WO2014191589A1 - Procedimiento de obtención directa de oxima de ciclohexanona a partir de nitroderivados - Google Patents

Procedimiento de obtención directa de oxima de ciclohexanona a partir de nitroderivados Download PDF

Info

Publication number
WO2014191589A1
WO2014191589A1 PCT/ES2013/070881 ES2013070881W WO2014191589A1 WO 2014191589 A1 WO2014191589 A1 WO 2014191589A1 ES 2013070881 W ES2013070881 W ES 2013070881W WO 2014191589 A1 WO2014191589 A1 WO 2014191589A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclohexanone oxime
oxime according
metal
obtaining cyclohexanone
obtaining
Prior art date
Application number
PCT/ES2013/070881
Other languages
English (en)
French (fr)
Inventor
Avelino CORMA CANÓS
Antonio LEYVA PÉREZ
Paula RUBIO MARQUÉS
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2014191589A1 publication Critical patent/WO2014191589A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/04Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of oximes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to obtaining the product of high industrial interest cyclohexanone oxime under mild reaction conditions and using as starting materials the industrial compounds as nitro derivatives, for example nitrobenzene and, for example, hydroxylamine hydrochloride.
  • This requires the preparation of a specific supported metal catalyst, preferably palladium and gold supported on carbon, which allows the direct catalytic hydrogenation of nitroderivative to the desired product based on the quantity and dilution of organic materials, hydrogen pressure, quantity of catalyst and reaction temperature.
  • Cyclohexanone oxime is one of the most important industrial chemicals in the world with a production of millions of tons per year. It is used as a precursor to Nylon 6.6 and Nylon 6. During the route to Nylon 6, high purity cyclohexanone must be reacted with hydroxylamine to obtain cyclohexanone oxime (Blaauw, Marc; Simons, Antonius; Jacobus, Franciscus; Oevering, Henk; 2001, WO 01/94298 Al).
  • cyclohexanone is obtained by catalyzed oxidation of cyclohexane at high temperatures and pressures, but the process is very inefficient and generates only 3-10% of cyclohexanone-cyclohexanol mixture from the cyclohexane used and, in addition, the large volume of cyclohexane to be recirculated limits the size of the production plant and therefore the volume of cyclohexanone produced.
  • Cyclohexane is obtained in turn from benzene by catalytic hydrogenation at high temperatures and pressures, and constitutes one of the five basic products obtained from benzene together with ethylbenzene, eumene, nitrobenzene and chlorobenzene (Corma Canos, Avelino; Serna Merino , Pedro; Conceptive Heydorn, Patricia; ES 2322 221 Al). To date, no alternative route has been found for the direct obtaining of cyclohexanone oxime from benzene itself or any of the four primary derivatives mentioned above.
  • the alternative route to the most explored benzene-cyclohexane route is to obtain cyclohexanone from phenol, which in turn is obtained from eumene.
  • This route involves an additional step with the generation of explosive by-products, such as hydroperoxides, and generally low yields, at high temperatures.
  • the present invention describes the direct obtaining of cyclohexanone oxime from nitrobenzene, one of the basic products obtained from benzene at scales exceeding one million tons per year.
  • the synthetic strategy described here is based on the use of a particular solid gold and palladium catalyst that allows the cross-amination reaction between the aniline that is formed after the catalytic reduction of nitrobenzene and the cyclohexylamine that is formed after the reduction of the ring. that, all under the same conditions of catalytic hydrogenation, giving rise to the intermediate cyclohexylaniline, from which cyclohexanone is obtained in-situ after hydrolysis and finally cyclohexanone oxime by in-situ reaction with hydroxylamine.
  • this synthetic strategy has not been previously used to obtain neither cyclohexanone nor oxime of cyclohexanone.
  • the remaining aniline is recycled in the synthesis reactor itself to form more cyclohexylaniline by coupled amination. Therefore, the entire process occurs in the same reactor, covering at least six synthetic elemental stages without the need to add or evacuate reagents during the process to selectively obtain cyclohexanone oxime at the end of the process.
  • Cyclohexanone oxime precipitates in the same reaction medium. Therefore, the formation of cyclohexanone oxime also constitutes a means of purification of cyclohexanone.
  • the present invention relates to a process for obtaining cyclohexanone oxime from nitro derivatives which may comprise at least the following steps:
  • this reaction can be carried out in a single reactor.
  • the nitro-derivative or nitro-derivatives used according to the process of the present invention can respond to the general formula: R x -C 6 H and - (N0 2 ) wherein R may be selected from at least one linear or branched alkyl group, an ester group, an ether group and combinations thereof;
  • x corresponds to the number of substituents on the aromatic ring and may vary between 0 and 2;
  • the solid catalyst can be recycled after the reaction by simple gravity filtration and used in a new reaction.
  • the organic solvent may be selected from hexane, tetrahydrofuran, ether, dichloromethane, dioxane, methanol, ethanol and combinations thereof.
  • those miscible with water allow a better contact between solid and acid catalyst and favor the formation of cyclohexanone.
  • the organic solvent is ether.
  • the amount of solvent used may be between 0.1-20 milliliters per millilol of nitro-derivative, preferably between 3-10 milliliters per millimol of nitro-derivative.
  • a metal catalyst which can comprise at least one support selected from organic polymers, metal oxides, carbon and combinations thereof, preferably it is carbon of high surface
  • the catalyst may comprise at least one supported metal or not.
  • the metal or metals supported on the catalyst support may be selected from cerium, palladium, rhodium, iridium, ruthenium, gold and combinations thereof, preferably between palladium, gold and combinations thereof.
  • said metal may preferably consist of cerium.
  • the metal is palladium.
  • the metal is a combination of palladium and gold.
  • the metal is a combination of palladium and cerium.
  • the metal may preferably be in a percentage by weight with respect to the catalyst of up to 20%, preferably between 1 and 5%.
  • the catalyst may further comprise a Lewis acid.
  • This Lewis acid can be selected from a group consisting of FeCl 3 , CoCl 2 , CeC13, NiCl 2 , A1C1 3 , CuCl 2 , VC1 3 , ZnCl, RuCl 3 , PtCl 2 , Ce0 2 , ZrCl.
  • it can be selected from CeCl 3 , Ce0 2 , PtCl 2 , CuCl 2 , CoCl 2 .
  • the catalyst may comprise palladium as metal, and CeCl 3 as Lewis acid.
  • the catalyst can respond to the formula:
  • Metal 1 and Metal 2 can be selected from palladium, rhodium, iridium, ruthenium, gold and combinations thereof.
  • Metal 1 can be found in a percentage by weight in the catalyst between 0 and 20%, preferably between 1 and 5% and Metal 2 between 0 and 20%, preferably between 1 and 5% , always on the condition that Metal 1 and Metal 2 cannot be 0 at the same time.
  • Metal 1 is palladium and Metal 2 is gold.
  • the metal (s) may be supported on the same particle of the support or on separate particles.
  • an acid that can be selected from hydrochloric acid, methanesulfonic acid, triflic acid, acetic acid, paratoluenesulfonic acid and combinations thereof, is preferably acidic.
  • hydrochloric the hydrochloric acid together with the hydroxylamine forms the hydroxylamine hydrochloride.
  • the cyclohexanone produced as cyclohexanone oxime precipitates.
  • the addition of water may or may not be necessary. By reducing the nitro group to amino, two equivalents of water are generated, and this water remains in the medium to produce the final hydration of the imine form of the corresponding amine derivative.
  • the addition of an amount of external water can help the reaction, and this amount of water added for hydration can vary between 0 and 20 equivalents with respect to starting material, preferably between 0 and 2, considering the water that it can be introduced by the addition of acids in aqueous solution.
  • the hydrogen atmosphere is installed at room temperature until reaching a pressure of between 2-20 atmospheres, preferably between 5-12 atmospheres, which is equivalent to an excess of between one and two times the amount required for all The hydrogenation process.
  • the process of the present invention can be carried out at a reaction temperature that can vary between 15 and 80 ° C, preferably between 50-80 ° C.
  • stirring of the reaction mixture can be performed by a magnetic stirrer at 200-1400 revolutions per minute, preferably between 300-500 revolutions per minute.
  • the reaction time according to the process of the present invention can vary between one hour and five days according to substrate, one day being the average reaction time to complete the transformation.
  • the representative molar ratio between starting material: catalyst: hydrogen: hydroxylamine hydrochloride varies in the range 100: 20-1: 800-200: 300-100, and the preferred range is 100: 5 : 600: 200.
  • Starting material means each molecule that contains a nitro group and a benzene ring, in the case of containing more than one of these groups the amounts should be recalculated accordingly.
  • the product is recovered by any commonly known means.
  • a possible method is, filtration of solids, redisolution of these in ethanol and filtration of dissolved oxime.
  • the solid catalyst thus recovered can be recycled for a second reaction.
  • the catalyst used in the present invention is a palladium and gold catalyst supported on activated carbon.
  • This solid catalyst can be produced after the co-hydrogenation of palladium and gold salts previously impregnated on the active carbon in aqueous solution.
  • This co-hydrogenation is produced by heating one gram of impregnated solid at 360 ° C for one hour under a flow of hydrogen of between 1 and 100 milliliters per minute, preferably between 5 and 10 milliliters per minute, diluted in nitrogen with a flow from between 10 and 150 milliliters per minute, preferably between 90 and 120 milliliters per minute, and with a ramp of previous rise of between 5 and 20 ° C per minute until reaching the final temperature from ambient temperature.
  • the palladium supported on coal thus obtained has a typical particle size of between 1 and 5 nanometers with a dispersion of between 1 and 2 nanometers, and a type of crystallographic plane ⁇ 100 ⁇ in typical concentration more than five times with respect to the rest of blueprints.
  • Figure 1 shows the high resolution electron transmission microscopy spectra showing the monodispersion of palladium on coal, as well as its independence from gold particles.
  • FIG. 1 A) Images of AuPd-C. B) “Mapping" of Au in the catalyst. C) “Mapping" of Pd in the catalyst.
  • Example 1 Formation of cyclohexanone oxime by hydrogen reduction of a solution of nitrobenzene in diethyl ether using gold and palladium supported on activated carbon, hydroxylamine chloride and water.
  • Example 2 Formation of cyclohexanone oxime by hydrogen reduction of a solution of nitrobenzene in diethyl ether using gold and palladium supported on activated carbon and hydroxylamine chloride.
  • Example 3 Preparation of gold and palladium on activated carbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente patente de invención describe un procedimiento para producir oxima de ciclohexanona directamente a partir de nitroderivados, como por ejemplo nitrobenceno, que se puede llevar a caboen un mismo "batch" mediante hidrogenación, usando uncatalizador con al menos un metal soportado. La invención describe las condiciones de reacción necesarias para conseguir la secuencia reactiva que conduce a oxima de ciclohexanona desde el material de partida.

Description

PROCEDIMIENTO DE OBTENCIÓN DIRECTA DE OXIMA DE CICLOHEXANONA
A PARTIR DE NITRODERIVADOS
Campo de la técnica
La presente invención se refiere a la obtención del producto de alto interés industrial oxima de ciclohexanona en condiciones de reacción suaves y usando como materiales de partida los compuestos industriales como nitroderivados , por ejemplo nitrobenceno y, por ejemplo, hidrocloruro de hidroxilamina . Para ello es necesaria la preparación de un catalizador especifico de metal soportado, preferentemente paladio y oro soportados sobre carbono, que permite la hidrogenación catalítica directa del nitroderivado al producto deseado en función de la cantidad y dilución de materiales orgánicos, presión de hidrógeno, cantidad de catalizador y temperatura de reacción.
Antecedentes
La oxima de ciclohexanona es uno de los productos químicos industriales más importantes en el mundo con una producción de millones de toneladas al año. Se utiliza como precursor del Nylon 6.6 y Nylon 6. Durante la ruta hacia Nylon 6, ciclohexanona de alta pureza ha de hacerse reaccionar con hidroxilamina para obtener oxima de ciclohexanona (Blaauw, Marc; Simons, Antonius; Jacobus, Franciscus; Oevering, Henk; 2001, WO 01/94298 Al) . En la actualidad, la ciclohexanona se obtiene mediante oxidación catalizada de ciclohexano a altas temperaturas y presiones, pero el proceso es muy poco eficiente y genera sólo un 3-10% de mezcla ciclohexanona- ciclohexanol a partir del ciclohexano utilizado y, además, el gran volumen de ciclohexano que ha de ser recirculado limita el tamaño de la planta de producción y por consiguiente el volumen de ciclohexanona producida. El ciclohexano se obtiene a su vez a partir del benceno mediante hidrogenación catalítica a altas temperaturas y presiones, y constituye uno de los cinco productos básicos que se obtienen del benceno junto a etilbenceno, eumeno, nitrobenceno y clorobenceno (Corma Canos, Avelino; Serna Merino, Pedro; Concepción Heydorn, Patricia; ES 2322 221 Al) . Hasta la fecha, no se ha encontrado una vía alternativa para la obtención directa de oxima de ciclohexanona desde el propio benceno o alguno de los cuatro derivados primarios arriba señalados. La vía alternativa a la ruta de benceno-ciclohexano más explorada es la obtención de ciclohexanona desde fenol, que a su vez se obtiene desde eumeno. Esta vía implica un paso adicional con la generación de subproductos explosivos, tales como hidroperóxidos , y rendimientos generalmente bajos, a altas temperaturas. En la presente invención se describe la obtención directa de oxima de ciclohexanona desde nitrobenceno, uno de los productos básicos obtenidos a partir del benceno a escalas que superan el millón de toneladas al año. La estrategia sintética aquí descrita se basa en la utilización de un catalizador sólido de oro y paladio particular que permite la reacción de aminación cruzada entre la anilina que se forma tras la reducción catalítica de nitrobenceno y la ciclohexilamina que se forma tras la reducción del anillo de aquélla, todo en las mismas condiciones de hidrogenación catalítica, dando lugar al intermedio ciclohexilanilina, desde la que se obtiene ciclohexanona in-situ tras hidrólisis y finalmente oxima de ciclohexanona por reacción in-situ con la hidroxilamina . Hasta la fecha, esta estrategia sintética no ha sido utilizada previamente para obtener ni ciclohexanona ni oxima de ciclohexanona . Además, la anilina sobrante se recicla en el propio reactor de síntesis para formar más ciclohexilanilina mediante aminación acoplada. Por tanto, todo el proceso ocurre en un mismo reactor, cubriendo al menos seis etapas elementales sintéticas sin necesidad de añadir o evacuar reactivos durante el proceso para obtener selectivamente oxima de ciclohexanona al final del proceso.
La oxima de ciclohexanona precipita en el mismo medio de reacción. Por tanto, la formación de oxima de ciclohexanona constituye también un medio de purificación de ciclohexanona.
Descripción de la invención
La presente invención se refiere a un procedimiento de obtención de oxima de ciclohexanona a partir de nitroderivado que puede comprender, al menos, las siguientes etapas:
preparar una disolución que contenga, al menos, un nitroderivado y un disolvente orgánico;
añadir, al menos, un catalizador metálico;
. calentar la mezcla en atmósfera de hidrógeno en presencia de hidroxilamina y al menos un ácido.
A lo largo de la descripción se entiende como nitroderivado al conjunto de nitrobenceno y cualquiera de sus posibles derivados.
Según una realización particular, esta reacción se puede llevar a cabo en un único reactor. Según otra realización particular, el nitroderivado o nitroderivados utilizados según el procedimiento de la presente invención puede responder a la formula general: Rx-C6Hy- (N02) en donde R puede estar seleccionado entre, al menos, un grupo alquilo lineal o ramificado, un grupo éster, un grupo éter y combinaciones de los mismos;
donde x corresponde al número de sustituyentes sobre el anillo aromático y puede variar entre 0 y 2 ;
donde y representa el número de posiciones sin sustituir del anillo aromático tras considerar el grupo nitro, donde finalmente su valor puede estar definido por la ecuación y=5-x .
El catalizador sólido puede ser reciclado tras la reacción mediante simple filtración a gravedad y utilizado en una nueva reacción.
De acuerdo con una realización preferida, el disolvente orgánico puede estar seleccionado entre hexano, tetrahidrofurano, éter, diclorometano, dioxano, metanol, etanol y combinaciones de los mismos. Preferentemente aquéllos miscibles con agua permiten un mejor contacto entre catalizador sólido y ácido y favorecen la formación de ciclohexanona . Asi, de manera preferente el disolvente orgánico es éter.
Según el proceso de la presente invención, la cantidad de disolvente utilizada puede estar entre 0.1-20 mililitros por milimol de nitroderivado, preferentemente entre 3-10 mililitros por milimol de nitroderivado. En el procedimiento de obtención de oxima de ciclohexanona según la presente invención, es necesaria la utilización de un catalizador metálico que puede comprender, al menos, un soporte seleccionado entre polímeros orgánicos, óxidos metálicos, carbón y combinaciones de los mismos, preferentemente es carbón de alta superficie.
Según una realización particular, el catalizador puede comprender, al menos, un metal soportado o no. Preferentemente, el o los metales soportados sobre el soporte del catalizador pueden estar seleccionados entre cerio, paladio, rodio, iridio, rutenio, oro y combinaciones de los mismos, preferentemente entre paladio, oro y combinaciones de los mismos. En caso de que el metal no esté soportado, dicho metal puede consistir preferentemente en cerio.
Según una realización preferida, el metal es paladio.
Según otra realización preferida, el metal es una combinación de paladio y oro.
De acuerdo a otra realización preferida, el metal es una combinación de paladio y cerio. El metal puede estar preferentemente en un porcentaje en peso respecto al catalizador de hasta el 20%, preferentemente entre el 1 y el 5%.
En otra realización particular de la invención, el catalizador puede comprender, además, un ácido de Lewis. Este ácido de Lewis puede ser seleccionado de un grupo que consiste en FeCl3, CoCl2, CeC13, NiCl2, A1C13, CuCl2, VC13, ZnCl , RuCl3, PtCl2, Ce02, ZrCl . Preferentemente, puede seleccionarse entre CeCl3, Ce02, PtCl2, CuCl2, CoCl2.
De manera particular, el catalizador puede comprender paladio como metal, y CeCl3 como Ácido de Lewis.
Según una realización preferida, el catalizador puede responder a la fórmula:
Metal 1-Metal 2-Carbón donde el Metal 1 y el Metal 2 pueden estar seleccionados entre paladio, rodio, iridio, rutenio, oro y combinaciones de los mismos. El Metal 1 se puede encontrar en un porcentaje en peso en el catalizador entre el 0 y el 20%, preferentemente entre el 1 y el 5% y el Metal 2 entre el 0 y el 20%, preferentemente entre el 1 y el 5%, siempre con la condición de que Metal 1 y Metal 2 no pueden ser 0 a la vez. Según esta realización preferente el Metal 1 es paladio y el Metal 2 es oro .
Según una realización particular, el o los metales pueden estar soportados sobre una misma partícula del soporte o en partículas separadas.
Tal y como se ha descrito anteriormente, para llevar a cabo el procedimiento de la presente invención es necesario un ácido que puede estar seleccionado entre ácido clorhídrico, ácido metanosulfónico, ácido tríflico, ácido acético, ácido paratoluensulfónico y combinaciones de los mismos, preferentemente es ácido clorhídrico. De acuerdo con la realización preferida, el ácido clorhídrico junto con la hidroxilamina forma el hidrocloruro de hidroxilamina . Finalmente precipita la ciclohexanona producida como oxima de ciclohexanona.
Según una realización particular, puede o no ser necesaria la adición de agua. Al reducir el grupo nitro a amino se generan dos equivalentes de agua, y este agua permanece en el medio para producir la hidratación final de la forma imina del derivado de la amina correspondiente. En cualquier caso, la adición de una cantidad de agua externa puede ayudar a la reacción, y esta cantidad de agua añadida para la hidratación puede variar entre 0 y 20 equivalentes respecto a material de partida, preferentemente entre 0 y 2, considerando el agua que puede introducirse por la adición de ácidos en disolución acuosa .
Según una realización preferida, la atmósfera de hidrógeno se instala a temperatura ambiente hasta alcanzar una presión de entre 2-20 atmósferas, preferentemente de entre 5-12 atmósferas, lo que equivale a un exceso de entre una y dos veces la cantidad requerida para todo el proceso de hidrogenación .
El procedimiento de la presente invención se puede llevar a cabo a una temperatura de reacción que puede variar entre 15 y 80°C, preferentemente entre 50-80°C. Además, la agitación de la mezcla de reacción se puede realizar mediante un agitador magnético a 200-1400 revoluciones por minuto, preferentemente entre 300-500 revoluciones por minuto. De acuerdo con la realización preferida, el tiempo de reacción según el procedimiento de la presente invención puede variar entre una hora y cinco días según sustrato, siendo un día el tiempo de reacción medio para finalizar la transformación.
De acuerdo con otra realización preferida, la relación molar representativa entre material de partida : catalizador : hidrógeno : hidrocloruro de hidroxilamina varia en el rango 100:20-1:800-200:300-100, y el rango preferente es de 100:5:600:200. Por material de partida se entiende cada molécula que contenga un grupo nitro y un anillo bencénico, en el caso de contener más de uno de estos grupos las cantidades deben recalcularse acorde.
Según el procedimiento de la presente invención, el producto se recupera por cualquier medio comúnmente conocido. Un posible método es, filtración de los sólidos, redisolución de éstos en etanol y filtración de la oxima disuelta. Además, el catalizador sólido asi recuperado puede reciclarse para una segunda reacción.
Según una realización particular, el catalizador que se utiliza en la presente invención es un catalizador de paladio y oro soportado sobre carbón activo. Este catalizador sólido se puede producir tras la co-hidrogenación de sales de paladio y oro previamente impregnadas sobre el carbón activo en disolución acuosa. Esta co-hidrogenación se produce mediante calentamiento de un gramo de sólido impregnado a 360°C durante una hora bajo un flujo de hidrógeno de entre 1 y 100 mililitros por minuto, preferentemente entre 5 y 10 mililitros por minuto, diluido en nitrógeno con un flujo de entre 10 y 150 mililitros por minuto, preferentemente entre 90 y 120 mililitros por minuto, y con una rampa de subida previa de entre 5 y 20°C por minuto hasta alcanzar la temperatura final desde temperatura ambiental.
El paladio soportado sobre carbón asi obtenido presenta un tamaño típico de partícula de entre 1 y 5 nanómetros con una dispersión de entre 1 y 2 nanómetros, y un tipo de plano cristalográfico {100} en concentración típica de más de cinco veces respecto al resto de planos. La Figura 1 muestra los espectros de microscopía de transmisión electrónica de alta resolución donde se aprecia la monodispersión del paladio sobre el carbón, así como su independencia respecto a las partículas de oro.
Breve descripción de las figuras
Figura 1. A) Imágenes de AuPd-C. B) "Mapping" de Au en el catalizador. C) "Mapping" de Pd en el catalizador.
Ejemplos
A continuación se describirán ejemplos no limitativos de la presente invención.
Ejemplo 1: Formación de oxima de ciclohexanona por reducción con hidrógeno de una disolución de nitrobenceno en éter dietilico utilizando oro y paladio soportado sobre carbón activo, cloruro de hidroxilamina y agua.
En un reactor de cristal reforzado equipado por un control de presión y de temperatura se disuelve 21 μΐ (0,2 mmol) de nitrobenceno en 1 mi de éter dietilico en presencia de 21 mg (5 mol%) del catalizador de AuPd-C, se añade también 69 mg (1 mmol) de cloruro de hidroxilamina y 5 μΐ (0,31 mmol) de agua, se purga el reactor 5 veces con 10 bar de hidrógeno, luego se llena con la presión deseada de ¾ (10 bar, 6 eq.) y se sumerge completamente en un baño de parafina precalentada a 60°C y se agita. Durante el experimento la presión de ¾ disminuye. A las 24 h se filtra el crudo de reacción, se añade 1 mi de etanol al sólido, se separa del catalizador por filtración y se analiza la disolución con GC-MS . El rendimiento de la oxima de ciclohexanona es del 97%.
Ejemplo 2: Formación de oxima de ciclohexanona por reducción con hidrógeno de una disolución de nitrobenceno en éter dietilico utilizando oro y paladio soportado sobre carbón activo y cloruro de hidroxilamina .
En un reactor de cristal reforzado equipado por un control de presión y de temperatura se disuelve 21 μΐ (0,2 mmol) de nitrobenceno en 0.5 mi de éter dietilico en presencia de 21 mg (5 mol%) del catalizador de Pd-C y 50 mg (2.5 mol%) de Au- C, se añade también 69 mg (1 mmol) de cloruro de hidroxilamina, se purga el reactor 5 veces con 10 bar de hidrógeno, luego se llena con la presión deseada de ¾ (5 bar) y se sumerge completamente en un baño de parafina precalentada a 60°C y se agita. Durante el experimento la presión de ¾ se mantiene constante. A las 4 h se filtra el crudo de reacción, se añade 1 mi de metanol al sólido, se separa del catalizador por filtración y se analiza la disolución con GC-MS. El rendimiento de la oxima de ciclohexanona es del 97%.
Ejemplo 3: Preparación de oro y paladio sobre carbón activo.
Se disuelven 49 mg (0,12 mmol) de tetracloroaurato sódico y 143 mg (0,47 mmol) de acetilacetonato de paladio en 1.6 mi de etanol, y se impregna en 1 g de carbón activo (Norit GSX, activado y lavado) . La mezcla se deja en una estufa a 80°C una noche. Al día siguiente, se reduce en un horno de reducción, bajo un flujo de 10% de ¾ y un 90% de N2, con una rampa de 10 °C/min hasta llegar a 360°C, temperatura a la que se mantiene 1 h.

Claims

RE IVINDICACIONES
1. Procedimiento de obtención de oxima de ciclohexanona a partir de nitroderivado caracterizado porque comprende, al menos, las siguientes etapas:
(a) preparar una disolución que contenga, al menos, un nitroderivado y un disolvente orgánico;
(b) añadir, al menos, un catalizador metálico;
(c) calentar la mezcla en atmósfera de hidrógeno en presencia de hidroxilamina y al menos un ácido.
2. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque el nitroderivado responde a la fórmula general:
Rx-C6Hy- (N02)
(a) en donde R está seleccionado entre, al menos, un grupo alquilo lineal o ramificado, un grupo éster, un grupo éter y combinaciones de los mismos;
(b) donde x varia entre 0 y 2;
(c) donde y=5-x.
3. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque el disolvente orgánico es seleccionado de un grupo que consiste en hexano, tetrahidrofurano, éter, diclorometano, dioxano, metanol, etanol y combinaciones de los mismos.
4. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 3, caracterizado porque el disolvente orgánico es éter.
5. Procedimiento de obtención de oxima de ciclohexanona según cualquiera de las reivindicaciones 3 y 4, caracterizado porque la cantidad de disolvente está entre 0.1 y 20 mililitros por milimol de nitroderivado .
6. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque el soporte del catalizador es seleccionado de un grupo que consiste en polímeros orgánicos, óxidos metálicos, carbón y combinaciones de los mismos.
7. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 6, caracterizado porque el soporte del catalizador es carbón de alta superficie.
8. Procedimiento de obtención de oxima de ciclohexanona según una de las reivindicaciones 1, 6 y 7, caracterizado porque el catalizador comprende, al menos, un metal soportado o no soportado.
9. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 8, caracterizado porque el metal soportado es seleccionado de un grupo que consiste en cerio, paladio, rodio, iridio, rutenio, oro y combinaciones de los mismos.
10. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 8, caracterizado porque el metal no soportado es cerio.
11. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 9, caracterizado porque el catalizador comprende un primer metal que consiste en paladio y un segundo metal que consiste en oro.
12. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 9, caracterizado porque el catalizador comprende un primer metal que consiste en paladio y un segundo metal que consiste en cerio.
13. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 9 o 10, caracterizado porque comprende, además, un Ácido de Lewis.
14. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 13, caracterizado porque el Ácido de Lewis es seleccionado de un grupo que consiste en CeCl3, Ce02, PtCl2, CuCl2 y CoCl2.
15. Procedimiento de obtención de oxima de ciclohexanona según las reivindicaciones 8 y 13, caracterizado porque el metal es paladio y el Ácido de Lewis es CeCl3.
16. Procedimiento de obtención de oxima de ciclohexanona según una cualquiera de las reivindicaciones 8 a 12, caracterizado porque el metal se encuentra en un porcentaje en peso en el catalizador de hasta el 20%.
17. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 16, caracterizado porque el metal se encuentra en un porcentaje en peso en el catalizador entre el 1 y el 5%.
18. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque el ácido está seleccionado entre ácido clorhídrico, ácido metanosulfónico, ácido tríflico, ácido acético, ácido paratoluensulfónico y combinaciones de los mismos.
19. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque la atmósfera de hidrógeno tiene una presión de entre 2 y 20 atmósferas.
20. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque la temperatura de reacción varía entre 15 y 80°C.
21. Procedimiento de obtención de oxima de ciclohexanona según la reivindicación 1, caracterizado porque la reacción se lleva a cabo en un tiempo entre una hora y 5 días.
PCT/ES2013/070881 2013-05-27 2013-12-17 Procedimiento de obtención directa de oxima de ciclohexanona a partir de nitroderivados WO2014191589A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330764 2013-05-27
ES201330764A ES2525958B1 (es) 2013-05-27 2013-05-27 Procedimiento de obtención directa de oxima de ciclohexanona a partir de nitroderivados

Publications (1)

Publication Number Publication Date
WO2014191589A1 true WO2014191589A1 (es) 2014-12-04

Family

ID=51988050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070881 WO2014191589A1 (es) 2013-05-27 2013-12-17 Procedimiento de obtención directa de oxima de ciclohexanona a partir de nitroderivados

Country Status (2)

Country Link
ES (1) ES2525958B1 (es)
WO (1) WO2014191589A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1279527A (en) * 1969-09-20 1972-06-28 Stamicarbon Continuous preparation of cyclohexanone oxime
EP1364940A1 (en) * 2001-01-31 2003-11-26 Asahi Kasei Kabushiki Kaisha Process for producing cyclohexanone oxime
WO2007116112A1 (es) * 2006-04-12 2007-10-18 Consejo Superior De Investigaciones Científicas Procedimiento para la preparación de oximas utilizando catalizadores de oro

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1279527A (en) * 1969-09-20 1972-06-28 Stamicarbon Continuous preparation of cyclohexanone oxime
EP1364940A1 (en) * 2001-01-31 2003-11-26 Asahi Kasei Kabushiki Kaisha Process for producing cyclohexanone oxime
WO2007116112A1 (es) * 2006-04-12 2007-10-18 Consejo Superior De Investigaciones Científicas Procedimiento para la preparación de oximas utilizando catalizadores de oro

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RUBIO-MARQUES, P. ET AL.: "One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst''.", CHEMICAL COMMUNICATIONS, vol. 50, 2014, pages 1645 - 1647 *
SHIMIZU, K. ET AL.: "Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime by alumina-supported gold cluster catalysts''.", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 345, 2011, pages 54 - 59 *

Also Published As

Publication number Publication date
ES2525958A2 (es) 2015-01-02
ES2525958B1 (es) 2015-10-23
ES2525958R2 (es) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2010000888A1 (es) Preparación de carbamatos con catalizadores sólidos
ES2417315T3 (es) Procedimiento para la preparación de amidas de ácidos carboxílicos de pirazol
WO2017067098A1 (zh) 芳基取代对苯二胺类物质的制备方法
WO2014191589A1 (es) Procedimiento de obtención directa de oxima de ciclohexanona a partir de nitroderivados
CN109516986A (zh) 2,4,4,8,8-五硝基-2-氮杂金刚烷及其合成方法
CN104447336B (zh) 一种三碟烯衍生物及其制备方法
CN101450916A (zh) 替加环素的合成方法
CN108046978B (zh) 一种制备碘化苄及其衍生物的方法
JP6952974B2 (ja) アミド化合物の製造方法
CN112608262B (zh) 草酸二硒酯类化合物及其合成方法和应用
CN111675633B (zh) 一种n-酰基羟胺的合成方法
CN105849082A (zh) 硝基化合物的制造方法
CN101693676B (zh) 一种分离纯化粗产品苯氨基甲酸酯的方法
JP6289310B2 (ja) 触媒又はその前駆体並びにこれらを利用した二酸化炭素の水素化方法及びギ酸塩の製造方法
CN113292581A (zh) 一种新型配位圆偏振发光晶态化合物及其制备方法与应用
CN102766108A (zh) 一种苯并恶唑c2位氨化衍生物的制备方法
Kang et al. One-pot solvent-free reductive amination with a solid ammonium carbamate salt from CO 2 and amine
CN107915610B (zh) 一种环十五烷酮的制备方法
JP6372880B2 (ja) 酸素同位体標識化合物
WO2014083223A1 (es) Proceso de obtencion de aminas secundarias a partir de nitrobenceno en un solo reactor
CN105237432B (zh) N,n‑亚甲基双苯甲酰胺类化合物的合成方法
CN104829468B (zh) (r)‑沙丁胺醇盐酸盐的不对称制备方法
TW201922720A (zh) 2,5-雙(胺甲基)四氫呋喃之製造方法
ES2392998A1 (es) Procedimiento para la reducción catalítica de compuestos nitroaromáticos.
JP2016108332A (ja) アミノ化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885883

Country of ref document: EP

Kind code of ref document: A1