WO2014194560A1 - 环氧微胶囊及其制备方法 - Google Patents
环氧微胶囊及其制备方法 Download PDFInfo
- Publication number
- WO2014194560A1 WO2014194560A1 PCT/CN2013/080880 CN2013080880W WO2014194560A1 WO 2014194560 A1 WO2014194560 A1 WO 2014194560A1 CN 2013080880 W CN2013080880 W CN 2013080880W WO 2014194560 A1 WO2014194560 A1 WO 2014194560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- curing agent
- epoxy
- microcapsule
- surfactant
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
Definitions
- the invention relates to the field of microcapsule preparation and self-healing materials, in particular to an epoxy microcapsule and a preparation method thereof.
- Self-healing materials are a type of smart material that responds to changes in external environmental factors and repairs internal cracks or defects.
- the usual practice of imparting self-healing function to the material is to pre-embed the repair agent in the matrix material. When the matrix is damaged by external force or other external environmental factors, the repair agent is released to heal the wound. This feature greatly enhances the reliability of engineering materials and extends their service life, making them widely used in rust-preventive coatings, polymer parts, ceramics or concrete components.
- the method of embedding the repairing agent is usually to fill the hollow fiber tube in a hollow fiber tube or to wrap it in a microcapsule of the polymer, and then bury it in the matrix to form a composite material. Compared with hollow fiber tubes, microcapsules have obtained more extensive research because they have no anisotropy and many corresponding factors to the environment.
- microcapsules There are many methods for preparing microcapsules. According to the mechanism of capsule wall formation and the conditions of capsule formation, they are roughly classified into three types: chemical method, physical method and physical chemical method.
- chemical method the wall material is synthesized in the field, and the most typical one is the interfacial polymerization method and the in situ polymerization method.
- the principle of the interfacial polymerization method is to dissolve the two active monomers in two mutually incompatible solvents. When one of the solutions is dispersed in another solution, the monomers in the two solutions are at the phase interface. A reaction occurs to form a wall.
- the in-situ polymerization method is a solvent (ie, a continuous phase or a dispersed phase) in which a reactive monomer (or a soluble prepolymer thereof) and a catalyst are all dissolved, and then a polymerization reaction occurs, and the polymer is increased in molecular weight. Depositing at the interface of the two phases forms a wall of the capsule.
- In-situ polymerization is widely used in the preparation of microcapsules for self-repair, and microcapsules which synthesize polyurea resin wall materials are most common.
- epoxy resin As a restorative agent, the choice of core material clearly has a decisive influence on the repair effect.
- epoxy resin is preferred because it has good adhesion to most substrates and low shrinkage during curing. Stable performance, Long shelf life, in line with the requirements of latent repair agents.
- Epoxy resin refers to a large class of crosslinkable polymers containing oxirane groups. The grades are numerous and inexpensive, and can be applied to a variety of application purposes and occasions. Therefore, from the perspective of commercial applications, epoxy resin is also An ideal candidate for repair agents.
- microcapsules are generally required to rupture under the set stress to ensure that the contents of the repair agent can be released when the damage occurs, and the purpose of repairing is also required, and the addition of microcapsules to the strength of the matrix is also required.
- the effect is small, especially when preparing ceramic or concrete matrix members, since the addition of microcapsules in this case generally reduces the strength of the member. From the mechanical point of view, this requires that the microcapsules should have a perfect spherical shape, uniform and controllable particle size and wall thickness, no agglomeration and easy dispersion, microcapsule wall brittleness, strong adhesion to the matrix, and no core material leakage.
- the microcapsules are inexpensive and can be mass-produced in large quantities.
- the urea-formaldehyde/epoxy microcapsules synthesized by in-situ polymerization method which are widely studied at present can meet many requirements, but there are many difficulties in the morphology control of capsules, which are characterized by poor sphericity, rough surface and wide particle size distribution. , the coverage rate is low.
- the preparation process of urea-formaldehyde/epoxy microcapsules is also complicated.
- the pre-polymer is synthesized, and then emulsified together with the epoxy resin, and then the product is obtained by acidification, polymerization, filtration, rinsing, drying and the like. Due to the complex reaction mechanism between urea and formaldehyde, the formation of the wall of the capsule, the molecular structure, molecular weight, cross-linking degree of the polymer and other factors closely related to the mechanical properties of the wall are strongly dependent on the reaction temperature, heating rate, and surfactant.
- the reaction parameters such as type, stirring rate, pH value, urea/formaldehyde molar ratio, etc., it is generally difficult to ensure that the polymer is 100% deposited at the oil/water interface.
- microcapsules having uniform morphology and uniform properties.
- auxiliaries such as ammonium chloride, phosphoric acid, hydrogen peroxide, etc.
- the formation of the capsule wall can be accelerated, and the coverage and the surface finish of the microcapsules can be improved.
- adding melamine to co-condense with urea together with formaldehyde can also improve the morphology of the microcapsules.
- the epoxy microcapsules which are made of other resins as the wall material are generally better than the urea-formaldehyde/epoxy microcapsules.
- the in-situ polymerization method has no advantage in controlling the particle size, morphology and wall thickness of the microcapsules. This is because the reaction monomers are only in a single phase, and the polymerization products are deposited at the oil/water interface and in the solution. There is a competitive relationship between sedimentation.
- the technical problem to be solved by the present invention is to provide an epoxy resin microcapsule and a preparation method thereof, and aim to provide a preparation method of an epoxy resin microcapsule with simple preparation process.
- the present invention is achieved by obtaining an epoxy resin microcapsule by a method for preparing an epoxy resin microcapsule based on an interface reaction, the epoxy resin microcapsule comprising a capsule core and a capsule wall, the capsule core being made of epoxy resin or A mixture comprising an epoxy resin obtained by reacting a portion of the epoxy resin in the core with a curing agent.
- a method for preparing the epoxy microcapsule comprises the following steps:
- the epoxy resin or a mixture thereof is dispersed in water containing a surfactant to form an emulsion.
- a curing agent or an aqueous solution of a curing agent is added to the emulsion and uniformly mixed to obtain a homogeneous system.
- the temperature of the system is changed while stirring to react the curing agent with the epoxy resin.
- the precipitate is rinsed with water and dried to obtain an epoxy resin microcapsule.
- the preparation method of the interface reaction-based epoxy resin microcapsule provided by the invention is that since the epoxy resin is generally oil-soluble, it is easily dispersed in water to form an emulsion after adding a suitable surfactant.
- an appropriate concentration of epoxy curing agent is added to the aqueous phase to cure the epoxy at the oil/water interface.
- the curing agent concentration, the reaction temperature and the reaction time are controlled so that the curing is sequentially carried out from the surface to the inside to a certain extent, and a microcapsule of a cured epoxy resin-coated uncured epoxy resin having a certain wall thickness can be obtained.
- the invention has the advantages that the complex in-situ polymerization reaction is replaced by a simple interfacial curing reaction, and the wall of the capsule is formed by curing the partial capsule core, which is the same material, which not only greatly simplifies the preparation process, but also facilitates the parameters of the microcapsules. Controlled, especially suitable for the preparation of specified mechanically triggered microcapsules for self-healing materials.
- FIG. 1 is a scanning electron micrograph of an epoxy resin microcapsule provided by a first embodiment of the present technical solution.
- Figure 3 is a scanning electron micrograph of a microcapsule provided by a comparative example of the present invention.
- An epoxy resin microcapsule comprising a capsule core and a capsule wall, the capsule core being composed of an epoxy resin or a mixture containing epoxy resin, the capsule wall being partially looped in the capsule core
- the oxygen resin is obtained by reacting with a curing agent.
- the epoxy resin is a bisphenol A type epoxy, a bisphenol F type epoxy, a bisphenol S type epoxy or a novolac type epoxy resin.
- a method for preparing the epoxy microcapsule comprises the following steps:
- the epoxy resin or a mixture thereof is dispersed in water containing a surfactant to form an emulsion.
- a curing agent or an aqueous solution of a curing agent is added to the emulsion and uniformly mixed to obtain a homogeneous system.
- the temperature of the system is changed while stirring to react the curing agent with the epoxy resin.
- the precipitate is rinsed with water and dried to obtain an epoxy resin microcapsule.
- the epoxy resin is a single component, insoluble in water, and the type of the epoxy resin is not limited.
- the composition of the epoxy resin mixture includes, in addition to the epoxy resin, one or more of a curing accelerator, a diluent, a solvent, a coupling agent, and a latent curing agent.
- the surfactant is a nonionic surfactant or a high molecular polymer nonionic and anionic surfactant, preferably SMA (styrene-maleic anhydride block copolymer), gum arabic, polyoxyethylene polymer Oxypropylene (Pluronic series), ethylenediamine polyoxyethylene-polyoxypropylene block polyether (Tetronic series), heteroblock type polyether (Tergitol series, Pluradot series, Plurafac series), Tween (tween, sorbitol) Fatty acid ester polyoxyethylene ether), Span (span, sorbitan fatty acid ester), PVA (polyvinyl alcohol), PEG (polyethylene glycol), alkylphenol ethoxylate (OP series, TX Series, NP series), fatty alcohol polyoxyethylene ether (flat series, AEOn, JFC), APG (alkyl One or two or more of polyglycoside, alkyl glycoside.
- SMA
- the weight percentage of the water, the epoxy resin or a mixture thereof, and the surfactant is 100:5-30:2-10.
- the curing agent is soluble in water at 0-90 ° C, but is not miscible with the epoxy resin or mixture thereof in the first step.
- the curing agent does not react with any other component in the epoxy resin mixture other than the epoxy resin in the first step, that is, the curing agent does not react with the curing accelerator, diluent, solvent One or several reactions of a coupling agent or a latent curing agent.
- the curing agent is a tertiary amine curing agent or a polybasic primary amine curing agent other than an aliphatic polybasic primary amine, preferably m-xylylenediamine (m-XDA), diamino Diphenylmethane (DDM), diaminodiphenyl sulfone (DDS), m-phenylenediamine (m-PDA), montanane diamine (MDA), N-aminoethylpiperazine (N-AEP), 1 , 3-bis(-aminopropyl)-5,5-dimethylhydantoin, adipic acid diacyl hydride (AADH), benzyl dimethylamine (n, n'-dimthylbenzylamine, BDMA), 2-( Dimethylaminomethyl)phenol (DMP-10), 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30), piperididine, N,N'
- the curing agent does not include an aliphatic polybasic primary curing agent.
- the curing agent is used in an amount of 10 to 50% of the epoxy value of the epoxy resin or a controlled concentration in the range of 0.1 to 10% by weight.
- the reaction temperature is 25-90 ° C
- the stirring rate is 50-1000 rpm
- the reaction time is 5-90 minutes.
- epoxy resin microcapsules provided by the technical solution and the preparation method thereof will be specifically described by using examples.
- the first step is to take 100 ml of water and 10 ml of 10 wt% aqueous solution of SMA (Scripset 520), 6 ml of 4 wt%.
- m-phenylenediamine molecular weight 108.14
- 20 g of water was added to prepare an aqueous solution of a curing agent, which was slowly added to the epoxy resin emulsion, and stirred at a low speed at a speed of 100 rpm to obtain a uniform system.
- the uniform system is simultaneously heated to 70 ° C, the reaction is kept for 30 minutes, the heating is stopped, and the mixture is cooled to room temperature and then stirred to obtain a reaction liquid.
- the reaction solution was filtered, and the filter cake was rinsed with 100 ml of water, filtered, and repeated three times, and then dried at 40 ° C for 5 hours to obtain a beige powder product.
- a microcapsule having a core/cap wall structure confirmed to have a particle diameter of 40 to 100 ⁇ m and a wall thickness of about 2.7 ⁇ m.
- the emulsion was heated to 80 ° C, slowly stirred at a speed of 50 rpm, and after reacting for 15 minutes, it was cooled to room temperature and stirring was stopped.
- the fourth step filtration, rinsing with 500 ml of water, filtering, repeated 3 times, and finally drying at 40 ° C for 5 hours to obtain an epoxy beige powder.
- the temperature is simultaneously raised to 40 ° C, the reaction is kept for 20 minutes, the heating is stopped, and the mixture is cooled to room temperature and then the stirring is stopped.
- the reaction solution was filtered, and the filter cake was rinsed with 100 ml of water, filtered, and repeated three times, and then dried at 40 ° C for 5 hours to obtain a beige powder. Electron microscopic observation confirmed that the product was an epoxy-coated epoxy microcapsule with a particle size of 40-70 ⁇ m.
- the temperature is simultaneously raised to 80 ° C, the reaction is kept for 30 minutes, the heating is stopped, and the mixture is cooled to room temperature and then the stirring is stopped.
- the reaction solution was filtered, and the filter cake was rinsed with 100 ml of water, filtered, and repeated three times, and then dried at 40 ° C for 5 hours to obtain an epoxy beige powder. Electron microscopic observation confirmed that the product was an epoxy-coated epoxy microcapsule with a particle size of 20-60 ⁇ m.
- the temperature is simultaneously raised to 80 ° C, the reaction is kept for 60 minutes, the heating is stopped, and the mixture is cooled to room temperature and then the stirring is stopped.
- the reaction solution was filtered, and the filter cake was rinsed with 100 ml of water, filtered, and repeated three times, and then dried at 40 ° C for 5 hours to obtain a beige powder. Electron microscopic observation confirmed that the product was an epoxy-coated epoxy microcapsule with a particle size of 40-60 ⁇ m.
- the temperature is simultaneously raised to 80 ° C, the reaction is kept for 20 minutes, the heating is stopped, and the mixture is cooled to room temperature and then the stirring is stopped.
- the reaction solution was filtered, and the filter cake was rinsed with 100 ml of water, filtered, and repeated three times, and then dried at 40 ° C for 5 hours to obtain a beige powder. Electron microscopic observation confirmed that the product was an epoxy-coated epoxy microcapsule with a particle size of 10-50 ⁇ m.
- the reaction liquid was filtered, and the filter cake was rinsed with 100 ml of water, filtered, and repeated three times, and then dried at 40 ° C for 5 hours to obtain a beige powder.
- the product was observed under an electron microscope and found to be essentially an epoxy solid pellet, as shown in FIG.
- the preparation method of the epoxy resin microcapsule disclosed by the technical proposal has the following characteristics: (1) the formation of the wall of the capsule is based on an epoxy-based interfacial curing reaction, the epoxy is required in the oil phase, and the curing agent is in the aqueous phase; (2) Only part of the epoxy resin participates in the interface curing reaction, and the remaining epoxy resin is encapsulated in the capsule as a core material.
- the core material may also contain epoxy resin diluent, latent curing agent, curing accelerator and other materials to improve epoxy fluidity, improve adhesion, accelerate or delay the curing process of core epoxy resin.
- Wall epoxy resin and core epoxy resin are the same epoxy resin, the wall material is opened by the oxirane group in the core epoxy resin molecule, and then the curing agent molecule Formed by addition; (4) the wall of the capsule can be formed quickly, usually within one hour.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
本发明适用于微胶囊制备与自修复材料领域.提供了一种环氧树脂微胶囊,所述环氧树脂微胶囊包括囊芯及囊壁,所述囊心由环氧树脂或含环氧树脂的混合物组成,所述囊壁由囊芯中的部分环氧树脂与固化剂反应获得。本发明还提供所述环氧树脂微胶囊的制备方法。本发明提供环氧树脂微胶囊的制备方法工艺简单。
Description
本发明涉及微胶囊制备与自修复材料领域,具体地说涉及一种环氧微胶囊及其制备方法。
自修复材料是智能材料的一种,它能根据外在环境因素的变化而作出响应,自主修复内部的裂纹或缺陷。赋予材料自我修复功能的通常做法是:在基体材料中预先包埋修复剂,当基体因受外力或其它外在环境因素作用而损伤时,修复剂被释放,使伤口愈合。这一功能极大地提高工程材料使用的可靠性,延长使用寿命,因而在防锈涂料、聚合物零件、陶瓷或混凝土构件中有广泛应用。包埋修复剂的方法通常是将修复剂灌装在中空的纤维管中或包裹在聚合物的微小胶囊里,然后埋在基体中形成复合材料。与中空纤维管相比,微胶囊因没有各向异性,对环境的相应因素多,而获得了更为广泛的研究。
微胶囊的制备方法众多,依据囊壁形成的机制和成囊条件大致分为化学法、物理法和物理化学法三类。化学法中囊壁材料是现场合成的,最典型的是界面聚合法和原位聚合法。界面聚合法的原理是将两种活性单体分别溶于两种互不相溶的溶剂中,当其中一种溶液被分散于另一种溶液中时,两种溶液中的单体在相界面发生反应而成囊壁。原位聚合法则是将反应性单体(或其可溶性预聚体)及催化剂全部溶于其中的一种溶剂(即连续相或分散相)中,然后发生聚合反应,聚合物因分子量增大而在两相界面处沉积形成囊壁。在用于自修复的微胶囊的制备过程中,原位聚合法被广泛采用,其中以合成聚脲树脂壁材的微胶囊最为常见。
作为修复剂,芯材的选择显然对修复效果具有决定性的影响。对于修复高分子、陶瓷或混凝土基体中的裂纹、孔洞,环氧树脂是首选,因为它与多数基体都具有很好的粘接性能,固化时收缩率低,
性能稳定,
贮存期长,符合潜伏型修复剂的要求。环氧树脂其实是指含有环氧乙烷基团的一大类可交联的聚合物,牌号众多且价廉,可适用多种应用目的和场合,因此从商业应用角度考虑,环氧树脂也是修复剂的理想候选。
对于力学触发的自修复材料,一般要求微胶囊在设定的应力作用下破裂,以保证损伤发生时修复剂内容物能被释放,达到修补的目的,同时还要求微胶囊的加入对基体强度的影响要小,尤其是在制备陶瓷或混凝土基体构件时,因为在这种情况下微胶囊的加入通常是降低了构件的强度。仅从力学角度考虑,这就要求微胶囊应具有较完美的球形,均匀且可控的粒径和壁厚,不团聚易分散,微胶囊壁脆、与基体结合力强、且对芯材不渗漏。如用于自修复混凝土,因使用量大,还希望微胶囊价廉,能大批量规模生产。目前广泛研究的以原位聚合法合成的脲醛/环氧微胶囊能满足其中的不少要求,但在胶囊的形态控制上却存在很多困难,表现在球形度差,表面粗糙,粒径分布广,包覆率低。脲醛/环氧微胶囊的制备过程也较为复杂,先要合成预聚体,再与环氧树脂一起乳化,然后经酸化,聚合,过滤,漂洗,干燥等环节才能得到产品。由于尿素与甲醛的反应机理复杂,囊壁的形成,聚合物的分子结构、分子量、交联度等与囊壁力学性质密切相关的因素都强烈地依赖于反应温度、升温速率、表面活性剂的种类、搅拌速率、pH值、尿素/甲醛摩尔比等反应参数,一般很难保证聚合物百分百在油/水两相界面处沉积,囊壁形成后也难以保证各处壁厚会均匀增加,因此要得到形态均一和性能一致的微胶囊十分困难。虽然有研究表明,通过向连续相中添加适当的助剂,如氯化铵、磷酸、双氧水等,能加速囊壁形成进程,提高包覆率和微胶囊的表面光洁度。或者添加三聚氰胺,使其与尿素一起与甲醛共缩聚,也能改善微胶囊的形态。甚至更换反应单体,减低反应的复杂性,合成以其它树脂为壁材的环氧微胶囊,一般形态要好于脲醛/环氧微胶囊。但总体而言,原位聚合法在控制微胶囊粒径、形貌和壁厚方面不具优势,这是原因反应单体只在单一相中,聚合产物在油/水界面处沉积与在溶液中沉积存在竞争关系。要成囊,就需要通过表面活性剂改变油/水性质,使聚合物优先在界面处沉积,但囊壁一旦形成,需要迅速增厚,以提高强度,以防止胶囊因相互碰撞而变形甚至破裂。
本发明所要解决的技术问题在于提供一种环氧树脂微胶囊及其制备方法,旨在提供一种制备工艺简单的环氧树脂微胶囊的制备方法。
本发明是这样实现的,通过基于界面反应的环氧树脂微胶囊的制备方法得到环氧树脂微胶囊,所述环氧树脂微胶囊包括囊芯及囊壁,所述囊心由环氧树脂或含环氧树脂的混合物组成,所述囊壁由囊芯中的部分环氧树脂与固化剂反应获得。
一种所述环氧微胶囊的制备方法,包括下列步骤:
第一步,将环氧树脂或其混合物分散在含有表面活性剂的水中,形成乳液。
第二步,向所述乳液中加入固化剂或固化剂水溶液,并混合均匀,得到均匀体系。
第三步,改变所述体系温度,同时搅拌,使固化剂与环氧树脂反应。
第四步,将沉淀物用水漂洗,干燥,得到环氧树脂微胶囊。
本发明提供的基于界面反应的环氧树脂微胶囊的制备方法,由于环氧树脂一般为油溶性,加入适当的表面活性剂后很容易分散在水中形成乳液。利用环氧乙烷基的高反应活性,在水相中加入适当浓度的环氧固化剂,使环氧在油/水界面处固化。控制固化剂浓度、反应温度和反应时间,使固化依次地由表向里进行到一定程度终止,就可获得一定壁厚的已固化环氧树脂包覆未固化环氧树脂的微胶囊。本发明的益处是,以简单的界面固化反应取代复杂的原位聚合反应,囊壁由部分囊芯固化反应而成,为同一种材料,不仅大大简化了制备工艺,还利于对微胶囊的参数进行控制,特别适合制备指定要求的力学触发的自修复材料用微胶囊。
图1 为本技术方案第一实施例提供的环氧树脂微胶囊的扫描电子显微照片。
图2为本技术方案第二实施例提供的环氧树脂微胶囊的扫描电子显微照片。
图3为本技术方案对比例提供的微胶囊的扫描电子显微照片。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种环氧树脂微胶囊,所述环氧树脂微胶囊包括囊芯及囊壁,所述囊心由环氧树脂或含环氧树脂的混合物组成,所述囊壁由囊芯中的部分环氧树脂与固化剂反应获得。
所述环氧树脂为双酚A型环氧、双酚F型环氧、双酚S型环氧或酚醛型环氧树脂。
一种所述环氧微胶囊的制备方法,包括下列步骤:
第一步,将环氧树脂或其混合物分散在含有表面活性剂的水中,形成乳液。
第二步,向所述乳液中加入固化剂或固化剂水溶液,并混合均匀,得到均匀体系。
第三步,改变所述体系温度,同时搅拌,使固化剂与环氧树脂反应。
第四步,将沉淀物用水漂洗,干燥,得到环氧树脂微胶囊。
在所述第一步中,所述环氧树脂为单一组分,不溶于水,环氧树脂的类型不限。所述环氧树脂混合物的组成除环氧树脂外,还包括固化促进剂、稀释剂、溶剂、偶联剂、潜伏型固化剂中的一种或几种。
所述表面活性剂为非离子型表面活性剂或高分子聚合物非离子及阴离子型表面活性剂,优选可以为SMA(苯乙烯-马来酸酐嵌段共聚物)、阿拉伯胶、聚氧乙烯聚氧丙烯(Pluronic系列)、乙二胺聚氧乙烯-聚氧丙烯嵌段聚醚(Tetronic系列)、杂嵌段型聚醚(Tergitol系列、Pluradot系列、Plurafac系列)、吐温(tween,山梨醇脂肪酸酯聚氧乙烯醚)、司班(span,失水山梨醇脂肪酸酯)、PVA(聚乙烯醇)、PEG(聚乙二醇)、烷基酚聚氧乙烯醚(OP系列、TX系列、NP系列)、脂肪醇聚氧乙烯醚(平平加系列、AEOn、JFC)、APG(alkyl
polyglycoside,烷基糖苷)中的一种或两种及两种以上的复配。
在所述第一步中,所述水、环氧树脂或其混合物、表面活性剂的重量百分比为100:5-30:2-10。
在所述第二步中,所述固化剂能溶于0-90℃的水,但不与所述第一步中的环氧树脂或其混合物混溶。所述固化剂除与所述第一步中的环氧树脂以外,不与环氧树脂混合物中的任一其它组份反应,即所述固化剂不与所述固化促进剂、稀释剂、溶剂、偶联剂、潜伏型固化剂中的一种或几种反应。
在所述第二步中,所述固化剂为叔胺类固化剂或除脂肪族多元伯胺之外的多元伯胺类固化剂,优选为间苯二甲胺(m-XDA)、二氨基二苯基甲烷(DDM)、二氨基二苯基砜(DDS)、间苯二胺(m-PDA)、孟烷二胺(MDA)、N-氨乙基哌嗪(N-AEP)、1,3-二(-氨基丙基)-5,5-二甲基海因、己二酸二酰阱(AADH)、苄基二甲胺(n,n′-dimthylbenzylamine,BDMA)、2-(二甲胺基甲基)苯酚(DMP-10)、2,4,6-三(二甲胺基甲基)苯酚(DMP-30)、哌啶(piperidine)、N,N'-二甲基哌嗪(n,n'-dimethylpiperazine)、三亚乙基二胺(triethylenediamine)、吡啶(pyridine)、甲基吡啶(Methylpyridine)、N-甲基哌啶(n-methylpiperidine)、1,8-二氯双环(5,4,0)-7-十一烯(1,8-diazabicyclo[5.4.0]undec-7-ene)中的一种或几种的混合。
在所述第二步中,所述固化剂不包括脂肪族多元伯胺类固化剂。
在所述第二步中,所述固化剂的用量为环氧树脂环氧值的10~50%或控制浓度在0.1~10wt%范围内。
在所述步第三步中,所述反应温度为25-90℃,搅拌速率50-1000转每分钟,反应时间为5-90分钟。
下面,具体用实施例说明本技术方案提供的环氧树脂微胶囊及其制备方法。
实施例1
第一步,取水100毫升及10毫升10wt%的SMA(Scripset 520)水溶液,6毫升4wt%
PVA(Mw=1500)水溶液,混匀,加入30克双酚A型环氧树脂E-51(环氧值=0.54)。机械搅拌15分钟,转速400-600转每分钟,获得稳定的水包油型环氧树脂乳液。
第二步,取间苯二胺(分子量108.14)7克,加20克水制成固化剂水溶液,缓慢加入所述环氧树脂乳液中,低速搅拌,转速100转每分钟,得到均匀体系。
第三步,将所述均匀体系同时升温至70℃,保温反应30分钟,停止加热,待冷却至室温再停止搅拌,得到反应液。
第三步,将所述反应液过滤,将滤饼用100毫升水漂洗,再过滤,反复3次,然后40℃干燥5小时,得米黄色粉末产物。
将产物压碎后进行电子显微观察,请参阅图1,证实为囊芯/囊壁结构的微胶囊,粒径40-100μm,囊壁厚约2.7μm。
实施例2
第一步,取水1000毫升,100毫升10wt%的SMA(Scripset
520)水溶液,60毫升4wt% PVA(Mw=1500)水溶液,间苯二甲胺(分子量136.13)88克,混匀,作为连续相。
第二步,取300克低粘度环氧E-58(六氢邻苯二甲酸二缩水甘油脂,环氧值=0.58,粘度700mPa∙s@25℃)作为分散相,通过高通量SPG膜乳化器(SPG膜规格:10
L125mm,孔径50μm)乳化,得液滴大小均一的环氧E-58乳液。
第三步,将乳液升温至80℃,缓慢搅拌转速50转每分钟,反应15分钟后,冷却至室温,停止搅拌。
第四步,过滤,500毫升水漂洗,再过滤,反复3次,最后40℃干燥5小时,得环氧米黄色粉末。
压碎后进行电子显微观察,请参阅图2,证实产物为大小均一(粒径约100μm),囊壁厚均匀(=1.5μm)的环氧树脂包环氧树脂微胶囊。
实施例3
第一步,取水100毫升,加入4克吐温-80和1克司班-80作乳化剂,混匀,加入30克双酚A型环氧E-51(环氧值=0.54),机械搅拌15分钟,转速500转每分钟,获得稳定的水包油型环氧乳液。
第二步,取固化剂DMP-30(分子量342.57)23克,加40克水制成固化剂水溶液,缓慢加入环氧乳液中,低速搅拌,转速100转每分钟。
第三步,同时升温至40℃,保温反应20分钟,停止加热,待冷却至室温再停止搅拌。
第四步,将反应液过滤,将滤饼用100毫升水漂洗,再过滤,反复3次,然后40℃干燥5小时,得米黄色粉末。电子显微观察证实产物为环氧包覆环氧微胶囊,粒径40-70μm。
实施例4
第一步,取水100毫升,加入2克阿拉伯胶作乳化剂,混匀,加入30克缩水甘油胺类环氧AG-80(4,4-二氨基二苯甲烷环氧,环氧值=0.8)中,机械搅拌15分钟,转速500转每分钟,获得稳定的水包油型环氧乳液。
第二步,取4,4’-二氨基二苯砜(DDS,分子量248.30)16克,加入到40克80℃的水中溶解制成水溶液,缓慢加入环氧乳液中,低速搅拌,转速50转每分钟。
第三步,同时升温至80℃,保温反应30分钟,停止加热,待冷却至室温再停止搅拌。
第四步,将反应液过滤,将滤饼用100毫升水漂洗,再过滤,反复3次,然后40℃干燥5小时,环氧米黄色粉末。电子显微观察证实,产物为环氧包覆环氧微胶囊,粒径20-60μm。
实施例5
第一步,取水100克,10毫升10wt%的SMA(Scripset 520)水溶液,6毫升4wt%
PVA(Mw=1500)水溶液,混匀,加入30克海因环氧树脂MHR070(5,5-Dimethylhydantoin
epoxy,无锡美华化工有限公司产品,环氧值0.70~0.72)和3克钛酸酯固化促进剂TC-114,机械搅拌15分钟,转速500转每分钟,获得稳定的水包油型环氧乳液。第二步,取593固化剂(二亚乙基三胺与丁基缩水甘油醚的加成物,分子量217.13,胺值=600~700
mgKOH/g)18克,加20克水制成固化剂水溶液,缓慢加入环氧乳液中,低速搅拌,转速100转每分钟。
第三步,同时升温至80℃,保温反应60分钟,停止加热,待冷却至室温再停止搅拌。
第四步,将反应液过滤,将滤饼用100毫升水漂洗,再过滤,反复3次,然后40℃干燥5小时,得米黄色粉末。电子显微观察证实,产物为环氧包覆环氧微胶囊,粒径40-60μm。
实施例6
第一步,取水100克,加入3克吐温-20、1.35克司班-60和0.25克聚乙二醇(PEG-6000)作乳化剂,混匀,加入30克TDE-85环氧树脂(又名712环氧树脂,4,5-epoxyclyclohexyl-1,2-diglycidyl
diformate,4,5-环氧环已烷-1,2-二甲酸二缩水甘油脂,环氧值=0.85),机械搅拌15分钟,转速400-600转每分钟,获得稳定的水包油型环氧乳液。
第二步,取苄基二甲胺(分子量135.21)14克,加20克水制成固化剂水溶液,缓慢加入环氧乳液中,搅拌,转速300转每分钟。
第三步,同时升温至80℃,保温反应20分钟,停止加热,待冷却至室温再停止搅拌。
第四步,将反应液过滤,将滤饼用100毫升水漂洗,再过滤,反复3次,然后40℃干燥5小时,得米黄色粉末。电子显微观察证实,产物为环氧包覆环氧微胶囊,粒径10-50μm。
对比例1
取水100克,10毫升10wt%的SMA(Scripset 520)水溶液,6毫升4wt%
PVA(Mw=1500)水溶液,混匀,加入30克双酚A型环氧E-51(环氧值=0.54),机械搅拌15分钟,转速400-600转每分钟,获得稳定的水包油型环氧乳液;取乙二胺(分子量60.10)4克,加20克水制成固化剂水溶液,缓慢加入环氧乳液中,低速搅拌,转速100转每分钟,同时升温至70℃,保温反应20分钟,停止加热,待冷却至室温,停止搅拌;将反应液过滤,将滤饼用100毫升水漂洗,再过滤,反复3次,然后40℃干燥5小时,得米黄色粉末。将产物进行电子显微镜观察,发现基本为环氧实心小球,如图3所示。
由上述的对比例可以看出,采用乙二胺,即脂肪胺,大多数脂肪胺固化剂会与环氧树脂混溶,难以满足界面反应条件,且一般固化反应速率很快,反应不易得到芯/壳结构的微胶囊。
本技术方案公开的环氧树脂微胶囊的制备方法具有下列特征:(1)囊壁的形成基于环氧的界面固化反应,要求环氧在油相中,固化剂在水相中;(2)只有部分环氧树脂参与界面固化反应,剩余环氧树脂作为修复剂被包裹在胶囊里成为芯材。当然芯材除环氧树脂外,还可以包含环氧树脂稀释剂、潜伏型固化剂、固化促进剂和其它能改善环氧流动性、提高粘接力、加快或延缓芯材环氧树脂固化进程的添加剂;(3)壁材环氧树脂和芯材环氧树脂为同一种环氧树脂,壁材是通过芯材环氧树脂分子中的环氧乙烷基团开环,再与固化剂分子加成而形成的;(4)囊壁能快速形成,通常在一小时内完成。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种环氧树脂微胶囊,所述环氧树脂微胶囊包括囊芯及囊壁,所述囊心由环氧树脂或含环氧树脂的混合物组成,所述囊壁由囊芯中的部分环氧树脂与固化剂反应获得。
- 如权利要求1所述的环氧树脂微胶囊,其特征在于,所述固化剂为叔胺类固化剂或除脂肪族多元伯胺之外的多元伯胺类固化剂。
- 如权利要求1所述的环氧树脂微胶囊,其特征在于,所述固化剂为间苯二甲胺、二氨基二苯基甲烷、二氨基二苯基砜、间苯二胺、孟烷二胺、N-氨乙基哌嗪、1,3-二(-氨基丙基)-5,5-二甲基海因、己二酸二酰阱、苄基二甲胺、2-(二甲胺基甲基)苯酚、2,4,6-三(二甲胺基甲基)苯酚、哌啶、N,N'-二甲基哌嗪、三亚乙基二胺、吡啶、甲基吡啶、N-甲基哌啶、1,8-二氯双环(5,4,0)-7-十一烯中的一种或几种的混合。
- 如权利要求1所述的环氧树脂微胶囊,其特征在于,所述含环氧树脂的混合物包括环氧树脂,还包括固化促进剂、稀释剂、溶剂、偶联剂、潜伏型固化剂中的一种或几种。
- 一种环氧树脂微胶囊的制备方法,包括步骤:将环氧树脂或其混合物分散在含有表面活性剂的水中,形成乳液;向所述乳液中加入固化剂或固化剂水溶液,并混合均匀,得到均匀体系;改变所述体系温度,同时搅拌,使固化剂与环氧树脂反应;以及将沉淀物用水漂洗,干燥,得到环氧树脂微胶囊。
- 如权利要求5所述的环氧树脂微胶囊的制备方法,其特征在于,所述水、环氧树脂或其混合物、表面活性剂的重量百分比为100:5-30:2-10。
- 如权利要求5所述的环氧树脂微胶囊的制备方法,其特征在于,所述固化剂的用量为环氧树脂环氧值的10~50%或控制浓度在0.1~10wt%范围内。
- 如权利要求5所述的环氧树脂微胶囊的制备方法,其特征在于,所述固化剂与环氧树脂反应为25-90℃,搅拌速率50-1000转每分钟,反应时间为5-90分钟。
- 如权利要求5所述的环氧树脂微胶囊的制备方法,其特征在于,所述表面活性剂为非离子型表面活性剂或高分子聚合物非离子及阴离子型表面活性剂。
- 如权利要求5所述的环氧树脂微胶囊的制备方法,其特征在于,所述表面活性剂为SMA、阿拉伯胶、聚氧乙烯聚氧丙烯、乙二胺聚氧乙烯-聚氧丙烯嵌段聚醚、杂嵌段型聚醚、吐温、司班、PVA、PEG、烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、APG中的一种或两种及两种以上的复配。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310215224.XA CN103304775B (zh) | 2013-06-03 | 2013-06-03 | 环氧微胶囊及其制备方法 |
CN201310215224.X | 2013-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014194560A1 true WO2014194560A1 (zh) | 2014-12-11 |
Family
ID=49130523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/080880 WO2014194560A1 (zh) | 2013-06-03 | 2013-08-06 | 环氧微胶囊及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103304775B (zh) |
WO (1) | WO2014194560A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113480199A (zh) * | 2021-08-02 | 2021-10-08 | 四川文理学院 | 一种增强型玄武岩纤维浸润剂及其制备方法 |
CN113908782A (zh) * | 2021-08-13 | 2022-01-11 | 深圳市深赛尔股份有限公司 | 一种环保环氧树脂自修复微胶囊及其制备工艺 |
CN114854385A (zh) * | 2022-03-21 | 2022-08-05 | 中国石油化工股份有限公司 | 一种具有包裹外壳的沥青质分散抑制剂及其制备方法 |
CN114891318A (zh) * | 2022-05-20 | 2022-08-12 | 重庆大学 | 一种实现电树枝损伤自愈合的新型智能绝缘材料及其制备方法和应用 |
CN117645430A (zh) * | 2023-11-30 | 2024-03-05 | 吉林省水利科学研究院(吉林省水利科技推广总站、吉林省水利水电工程质量检测中心、吉林省灌溉试验中心站) | 一种用于混凝土冻融损伤自修复的双微胶囊制备方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103599739B (zh) * | 2013-11-25 | 2015-10-21 | 深圳大学 | 一种以酚醛树脂为壁材的环氧微胶囊的制备方法 |
CN104801245B (zh) * | 2015-04-02 | 2017-04-12 | 苏州大学 | 一种环氧树脂填充取向碳纳米管束胶囊及其制备方法 |
CN105199322B (zh) * | 2015-10-10 | 2017-03-22 | 苏州大学 | 一种环氧树脂微球及其制备方法 |
CN105647423B (zh) * | 2016-03-21 | 2017-11-14 | 广东恒大新材料科技有限公司 | 一种双层胺类促进剂微胶囊及其制备方法 |
CN105821832B (zh) * | 2016-03-23 | 2017-08-25 | 武汉大学 | 一种防冻拔粘结弱化的自愈合混凝土桩 |
CN106076216A (zh) * | 2016-06-14 | 2016-11-09 | 常州大学 | 一种低温环氧固化促进剂微胶囊及其制备方法 |
CN106890607B (zh) * | 2017-01-19 | 2019-05-21 | 中国科学院化学研究所 | 一种液晶微胶囊的制备方法及液晶微胶囊 |
CN107383994B (zh) * | 2017-06-26 | 2020-08-04 | 天津翔盛新材料有限公司 | 一种用于提高粉末涂料耐水煮性的微囊化硫酸钡及其制备方法 |
CN107813579A (zh) * | 2017-10-16 | 2018-03-20 | 中节能太阳能科技(镇江)有限公司 | 一种光伏组件高耐压背板材料及由其制成的光伏组件 |
CN107638850B (zh) * | 2017-10-20 | 2020-10-16 | 河南工业大学 | 一种环氧树脂/三聚磷酸钙钠复合微球及其制备方法 |
US11883790B2 (en) | 2018-03-14 | 2024-01-30 | Sekisui Kasei Co., Ltd. | Hollow particles, method for producing same, and usage of same |
CN109453499B (zh) * | 2018-10-27 | 2021-03-23 | 汇昇(厦门)运动器材有限公司 | 一种篮球及其制造工艺 |
CN110938192A (zh) * | 2019-12-05 | 2020-03-31 | 肇庆市海特复合材料技术研究院 | 一种环氧树脂为壁材的微胶囊快速固化剂的制备方法 |
CN116278238B (zh) * | 2022-11-28 | 2023-09-12 | 江苏耀鸿电子有限公司 | 一种耐高温环氧树脂基覆铜板及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194032A (ja) * | 2001-12-27 | 2003-07-09 | Nissei Technica:Kk | 水性分散液型の緩み止め剤組成物 |
WO2005054393A1 (ja) * | 2003-12-03 | 2005-06-16 | Three Bond Co., Ltd. | マイクロカプセル型接着剤組成物 |
CN101319055A (zh) * | 2007-11-27 | 2008-12-10 | 中山大学 | 一种环氧树脂微胶囊及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020071793A (ko) * | 2002-06-05 | 2002-09-13 | 조석형 | 에폭시계 접착제 제조 |
JP5228644B2 (ja) * | 2007-10-05 | 2013-07-03 | 日立化成株式会社 | エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物並びにエポキシ樹脂硬化物 |
CN101530772B (zh) * | 2009-03-13 | 2011-06-15 | 清华大学深圳研究生院 | 有机高分子材料包覆的相变储能微胶囊制备方法 |
-
2013
- 2013-06-03 CN CN201310215224.XA patent/CN103304775B/zh not_active Expired - Fee Related
- 2013-08-06 WO PCT/CN2013/080880 patent/WO2014194560A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194032A (ja) * | 2001-12-27 | 2003-07-09 | Nissei Technica:Kk | 水性分散液型の緩み止め剤組成物 |
WO2005054393A1 (ja) * | 2003-12-03 | 2005-06-16 | Three Bond Co., Ltd. | マイクロカプセル型接着剤組成物 |
CN101319055A (zh) * | 2007-11-27 | 2008-12-10 | 中山大学 | 一种环氧树脂微胶囊及其制备方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113480199A (zh) * | 2021-08-02 | 2021-10-08 | 四川文理学院 | 一种增强型玄武岩纤维浸润剂及其制备方法 |
CN113480199B (zh) * | 2021-08-02 | 2022-11-01 | 四川文理学院 | 一种增强型玄武岩纤维浸润剂及其制备方法 |
CN113908782A (zh) * | 2021-08-13 | 2022-01-11 | 深圳市深赛尔股份有限公司 | 一种环保环氧树脂自修复微胶囊及其制备工艺 |
CN113908782B (zh) * | 2021-08-13 | 2024-05-24 | 深圳市深赛尔股份有限公司 | 一种环保环氧树脂自修复微胶囊及其制备工艺 |
CN114854385A (zh) * | 2022-03-21 | 2022-08-05 | 中国石油化工股份有限公司 | 一种具有包裹外壳的沥青质分散抑制剂及其制备方法 |
CN114854385B (zh) * | 2022-03-21 | 2023-11-03 | 中国石油化工股份有限公司 | 一种具有包裹外壳的沥青质分散抑制剂及其制备方法 |
CN114891318A (zh) * | 2022-05-20 | 2022-08-12 | 重庆大学 | 一种实现电树枝损伤自愈合的新型智能绝缘材料及其制备方法和应用 |
CN117645430A (zh) * | 2023-11-30 | 2024-03-05 | 吉林省水利科学研究院(吉林省水利科技推广总站、吉林省水利水电工程质量检测中心、吉林省灌溉试验中心站) | 一种用于混凝土冻融损伤自修复的双微胶囊制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103304775A (zh) | 2013-09-18 |
CN103304775B (zh) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014194560A1 (zh) | 环氧微胶囊及其制备方法 | |
Li et al. | Thiol–isocyanate click reaction in a Pickering emulsion: a rapid and efficient route to encapsulation of healing agents | |
CN110746580A (zh) | 一种长贮存期环氧树脂用ppma包裹微胶囊型快速固化剂及其制备方法和应用 | |
CN104704030A (zh) | 具有多元醇的聚合物粒子分散液 | |
CN110684222B (zh) | 聚合物基复合介电材料及其制备方法 | |
US20070055039A1 (en) | Latent curing agent and composition | |
JPH07304968A (ja) | マイクロカプセル型硬化剤、その製造法、熱硬化性樹脂組成物、プリプレグおよび繊維強化複合材料 | |
CN109929093A (zh) | 一种微胶囊型环氧树脂潜伏性固化促进剂及其制备和应用方法 | |
Zhang et al. | Microcapsules derived from Pickering emulsions as thermal latent curing accelerator for epoxy resins | |
JP3270774B2 (ja) | 球状のエポキシ樹脂用潜在性硬化剤及びその製造方法 | |
CN106751480B (zh) | 一种层状无机填料/环氧树脂纳米复合材料及其制备方法 | |
JP2912193B2 (ja) | マイクロカプセル型硬化剤または硬化促進剤、およびそれを含有するエポキシ樹脂組成物、並びに硬化方法およびエポキシ樹脂硬化物 | |
JP3031897B2 (ja) | エポキシ樹脂硬化物およびこれを得るための硬化方法 | |
CN110903464A (zh) | 一种环氧树脂用聚氯乙烯为壁材的微胶囊型快速固化剂的制备方法 | |
KR20130062693A (ko) | 초음파 고온 진동법을 이용한 열제어 소재용 마이크로 입자와, 이것의 제조 장치 및 방법 | |
KR20120046158A (ko) | 에폭시 조성물용 잠재성 하드너 | |
CN110938192A (zh) | 一种环氧树脂为壁材的微胶囊快速固化剂的制备方法 | |
WO2020216688A1 (en) | Improvements in or relating to curatives | |
CN111004370A (zh) | 一种环氧树脂潜伏型固化剂的制备方法 | |
JP5546914B2 (ja) | 新規な包接錯体、エポキシ樹脂組成物及び半導体封止用エポキシ樹脂組成物 | |
JP5558875B2 (ja) | 新規包接錯体、エポキシ樹脂組成物及び半導体封止用エポキシ樹脂組成物 | |
CN112516929B (zh) | 一种含环氧溶液的微胶囊及其制备方法 | |
Gao et al. | All‐Organic Filler with Fractal Structure for Reinforcement and Toughening of Aromatic Polyamide Film | |
CN114773577B (zh) | 一种自组装微胶囊环氧树脂潜伏型固化剂及其制备方法 | |
CN118271797B (zh) | 树脂组合物及其制备方法、膜材、半导体封装结构及其制备方法、半导体器件和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13886380 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N) DATED 09.02.2016 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13886380 Country of ref document: EP Kind code of ref document: A1 |