WO2014192832A1 - 線材接続装置、線材接続方法、及び接続構造体の製造方法 - Google Patents

線材接続装置、線材接続方法、及び接続構造体の製造方法 Download PDF

Info

Publication number
WO2014192832A1
WO2014192832A1 PCT/JP2014/064184 JP2014064184W WO2014192832A1 WO 2014192832 A1 WO2014192832 A1 WO 2014192832A1 JP 2014064184 W JP2014064184 W JP 2014064184W WO 2014192832 A1 WO2014192832 A1 WO 2014192832A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
pressure plate
solder
heating body
holding base
Prior art date
Application number
PCT/JP2014/064184
Other languages
English (en)
French (fr)
Inventor
真司 藤田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to EP17192557.1A priority Critical patent/EP3285341B1/en
Priority to US14/893,814 priority patent/US9685769B2/en
Priority to JP2014528726A priority patent/JP5608842B1/ja
Priority to EP14804200.5A priority patent/EP3007287B1/en
Publication of WO2014192832A1 publication Critical patent/WO2014192832A1/ja
Priority to US15/399,995 priority patent/US10014671B2/en
Priority to US15/399,951 priority patent/US10044176B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/005Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for cutting cables or wires, or splicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/087Soldering or brazing jigs, fixtures or clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • B23K20/004Wire welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/085Cooling, heat sink or heat shielding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/021Soldered or welded connections between two or more cables or wires
    • H01R4/022Soldered or welded connections between two or more cables or wires comprising preapplied solder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/027Soldered or welded connections comprising means for positioning or holding the parts to be soldered or welded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0263Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections for positioning or holding parts during soldering or welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires

Definitions

  • the present invention relates to a wire connecting device, a wire connecting method, and a method for manufacturing a connection structure.
  • This application claims priority based on Japanese Patent Application No. 2013-112141 for which it applied to Japan on May 28, 2013, and uses the content here.
  • Patent Document 1 discloses a connection device 100 for connecting a superconducting wire (see FIG. 5).
  • This connecting device 100 includes a lower pressurizing and heating plate 101B provided with a wire accommodating groove 102 having a width substantially equal to that of the wire, and an upper pressurizing and heating plate 101A having a protrusion 112A having a slightly smaller width than the wire accommodating groove 102.
  • the opening and closing mechanism 108 is configured to cover the opening of the lower pressurizing and heating plate 101B with the upper pressurizing and heating plate 101A and to heat and pressurize the wire.
  • the ends of the wires are accommodated in a wire containing groove 102 with solder sandwiched between them, and are pressed and heated by the lower pressure heating plate 101B and the upper pressure heating plate 101A. As a result, the solder is melted to connect the superconducting wires.
  • connection device 100 eliminates the need for an operator to connect the superconducting wires by melting the solder using a soldering iron. That is, it is possible to form a connection structure that exhibits stable connection performance without being affected by the skill of the operator.
  • connection device 100 In the connection device 100 described in Patent Document 1, heat and pressure are applied to the wire by a pair of heating and pressing plates 101A and 101B provided with both a heating unit and a pressing unit. Therefore, when this connection apparatus 100 is used, in order to solidify the solder of a connection part, it is necessary to cool a heating part (for example, heater) itself, and a connection requires a long time. Further, when connecting work continuously using the same apparatus, it is necessary to reheat the cooled heater, and it takes a long time to be sufficiently heated. Therefore, there has been a problem that production efficiency is poor.
  • a heating part for example, heater
  • the present invention has been made in view of the conventional situation as described above, and is a wire connecting device, a wire connecting method, and a connecting structure, which are capable of connecting wires having high production efficiency and exhibiting stable performance.
  • the purpose is to provide a manufacturing method.
  • the wire connecting device includes a holding base provided with a wire storing groove having a width capable of storing a plurality of wires, a pressure plate positioned above the holding base, and the pressurizing plate.
  • a heating body that is located above the pressure plate and includes a heating unit, a first drive unit that can bring the holding base and the pressure plate close to and away from each other, and the holding base and the heating body.
  • the pressure plate which is close to the holding base by the first drive unit, and is stored in the wire material storage groove with solder interposed therebetween.
  • the plurality of wire rods can be pressurized, and the heating body that is brought close to the holding base by the second drive unit includes the plurality of wire rods that are accommodated in the wire rod housing groove with solder interposed therebetween. It can be heated under pressure via a pressure plate.
  • a pressure plate that pressurizes the connection portion of the wire rod and a heating body that heats the connection portion are provided separately, and are applied by the first drive unit and the second drive unit. It is possible to make the pressure plate and the heating body separately approach and separate from the connecting portion of the wire.
  • the wire connecting device can be used for connecting a tape-shaped superconducting wire represented by Bi or RE-123.
  • the wire connecting device can suppress deterioration of the superconducting wire by shortening the heating time.
  • the superconducting wire may be provided with a protective layer of silver or a silver alloy on the outer periphery thereof. Since this protective layer functions as a bypass when the superconducting state of the superconducting wire is broken, it is desired to have a low resistance.
  • the solder diffuses in the protective layer, and an alloy of solder and silver may be formed. An alloy of solder and silver has a high electric resistance and cannot sufficiently function as a bypass.
  • the wire rod connecting apparatus can suppress diffusion of solder into the protective layer by shortening the heating time. Further, in the wire rod connecting device according to the first aspect, the heating body is kept at a temperature at which the solder melts at all times in order to start and stop the heating to the connecting portion of the wire rod by contacting or separating the heating body from the pressure plate. I can keep it. Therefore, when the next connection operation is continuously performed, it is not necessary to reheat the heating body, and the waiting time until the temperature of the heating body rises to the temperature of melting the solder can be saved. In addition, since the plate-like pressure plate has a large surface area and high heat dissipation characteristics, the temperature of the connecting portion can be lowered quickly, and the time required for solidification of the solder can be shortened. That is, production efficiency can be increased.
  • the holding base may be made of a heat insulating material.
  • the holding base since the holding base is made of a heat insulating material, the temperature rise of the holding base is suppressed even when the joint portion of the wire is heated, and the solidification of the solder is not hindered during cooling, thereby increasing the production efficiency. be able to.
  • the wire connecting device may include a cooling unit that cools the pressure plate.
  • a cooling unit for cooling the pressure plate it is possible to quickly cool the pressure plate after the solder is melted and then the heating body is separated from the pressure plate. Can be shortened to increase production efficiency.
  • the first drive unit is a first air cylinder that moves the pressure plate up and down (moves up and down), and the second drive unit moves the heating body up and down (up and down).
  • the second air cylinder may be moved.
  • the ends of the tape-shaped first wire and the ends of the tape-shaped second wire are arranged on the holding base so as to overlap each other via solder.
  • Wire arrangement step a heating body is pressed against the first wire and the second wire via a pressure plate, the first wire and the second wire are pressed and heated, and the solder is Melting (pressurizing and heating step), maintaining the state where the first wire and the second wire are pressed by the pressure plate, separating the heating body from the pressure plate, and cooling the pressure plate.
  • the solder is solidified and the first wire and the second wire are connected (cooling step).
  • the first wire rod is arranged such that the end portion of the tape-shaped first wire rod and the end portion of the tape-shaped second wire rod face each other on the holding base.
  • the second wire rod, solder is disposed so as to straddle the first wire rod and the second wire rod
  • a connecting wire rod is disposed on the solder (wire rod arranging step)
  • a heating body is pressed to the first wire, the second wire, and the connecting wire via a pressure plate, and the first wire, the second wire, and the connecting wire are pressed and heated.
  • the solder is melted (pressure heating step), the first wire, the second wire, and the connecting wire are pressed by the pressure plate, and the heating body is moved to the pressure plate.
  • the pressure plate is cooled, the solder is solidified, and the first wire and the second wire are connected. Cooling process). According to the wire rod connecting method according to the second aspect or the third embodiment, by using the wire rod connecting apparatus, it is possible to connect wires that have high production efficiency and exhibit stable performance.
  • the first wire and the second wire may be superconducting wires.
  • the said 3rd aspect WHEREIN A superconducting wire may be sufficient as the said 1st wire, the said 2nd wire, and the said wire for connection. In this case, excessive heat is not applied to the superconducting wire, and the first wire and the second wire can be connected by heating in a short time. Therefore, the characteristic deterioration of the superconducting wire at the time of connection can be suppressed.
  • the end of the tape-shaped first wire and the end of the tape-shaped second wire are overlapped with each other via solder on the holding base.
  • connection structure Arranged, pressing a heating body against the first wire and the second wire through a pressure plate, pressurizing and heating the first wire and the second wire, and melting the solder, The state in which the first wire and the second wire are pressed by the pressure plate is maintained, the heating body is separated from the pressure plate, the pressure plate is cooled, and the solder is solidified. A wire and the second wire are connected.
  • the first end of the tape-like first wire and the end of the tape-like second wire are opposed to each other on the holding base.
  • the wire and the second wire are disposed, solder is disposed so as to straddle the first wire and the second wire, a connecting wire is disposed on the solder, and the first wire is disposed.
  • the heating element is pressed against the second wire and the connecting wire via a pressure plate, and the solder is applied by pressing and heating the first wire, the second wire, and the connecting wire. Melting, holding the first wire, the second wire, and the connecting wire pressed by the pressure plate, separating the heating body from the pressure plate, and cooling the pressure plate
  • the solder is solidified to connect the first wire and the second wire.
  • the first wire and the second wire may be superconducting wires.
  • the first wire, the second wire, and the connection wire may be a superconducting wire.
  • excessive heat is not applied to the superconducting wire, and the first wire and the second wire can be connected by heating in a short time. Therefore, the characteristic deterioration of the superconducting wire at the time of connection can be suppressed.
  • the pressure plate that pressurizes the connecting portion of the wire rod and the heating body that heats the connecting portion are provided separately.
  • the pressure plate and the heating body can be separately brought close to and separated from the connecting portion of the wire by the first driving unit and the second driving unit. Therefore, after the connecting portion of the wire is heated by the heating body through the pressure plate and the solder is melted, the heating body is separated from the pressure plate (that is, separated from the wire) in a state where the pressure applied by the pressure plate is maintained. The heating to the wire can be stopped immediately.
  • the wire is not continuously heated until the heating body cools, and the time until solidification of the solder is shortened and the time required for connection is shortened.
  • the plate-like pressure plate has a large surface area and high heat dissipation characteristics, the temperature of the connecting portion can be lowered quickly, and the time required for solidification of the solder can be shortened. That is, production efficiency can be increased.
  • the heating body is started or stopped by contacting or separating the heating body from the pressure plate. The heating body can always be kept at a temperature at which the solder melts. Therefore, when the next connection operation is continuously performed, it is not necessary to reheat the heating body, and the waiting time until the temperature of the heating body rises to the temperature of melting the solder can be saved.
  • the wire rod connecting apparatus 1 includes a holding base 7 on which a wire rod to be connected is placed, a pressure plate 5 disposed above the holding base 7, and a heating body 4 disposed further above.
  • the holding base 7 is a rectangular parallelepiped base, and the upper surface 7b of the holding base 7 is formed in a substantially rectangular shape having a long side in a direction coinciding with the longitudinal direction of the wire to be connected.
  • the upper surface 7b is formed with a wire material storage groove 7a for storing the wire material over the entire length of the holding base 7 in the longitudinal direction.
  • the depth of the wire accommodating groove 7a is preferably substantially the same as or greater than the sum of the thicknesses of the overlapping portions of the pair of wires to be connected and the solder.
  • the width of the wire material storage groove 7a is substantially the same as the width of the wire material, the wire material is placed in the wire material storage groove 7a with the solder sandwiched therebetween, and the wires are displaced from each other by melting and solidifying the solder. No connection structure can be formed. In addition, the molten solder does not protrude from the side surface of the wire. Therefore, the width dimension of the connection portion and the non-connection portion does not change, and inconvenience does not occur in the handling of the connection portion.
  • a clamp mechanism (not shown) for holding the wire rod may be provided in the vicinity of both ends in the longitudinal direction of the wire rod housing groove 7a.
  • the wire rod can be held by the clamp mechanism in a state where the wire rod is arranged in the wire rod storage groove 7a. Therefore, the wire rods can be reliably prevented from shifting in the longitudinal direction, and the wire rods are overlapped.
  • a portion (connection portion) to be joined by solder can be formed to a predetermined length.
  • the pressure plate 5 is made of a thin plate material formed in a rectangle having a long side in the same direction as the long side of the upper surface 7 b of the holding base 7, and is formed slightly smaller than the upper surface 7 b of the holding base 7.
  • the upper surface 5b of the pressure plate 5 is formed flat, and a contact surface with the lower surface 4a of the heating body 4 also formed flat is secured.
  • a rectangular parallelepiped projection 5 a having a width slightly smaller than the width of the wire material storage groove 7 a of the holding base 7 is provided at the center of the lower surface of the pressure plate 5.
  • the protrusion height of the protrusion 5a is formed to be substantially the same as the depth of the wire material storage groove 7a. However, there is no particular limitation as long as it is formed to a height that can pressurize the upper surface of the wire of the connecting portion in a state where the wires to be connected are stored in the wire storage groove 7a with the solder interposed therebetween.
  • the length in the longitudinal direction of the protrusion 5a is about 2/3 of the total length of the wire housing groove 7a, but the length of the portion where the wires to be connected overlap each other. If it is more than this, it will not specifically limit.
  • the heating element 4 disposed above the pressure plate 5 has a block shape whose longitudinal direction is the same direction as the longitudinal direction of the pressure plate 5.
  • the heating element 4 includes a heating part, and can heat the solder of the connection part to a melting point or higher via the pressure plate 5.
  • the heating unit may be any device as long as the lower surface 4a of the heating body 4 can be heated to the melting point of the solder or higher, but an energizing electric heater or the like can be used.
  • the lower surface 4a of the heating body 4 is formed flat, and is configured to transmit the heat of the heating body 4 by being in surface contact with the upper surface 5b of the pressure plate 5.
  • the lower surface 4a of the heating body 4 is configured to cover the projected area of the protruding portion 5a of the pressure plate 5, and thereby, the connecting portion of the wire can be immediately heated via the protruding portion 5a.
  • the first rod 2A extending in the vertical direction is attached to two corners on one long side of the four corners of the upper surface 5b, which is the upper surface 5b of the pressure plate 5.
  • the pressure plate 5 is held by the pair of first rods 2A and 2A.
  • the pair of first rods 2 ⁇ / b> A and 2 ⁇ / b> A are connected through the first air cylinder (first drive unit) 2, and the pressure plate 5 can be moved up and down by the first air cylinder 2. . Since the pair of first rods 2A and 2A are driven in synchronism, the pressure plate 5 translates in the vertical direction.
  • a second rod 3 ⁇ / b> A extending in the vertical direction is attached to the upper surface of the heating body 4 and in the vicinity of both ends in the longitudinal direction of the heating body 4.
  • the heating body 4 is held by the pair of second rods 3A and 3A.
  • the pair of second rods 3 ⁇ / b> A and 3 ⁇ / b> A are connected through the second air cylinder (second drive unit) 3, and the heating body 4 can be moved up and down by the second air cylinder 3.
  • the second rods 3A and 3A are driven in synchronism with each other, and the heating element 4 is translated in the vertical direction.
  • a pipe (not shown) to which compressed air is supplied is connected to the first air cylinder 2 and the second air cylinder 3, and the first rod 2A, 2A or the second rod 3A, 3A is vertically moved by air pressure.
  • the first air cylinder 2 and the second air cylinder 3 are fixed so that the relative distance with respect to the holding base 7 does not change, but this fixing portion is omitted in FIGS. 1A and 1B. did.
  • An air cooling fan (cooling unit) 6 is installed on the long side edge of the upper surface 7 b of the holding base 7 so as to avoid the movable range of the pressure plate 5 and the heating body 4.
  • the air-cooling fan 6 is installed for the purpose of air-cooling the pressure plate 5 in a state where the pressure plate 5 is lowered so as to overlap the holding base 7, and the air is directed toward the upper surface 5 b of the pressure plate 5 in the lowered state. Is configured to be able to send. It is preferable that the air direction opening of the air cooling fan 6 is configured to have substantially the same length as the long side of the upper surface 5b of the pressure plate 5 so that the entire upper surface 5b of the pressure plate 5 can be air-cooled.
  • the wire connecting device 1 of the present embodiment is schematically configured as described above. Below, each component of the wire connecting device 1 will be described in more detail. It is desirable to use a heat insulating material having a low heat conductivity and a high heat insulating property made of ceramics or the like as a material of the holding base 7 that serves as a base for arranging the wire. As a result, the holding base 7 can suppress the temperature rise, and can increase the production efficiency without preventing the solidification of the solder. As ceramics that can be used as the material of the holding base 7, machinable ceramics such as Macor, Photovale, etc. (both are registered trademarks) having high heat insulation properties and high machinability can be suitably used.
  • machinable ceramics such as Macor, Photovale, etc. (both are registered trademarks) having high heat insulation properties and high machinability can be suitably used.
  • the pressure plate 5 fulfills a function (clamp function) for preventing the wires to be connected from being displaced in the longitudinal direction of the wire and a function for transferring the heat of the heating body 4 to the joint of the wires. Therefore, it is desirable that the pressure plate 5 is made of a material and a shape that have sufficient strength to sufficiently pressurize the connecting portion of the wire, and that can sufficiently transfer the heat from the heating body 4 to the connecting portion of the wire. . Further, the pressure plate 5 has a function of securing a heat radiation area and promoting cooling of the solder at the wire joint portion. Therefore, it is preferable to be made of a material having high heat dissipation characteristics.
  • a metal material having a thickness of about 1 to 10 mm As the metal material, stainless steel or the like is used, and materials having high thermal conductivity and heat transfer coefficient such as aluminum, copper, and alloys thereof are preferably used.
  • the pressure plate 5 Since the pressure plate 5 is formed in a thin plate shape, the surface area can be increased, and the heat dissipation characteristics can be improved.
  • the pressure plate 5 is desirably formed as thin as possible. Thus, not only can the heat from the heating element 4 be efficiently transmitted to the connecting portion of the wire, but also the time required for cooling can be shortened and the solidification of the solder can be accelerated. That is, production efficiency can be increased.
  • fins may be provided on the surface of the pressure plate 5. By providing the fins on the surface, the pressure plate 5 is more effectively cooled by the cooling by the air cooling fan 6 and the solidification of the solder can be accelerated. In addition, when providing a fin, a fin is not formed in a contact part with the heating body 4. FIG.
  • the pressure plate 5 preferably includes a temperature measuring unit.
  • the temperature measuring unit is not particularly limited as long as it can measure the temperature near the melting point of the solder.
  • a thermocouple or the like can be employed. Since the pressure plate 5 includes the temperature measuring unit, the temperature of the connecting portion of the wire, that is, the melting state of the solder can be determined. Therefore, in a state where the heating body 4 is pressed against the wire through the pressure plate 5, when it is determined that the solder is sufficiently melted, the heating body 4 is separated from the pressure plate 5 and the connection portion Cooling can begin. Furthermore, when it is determined that the solder is sufficiently solidified, the pressure plate 5 can be separated from the wire and the connection process can be completed.
  • the heating body 4 includes a temperature measurement unit.
  • the control part which controls a heating part based on the temperature measured by the said temperature measurement part.
  • a temperature measuring unit and a control unit are necessary to prevent the wire from being heated excessively to a temperature at which superconducting characteristics deteriorate (for example, 300 ° C. or higher).
  • a thermocouple can be employed in the same manner as the temperature measurement unit provided in the pressure plate 5.
  • the pressure plate 5 alone or the pressure plate 5 and the heating body 4 is used to pressurize the connecting portion of the wire.
  • the applied pressure of the connecting portion needs to be controlled so that the wire is not damaged.
  • the pressure is controlled so that the crystal structure of the superconducting conductor is not damaged (for example, 20 MPa or less).
  • the drive unit is not limited to the air cylinder, and other drive units such as a motor drive may be employed. In that case, it is desirable to provide a control unit for the applied pressure.
  • the pressure plate 5 and the heating body 4 are moved up and down by the first air cylinder 2 or the second air cylinder 3 so as to be close to and away from the holding base 7.
  • the holding base 7 may be provided with a certain driving unit, and the holding base 7 may be moved up and down by the driving unit so that the holding base 7 approaches and separates from the pressure plate 5 and the heating body 4.
  • the air cooling fan (cooling unit) 6 serves as a cooling unit that cools the pressure plate 5 in a state where the pressure plate 5 overlaps the upper surface 7 b of the holding base 7.
  • the cooling unit that cools the pressure plate 5 can be quickly cooled, the time required for solidification of the solder in the connection portion can be shortened, and the production efficiency can be increased.
  • a water cooling type cooling unit may be used as the cooling unit.
  • the wire connecting device 1 includes a storage unit (not shown) that stores optimum connection conditions and a control device (not shown) that controls a series of processes according to the connection conditions stored in the storage unit. It is desirable that Thereby, by setting the wire to be connected to the wire connecting device 1 and inputting various conditions, the connection process can be automatically completed, and stable wire connection is easily and reliably performed. Can be made.
  • the wire connecting device 1 can be used for connecting various wires as long as it is a wire connected by solder, but is particularly preferably used for connecting superconducting wires.
  • superconducting conductors used for superconducting wires include Bi-based superconducting wires Bi 2 Sr 2 Ca 2 Cu 3 O 10 + ⁇ (Bi2223), RE-123-based superconducting wires REBa 2 Cu 3 O 7-x (RE is a rare earth element), and the like. Are known.
  • the Bi-based superconducting wire is manufactured by the Powder In Tube method (PIT method) or the like so that the Bi-based superconducting layer is covered with an Ag sheath material, and has a tape-like structure.
  • PIT method Powder In Tube method
  • an oxide superconducting layer is laminated on a tape-like metal substrate by an intermediate layer through an intermediate layer, and a thin silver protective layer is formed on the oxide superconducting layer.
  • the structure is known.
  • a structure is known in which a metal tape made of a highly conductive metal material such as copper is further laminated on the protective layer via a solder layer to form a stabilization layer.
  • the wire connecting device 1 is applied to the connection of a tape-like wire, it can be suitably used for the Bi-based superconducting wire described above and the RE-123-based superconducting wire.
  • RE-123 series superconducting wires include those having a width of about 10 mm and a thickness of about 0.1 mm.
  • FIG. 2A shows a first connection structure 20 in which a first wire 8 and a second wire 9 which are a pair of tape-like wires are connected by solder 10.
  • a connection portion 20 a is formed by joining a portion where the end portion 8 a of the first wire 8 and the end portion 9 a of the second wire 9 overlap with each other with the solder 10.
  • a protective layer or a stabilization layer which is the uppermost layer of the laminated structure
  • FIG. 2B shows a second connection structure 21 in which a first wire 11 and a second wire 12 which are a pair of tape-like wires are connected via a tape-like connecting wire 13.
  • the end 11 a of the first wire 11 and the end 12 a of the second wire 12 are arranged to face each other, and the connecting wire extends between these ends. 13 is bridging.
  • Solder 14 is interposed between the first wire 11 and the connecting wire 13 and between the second wire 12 and the connecting wire 13, and is joined by the solder 14 to form a connecting portion 21a. Yes.
  • the first wire 11 and the second wire Arrange the wires 12 in the same lamination direction, and make the protective layer or stabilization layer of the connecting wire 13 face the protective layer or stabilization layer of the first wire 11 and the second wire 12.
  • the connection portion 21a having a low electric resistance can be formed.
  • superconducting wires may be used as the first wire 11 and the second wire 12, and the connecting wire 13 may be composed of a metal wire.
  • the form before melting of the solders 10 and 14 used in the first connection structure 20 and the second connection structure 21 may be any of a linear shape, a tape shape, and a paste shape.
  • solders 10 and 14 conventionally known solders can be used.
  • Sn solder made of an alloy containing Sn as a main component such as Sn, Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Pb—Sn alloy solder, eutectic solder, low temperature solder and the like can be mentioned.
  • These solders can be used alone or in combination of two or more. Among these, it is preferable to use solder having a melting point of 300 ° C.
  • the superconducting wire may be affected by heat and the superconducting characteristics may deteriorate. In particular, when the melting point of the solder is 300 ° C. or higher, the wire is heated to 300 ° C. or higher. When a superconducting wire is connected, the superconducting characteristics may be deteriorated.
  • FIG. 3 is a schematic cross-sectional view of a connection portion when the above-described first connection structure 20 is connected by the wire connecting device 1 of the present embodiment.
  • the second wire 9, the solder 10, and the first wire 8 are sequentially stored in the wire storage groove 7 a of the holding base 7, and the connecting portion 20 a is pressurized from above by the protruding portion 5 a of the pressure plate 5. 1A and 1B), the solder 10 is melted by heating.
  • the first connection structure 20 can be formed by separating the heating body 4 from the pressure plate 5 and solidifying the solder 10.
  • the 1st wire rod 11 is set so that the edge part 11a of the 1st wire rod 11 and the edge part 12a of the 2nd wire rod 12 may oppose the wire rod accommodating groove 7a.
  • the second wire 12 are disposed, and the solder 14 is disposed so as to straddle the first wire 11 and the second wire 12.
  • the connecting wire 13 is disposed and accommodated on the solder 14, and is pressed and heated by the pressing plate 5 and the heating body 4 from above to melt and further solidify the solder, whereby the second connection described above.
  • the structure 21 can be formed.
  • the power source of the wire connecting device 1 is turned on to heat the heating body 4 and raise the temperature of the lower surface 4a of the heating body 4 to a predetermined temperature (temperature higher than the melting point of solder).
  • a predetermined temperature temperature higher than the melting point of solder.
  • the heating body 4 and the pressure plate 5 may be arranged apart from each other or may be arranged in contact with each other. In the case where the heating body 4 and the pressure plate 5 are arranged in contact with each other, it is preferable that preheating can be applied to the pressure plate 5 in advance, and solder can be melted more quickly.
  • a pair of wires to be connected to the wire rod storage groove 7a of the holding base 7 is stacked and stored (wire rod placement step).
  • the solder is sandwiched between the overlapping portions.
  • the paired wires and the solder before melting are referred to as pre-connection wires 20A.
  • a gap is formed between the vertical wall of the wire housing groove 7a and the side surface of the wire for the sake of clarity, but no gap is formed because the width of the groove is substantially equal to the width of the wire. .
  • the first air cylinder 2 lowers the first rod 2 ⁇ / b> A and the pressure plate 5, and the pressure plate 5 overlaps the holding base 7. In this state, it is possible to prevent the protrusions 5a of the pressure plate 5 from pressing the upper surface of the pre-connection wire 20A, thereby preventing the wires of the pre-connection wire 20A from shifting (see FIG. 3).
  • the second rod 3 ⁇ / b> A and the heating body 4 are lowered by the second air cylinder 3, and the lower surface 4 a of the heating body 4 is brought into contact with the upper surface 5 b of the pressure plate 5.
  • the heat of the heating body 4 is transmitted to the pressure plate 5 and further transmitted from the protrusion 5a of the pressure plate 5 to the pre-connection wire 20A to melt the solder.
  • the heating body 4 presses the upper surface 5 b of the pressure plate 5 by the second air cylinder 3. Therefore, the pre-connection wire 20A melts the solder in a state where it is pressurized not only by the pressure plate 5 but also by the heating body 4 (pressure heating step).
  • the superposed pair of wires and the molten solder are referred to as a molten solder wire 20B.
  • the pressure plate 5 and the heating body 4 are separately lowered as shown in FIGS. 4B and 4C, but they may be simultaneously lowered.
  • the second air cylinder 3 raises the second rod 3 ⁇ / b> A and the heating body 4.
  • the pressure plate 5 remains on the holding base 7 and continues to pressurize the upper surface of the molten solder wire 20B until the solder is solidified.
  • the upper surface 5b of the pressure plate 5 is cooled by the air cooling fan 6, the temperature of the pressure plate 5 is lowered, and the solidification of the solder is promoted.
  • the distance between the raised heating body 4 and the pressure plate 5 staying on the holding base 7 is separated to a sufficient distance so that the radiant heat from the heating body 4 is not transmitted to the pressure plate 5.
  • the pressure plate 5 is sufficiently cooled and the predetermined temperature is lowered, the molten solder of the molten solder wire 20B is solidified (cooling step).
  • the fan stops when the pressure plate 5 reaches a predetermined temperature after the start of cooling or when a predetermined time elapses. Further, as shown in FIG. 4E, the first air cylinder 2 adds to the first rod 2A. The pressure plate 5 rises. Accordingly, a connection structure can be formed, and the connection structure can be taken out (takeout step) and applied to various products. Moreover, since the heating body 4 of the wire connecting device 1 is maintained at a temperature at which the solder can be melted, the next wire can be connected immediately.
  • the 1st wire rod 11 is set so that the edge part 11a of the 1st wire rod 11 and the edge part 12a of the 2nd wire rod 12 may oppose the wire rod accommodating groove 7a.
  • the second wire 12 are disposed, and the solder 14 is disposed so as to straddle the first wire 11 and the second wire 12.
  • the second connection structure 21 can be formed by a procedure similar to the above connection procedure.
  • the connecting portion of the wire is heated by the heating body 4 via the pressure plate 5, the solder is melted, and then the heating body 4 is held in a state where the pressure applied by the pressure plate 5 is maintained. It can be separated from the pressure plate 5 (that is, separated from the wire), and heating of the wire can be stopped immediately. As a result, heat is not continuously applied to the wire until the heating body 4 cools, and the time until solidification of the solder is shortened and the time required for connection is shortened. Moreover, when using the wire connection apparatus 1 of this embodiment for the connection of a superconducting wire, deterioration of a superconducting wire can be suppressed by shortening heating time.
  • the wire connecting device 1 of the present embodiment starts and stops heating the connecting portion of the wire by bringing the heating member 4 into contact with or away from the pressure plate 5. Can be kept in. Therefore, when the next connection operation is continuously performed, it is not necessary to reheat the heating body, and the waiting time until the temperature of the heating body rises to the temperature of melting the solder can be saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

 複数の線材を収納可能な幅を有する線材収納溝が設けられた保持基台と、前記保持基台の上方に位置する加圧板と、前記加圧板の上方に位置し、加熱部を備えた加熱体と、前記保持基台と前記加圧板とを近接及び離間させることが可能な第1駆動部と、前記保持基台と前記加熱体とを近接及び離間させることが可能な第2駆動部と、を有する線材接続装置であって、前記第1駆動部によって前記保持基台に近接された前記加圧板は、前記線材収納溝に半田を介し重ねて収納された前記複数の線材を、加圧可能であり、前記第2駆動部によって前記保持基台に近接された前記加熱体は、前記線材収納溝に半田を介し重ねて収納された前記複数の線材を前記加圧板を介し加圧加熱可能である。

Description

線材接続装置、線材接続方法、及び接続構造体の製造方法
 本発明は、線材接続装置、線材接続方法、及び接続構造体の製造方法に関する。
本願は、2013年5月28日に日本に出願された特願2013-112141号に基づき優先権を主張し、その内容をここに援用する。
 超電導線材等の線材を機器に使用するために、線材同士を半田で接続する接続技術の要望が高まっている。例えば特許文献1には、超電導線材を接続する接続装置100が開示されている(図5参照)。この接続装置100は、線材と略等しい幅の線材収容溝102が設けられた下部加圧加熱板101Bと、線材収容溝102よりわずかに小さい幅の突起部112Aを備えた上部加圧加熱板101Aとを備え、開閉機構108により、下部加圧加熱板101Bの開口部を上部加圧加熱板101Aで覆って線材に加熱及び加圧を行うことができるように構成されている。線材同士を接合する際は、線材収容溝102に線材の端部同士を半田を挟んで重ね合わせて収容し、下部加圧加熱板101Bと上部加圧加熱板101Aとにより、加圧、加熱することにより、前記半田を溶融させて超電導線材同士を接続する。
 このような接続装置100を用いる事により、作業者が半田ごてを使用して半田を溶融させ超電導線材同士を接続する必要がなくなる。即ち、作業者のスキルに左右されることなく、安定した接続性能を示す接続構造体を形成することが可能となる。
日本国特開2011-3382号公報
 特許文献1記載の接続装置100では、加熱部と加圧部との両方を備えた一対の加熱加圧板101A、101Bにより、線材に熱と圧力を加えている。したがって、この接続装置100を用いた場合、接続部の半田を凝固させるために、加熱部(例えばヒーター)自体を冷却させる必要があり、接続に長時間を要する。また、同じ装置を用いて連続して接続作業を行う際には、冷却したヒーターを再度加熱する必要があり、十分に加熱されるまでに更に長時間を要する。したがって、生産効率が悪いという問題があった。
 本発明は、以上のような従来の実情に鑑みなされたものであり、生産効率が高く、安定した性能を発揮する線材の接続が可能となる線材接続装置、線材接続方法、及び接続構造体の製造方法の提供を目的とする。
 本発明の第一態様に係る線材接続装置は、複数の線材を収納可能な幅を有する線材収納溝が設けられた保持基台と、前記保持基台の上方に位置する加圧板と、前記加圧板の上方に位置し、加熱部を備えた加熱体と、前記保持基台と前記加圧板とを近接及び離間させることが可能な第1駆動部と、前記保持基台と前記加熱体とを近接及び離間させることが可能な第2駆動部と、を有し、前記第1駆動部によって前記保持基台に近接された前記加圧板は、前記線材収納溝に半田を介し重ねて収納された前記複数の線材を、加圧可能であり、前記第2駆動部によって前記保持基台に近接された前記加熱体は、前記線材収納溝に半田を介し重ねて収納された前記複数の線材を前記加圧板を介し加圧加熱可能である。
 上記第一態様に係る線材接続装置においては、線材の接続部を加圧する加圧板と、接続部を加熱する加熱体とが別々に設けられており、第1駆動部及び第2駆動部によって加圧板と加熱体とをそれぞれ別々に線材の接続部に対して近接及び離間させることが可能である。したがって、線材の接続部を加圧板を介して加熱体によって加熱し、半田を溶融した後、加圧板による加圧を保持した状態で、加熱体を加圧板から離間させ(即ち線材から離間させ)、線材に対する加熱を即座に休止することができる。これにより、加熱体が冷却するまで線材に熱をかけ続けることがなく、半田凝固までの時間が短くなり接続に要する時間が短縮される。
 上記第一態様に係る線材接続装置は、Bi系やRE-123系に代表されるテープ状の超電導線材の接続に使用することができる。超電導線材は、熱により超電導特性の低下を起こすことがあるが、上記第一態様に係る線材接続装置は、加熱時間を短くすることで超電導線材の劣化を抑制できる。また、超電導線材は、その外周に銀又は銀合金の保護層を備えている場合がある。この保護層は、超電導線材の超電導状態が破れた場合のバイパスとして機能するため、低抵抗であることが望まれる。接続時の加熱時間が長くなると、この保護層に半田が拡散し、半田と銀との合金を形成することがある。半田と銀との合金は、電気抵抗が高くバイパスとしての機能を十分に果たすことができなくなる。上記第一態様に係る線材接続装置は、加熱時間を短くすることにより、半田の保護層への拡散を抑制できる。
 また、上記第一態様に係る線材接続装置において、加熱体を加圧板に接触又は離間させることで線材の接続部への加熱開始及び停止を行うため、加熱体を常時半田が溶融する温度に保っておくことができる。したがって、次の接続作業を連続して行う場合において、加熱体を再度加熱する必要がなく、加熱体の温度が半田溶融の温度まで上昇するまでの待機時間を節約できる。
 加えて、板状の加圧板は、表面積が大きく放熱特性が高いため、接続部の温度を早く下げることができ、半田の凝固に要する時間を短縮できる。即ち生産効率を上げることができる。
 また、上記第一態様において、前記保持基台が、断熱材料からなっていてもよい。
 この場合、保持基台が断熱材料からなることで、線材の接合部を加熱しても保持基台の温度上昇が抑制され、冷却時において半田の凝固を妨げることがなく、生産効率を上昇させることができる。
 また、上記第一態様の線材接続装置は、前記加圧板を冷却する冷却部を有していてもよい。
 加圧板を冷却する冷却部を有する場合、半田を溶融させた後、加熱体を加圧板から離間させた状態で、加圧板を素早く冷却することが可能となり、接続部の半田の凝固に要する時間を短縮し生産効率を上げることができる。
 また、上記第一態様において、前記第1駆動部が、前記加圧板を上下させる(上下に移動させる)第1エアシリンダであり、前記第2駆動部が、前記加熱体を上下させる(上下に移動させる)第2エアシリンダであってもよい。
 第1駆動部及び第2駆動部としてエアシリンダを用いる事で、所定の圧力で線材を加圧することが可能となるため、線材の破損を抑制できる。
 本発明の第二態様に係る線材接続方法は、保持基台にテープ状の第1の線材の端部同士とテープ状の第2の線材の端部とを半田を介して互いに重ね合わせて配置し(線材配置工程)、前記第1の線材及び前記第2の線材に加圧板を介して加熱体を押し当て、前記第1の線材及び前記第2の線材を加圧及び加熱し前記半田を溶融させ(加圧加熱工程)、前記第1の線材及び前記第2の線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する(冷却工程)。
本発明の第三態様に係る線材接続方法は、保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とが互いに対向するように前記第1の線材と前記第2の線材とを配置し、前記第1の線材と前記第2の線材とを跨ぐように半田を配置し、前記半田の上に接続用線材を配置し(線材配置工程)、前記第1の線材、前記第2の線材、及び前記接続用線材に加圧板を介して加熱体を押し当て、前記第1の線材、前記第2の線材、及び前記接続用線材を加圧及び加熱し前記半田を溶融させ(加圧加熱工程)、前記第1の線材、前記第2の線材、及び前記接続用線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する(冷却工程)。
 上記第二態様または第三態様に係る線材接続方法によれば、前記線材接続装置を用いる事によって、生産効率が高く、安定した性能を発揮する線材の接続が可能となる。
 また、上記第二態様又は第三態様において、前記第1の線材及び前記第2の線材が、超電導線材であってもよい。
 また、上記第三態様において、前記第1の線材及び前記第2の線材、及び前記接続用線材が超電導線材であってもよい。
 この場合、超電導線材に過剰な熱が加わることがない上に、短時間の加熱により前記第1の線材と前記第2の線材とを接続することが可能となる。したがって、接続時の超電導線材の特性劣化を抑制できる。
本発明の第四態様に係る接続構造体の製造方法は、保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とを半田を介して互いに重ね合わせて配置し、前記第1の線材及び前記第2の線材に加圧板を介して加熱体を押し当て、前記第1の線材及び前記第2の線材を加圧及び加熱し前記半田を溶融させ、前記第1の線材及び前記第2の線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する。
本発明の第五態様に係る接続構造体の製造方法は、保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とが互いに対向するように第1の線材と第2の線材とを配置し、前記第1の線材と前記第2の線材とを跨ぐように半田を配置し、前記半田の上に接続用線材を配置し、前記第1の線材、前記第2の線材、及び前記接続用線材に加圧板を介して加熱体を押し当て、前記第1の線材、前記第2の線材、及び前記接続用線材を加圧及び加熱し前記半田を溶融させ、前記第1の線材、前記第2の線材、及び前記接続用線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する。
また、上記第四態様又は第五態様において、前記第1の線材及び前記第2の線材が、超電導線材であってもよい。
また、上記第五態様において、前記第1の線材、前記第2の線材、及び前記接続用線材が超電導線材であってもよい。
この場合、超電導線材に過剰な熱が加わることがない上に、短時間の加熱により前記第1の線材と前記第2の線材とを接続することが可能となる。したがって、接続時の超電導線材の特性劣化を抑制できる。
 上記態様に係る線材接続装置、線材接続方法及び接続構造体の製造方法によれば、線材の接続部を加圧する加圧板と、接続部を加熱する加熱体とが別々に設けられており、第1駆動部及び第2駆動部によって加圧板と加熱体とがそれぞれ別々に線材の接続部と近接及び離間させることが可能である。したがって、線材の接続部を加圧板を介して加熱体によって加熱し、半田を溶融した後、加圧板による加圧を保持した状態で、加熱体を加圧板から離間させ(即ち線材から離間させ)、線材に対する加熱を即座に休止することができる。これにより、加熱体が冷却するまで線材に熱をかけ続けることがなく、半田凝固までの時間が短くなり接続に要する時間が短縮される。加えて、板状の加圧板は、表面積が大きく放熱特性が高いため、接続部の温度を早く下げることができ、半田の凝固に要する時間を短縮できる。即ち生産効率を上げることができる。
 また、上記態様に係る線材接続装置、線材接続方法、及び接続構造体の製造方法によれば、加熱体を加圧板に接触又は離間させることで線材の接続部への加熱開始及び停止を行うため、加熱体を常時半田が溶融する温度に保っておくことができる。したがって、次の接続作業を連続して行う場合において、加熱体を再度加熱する必要がなく、加熱体の温度が半田溶融の温度まで上昇するまでの待機時間を節約できる。
本発明の一実施形態に係る線材接続装置を示す側面図である。 本発明の一実施形態に係る線材接続装置を示す正面図である。 本発明の一実施形態に係る線材接続装置によって形成される線材の第1接続構造体を示す図である。 本発明の一実施形態に係る線材接続装置によって形成される線材の第2接続構造体を示す図である。 本発明の一実施形態に係る線材接続装置を用いて線材同士を接続する際の接続部の断面模式図である。 本発明の一実施形態に係る線材接続装置を用いて線材同士を接続する手順を示し、保持基台の線材収納溝に半田を挟んで接続しようとする線材を設置した状態を示す図である。 本発明の一実施形態に係る線材接続装置を用いて線材同士を接続する手順を示し、加圧板により線材の接続部を加圧した状態を示す図である。 本発明の一実施形態に係る線材接続装置を用いて線材同士を接続する手順を示し、加圧板を介して加熱体により線材の接続部を加熱し半田を凝固させた状態を示す図である。 本発明の一実施形態に係る線材接続装置を用いて線材同士を接続する手順を示し、加熱体を加圧板から離間させ空冷ファンにより冷却した状態でを示す図である。 本発明の一実施形態に係る線材接続装置を用いて線材同士を接続する手順を示し、半田の凝固が完了し加圧板を接続部から離間させた状態を示す図である。 従来の線材接続装置の一例を示す。
 以下、本発明に係る線材接続装置の実施形態について図面に基づいて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、本発明は以下の実施形態に限定されるものではない。
 (線材接続装置)
 図1A、図1Bに本発明の一実施形態に係る線材接続装置1の側面図及び正面図を示す。
 線材接続装置1は、接続しようとする線材を載置する保持基台7と、その上方に配置される加圧板5と、さらにこの上方に配置される加熱体4を備えている。
 保持基台7は直方体の土台であり、その上面7bは、接続しようとする線材の長手方向と一致する方向を長辺とする略長方形に形成されている。当該上面7bには、保持基台7の長手方向全長に亘り線材を収納するための線材収納溝7aが形成されている。線材収納溝7aの深さは、接続しようとする一対の線材の重なり部と半田の厚みの総和と略同じかそれ以上であることが望ましい。
 線材収納溝7aの幅が線材の幅と略同じであることで、線材収納溝7aに線材を、半田を挟んで重ねて配置し、半田を溶融、凝固させることで、線材同士がずれることのない接続構造体を形成することができる。加えて、溶融した半田が線材の側面にはみ出すことがない。したがって、接続部と非接続部の幅寸法が変わることがなく、接続部の取り回しに不便が生じることがない。
 また、線材収納溝7aの長手方向両端部近傍に線材を保持するクランプ機構(図示略)を設けても良い。クランプ機構を設ける場合は、線材収納溝7aに線材を配置した状態で、クランプ機構により線材を保持させることができるため、線材同士が長手方向にずれることを確実に抑制でき、線材同士が重ね合わされ半田により接合される部分(接続部)を所定の長さに形成できる。
 加圧板5は、保持基台7の上面7bの長辺と同方向を長辺とする長方形に成形された薄板材からなり、保持基台7の上面7bよりひと回り小さく形成されている。
 加圧板5の上面5bは、平坦に形成されており、同じく平坦に形成された加熱体4の下面4aとの接触面が確保されている。
 また、前記加圧板5の下面中央部には、前記保持基台7の線材収納溝7aの幅より若干小さい幅を有する直方体の突起部5aが設けられている。この突起部5aと線材収納溝7aは、保持基台7と加圧板5を重ね合わせた際に、位置ずれを起こすことなく嵌合するように構成されている。
 本実施形態において、突起部5aの突起高さは、線材収納溝7aの深さと略同じに形成されている。しかしながら、接続しようとする線材同士を半田を挟んで前記線材収納溝7aに収納した状態で、接続部の線材上面を加圧することができる高さに形成されていれば特に限定されない。
 また、本実施形態において、突起部5aの長手方向長さは、前記線材収納溝7aの全長に対して2/3程度の長さとされているが、接続しようとする線材同士が重なり合う部分の長さ以上であれば特に限定されない。
 加圧板5の上方に配置される加熱体4は、加圧板5の長手方向と一致する方向を長手方向とするブロック形状を有している。加熱体4は、加熱部を備えており、加圧板5を介して接続部の半田を融点以上に加熱することができる。加熱部としては、加熱体4の下面4aを半田の融点以上に加熱できる装置であればその構成は問わないが、通電式の電熱ヒーター等を用いることができる。加熱体4の下面4aは平坦に形成されており、加圧板5の上面5bと面接触させることで、加熱体4の熱を伝える構成となっている。加熱体4の下面4aは、加圧板5の突起部5aの投影面積を覆うように構成され、これにより、突起部5aを介して線材の接続部を即座に加熱することができる。
 加圧板5の上面5bであり、当該上面5bの4隅のうち一方の長辺側の2隅には、それぞれ鉛直方向に延びる第1ロッド2Aが取り付けられている。加圧板5は、これら一対の第1ロッド2A、2Aにより保持されている。一対の第1ロッド2A、2Aは、第1エアシリンダ(第1駆動部)2を貫通して接続されており、当該第1エアシリンダ2によって、加圧板5は、鉛直方向に昇降可能である。なお、一対の第1ロッド2A、2Aの駆動は、同期して行われるため、加圧板5は、鉛直方向に平行移動する。
 同様に、加熱体4の上面であり当該加熱体4の長手方向両端部近傍には、それぞれ鉛直方向に延びる第2ロッド3Aが取り付けられている。加熱体4は、これら一対の第2ロッド3A、3Aによって保持されている。一対の第2ロッド3A、3Aは第2エアシリンダ(第2駆動部)3を貫通して接続されており、当該第2エアシリンダ3によって、加熱体4は、鉛直方向に昇降可能である。また、第2ロッド3A、3Aの駆動は同期して行われ、加熱体4は鉛直方向に平行移動する。
 第1エアシリンダ2及び第2エアシリンダ3には、圧縮空気が供給される配管(図示略)が接続されており、空気圧により第1ロッド2A、2A、又は第2ロッド3A、3Aを鉛直方向に駆動する。
 なお、第1エアシリンダ2及び第2エアシリンダ3は、保持基台7に対して相対的な距離が変わらないように固定されているが、図1A,及び図1Bにおいてはこの固定部を省略した。
 保持基台7の上面7bの長辺側縁部には、加圧板5及び加熱体4の可動範囲を避けるように空冷ファン(冷却部)6が設置されている。この空冷ファン6は、保持基台7に加圧板5が重なるように下降した状態で、加圧板5を空冷する目的で設置されており、降下した状態の加圧板5の上面5bに向かって風を送ることができるように構成されている。
 空冷ファン6の風向口は、加圧板5の上面5b全体を空冷することができるように、加圧板5の上面5bの長辺長さと略同じ長さに構成されていることが好ましい。
 本実施形態の線材接続装置1は、上述したように概略構成されている。以下に、線材接続装置1の各構成部分について、より詳しく説明する。
 線材を配置する土台となる保持基台7の材料としてセラミックスなどからなる熱伝導率が低く、断熱特性の高い断熱材料を用いる事が望ましい。これによって、保持基台7は、温度上昇が抑制され、半田の凝固を妨げることがなく、生産効率を上昇させることができる。
 保持基台7の材料として用いる事ができるセラミックスとしては、例えば、断熱特性が高くかつ機械加工性が高いマコール、ホトベール等(いずれも登録商標)のマシナブルセラミックスを好適に使用することができる。
 加圧板5は、接続しようとする線材同士が線材の長手方向にずれることを抑制する機能(クランプ機能)と加熱体4の熱を線材の接合部に伝える機能を果たす。したがって、加圧板5は、線材の接続部を十分に加圧することができる強度を備え、しかも加熱体4からの熱を線材の接続部に十分に伝えることができる材料及び形状からなる事が望ましい。
 また、加圧板5は、放熱面積を確保し線材接合部の半田の冷却を促進する機能を有する。したがって、放熱特性が高い材質からなることが好ましい。具体的には、厚さ1~10mm程度の金属材料を用いる事が好ましい。金属材料としては、ステンレス等が用いられるほか、アルミニウム、銅、及びそれらの合金等の熱伝導率及び熱伝達率の高い材料が好適に用いられる。
 加圧板5は、薄板状に形成されていることにより、表面積を大きくすることができ、放熱特性を高めることができる。また、加圧板5はできるだけ薄く形成されることが望ましい。これによって、加熱体4からの熱を線材の接続部に効率よく伝えることができるのみならず、冷却に要する時間を短縮でき、半田の凝固を早めることができる。即ち生産効率を上げることができる。
 熱伝達特性を上昇させる目的で、加圧板5の表面にフィンを設けても良い。表面にフィンを設けることで、空冷ファン6による冷却時により効果的に加圧板5が冷却され、半田の凝固を早めることができる。なお、フィンを設ける場合においては、加熱体4との接触部にはフィンを形成しない。
 加圧板5は、温度計測部を備えていることが好ましい。温度計測部としては、半田の融点付近の温度を測定することができるものであれば特に限定されない。一例として熱電対等を採用することができる。
 加圧板5が温度計測部を備えていることによって、線材の接続部の温度、即ち、半田の溶融状態を判断することができる。したがって、線材に加圧板5を介して加熱体4を押し当てた状態においては、半田が十分に溶融していると判断された時点で、加熱体4を加圧板5から離間させ、接続部の冷却を開始することができる。さらに、半田が十分に凝固していると判断された時点で、加圧板5を線材から離間させ接続工程を完了させることができる。
 同様に、加熱体4は、温度計測部を備えていることが好ましい。また、当該温度計測部により計測した温度を基に加熱部を制御する制御部を備えることが好ましい。
 特に、超電導線材を接続する場合においては、線材を過剰に加熱して超電導特性が劣化する温度(例えば300℃以上)となることを防ぐために、温度計測部及び制御部が必要となる。温度計測部としては、加圧板5に備えられる温度計測部と同様に熱電対を採用することができる。
 接続工程においては、加圧板5単体、又は加圧板5と加熱体4とで、線材の接続部を加圧する。接続部の加圧力は、線材の破損が無いように制御される必要がある。特に超電導線材を接続する場合においては、超電導導体の結晶構造に破損が無いような加圧力(例えば20MPa以下)に制御される。駆動部としてエアシリンダを用いる事で、所定の圧力で線材を加圧することが可能となるため、線材の破損を抑制できる。しかしながら、駆動部は、エアシリンダに限定されず、モーター駆動などのその他の駆動部を採用することもできる。その場合は、加圧力の制御部を備えることが望ましい。
 なお、本実施形態においては、加圧板5及び加熱体4が第1エアシリンダ2又は第2エアシリンダ3によって上下に昇降し、保持基台7と近接及び離間するように構成されている。保持基台7が何らかの駆動部を備え、当該駆動部により保持基台7を昇降させ、保持基台7が加圧板5及び加熱体4と近接及び離間するように構成されても良い。
 空冷ファン(冷却部)6は、加圧板5が保持基台7の上面7bに重なった状態において、加圧板5を冷却する冷却部としての役割を果たす。加圧板5を冷却する冷却部を有することで、加圧板5を素早く冷却することが可能となり、接続部の半田の凝固に要する時間を短縮し、生産効率を上げることができる。
 冷却部としては、本実施形態における空冷ファン6を用いるほかに、水冷式の冷却部を用いても良い。
 本実施形態の線材接続装置1は、最適な接続条件を記憶する記憶部(図示略)と、当該記憶部に記憶された接続条件に従い、一連の工程を制御する制御装置(図示略)を内蔵していることが望ましい。これにより、接続しようとする線材を当該線材接続装置1にセットし、各種条件を入力することで、自動的に接続工程を完了させることができ、安定した線材の接続を容易にかつ確実に行わせることができる。
 (接続構造体)
 次に、本実施形態の線材接続装置1により接続される線材及び、接続後の接続構造体について説明する。
 線材接続装置1は、半田により接続される線材であれば、様々な線材の接続に用いる事ができるが、特に超電導線材の接続に好適に用いられる。
 超電導線材に用いられる超電導導体としては、Bi系超電導線材BiSrCaCu10+δ(Bi2223)やRE-123系超電導線材REBaCu7-x(REは希土類元素)等が知られている。
 Bi系の超電導線材は、Bi系の超電導層をAgのシース材で被覆した状態となるようにPowder In Tube法(PIT法)などにより製造され、テープ状の構造となっている。
 一方、RE-123系超電導線材は、テープ状の金属基材上に中間層を介し成膜法により酸化物超電導層を積層し、さらに前記酸化物超電導層上に薄い銀の保護層を形成する構造が公知である。さらに、この保護層の上にさらに上に銅などの良導電性金属材料からなる金属テープを、半田層を介して積層し、安定化層とした構造等が知られている。
 線材接続装置1は、テープ状の線材の接続に適用されるため、上述したBi系超電導線材や、RE-123系超電導線材に好適に用いる事ができる。
 RE-123系の超電導線材としては、例えば幅10mm、厚さ0.1mm程度のものが例示される。
 図2Aに、一対のテープ状の線材である第1の線材8と第2の線材9を半田10により接続した第1接続構造体20を示す。第1接続構造体20には、第1の線材8の端部8aと第2の線材9の端部9aとが重なり合った部分を半田10により接合することによって接続部20aが形成されている。
 この第1接続構造体20の第1の線材8及び第2の線材9として、積層構造を有するRE-123系超電導線材を用いる場合においては、積層構造の最上層である保護層または安定化層同士を、対向させて超電導線材を接続することで、電気抵抗が低い接続部20aを構成することができる。
 なお、幅10mmの超電導線材同士の接続においては、半田で接合される部分の長手方向の長さは、10mm以上であることが望ましい。
 図2Bに、一対のテープ状の線材である第1の線材11と第2の線材12を、テープ状の接続用線材13を介して接続した第2接続構造体21を示す。
 この第2接続構造体21では、第1の線材11の端部11aと、第2の線材12の端部12aとが互いに対向して配置され、これらの端部間に跨るように接続用線材13が橋渡ししている。第1の線材11と接続用線材13の間、並びに第2の線材12と接続用線材13との間には、半田14が介在し、当該半田14により接合され、接続部21aを形成している。
 第2接続構造体21の第1の線材11、第2の線材12並びに接続用線材13として、積層構造を有するRE-123系超電導線材を用いる場合においては、第1の線材11と第2の線材12の積層方向を一致させて配置し、さらに接続用線材13の保護層、又は安定化層を、第1の線材11、第2の線材12の保護層、又は安定化層と対向させて配置し半田により接続することで、電気抵抗が低い接続部21aを構成することができる。
 また、第1の線材11、第2の線材12として超電導線材を用い、接続用線材13を金属線材で構成しても良い。
 第1接続構造体20及び第2接続構造体21において用いられる半田10、14の溶融前の形態は、線状、テープ状、ペースト状の何れであっても良い。また、半田10、14は、従来公知の半田を使用可能である。例えば、Inを主成分とするIn半田、Sn、Sn-Ag系合金、Sn-Bi系合金、Sn-Cu系合金、Sn-Zn系合金などのSnを主成分とする合金よりなるSn半田、Pb-Sn系合金半田、共晶半田、低温半田などが挙げられる。これらの半田を一種又は二種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。
 超電導線材は、熱による影響を受け超電導特性が劣化することがある。特に、半田の融点が300℃以上の場合は、線材が300℃以上に加熱されることとなり、超電導線材を接続する場合においては、超電導特性が劣化する虞がある。
 図3は、上述の第1接続構造体20を本実施形態の線材接続装置1により接続した場合の、接続部の断面模式図である。
 保持基台7の線材収納溝7aに第2の線材9、半田10、第1の線材8を順に収納し、上部から加圧板5の突起部5aにより接続部20aを加圧し、加熱体4(図1A、及び図1B参照)により、加熱することで半田10を溶融する。さらに、加熱体4を加圧板5から離間させ、半田10を凝固させることで、第1接続構造体20を形成することができる。
 また、第2接続構造体21の形成方法においては、線材収納溝7aに、第1の線材11の端部11aと第2の線材12の端部12aとが対向するように第1の線材11と第2の線材12とを配置し、第1の線材11と第2の線材12とをまたぐように半田14を配置する。半田14の上に接続用線材13を配置して収納し、上部から加圧板5、加熱体4により、加圧及び加熱を行い、半田を溶融させ、さらに凝固させることで、上述の第2接続構造体21を形成することができる。
 (接続手順)
 次に、図4A~図4Eを基に、線材接続装置1を用いた線材の接続における、線材接続装置1の動作手順について詳しく説明する。
 初めに線材接続装置1の電源をいれて、加熱体4を加熱し、所定の温度(半田の融点以上の温度)まで加熱体4の下面4aを昇温させる。この初期状態において、加熱体4と加圧板5は離間して配置されていても、接触して配置されていても良い。加熱体4と加圧板5とを接触して配置する場合においては、予め加圧板5に予熱を与えることができ、半田の溶融がより素早くでき、望ましい。
 次に、図4Aに示すように、保持基台7の線材収納溝7aに接続しようとする一対の線材を重ねて収納する(線材配置工程)。このとき重なり部分に半田を挟み込む。この重ね合わされた一対の線材と溶融前の半田を接続前線材20Aと呼ぶ。
 なお、図4Aにおいて、分かり易さのため線材収納溝7aの縦壁と線材の側面との間に隙間が形成されているが、溝の幅と線材の幅は略等しいため、隙間は形成されない。
 次に、図4Bに示すように、第1エアシリンダ2によって第1ロッド2Aと加圧板5が下降し、加圧板5が保持基台7に重なる。この状態において、接続前線材20Aの上面を加圧板5の突起部5aが加圧し、接続前線材20Aの線材同士がずれることを防ぐことができる(図3参照)。
 次に、図4Cに示すように、第2エアシリンダ3によって第2ロッド3Aと加熱体4を下降させ、加熱体4の下面4aを加圧板5の上面5bと接触させる。これにより、加熱体4の熱は加圧板5に伝わり、さらに加圧板5の突起部5aから接続前線材20Aに伝わり、半田を溶融させる。
 半田が溶融する際に、第2エアシリンダ3によって加熱体4は、加圧板5の上面5bを加圧する。したがって、接続前線材20Aは、加圧板5のみならず加熱体4によって加圧された状態で、半田を溶融させる(加圧加熱工程)。
 この重ね合わされた一対の線材と溶融した半田を溶融半田線材20Bと呼ぶ。
 なお、本実施形態においては、加圧板5と加熱体4は、図4B、4Cに示すように、別々に下降したが、これらは同時に下降しても良い。
 次に、図4Dに示すように、第2エアシリンダ3によって第2ロッド3Aと加熱体4を上昇させる。このとき、加圧板5は、保持基台7上に留まり、半田が凝固するまで溶融半田線材20Bの上面を加圧し続ける。また、空冷ファン6によって、加圧板5の上面5bを冷却し、加圧板5の温度を下げ、半田の凝固を促進する。半田が凝固するまで線材の接続部を加圧し続けることにより、接続部において、部分的に過剰な半田が滞留することのない仕上がりのきれいな接続が可能となる。
 上昇された加熱体4と保持基台7上に留まる加圧板5との距離は、加熱体4からの放射熱が加圧板5に伝わらない十分な距離に離間されている。
 加圧板5の冷却が十分に行われ、所定の温度が下がると、溶融半田線材20Bの溶融した半田が凝固する(冷却工程)。
 冷却を開始してから加圧板5が所定温度に到達するか、あるいは所定時間経過した時点でファンが停止し、さらに、図4Eに示すように、第1エアシリンダ2によって第1ロッド2Aと加圧板5が上昇する。これによって、接続構造体を形成することができ、接続構造体を取り出して(取り出し工程)、様々な製品に適用することができる。
 また、線材接続装置1の加熱体4は、半田を溶融できる温度に保持されているため、すぐに次の線材の接続を行うことができる。
また、第2接続構造体21の形成方法においては、線材収納溝7aに、第1の線材11の端部11aと第2の線材12の端部12aとが対向するように第1の線材11と第2の線材12とを配置し、第1の線材11と第2の線材12とをまたぐように半田14を配置する。半田14の上に接続用線材13を配置した後は、上記接続手順と同様の手順によって第2接続構造体21を形成することができる。
 本実施形態の線材接続装置1は、線材の接続部を加圧板5を介して加熱体4によって加熱し、半田を溶融した後、加圧板5による加圧を保持した状態で、加熱体4を加圧板5から離間させ(即ち線材から離間させ)、線材に対する加熱を即座に休止することができる。これにより、加熱体4が冷却するまで線材に熱をかけ続けることがなく、半田凝固までの時間が短くなり接続に要する時間が短縮される。
 また、本実施形態の線材接続装置1を超電導線材の接続に用いる場合においては、加熱時間を短くすることで超電導線材の劣化を抑制できる。加えて、加熱時間を短くすることで、超電導線材の外周に銀又は銀合金の保護層を備えている場合や、その内部に銀層と半田層の境界部を有する場合において、銀層に半田が拡散することを抑制することができる。したがって、銀層の電気抵抗が上昇することを抑制できる。
 また、本実施形態の線材接続装置1は、加熱体4を加圧板5に接触又は離間させることによって、線材の接続部への加熱開始及び停止するため、加熱体4を常時半田が溶融する温度に保っておくことができる。したがって、次の接続作業を連続して行う場合において、加熱体を再度加熱する必要がなく、加熱体の温度が半田溶融の温度まで上昇するまでの待機時間を節約できる。
上記実施形態によれば、生産効率が高く、安定した性能を発揮する線材の接続が可能となる線材接続装置、線材接続方法、及び接続構造体の製造方法を提供できる。
1…線材接続装置、2…第1エアシリンダ(第1駆動部)、2A…第1ロッド、3…第2エアシリンダ(第2駆動部)、3A…第2ロッド、4…加熱体、4a…下面、5…加圧板、5a…突起部、5b、7b…上面、6…空冷ファン、7…保持基台、7a…線材収納溝、8、11…第1の線材、8a、9a、11a、12a…端部、9、12…第2の線材、10、14…半田、13…接続用線材、20…第1接続構造体、20A…接続前線材、20B…溶融半田線材、20a、21a…接続部、21…第2接続構造体

Claims (12)

  1.  複数の線材を収納可能な幅を有する線材収納溝が設けられた保持基台と、
     前記保持基台の上方に位置する加圧板と、
     前記加圧板の上方に位置し、加熱部を備えた加熱体と、
     前記保持基台と前記加圧板とを近接及び離間させることが可能な第1駆動部と、
     前記保持基台と前記加熱体とを近接及び離間させることが可能な第2駆動部と、を有し、
     前記第1駆動部によって前記保持基台に近接された前記加圧板は、前記線材収納溝に半田を介し重ねて収納された前記複数の線材を、加圧可能であり、
    前記第2駆動部によって前記保持基台に近接された前記加熱体は、前記線材収納溝に半田を介し重ねて収納された前記複数の線材を前記加圧板を介し加圧加熱可能である線材接続装置。
  2.  前記保持基台が、断熱材料からなる請求項1に記載の線材接続装置。
  3.  前記加圧板を冷却する冷却部をさらに有する請求項1又は2に記載の線材接続装置。
  4.  前記第1駆動部が、前記加圧板を上下させる第1エアシリンダであり、前記第2駆動部が、前記加熱体を上下させる第2エアシリンダである請求項1~3の何れか一項に記載の線材接続装置。
  5.  保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とを半田を介して互いに重ね合わせて配置し、前記第1の線材及び前記第2の線材に加圧板を介して加熱体を押し当て、前記第1の線材及び前記第2の線材を加圧及び加熱し前記半田を溶融させ、
     前記第1の線材及び前記第2の線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する線材接続方法。
  6.  保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とが互いに対向するように前記第1の線材と前記第2の線材とを配置し、
     前記第1の線材と前記第2の線材とを跨ぐように半田を配置し、
     前記半田の上に接続用線材を配置し、
     前記第1の線材、前記第2の線材、及び前記接続用線材に加圧板を介して加熱体を押し当て、前記第1の線材、前記第2の線材、及び前記接続用線材を加圧及び加熱し前記半田を溶融させ、
     前記第1の線材、前記第2の線材、及び前記接続用線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する線材接続方法。
  7.  前記第1の線材及び前記第2の線材が、超電導線材である請求項5又は6に記載の線材接続方法。
  8.  前記第1の線材、前記第2の線材、及び前記接続用線材が超電導線材である請求項6に記載の線材接続方法。
  9.  保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とを半田を介して互いに重ね合わせて配置し、
     前記第1の線材及び前記第2の線材に加圧板を介して加熱体を押し当て、前記第1の線材及び前記第2の線材を加圧及び加熱し前記半田を溶融させ、
     前記第1の線材及び前記第2の線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する接続構造体の製造方法。
  10.  保持基台にテープ状の第1の線材の端部とテープ状の第2の線材の端部とが互いに対向するように第1の線材と第2の線材とを配置し、
     前記第1の線材と前記第2の線材とを跨ぐように半田を配置し、
     前記半田の上に接続用線材を配置し、
     前記第1の線材、前記第2の線材、及び前記接続用線材に加圧板を介して加熱体を押し当て、前記第1の線材、前記第2の線材、及び前記接続用線材を加圧及び加熱し前記半田を溶融させ、
     前記第1の線材、前記第2の線材、及び前記接続用線材を前記加圧板により加圧した状態を保持し、前記加熱体を前記加圧板から離間させ、前記加圧板を冷却し前記半田を凝固させ前記第1の線材と前記第2の線材とを接続する接続構造体の製造方法。
  11.  前記第1の線材及び前記第2の線材が、超電導線材である請求項9又は10に記載の接続構造体の製造方法。
  12.  前記第1の線材、前記第2の線材、及び前記接続用線材が超電導線材である請求項10に記載の接続構造体の製造方法。
PCT/JP2014/064184 2013-05-28 2014-05-28 線材接続装置、線材接続方法、及び接続構造体の製造方法 WO2014192832A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17192557.1A EP3285341B1 (en) 2013-05-28 2014-05-28 Method for manufacturing a splice structure
US14/893,814 US9685769B2 (en) 2013-05-28 2014-05-28 Wire splicing device, wire splicing method, and method for manufacturing splice structure
JP2014528726A JP5608842B1 (ja) 2013-05-28 2014-05-28 線材接続装置、線材接続方法、及び接続構造体の製造方法
EP14804200.5A EP3007287B1 (en) 2013-05-28 2014-05-28 Wire splicing device and wire splicing methods
US15/399,995 US10014671B2 (en) 2013-05-28 2017-01-06 Wire splicing device, wire splicing method, and method for manufacturing splice structure
US15/399,951 US10044176B2 (en) 2013-05-28 2017-01-06 Wire splicing device, wire splicing method, and method for manufacturing splice structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013112141 2013-05-28
JP2013-112141 2013-05-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/893,814 A-371-Of-International US9685769B2 (en) 2013-05-28 2014-05-28 Wire splicing device, wire splicing method, and method for manufacturing splice structure
US15/399,951 Division US10044176B2 (en) 2013-05-28 2017-01-06 Wire splicing device, wire splicing method, and method for manufacturing splice structure
US15/399,995 Division US10014671B2 (en) 2013-05-28 2017-01-06 Wire splicing device, wire splicing method, and method for manufacturing splice structure

Publications (1)

Publication Number Publication Date
WO2014192832A1 true WO2014192832A1 (ja) 2014-12-04

Family

ID=51988855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064184 WO2014192832A1 (ja) 2013-05-28 2014-05-28 線材接続装置、線材接続方法、及び接続構造体の製造方法

Country Status (3)

Country Link
US (3) US9685769B2 (ja)
EP (2) EP3285341B1 (ja)
WO (1) WO2014192832A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145010A (ja) * 2019-03-05 2020-09-10 東芝Itコントロールシステム株式会社 導体接合治具
KR20220098514A (ko) * 2021-01-04 2022-07-12 장성기 플렉시블 플랫 케이블의 도체 도금 준비용 연결장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015106298B4 (de) * 2015-04-24 2017-01-26 Semikron Elektronik Gmbh & Co. Kg Vorrichtung, Verfahren und Anlage zur inhomogenen Abkühlung eines flächigen Gegenstandes
CN106207706A (zh) * 2016-06-16 2016-12-07 蒋清校 一种摆动槽轮旋转打端子机
CN106253020A (zh) * 2016-08-31 2016-12-21 牟伟 一种双向多滑轮槽轮式打端子电力焊接机械设备
CN106271263B (zh) * 2016-09-29 2018-01-30 上海航天测控通信研究所 一种微波组件一体化焊接装置
CN107123916A (zh) * 2017-06-08 2017-09-01 东莞市豪鼎电子有限公司 自动焊线机
CN107891208A (zh) * 2017-11-13 2018-04-10 广西岑科电子工业有限公司 锡焊前的压线脚机构
CN110899889B (zh) * 2019-12-06 2021-11-02 中国科学院长春光学精密机械与物理研究所 一种焊线型连接器手工焊接辅助工装
CN112872530A (zh) * 2020-12-27 2021-06-01 新沂市宏展电子科技有限公司 一种多媒体接口线自动焊锡装置及其工作方法
CN114267983A (zh) * 2021-12-24 2022-04-01 中国科学院合肥物质科学研究院 一种传导冷却型NbTi超导线接头装置及其接头制作方法
US11936153B2 (en) 2022-05-03 2024-03-19 James McCommons Precision soldering fixture
CN115383237A (zh) * 2022-10-11 2022-11-25 中天集团上海超导技术有限公司 焊接装置和焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165590U (ja) * 1988-05-12 1989-11-20
JPH0696828A (ja) * 1992-01-27 1994-04-08 Toshiba Corp 酸化物超電導線の接続方法
JPH07135034A (ja) * 1993-11-08 1995-05-23 Toshiba Corp 超電導線の接続方法
JPH1116618A (ja) * 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd 超伝導線材の接続方法
JPH11214112A (ja) * 1998-01-27 1999-08-06 Alps Electric Co Ltd 電子部品のはんだ付け装置およびその方法
JP2007012582A (ja) * 2005-05-30 2007-01-18 Internatl Superconductivity Technology Center Re系酸化物超電導線材の接合方法
JP2011003382A (ja) 2009-06-18 2011-01-06 Sumitomo Electric Ind Ltd 超電導線材の接続方法および接続装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2062886A (en) * 1933-12-04 1936-12-01 Copperweld Steel Co Joint and method of making the same
US2838593A (en) * 1950-02-23 1958-06-10 Scesa Olindo Connector for electric wires
US2845521A (en) * 1955-04-22 1958-07-29 Dittmore Freimuth Corp Method and means for soldering conductors
US3336657A (en) * 1964-09-14 1967-08-22 Phillips Petroleum Co Scarfing tool and method for joining metal bands
US3346351A (en) * 1964-12-17 1967-10-10 Gen Electric Superconductive connection
US3821048A (en) * 1973-03-02 1974-06-28 Scm Corp Ultrasonic ribbon splicer
GB8526377D0 (en) * 1985-10-25 1985-11-27 Raychem Gmbh Cable connection
US5125559A (en) * 1990-09-21 1992-06-30 Kloften And Kloften (Usa) Inc. Apparatus and method for butt-splicing metal tapes
JPH0745104B2 (ja) * 1990-11-13 1995-05-17 株式会社フジタ 電磁波シールド材目地部の接合方法
US5660742A (en) * 1995-03-31 1997-08-26 Joyal Products, Inc. Insulated wire termination, method, and machine
JP3521612B2 (ja) * 1996-05-13 2004-04-19 住友電気工業株式会社 超電導導体の接続構造
JPH1041125A (ja) * 1996-05-13 1998-02-13 Sumitomo Electric Ind Ltd 超電導コイル
JP3687703B2 (ja) * 1996-07-18 2005-08-24 矢崎総業株式会社 圧接装置及び圧接方法
JPH10255947A (ja) * 1997-03-10 1998-09-25 Yazaki Corp 電線圧接装置及び電線圧接方法
DE69818908T2 (de) * 1997-05-30 2004-07-22 Yazaki Corp. Verbindungsstruktur zwischen einem Draht und einem Anschlussklemme, Verbindugsverfahren dafür und eine Anschlussklemme
US6677529B1 (en) * 1999-02-05 2004-01-13 John E. Endacott Wire connector
US6271507B2 (en) * 1999-10-08 2001-08-07 Molex Incorporated Apparatus and method for bonding conductors
DE60041512D1 (de) * 1999-11-04 2009-03-19 Sumitomo Electric Industries Herstellungsverfahren für oxyd-supraleiterdraht und oxyd-supraleiterdraht
WO2009044560A1 (ja) * 2007-10-03 2009-04-09 Panasonic Corporation 粘着テープ貼付装置及びテープ接続方法
US8851356B1 (en) * 2008-02-14 2014-10-07 Metrospec Technology, L.L.C. Flexible circuit board interconnection and methods
US8091757B1 (en) * 2011-07-05 2012-01-10 Rafal Stawarski Wire alignment tool for use during soldering
US9502159B2 (en) * 2012-05-02 2016-11-22 Furukawa Electric Co., Ltd. Superconducting wire connection structure, superconducting wire connection method, and connection superconducting wire
US9755329B2 (en) * 2013-06-14 2017-09-05 Advanced Conductor Technologies Llc Superconducting cable connections and methods
JP6210537B2 (ja) * 2013-08-06 2017-10-11 古河電気工業株式会社 超電導ケーブルの接続構造、超電導ケーブル、超電導ケーブルの終端部の電流端子構造
KR101374212B1 (ko) * 2013-08-16 2014-03-17 케이조인스(주) ReBCO 고온 초전도 선재 접합 장치 및 이를 이용한 접합 방법
EP2955008B1 (en) * 2014-04-23 2018-06-06 ContiTech Transportbandsysteme GmbH Conveyor belt with zero stage splice ; method of connecting a steel cable in such conveyor belt
WO2015187253A2 (en) * 2014-04-25 2015-12-10 Brookhaven Science Associates, Llc Generation of a splice between superconductor materials
US10335877B2 (en) * 2015-01-21 2019-07-02 Rolls-Royce Corporation Multilayer braze tape
JP6712125B2 (ja) * 2015-09-04 2020-06-17 株式会社フジクラ 酸化物超電導線材の接続構造体およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165590U (ja) * 1988-05-12 1989-11-20
JPH0696828A (ja) * 1992-01-27 1994-04-08 Toshiba Corp 酸化物超電導線の接続方法
JPH07135034A (ja) * 1993-11-08 1995-05-23 Toshiba Corp 超電導線の接続方法
JPH1116618A (ja) * 1997-06-25 1999-01-22 Mitsubishi Heavy Ind Ltd 超伝導線材の接続方法
JPH11214112A (ja) * 1998-01-27 1999-08-06 Alps Electric Co Ltd 電子部品のはんだ付け装置およびその方法
JP2007012582A (ja) * 2005-05-30 2007-01-18 Internatl Superconductivity Technology Center Re系酸化物超電導線材の接合方法
JP2011003382A (ja) 2009-06-18 2011-01-06 Sumitomo Electric Ind Ltd 超電導線材の接続方法および接続装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007287A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145010A (ja) * 2019-03-05 2020-09-10 東芝Itコントロールシステム株式会社 導体接合治具
JP7148439B2 (ja) 2019-03-05 2022-10-05 東芝Itコントロールシステム株式会社 導体接合治具
KR20220098514A (ko) * 2021-01-04 2022-07-12 장성기 플렉시블 플랫 케이블의 도체 도금 준비용 연결장치
KR102588882B1 (ko) * 2021-01-04 2023-10-16 장성기 플렉시블 플랫 케이블의 도체 도금 준비용 연결장치

Also Published As

Publication number Publication date
US20170117688A1 (en) 2017-04-27
EP3007287A1 (en) 2016-04-13
US10014671B2 (en) 2018-07-03
EP3007287A4 (en) 2017-08-09
US9685769B2 (en) 2017-06-20
EP3285341B1 (en) 2019-05-22
US20170117689A1 (en) 2017-04-27
EP3285341A1 (en) 2018-02-21
EP3007287B1 (en) 2019-05-22
US10044176B2 (en) 2018-08-07
US20160105005A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
WO2014192832A1 (ja) 線材接続装置、線材接続方法、及び接続構造体の製造方法
JP5007841B2 (ja) 超電導線材の接続方法および接続装置
JP5697161B2 (ja) 電流リード
JP5344888B2 (ja) 半導体装置
JP5005582B2 (ja) 超電導電流リードの製造方法
JP2008283067A (ja) Al−AlN複合材料及びその製造方法並びに熱交換器
JP5608842B1 (ja) 線材接続装置、線材接続方法、及び接続構造体の製造方法
JP5695772B1 (ja) 超電導線材接続体の製造方法、超電導線材接続体及び超電導線材の接続装置
EP3100321B1 (en) Method of joining a superconductor
JP4919614B2 (ja) 太陽電池装置、及び太陽電池装置の製造方法
US20210408700A1 (en) Method for making electrical contact with a superconductive strip conductor
JP5778064B2 (ja) 超電導電流リード及び該超電導電流リードを用いた超電導マグネット装置
CN103878473B (zh) 金属液固态界面热挤压焊接装置
JP2013142200A (ja) ボンディング装置
JP2007179767A (ja) 同軸ケーブルの端末加工方法およびこれに用いるリフロー装置
RU2746654C1 (ru) Способ изготовления контактных площадок высокотемпературного сверхпроводящего провода второго поколения и комплекс для осуществления способа
CN112997260A (zh) 柔性hts电流引线
JP5753991B2 (ja) 金属−セラミックス接合部材の製造方法
JP6628391B2 (ja) 電流リード固定用フランジユニット及び電流リード付きフランジユニット
JP5697162B2 (ja) 電流リード
JP5701356B2 (ja) 酸化物超電導線材およびその製造方法
JP6484470B2 (ja) 電流リード
KR20150033987A (ko) 대전류 전송 바 및 그의 제조방법
JP5630355B2 (ja) パワーモジュール用基板の製造方法および製造装置
KR20160046037A (ko) 차량용 글래스 열선 접합 어셈블리 및 차량용 글래스 열선 접합방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528726

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014804200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14893814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE