm * 420 mm as the quartz crucible of Example 4.
  • Example 4 Using the quartz crucible of Example 4, 400 kg of polycrystalline silicon ingot of conductivity type P was cast, the raw material was 400 kg of primary silicon material and 313.4 g of borosilicate mother alloy having a specific resistance of 0.007 ⁇ , and the specific casting process was to use the above-mentioned raw materials in the above
  • the quartz crucible of Example 4 was mixed; the quartz crucible was placed in an ingot furnace, and the raw material was completely melted to form a silicon liquid after heating at 1600 Torr for 8 hours; the heat dissipation window at the bottom of the quartz crucible was opened to dissipate heat to start the silicon liquid at the bottom of the quartz crucible. Crystallization; completion of crystallization after 28 h gave the P-type polycrystalline silicon ingot of Example 4.
  • Example 5 Example 5
  • the purity of quartz sand is 99.99%, and the particle size is between 0.01 ⁇ 0.1mm.
  • the gallium oxide is powdery, the purity is 99.99%, the particle size is between 0.005 ⁇ 0.01mm, and the above-mentioned quartz sand is miscellaneous 170g.
  • a quartz crucible having a size of 840 mm * 840 mm * 420 mm was produced by the grouting method shown in Fig. 1 as a quartz crucible of Example 5.
  • quartz crucible is mixed; the quartz crucible is placed in an ingot furnace, and heated at 1550 Torr for 15 h to completely melt the raw material to form a silicon liquid; the heat dissipation window at the bottom of the quartz crucible is opened to dissipate heat so that the silicon liquid at the bottom of the quartz crucible starts to crystallize; The crystallization was completed after 26.4 h to obtain the P-type polycrystalline silicon ingot of Example 5.
  • the purity of quartz sand is 99.99%, and the particle size is between 0.01 ⁇ 0.1mm.
  • the gallium oxide is powdery, the purity is 99.99%, the particle size is between 0.005 ⁇ 0.01mm, and the above-mentioned quartz sand is 340g.
  • a quartz crucible having a size of 840 mm * 840 mm * 420 mm was produced by the grouting method shown in Fig. 1 as a quartz crucible of Example 6. Using the quartz crucible of Example 6, 400 kg of polycrystalline silicon ingot of conductivity type P, 400 kg of primary silicon material and 400 kg were cast. 313.4g borosilicate mother alloy having a resistivity of 0.007 ⁇ .
  • the specific casting process is to mix the above raw materials in the quartz crucible of the above-mentioned Example 6; the quartz crucible is placed in an ingot furnace, and heated at 1550 Torr for 15 hours. The raw material is completely melted to form a silicon liquid; the heat dissipation window at the bottom of the quartz crucible is opened to dissipate heat, so that the silicon liquid at the bottom of the quartz crucible starts to crystallize; after 28 hours, the P-type polycrystalline silicon ingot of Example 6 is obtained.
  • Comparative Example 1 The purity of quartz sand was 99.99%, and the particle size was between 0.01 and 0.1 mm.
  • a quartz crucible having a size of 840 mm* 840 mm*420 mm was produced by the grouting method shown in Fig. 1 as Comparative Example 1 of quartz crucible.
  • quartz crucible 400 kg of polycrystalline silicon ingot of conductivity type P, 400 kg of primary silicon material and 313.4 g of borosilicate mother alloy having a specific resistance of 0.007 ⁇ were cast, and the specific casting process was carried out in the above-mentioned conventional materials.
  • the quartz crucible is mixed; the quartz crucible is placed in an ingot furnace, and the raw material is completely melted to form a silicon liquid after heating at 1550 Torr for 17 hours; the heat dissipation window at the bottom of the quartz crucible is opened to dissipate heat to start crystallization of the silicon liquid at the bottom of the quartz crucible; 26.8h After completion of crystallization, a P-type polycrystalline silicon ingot of Comparative Example 1 was obtained.
  • the purity of quartz sand is 99.99%, and the particle size is between 0.01 and 0.1mm.
  • the gallium oxide is powdery, the purity is 99.99%, the particle size is between 0.005 ⁇ 0.01mm, and the above-mentioned quartz sand is 1000g.
  • a quartz crucible having a size of 840 mm * 840 mm * 420 mm was produced by the grouting method shown in Fig. 1 as a quartz crucible of Comparative Example 2.
  • the yields of the silicon ingots of Examples 1 to 6 and Comparative Examples 1 and 2 were calculated, and the calculation results are shown in Table 1.
  • the quartz crucibles of Examples 1 to 6 and Comparative Examples 1 and 2 were examined by ICP-OES inductively coupled plasma optical emission spectrometer.
  • the content of gallium in the content of gallium and the content of silica are shown in Table 1.
  • the physical properties of the quartz crucibles of Examples 1 to 6 and Comparative Examples 1 and 2 were measured by a flexural strength tester, and the laser emission method in the transient method was used.
  • the detection of the thermal characteristics, the detection results are shown in the table lo ICP-OES inductively coupled plasma emission spectrometer to detect the boron content and gallium content in the P-type polycrystalline silicon ingots of Examples 1 to 6 and Comparative Example 1, the test results are shown in Table 2.
  • Table 2 It can be seen from the contents in Table 1 that the quartz crucible obtained by the production method of the present invention not only has gallium element, but also has physical and thermal characteristics satisfying the standard requirements; however, in Comparative Example 2, the addition amount of gallium is excessive.
  • the performance of the crucible deteriorates, and it is not suitable for the ingot of the P-type polycrystalline silicon ingot; as can be seen from the data in Table 2, the difference in resistivity between the top and the bottom of the P-type polycrystalline silicon ingot produced by using the quartz crucible of the present invention is small.
  • the photoinduced attenuation rate is remarkably reduced, and the power generation efficiency of the solar cell can be effectively improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种石英坩埚及其制作方法、P型硅铸锭及其制作方法。该制作方法包括将坩埚原料依次经过注浆、脱模、干燥、烧结的处理过程,得到石英坩埚;坩埚原料包括高纯无机镓盐与高纯石英砂,其中坩埚原料中镓与高纯石英砂的重量比为3.7〜370g:1000kg。得到的石英坩埚中镓重量含量在0.296g〜29.6g/100kg之间。利用该石英坩埚可改进以其为容器制备得到的P型多晶硅铸锭的电阻率。

Description

石英坩埚及其制作方法、 P型硅铸锭及其制作方法 技术领域 本发明涉及太阳能电池制作领域, 具体而言, 涉及一种石英坩埚及其制作方法、 P 型硅铸锭及其制作方法。 背景技术 晶体硅制作太阳能电池前首先要对晶体硅进行掺杂, 通过掺杂得到一个特定的电 阻率范围和导电类型硅铸锭。 在选取掺杂剂方面, 首要考虑的就是掺杂原子在晶体硅 内部的分凝系数, 所谓的分凝系数是指杂质在固相中的溶解度与杂质在液相中的溶解 度之比。 如果掺杂元素在硅液凝固过程中的分凝系数越接近于 1, 那么掺杂元素在晶 体硅结晶方向上分布浓度就越均匀, 从而得到的太阳能电池的电性能就越好。 目前太阳能电池制作行业为提高硅材料利用率, 均采用掺杂硼元素的方法制作 P 型硅晶体作为太阳能电池的基片。就目前铸锭生产来看,常规 P型多晶硅铸造过程中, 向硅料内掺入高纯硼粉或高纯硼硅母合金作为掺杂剂, 由于硼在硅液中分凝系数只有
0.8, 而硅锭结晶时间约 30个小时左右, 分凝时间长, 导致最后硅锭顶部至底部电阻 率成梯度分布状态, 硅锭底部因硼的浓度小电阻率大, 顶部因硼的浓度高导致电阻率 小。 由于电池制作过程中需要在 P型硅片表面进行磷扩散来制作 PN结的 N型部分, 硅锭的顶底电阻率不一致, 而电池制作过程中的磷扩散浓度一致性要求很高, 最终导 致硅锭上不同位置硅片制作的电池片 PN结结深不一致, 影响太阳能电池发电效果。 而且太阳能电池工作时硼与硅晶体中残留的氧在光照条件下容易形成 B— 0复合体, 与杂质铁 Fe形成 B— Fe结合, 使电池出现光致衰减现象, 导致太阳能电池的转换效 率降低。 目前, 一般采用在硼掺杂的 P型多晶硅内掺入适量的镓, 来减小太阳能电池的光 致衰减现象, 提高电池的转换效率。 但是, 由于镓在硅溶液内的分凝系数非常小, 只 有 0.008左右, 采用现有的多晶铸锭工艺或是直拉单晶工艺, 直接将高纯镓块(或粉) 或直接将镓硅合金掺杂到硅料内进行铸锭或拉制单晶棒, 将会使硅锭或硅棒中出现严 重的偏析现象, 使得镓元素浓度在硅晶体内严重不均等, 同时导致硅锭或硅棒沿生长 方向的电阻率不均匀, 进而难以得到电性能合格的硅晶体。 发明内容 本发明旨在提供一种石英坩埚及其制作方法、 P 型硅铸锭及其制作方法, 以解决 采用现有技术中的石英坩埚所得到的 P型多晶硅锭沿生长方向的电阻率严重不均匀的 问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种石英坩埚的制作方法, 制作方法包括将坩埚原料依次经过注浆、 脱模、 干燥、 烧结的处理过程, 得到石英坩 埚, 坩埚原料包括高纯无机镓盐与高纯石英砂, 其中坩埚原料中镓与高纯石英砂的重 量比为 3.7~370g: 1000kg。 进一步地, 上述高纯无机镓盐为氧化镓、 砷化镓或磷化镓。 进一步地,上述高纯无机镓盐的粒度小于 0.1mm;高纯石英砂的粒度小于 0.1mm。 进一步地, 上述制作方法在注浆之前还包括: 对高纯石英砂进行球磨、均化处理; 将均化处理后的高纯石英砂、 高纯无机镓盐和去离子水混合, 得到坩埚原料。 根据本发明的另一方面, 提供了一种石英坩埚, 该石英坩埚由上述制作方法制作 而成, 石英坩埚包括重量含量为 0.296g~29.6g/100kg的镓。 进一步地, 上述石英坩埚包括重量含量为 10g~20g/100kg的镓。 根据本发明的又一方面, 提供了一种 P型多晶硅铸锭的制备方法, 制备方法包括 将硅料、 硼料在石英坩埚中进行铸锭过程, 该石英坩埚为本发明上述的石英坩埚。 进一步地, 上述硼料为硼硅母合金。 进一步地,上述铸锭过程包括:将硅料和硼料在 1500~1580°C下加热 10~20h熔化; 将石英坩埚的底部进行冷却。 根据本发明的又一方面, 提供了一种 P型多晶硅铸锭, 该 P型多晶硅铸锭由上述 的制备方法制备而成。 应用本发明的技术方案, 上述石英坩埚的制作方法均可以采用现有技术中已有的 工艺流程, 只需要在坩埚原料中添加适量的无机镓盐并控制坩埚原料中镓元素的含量 在 3.7~370g/1000kg之间, 得到的石英坩埚中镓重量含量在 0.296g~29.6g/ 100kg之间, 镓以盐的形式存在石英坩埚中, 即可实现改善以其为容器制备得到的 P型多晶硅铸锭 的电阻率的目的, 工艺简单、 效果明显。 附图说明 构成本发明的一部分的说明书附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出了注浆法生产石英坩埚的工艺流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本发明中的实施例及实施例中的特征可以相互组 合。 下面将参考附图并结合实施例来详细说明本发明。
本发明在研究如何解决 P型多晶硅锭的电阻率严重不均匀的问题时,另辟途径从制作 P 型多晶硅铸锭所用的石英坩埚入手, 通过向制作石英坩埚的高纯石英砂中添加含镓物质得 到含镓的石英坩埚, 并期望利用铸锭过程中高温下镓的高扩散性向所制备的 P型多晶硅铸 锭中补充镓元素, 以平衡由于硼元素分布不均造成的严重不均匀的电阻率。 石英坩埚的制 作方法可以采用现有技术中常用的方法比如注浆法。
在本发明的一种典型的实施方式中, 提供了一种石英坩埚的制作方法, 该制作方法包 括将坩埚原料依次经过注浆、 脱模、 干燥、 烧结的处理过程, 得到石英坩埚, 上述坩埚原 料包括高纯无机镓盐与高纯石英砂,其中坩埚原料中镓与高纯石英砂的重量比为 3.7~370g: 1000kg。 上述石英坩埚的制作方法均可以采用现有技术中已有的工艺流程, 只需要在坩埚原料 中添加适量的无机镓盐并控制坩埚原料中镓元素的含量在 3.7~370g/1000kg之间,得到的石 英坩埚中镓重量含量在 0.296g~29.6g/100kg之间,镓以镓盐的形式存在石英坩埚中,并且有 效地改善了 P型多晶硅铸锭的电阻率的均匀性, 即可实现改善以其为容器制备得到的 P型 多晶硅铸锭的电阻率的目的, 上述制作方法工艺简单、 效果明显。 而且, 无机镓盐不同坩 埚发生反应, 不会对坩埚造成质量影响。
发明人分析了改善电阻率的机理, 总结如下: 在制备 P型多晶硅铸锭的过程中, 由于 镓为第三族元素, 在形成 P型多晶硅锭的过程中作为受主原子, 同硼元素作用相同。 利用 本发明含有镓元素的石英坩埚进行铸锭时, 硅锭底部位置受石英坩埚内镓元素扩散影响, 导致镓元素在硅锭内由下至上浓度越来越低; 而硅锭惨杂的硼元素由于分凝作用, 在硅锭 内由下至上浓度越来越高, 在导电类型方面, 两种元素同时作用, 最终导致硅锭由下至上 有一个平稳的第三族元素分布梯度, 硅锭电阻率由下至上的差别变小。
上述的高纯无机镓盐和高纯石英砂均为本领域技术人员所公知的纯度在 99.9% W ^ 无机镓盐和石英砂。 对于上述高纯无机镓盐的选择本领域技术人员有能力排除对石英坩埚或 P型多晶硅铸 锭质量有影响的镓盐, 本发明优选上述高纯无机镓盐为氧化镓、 砷化镓或磷化镓, 进一步 优选氧化镓。 为了进一步改善所得到的石英坩埚的物理特性和热特性, 优选上述高纯无机镓盐的粒 度小于 0.1mm; 优选高纯石英砂的粒度小于 0.1mm。 在本发明的一种优选的实施例中, 上述制作方法在注浆之前还包括: 对高纯石英砂进 行球磨、 均化处理; 将均化处理后的高纯石英砂、 高纯无机镓盐和去离子水混合, 得到坩 埚原料。 如果石英砂的粒度不满足使用要求, 优选将石英砂进行球磨、 均化处理, 使得石 英砂粒度减小, 分散性更好, 从而将其与无机镓盐和去离子水混合后石英砂与无机镓盐的 接触面积增大, 进而使所得到的石英坩埚中各元素分布较为均匀。 在本发明另一种典型的实施方式中, 提供了一种石英坩埚, 该石英坩埚包括重量含量 为 0.296g~29.6g/100kg的镓元素。在利用上述石英坩埚制备 P型多晶硅铸锭的过程中, 由于 镓为第三族元素, 在形成 P型多晶硅锭的过程中作为受主原子, 同硼元素作用相同。 利用 本发明含有镓元素的石英坩埚进行铸锭时, 硅锭底部位置受石英坩埚内镓元素扩散影响, 导致镓元素在硅锭内由下至上浓度越来越低; 而硅锭惨杂的硼元素由于分凝作用, 在硅锭 内由下至上浓度越来越高, 在导电类型方面, 两种元素同时作用, 最终导致硅锭由下至上 有一个平稳的第三族元素分布梯度, 硅锭电阻率由下至上的差别变小。 上述石英坩埚中镓的含量随着原料中所用的无机镓盐的量的变化而变化, 为了更好地 改善 P型多晶硅锭的电阻率, 优选石英坩埚包括重量含量为 10g~20g/100kg的镓。 在本发明的又一种典型的实施方式中, 提供了一种 P型多晶硅铸锭的制备方法, 制备 方法包括将硅料、 硼料在石英坩埚中进行铸锭过程, 上述铸锭过程所用到的石英坩埚为上 述石英坩埚。 上述铸锭过程中, 硅料与硼料熔化后结晶形成 P型多晶硅铸锭的主体, 利用惨杂镓元 素的石英坩埚制作 P型多晶硅铸锭时, 石英坩埚中的镓元素向形成 P型多晶硅铸锭的硅液 和硅固体中扩散, 扩散到硅液中的镓元素由于其在硅液再结晶过程中分凝系数较小, 只在 硅固体中保留很少一部分, 大部分最终分凝到硅锭上表面; 而结晶阶段坩埚底部已完成结 晶, 由坩埚底部扩散到硅锭底部边缘位置的镓元素则在高温条件下向硅锭中扩散, 最终得 到沿结晶方向电阻率差别较小的 P型多晶硅铸锭, 进而有效降低了 P型多晶硅电池的光致 衰减作用。 可用于本发明的硼料包括但不限于氧化硼、 硼硅母合金以及电阻率小于 1Ω·αη, 导电 类型为 Ρ型的硅料,优选上述硼料为电阻率在 0.001Ω·αη至 0.01Ω·αη范围之间的硼硅母合 金。 在本发明的另一种优选的实施例中,上述铸锭过程包括将硅料和硼料在 1500~1580°C下 加热 10~20h熔化; 将石英坩埚的底部进行冷却。 将硅料和硼料混合后置于上述的石英坩埚 中, 并在铸锭炉中加热, 硅料和硼料在 1500~1580°C下加热 10~20h后能够完全熔化。 然后 再打开石英坩埚底部的散热窗口对底部进行降温冷却, 使硅液在坩埚底部开始结晶, 在结 晶过程中, 硅液首先从坩埚底部开始结晶形成晶核, 然后固液面逐步上移, 直至整个硅锭 结晶完成。 在上述过程中, 由于坩埚一直处于高温状态, 石英坩埚内氧化镓一直处于活泼 状态, 不断向硅液和硅固体内扩散, 扩散到硅液中的镓元素由于其在硅液再结晶过程中分 凝系数较小, 只在硅固体中保留很少一部分, 大部分最终分凝到硅锭上表面; 而结晶阶段 坩埚底部已完成结晶, 由坩埚底部扩散到硅锭底部边缘位置的镓元素则在高温条件下向硅 锭中扩散, 最终得到沿结晶方向电阻率一致的 P型多晶硅铸锭, 进而有效降低了 P型多晶 硅电池的光致衰减作用。 采用本发明的制备方法得到的 P型多晶硅铸锭, 各部分的电阻率差别大大减小, 从而 将其制作成 P型多晶硅电池后, 有效地降低了该 P型多晶硅电池的光致衰减作用, 提高了 太阳能电池的发电效率。 以下将结合实施例和对比例, 进一步说明本发明的有益效果。 实施例 1
石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间; 氧化镓为粉状, 纯度为 99.99%, 粒度在 0.001~0.1mm之间, 向 1000kg上述的石英砂中惨杂 5g上述氧化镓, 采用附图 1所 示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为实施例 1的石英坩埚。 利用实施例 1的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 原料为 400kg的原 生硅料和 313.8克 g电阻率为 0.007Ω·αη的硼硅母合金,具体铸造过程为将上述原料在上述 实施例 1的石英坩埚中混合; 将石英坩埚置于铸锭炉中, 在 1580Ό下加热 10h后使原料完 全熔化形成硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 27h后完成结晶得到实施例 1的 P型多晶硅铸锭。
实施例 2 石英砂的纯度为 99.95%, 粒度在 0.005~0.01mm之间; 氧化镓为粉状, 纯度为 99.99%, 粒度在 0.01~0.1mm之间, 向 1000kg上述的石英砂中惨杂 500g上述氧化镓, 采用附图 1所 示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为实施例 2的石英坩埚。 利用实施例 2的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 原料为 400kg的原 生硅料和 313.4g电阻率为 0.007Ω·αη的硼硅母合金, 具体铸造过程为将上述原料在上述实 施例 2的石英坩埚中混合; 将石英坩埚置于铸锭炉中, 在 1500Ό下加热 20h后使原料完全 熔化形成硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 26.5h后完成结晶得到实施例 2的 P型多晶硅铸锭。 实施例 3
石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间; 砷化镓为粉状, 纯度为 99.99%, 粒度在 0.005~0.01mm之间, 向 1000kg上述的石英砂中惨杂 420g上述砷化镓, 采用附图 1 所示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为实施例 3的石英坩埚。 利用实施例 3的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 原料为 400kg的原 生硅料和 313.4g电阻率为 0.007Ω·αη的硼硅母合金, 具体铸造过程为将上述原料在上述实 施例 3的石英坩埚中混合; 将石英坩埚置于铸锭炉中, 在 1550Ό下加热 17h后使原料完全 熔化形成硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 26.7h后完成结晶得到实施例 3的 P型多晶硅铸锭。
实施例 4 石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间; 磷化镓为粉状, 纯度为 99.99%, 粒度在 0.005~0.01mm之间, 向 1000kg上述的石英砂中惨杂 300g上述磷化镓, 采用附图 1 所示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为实施例 4的石英坩埚。 利用实施例 4的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 原料为 400kg的原 生硅料和 313.4g电阻率为 0.007Ω·αη的硼硅母合金, 具体铸造过程为将上述原料在上述实 施例 4的石英坩埚中混合; 将石英坩埚置于铸锭炉中, 在 1600Ό下加热 8h后使原料完全熔 化形成硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 28h 后完成结晶得到实施例 4的 P型多晶硅铸锭。 实施例 5
石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间; 氧化镓为粉状, 纯度为 99.99%, 粒度在 0.005~0.01mm之间, 向 1000kg上述的石英砂中惨杂 170g上述氧化镓, 采用附图 1 所示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为实施例 5的石英坩埚。 利用实施例 5的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 400kg的原生硅料和 313.4g电阻率为 0.007Ω·αη的硼硅母合金, 具体铸造过程为将上述原料在上述实施例 5的 石英坩埚中混合; 将石英坩埚置于铸锭炉中, 在 1550Ό下加热 15h后使原料完全熔化形成 硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 26.4h后完 成结晶得到实施例 5的 P型多晶硅铸锭。 实施例 6
石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间; 氧化镓为粉状, 纯度为 99.99%, 粒度在 0.005~0.01mm之间, 向 1000kg上述的石英砂中惨杂 340g上述氧化镓, 采用附图 1 所示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为实施例 6的石英坩埚。 利用实施例 6的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 400kg的原生硅料和 313.4g电阻率为 0.007Ω·αη的硼硅母合金, 具体铸造过程为将上述原料在上述实施例 6的 石英坩埚中混合; 将石英坩埚置于铸锭炉中, 在 1550Ό下加热 15h后使原料完全熔化形成 硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 28h后完成 结晶得到实施例 6的 P型多晶硅铸锭。
对比例 1 石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间, 以此石英砂为原料, 采用附图 1 所示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为对比例 1的石英坩埚。 利用上述对比例 1的石英坩埚铸造 400kg导电类型为 P型的多晶硅锭, 400kg的原生硅料和 313.4g电阻率为 0.007Ω·αη的硼硅母合金, 具体铸造过程为将上述原料在上述常规石英坩 埚中混合; 将石英坩埚置于铸锭炉中, 在 1550Ό下加热 17h后使原料完全熔化形成硅液; 打开石英坩埚底部的散热窗口进行散热使石英坩埚底部的硅液开始结晶; 26.8h后完成结晶 得到对比例 1的 P型多晶硅铸锭。
对比例 2
石英砂的纯度为 99.99%, 粒度在 0.01~0.1mm之间; 氧化镓为粉状, 纯度为 99.99%, 粒度在 0.005~0.01mm之间, 向 1000kg上述的石英砂中惨杂 600g上述氧化镓, 采用附图 1 所示的注浆法制作尺寸为 840mm* 840mm*420mm的石英坩埚, 作为对比例 2的石英坩埚。 计算实施例 1至 6以及对比例 1和 2的硅锭出材率, 计算结果见表 1 ; 采用 ICP-OES 电感耦合等离子体发射光谱仪检测实施例 1至 6以及对比例 1和 2的石英坩埚中镓元素含 量以及二氧化硅含量, 检测结果见表 1 ; 采用抗折强度测试仪检测实施例 1至 6以及对比例 1和 2的石英坩埚的物理特性, 采用瞬态法中的激光发射法检测坩埚热特性, 检测结果见表 l o 采用 ICP-OES电感耦合等离子体发射光谱仪检测实施例 1至 6以及对比例 1的 P型多 晶硅铸锭中硼元素含量和镓元素含量, 检测结果见表 2; 采用四探针电阻率测试法检测实施 例 1至 6以及对比例 1的 P型多晶硅铸锭的顶部和底部的电阻率,检测结果见表 2; 采用电 流电压特性曲线检测实施例 1至 6以及对比例 1的 P型多晶硅铸锭制备的太阳能电池的 15 天后的衰减程度, 检测结果见表 1。 表 1
Figure imgf000010_0001
表 2
Figure imgf000010_0002
由表 1 中的内容可以看出, 采用本发明的制作方法得到的石英坩埚不仅具有镓元素, 而且其物理特性和热特性均满足标准要求; 但是对比例 2中由于镓的添加量过多导致坩埚 的性能变差, 不适于 P型多晶硅铸锭的铸锭; 由表 2中的数据可以看出, 采用本发明的石 英坩埚制作的 P型多晶硅铸锭的顶部和底部的电阻率差别较小, 而且明显地降低了光致衰 减率, 进而能够有效地提高太阳能电池的发电效率。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种石英坩埚的制作方法,所述制作方法包括将坩埚原料依次经过注浆、脱模、 干燥、 烧结的处理过程, 得到所述石英坩埚, 其特征在于, 所述坩埚原料包括 高纯无机镓盐与高纯石英砂, 其中所述坩埚原料中镓与所述高纯石英砂的重量 比为 3.7~370g: 1000kg
2. 根据权利要求 1所述的制作方法, 其特征在于, 所述高纯无机镓盐为氧化镓、 砷化镓或磷化镓。
3. 根据权利要求 2所述的制作方法, 其特征在于, 所述高纯无机镓盐的粒度小于 0.1mm; 所述高纯石英砂的粒度小于 0.1mm。
4. 根据权利要求 1至 3中任一项所述的制作方法, 其特征在于, 所述制作方法在 注浆之前还包括:
对所述高纯石英砂进行球磨、 均化处理;
将所述均化处理后的高纯石英砂、 所述高纯无机镓盐和去离子水混合, 得 到所述坩埚原料。
5. 一种石英坩埚, 其特征在于, 所述石英坩埚由所述权利要求 1至 4中任一项所 述的制作方法制作而成, 所述石英坩埚包括重量含量为 0.296g~29.6g/100kg的 镓。
6. 根据权利要求 5所述的石英坩埚, 其特征在于, 所述石英坩埚包括重量含量为 10g~20g/100kg的镓。
7. 一种 P型多晶硅铸锭的制备方法, 所述制备方法包括将硅料、 硼料在石英坩埚 中进行铸锭过程, 其特征在于, 所述石英坩埚为权利要求 5或 6所述的石英坩 埚。
8. 根据权利要求 7所述的制备方法, 其特征在于, 所述硼料为硼硅母合金。
9. 根据权利要求 7所述的制备方法, 其特征在于, 所述铸锭过程包括:
将所述硅料和所述硼料在 1500 1580°C下加热 10~20h熔化;
将所述石英坩埚的底部进行冷却。
0. 一种 P型多晶硅铸锭, 其特征在于, 所述 P型多晶硅铸锭由权利要求 7至 9中 任一项所述的制备方法制备而成。
PCT/CN2014/079184 2013-06-07 2014-06-04 石英坩埚及其制作方法、p型硅铸锭及其制作方法 WO2014194830A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310226104.X 2013-06-07
CN201310226104.XA CN103274583B (zh) 2013-06-07 2013-06-07 石英坩埚及其制作方法、p型硅铸锭及其制作方法

Publications (1)

Publication Number Publication Date
WO2014194830A1 true WO2014194830A1 (zh) 2014-12-11

Family

ID=49057244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079184 WO2014194830A1 (zh) 2013-06-07 2014-06-04 石英坩埚及其制作方法、p型硅铸锭及其制作方法

Country Status (2)

Country Link
CN (1) CN103274583B (zh)
WO (1) WO2014194830A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274583B (zh) * 2013-06-07 2016-03-30 英利能源(中国)有限公司 石英坩埚及其制作方法、p型硅铸锭及其制作方法
CN103628128B (zh) * 2013-12-12 2016-06-15 英利集团有限公司 坩埚及其制作方法、多晶硅锭的铸造方法
CN104846437B (zh) * 2015-06-02 2017-10-17 江苏协鑫硅材料科技发展有限公司 电阻率分布均匀的掺镓晶体硅及其制备方法
CN108531983A (zh) * 2018-05-22 2018-09-14 英利能源(中国)有限公司 掺镓多晶硅锭的制备方法及掺镓多晶硅锭

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160998A (ja) * 2000-11-27 2002-06-04 Shin Etsu Handotai Co Ltd 石英ルツボおよびこれを使用したシリコン結晶の製造方法
CN101348324A (zh) * 2008-08-27 2009-01-21 常熟华融太阳能新型材料有限公司 用于多晶硅结晶的不透明石英坩埚及其制造方法
CN102181926A (zh) * 2011-04-08 2011-09-14 光为绿色新能源有限公司 一种多晶硅铸锭的掺杂方法及其实现该方法的铸锭设备
CN102978699A (zh) * 2012-11-16 2013-03-20 孙新利 硼镓共掺的重掺p型单晶硅的生长及掺杂方法
CN103274583A (zh) * 2013-06-07 2013-09-04 英利能源(中国)有限公司 石英坩埚及其制作方法、p型硅铸锭及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776157B2 (ja) * 1987-09-02 1995-08-16 三菱電機株式会社 ガリウムメルトのるつぼへの充填方法
CN102312290A (zh) * 2010-07-05 2012-01-11 赵钧永 一种掺杂的铸造多晶硅及制备方法
CN102528899A (zh) * 2011-12-27 2012-07-04 咸阳陶瓷研究设计院 一种压力注浆法制备石英陶瓷坩埚的生产工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160998A (ja) * 2000-11-27 2002-06-04 Shin Etsu Handotai Co Ltd 石英ルツボおよびこれを使用したシリコン結晶の製造方法
CN101348324A (zh) * 2008-08-27 2009-01-21 常熟华融太阳能新型材料有限公司 用于多晶硅结晶的不透明石英坩埚及其制造方法
CN102181926A (zh) * 2011-04-08 2011-09-14 光为绿色新能源有限公司 一种多晶硅铸锭的掺杂方法及其实现该方法的铸锭设备
CN102978699A (zh) * 2012-11-16 2013-03-20 孙新利 硼镓共掺的重掺p型单晶硅的生长及掺杂方法
CN103274583A (zh) * 2013-06-07 2013-09-04 英利能源(中国)有限公司 石英坩埚及其制作方法、p型硅铸锭及其制作方法

Also Published As

Publication number Publication date
CN103274583B (zh) 2016-03-30
CN103274583A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
TWI460316B (zh) p型矽單晶以及其製造方法
CN103966665B (zh) 一种掺镓多晶硅锭及其制备方法
TWI745520B (zh) 形成具有經改善之電阻率控制之單晶矽錠之方法
CN102560641B (zh) 一种掺杂电阻率均匀的n型铸造硅多晶及其制备方法
JP5194146B2 (ja) シリコン単結晶の製造方法、シリコン単結晶、およびウエハ
CN105247115B (zh) 单晶硅制造方法
WO2014194830A1 (zh) 石英坩埚及其制作方法、p型硅铸锭及其制作方法
CN104846437B (zh) 电阻率分布均匀的掺镓晶体硅及其制备方法
TWI825959B (zh) 氮摻雜p型單晶矽製造方法
CN106222742B (zh) 一种晶体硅及其制备方法
JP2010062466A (ja) 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、シリコン単結晶、並びに、垂直シリコンデバイス
CN106894093A (zh) 对用于形成热施主的退火炉进行校准的方法
US20160126318A1 (en) Silicon epitaxial wafer and method of producing silicon epitaxial wafer
CN105951173A (zh) N型单晶硅晶锭及其制造方法
CN107109692A (zh) 太阳能电池用区熔单晶硅的制造方法及太阳能电池
US20150243569A1 (en) Method and system for controlling resistivity in ingots made of compensated feedstock silicon
Kerkar et al. Oxygen and carbon distribution in 80Kg multicrystalline silicon ingot
CN105951172A (zh) N型/p型单晶硅晶锭的制造方法
Nagaoka et al. Na-doped Cu2ZnSnS4 single crystal grown by traveling-heater method
JP5372105B2 (ja) n型シリコン単結晶およびその製造方法
CN106222743A (zh) 一种多晶硅锭及其制备方法和用于制备多晶硅锭的铸锭炉
WO2013145558A1 (ja) 多結晶シリコンおよびその鋳造方法
TW201804031A (zh) 多晶矽鑄錠的製造方法
CN113774474A (zh) 一种改善单晶rrv的制备方法
Ryningen et al. The effect of crucible coating and the temperature field on minority carrier lifetime in directionally solidified multicrystalline silicon ingots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807341

Country of ref document: EP

Kind code of ref document: A1