WO2014190613A1 - 量子点发光二极管及其制备方法、显示器件 - Google Patents

量子点发光二极管及其制备方法、显示器件 Download PDF

Info

Publication number
WO2014190613A1
WO2014190613A1 PCT/CN2013/080827 CN2013080827W WO2014190613A1 WO 2014190613 A1 WO2014190613 A1 WO 2014190613A1 CN 2013080827 W CN2013080827 W CN 2013080827W WO 2014190613 A1 WO2014190613 A1 WO 2014190613A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
quantum dots
quantum dot
substrate
light quantum
Prior art date
Application number
PCT/CN2013/080827
Other languages
English (en)
French (fr)
Inventor
蔡佩芝
Original Assignee
北京京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 北京京东方光电科技有限公司
Priority to US14/347,849 priority Critical patent/US9548331B2/en
Publication of WO2014190613A1 publication Critical patent/WO2014190613A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • H01L33/0087Processes for devices with an active region comprising only II-VI compounds with a substrate not being a II-VI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • Quantum dot light emitting diode and preparation method thereof, display device
  • Embodiments of the present invention relate to a quantum dot light emitting diode, a method of fabricating the same, and a display device. Background technique
  • Quantum Dot is usually a nanoparticle composed of II-VI or III-V elements that can be excited to emit fluorescence.
  • the illuminating vocabulary of the variable sub-point can be controlled by changing the size of the quantum dot, and its fluorescence intensity and stability are both good, so the variable sub-point is a good electroluminescent material.
  • quantum dots there are many types of quantum dots, such as CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, etc. of Group II-VI and Group III-V GaAs, GaP, GaAs, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, A1P, AlSb, etc.
  • the preparation methods of the variable sub-points mainly include molecular beam epitaxy, metal organic chemical vapor deposition, self-organized growth, and colloidal chemistry. Quantum dots of different sizes can be prepared according to different chemical conditions.
  • a Quantum Dot Light-Emitting Display is a display device using a quantum dot light-emitting layer material. Since the quantum dots are inorganic materials, the organic luminescent materials can overcome the disadvantages of sensitivity to oxygen and water vapor, poor stability, short life, and high packaging difficulty, and have broad development prospects. Summary of the invention
  • Embodiments of the present invention provide a quantum dot light emitting diode, a preparation method thereof, and a display device, which can realize full color display and can effectively increase pixel aperture ratio.
  • An aspect of the present invention provides a quantum dot light emitting diode including a first electrode and a second electrode, and a quantum dot light emitting layer disposed between the electrodes, wherein the quantum dot light emitting layer includes at least a red light quantum dot and a green light quantum dot. And a blue light quantum dot, and a black matrix disposed at least between the red light quantum dot, the green light quantum dot, and the blue light quantum dot; wherein the electrode on the light exiting side of the first electrode and the second electrode is at least a transparent electrode .
  • the quantum dots in the quantum dot light-emitting layer include a sulfide semiconductor nano-semiconductor compound; the red light quantum dot comprises a sulfided nano-semiconductor compound having a particle diameter of 10 to 12 nm, and the green light quantum dot comprises a sulfide semiconductor nano semiconductor.
  • the particle diameter of the compound is 7 to 8 nm, and the particle size of the sulfided nano-semiconductor compound contained in the blue quantum dot is 4 to 5 nm.
  • the black matrix divides the first electrode or the second electrode into matrix electrodes for driving the respective luminescent quantum dots.
  • Another aspect of the present invention provides a display device comprising the quantum dot light emitting diode of any of the above.
  • the display device further includes a thin film transistor disposed between the substrate and the quantum dot light emitting diode adjacent to the first electrode or the second electrode of the substrate;
  • the thin film substrate tube includes a gate, a gate insulating layer, An active layer, and a source and a drain, and the drain is connected to one of the first electrode and the second electrode.
  • a black matrix of the quantum dot light emitting diode is disposed at a red light quantum dot of the quantum dot light emitting layer and the first electrode or the second electrode, the green light quantum dot, and the photoelectrode corresponding to the red light quantum dot
  • the active layer includes an amorphous silicon semiconductor layer, or a metal oxide semiconductor layer, or a low temperature polysilicon layer, or a high temperature polysilicon layer.
  • the active layer includes an amorphous silicon semiconductor layer
  • the active layer further includes an ohmic contact layer; or, in the case where the active layer includes a metal oxide semiconductor layer, the thin film
  • the transistor also includes an etch stop.
  • the substrate is an opaque substrate or a transparent substrate.
  • the substrate is made of metal, or glass, or a flexible material.
  • a further aspect of the present invention provides a method for fabricating a quantum dot light emitting diode, the method comprising: forming a first electrode and a second electrode on a substrate, forming a quantum dot light emitting layer between the electrodes, the quantum dot emitting The layer includes at least a red light quantum dot, a green light quantum dot, and a blue light quantum dot, and a black matrix is formed at least between the red light quantum dot, the green light quantum dot, and the blue light quantum dot.
  • the forming a red light quantum dot includes: a nanometer half of a particle size of 10 to 12 nm
  • the conductor compound is dissolved in an organic solvent to form a first mixture, and the first mixture is coated on a substrate, subjected to a patterning process, and after the organic solvent is volatilized, the red light quantum dots are formed.
  • the forming a green light quantum dot includes: dissolving a stone-filled nano semiconductor compound having a particle diameter of 7 to 8 nm in an organic solvent to form a second mixture, and coating the second mixture on a substrate, and patterning The process is processed, and after the organic solvent is volatilized, the green light quantum dots are formed.
  • the forming a blue light quantum dot includes: dissolving a stone-filled nano semiconductor compound having a particle diameter of 4 to 5 nm in an organic solvent to form a third mixture, and coating the third mixture on a substrate, and patterning The process is processed, and after the organic solvent is volatilized, the blue light quantum dots are formed.
  • the forming a black matrix between the red light quantum dot, the green light quantum dot, and the blue light quantum dot includes: the red light quantum dot and the second electrode corresponding to the red light quantum dot, the green Forming the black matrix between a photon quantum dot and the second electrode corresponding to the green light quantum dot, the blue quantum dot, and the second electrode corresponding to the blue quantum dot, and the first electrode Covering the substrate; or the red light quantum dot and the first electrode corresponding to the red light quantum dot, the green light quantum dot, and the first electrode corresponding to the green light quantum dot,
  • the black matrix is formed between a blue light quantum dot and the first electrode corresponding to the blue quantum dot, and the second electrode covers the substrate.
  • FIG. 1 is a schematic structural diagram 1 of a quantum dot light emitting diode according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 2 of a quantum dot light emitting diode according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a quantum dot light emitting diode according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a display device including a thin film transistor according to an embodiment of the present invention. One;
  • FIG. 6 is a schematic structural view of a display device including a thin film transistor according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device including a thin film transistor according to an embodiment of the present invention.
  • Figure III is a schematic structural diagram of a display device including a thin film transistor according to an embodiment of the present invention.
  • FIG. 8 to FIG. 12 are schematic diagrams showing a process of fabricating a quantum dot light emitting diode according to an embodiment of the present invention.
  • Embodiments of the present invention provide a quantum dot light emitting diode 01.
  • the quantum dot light emitting diode 01 includes a first electrode 20 and a second electrode 30 disposed on the substrate 10, and a quantum dot light emitting layer 40 disposed between the electrodes.
  • the quantum dot luminescent layer 40 includes at least a red light quantum dot 401, a green light quantum dot 402, and a blue light quantum dot 403, and is disposed at least at the red light quantum dot
  • the electrodes on the light-emitting side of the first electrode 20 and the second electrode 30 are at least transparent electrodes.
  • the quantum dot light-emitting layer 40 may include white quantum dots or other color quantum dots in addition to the red light quantum dots 401, the green light quantum dots 402, and the blue light quantum dots 403, which are not limited herein.
  • the quantum dot light-emitting layer 40 further includes white quantum dots or quantum dots of other colors, it may also be in white quantum dots or other color quantum dots and red light quantum dots 401, or green light quantum dots 402, or blue light quantum dots 403.
  • the black matrix 50 is set between the two, and is set according to actual conditions, and will not be described herein.
  • the relative positions of the first electrode 20 and the second electrode 30 are not
  • the second electrode 30 is at least a transparent electrode; or the first electrode 20 is at the top and the second electrode 30 is at the bottom. In this case, the first electrode 20 is at least a transparent electrode.
  • the intensity of light emitted by any red light quantum dot, green light quantum dot or blue light quantum dot can be independently controlled, that is, with any red At least one of the first electrode and the second electrode corresponding to the photo quantum dot, the green quantum dot or the blue quantum dot is independent, that is, by inputting a different voltage to the electrode, the quantum dot can be excited to emit light of different intensity.
  • the quantum dots are nanoparticles composed of II-VI or III-V elements.
  • Embodiments of the present invention provide a quantum dot light emitting diode, the quantum dot light emitting diode comprising: a first electrode and a second electrode, a quantum dot light emitting layer disposed between the two electrodes, wherein the quantum dot light emitting layer includes at least a red light quantum a point, a green light quantum dot and a blue light quantum dot, and a black matrix disposed at least between the red light quantum dot, the green light quantum dot, and the blue light quantum dot, wherein the first electrode and the second electrode are located on a light exiting side
  • the electrode is at least a transparent electrode.
  • the intensity of the light emitted by the excited quantum dot is controlled to adjust the red, green, and blue light effects, and when the quantum dot light emitting diode is applied to the display device, full coloring can be realized.
  • a black matrix is disposed between the red, green and blue quantum dots, which can effectively prevent the occurrence of poor coloration, and there is a deviation of the box compared to the existing array substrate and the color film substrate, and the quantum dot light emitting diode It can effectively increase the pixel aperture ratio when applied to a display device.
  • a ZnS nano-semiconductor compound as the main quantum dot material.
  • a sulfided (ZnS) nano-semiconductor compound having a particle diameter of 10 to 12 nm may be selected; when green light is emitted, that is, a green light quantum dot, the particle size may be selected as 7 ⁇ 8 nm of the sulfided nano-semiconductor compound; when blue light is emitted, that is, a blue quantum dot, the sulfided nano-semiconductor compound having a particle diameter of 4 to 5 nm can be selected.
  • the black matrix 50 divides the first electrode 20 or the second electrode 30 into matrix electrodes for driving the respective light-emitting quantum dots.
  • the black matrix 50 is disposed on the red light quantum dot 401 and the first electrode corresponding to the red light quantum dot. 20.
  • the second electrode 30 covers the substrate 10 to be disposed.
  • the first electrode 20 or the second electrode 30 described in all the embodiments of the present invention covers the substrate 10, and the first electrode 20 or the second electrode 30 is layered on the substrate 10, That is, it is not necessary to form a pattern by a patterning process at the time of production.
  • the substrate 10 herein may be a substrate on which a pattern layer is formed.
  • the second electrode 30 can be laid flat, and the process can be saved by independently controlling the intensity of the light emitted by the excited quantum dots, thereby adjusting the light effects of red, green, and blue light, thereby saving process steps. cut costs.
  • the black matrix 50 is disposed on the red light quantum dot 401 and the second electrode 30 corresponding to the red light quantum dot.
  • the green light quantum dot 402 and the second electrode 30 corresponding to the green light quantum dot, the blue quantum dot 403, and the second electrode 30 corresponding to the blue quantum dot, and the The first electrode 20 covers the substrate 10 to be disposed.
  • the first electrode 20 can be laid flat, and the process can be saved by independently controlling the intensity of the light emitted by the excited quantum dots, thereby adjusting the light effects of red, green, and blue light, thereby saving process steps. cut costs.
  • the embodiment of the invention further provides a display device comprising the above quantum dot light emitting diode 01.
  • the quantum dot light emitting diode 01 can be applied to a passive matrix type display device, and an active matrix display device can also be used, which is not limited herein.
  • An embodiment of the present invention provides a display device, including any of the above-mentioned quantum dot light emitting diodes 01, which adjusts the intensity of light emitted by the excited quantum dots by adjusting the input voltage of the first electrode and/or the second electrode to adjust the red color.
  • Green and blue light effect full color display;
  • black matrix between red, green and blue quantum dots can effectively prevent the occurrence of poor coloration, and compare the existing array substrate and color film substrate to the box.
  • the display device can effectively increase the pixel aperture ratio.
  • the row driving line and the column driving line are respectively connected to the first electrode and the second electrode of the quantum dot light emitting diode 01, and simultaneously strobing a certain row of driving lines and column driving lines to illuminate A pixel corresponding to it.
  • the display device provided by the embodiment of the invention may be an active matrix type display device, that is, the display device further includes: a substrate disposed in the substrate 10 and the quantum dot light emitting diode 01 adjacent to the substrate A thin film transistor 60 serving as a switching device between an electrode 20 or a second electrode 30.
  • the film substrate tube 60 may include a gate 601, a gate insulating layer 602, an active layer 603, and a source 604a and a drain 604b, and the drain 604b and the first electrode 20 and the second electrode 30 One of the electrodes is connected.
  • the structure of the thin film transistor is not limited, and the structure of the thin film transistor may be a top gate type or a bottom gate type.
  • the film is The transistor 60 is disposed between the first electrode 20 and the substrate 10, and the drain 604b of the thin film transistor 60 is connected to the first electrode 20.
  • the second electrode 30 is at the bottom and the first electrode 20 is at the top, and details are not described herein again.
  • the drain 604b and the first electrode 20 adjacent to the substrate are disposed on the protective layer 70.
  • the blue quantum dot 403 and the first electrode 20 corresponding to the blue quantum dot, and the second electrode 30 away from the substrate is disposed to cover the substrate 10.
  • the drain electrode 604b is connected to the first electrode 20 adjacent to the substrate through a via hole disposed on the protective layer 70, so that the manufacturing process is difficult; the setting position of the black matrix is independent. Controlling the intensity of the light emitted by the quantum dots, thereby adjusting the luminous efficacy of red, green, and blue light, can save process steps, thereby saving costs.
  • the active layer 603 in the thin film transistor 01 may be an amorphous silicon semiconductor layer, or a metal oxide semiconductor layer, or a low temperature polysilicon layer, or a high temperature polysilicon layer.
  • the amorphous silicon semiconductor layer is formed by depositing a layer of amorphous silicon film on the substrate and performing a patterning process to form the amorphous silicon semiconductor layer in a certain region of the substrate.
  • the metal oxide semiconductor layer is formed by forming a metal oxide semiconductor thin film on a substrate and performing a patterning process to form the metal oxide semiconductor layer in a certain region of the substrate.
  • the low temperature polysilicon layer is formed by depositing an amorphous silicon film on the substrate and converting it into a polysilicon film at a temperature of less than 600 ° C, and performing a patterning process to form the polycrystalline silicon layer in a certain region of the substrate.
  • the high-temperature polysilicon layer corresponding to the low-temperature polysilicon layer is formed by depositing an amorphous silicon film on the substrate and converting it into a polysilicon film at a temperature greater than 1000 ° C, and performing a patterning process to form polysilicon in a certain area of the substrate.
  • Layer due to the high temperature of this process, there is a limit to the material of the substrate, and currently it is generally high temperature resistant quartz glass.
  • the active layer 603 when the active layer 603 includes the amorphous silicon semiconductor layer 603a, the active layer 603 further includes an ohmic contact layer 603b.
  • the contact resistance between the metal layer and the semiconductor layer can be reduced, and the performance of the TFT can be improved.
  • the thin film transistor 60 when the active layer 603 includes the metal oxide semiconductor layer 603c, the thin film transistor 60 further includes an etch barrier layer 605.
  • the display device provided by the embodiment of the present invention emits the intensity of the quantum dot and the intensity of the emitted light by controlling the input voltage of the first electrode 20 and the second electrode 30, so that the electrode located on the light-emitting side is transparent. Therefore, the substrate in all embodiments of the present invention may be transparent or opaque.
  • the material of the substrate may be metal, glass, or a flexible material.
  • the display device includes: a substrate 10, a gate 601 sequentially disposed on the substrate, a gate insulating layer 602, a metal oxide semiconductor layer 603c, an etch stop layer 605, a source 604a, and a drain.
  • a quantum dot light-emitting layer including a red light quantum dot 401, a green light quantum dot 402, and a blue light quantum dot 403 is further disposed between the first electrode and the second electrode, and is disposed on the red light quantum dot 401 and corresponding to the red light quantum dot a lower first electrode 20, the green light quantum dot 402, and a lower first electrode 20 corresponding to the green light quantum dot, the blue quantum dot 403, and a lower first electrode corresponding to the blue quantum dot 20 between the black matrix 50.
  • the substrate 10 is a transparent or opaque substrate; the second electrode 30 is laid flat to cover the substrate; the protective layer 70 includes a via hole exposing the drain 604b; the gate 601, the gate insulation The layer 602, the metal oxide semiconductor layer 603c, the etch stop layer 605, the source 604a, and the drain 604b constitute the thin film transistor 01.
  • the display device further includes a gate line (not shown) connected to the gate 601 of the thin film transistor, a data line (not shown) connected to the source 604a, and the like.
  • Embodiments of the present invention provide a display device that can adjust red, green, and blue light effects by adjusting an input voltage of a first electrode to control the intensity of light emitted by each quantum dot to achieve full color display;
  • the black matrix is disposed between the red, green and blue quantum dots, which can effectively prevent the occurrence of poor coloration, and the display device will be black compared to the prior art, when the array substrate and the color film substrate are opposite to the box.
  • the matrix and the thin film transistor are fabricated on the same substrate, which can effectively increase the pixel aperture ratio.
  • the embodiment of the present invention further provides a method for fabricating a quantum dot light emitting diode, the method comprising: forming a first electrode 20 and a second electrode 30 on a substrate 10, and forming a quantum dot light emitting layer 40 between the electrodes,
  • the quantum dot luminescent layer includes at least a red light quantum dot 401, a green light quantum dot 402, and a blue light quantum dot 403, and a black matrix 50 is formed at least between the red light quantum dot, the green light quantum dot, and the blue light quantum dot.
  • the red, green, and blue light effects can be adjusted by controlling the intensity of the light emitted by the excited quantum dots.
  • the quantum dot light emitting diode When the quantum dot light emitting diode is applied to a display device, full color display can be realized; in addition, in red, green, and blue light quantum Setting a black matrix between the points can effectively prevent the occurrence of poor coloration.
  • the forming the red light quantum dot 401 includes: dissolving a smectic nano semiconductor compound having a particle diameter of 10 to 12 nm in an organic solvent to form a first mixture, and coating the first mixture on the substrate The red light quantum dot 401 is formed in a certain area of the substrate after being processed by a patterning process and after the organic solvent is volatilized.
  • the organic solvent may be, for example, acetone, isopropanol, or a common organic solvent such as ethanol, and acetone may preferably be used herein.
  • the forming the green light quantum dot 402 includes: dissolving a sulfided nano semiconductor compound having a particle diameter of 7 to 8 nm in an organic solvent to form a second mixture, and coating the second mixture on the substrate, and performing a patterning process. And after the organic solvent is volatilized, the green light quantum dot 402 is formed in a certain area of the substrate.
  • the forming the blue light quantum dot 403 includes: dissolving a sulfided nano semiconductor compound having a particle diameter of 4 to 5 nm in an organic solvent to form a third mixture, and coating the third mixture on the substrate, and performing a patterning process. And after the organic solvent is volatilized, the blue quantum dot 403 is formed in a certain region of the substrate.
  • the formation of the red light quantum dot 401, the green light quantum dot 402, and the blue light quantum dot 403 is not limited.
  • the forming the black matrix 50 between the red light quantum dot 401, the green light quantum dot 402, and the blue light quantum dot 403 may include the following two cases:
  • the red light quantum dot 401 and the second electrode 30 corresponding to the red light quantum dot, the green light quantum dot 402, and the second electrode 30 corresponding to the green light quantum dot The black matrix 50 is formed between the blue quantum dot 403 and the second electrode 30 corresponding to the blue quantum dot, and the first electrode 20 covers the substrate 10.
  • the first electrode 20 can be laid flat, and the process can be saved by independently controlling the intensity of the light emitted by the excited quantum dots, thereby adjusting the light effects of red, green, and blue light, thereby saving process steps. cut costs.
  • the red light quantum dot 401 and the first electrode 20 corresponding to the red light quantum dot, the green light quantum dot 402, and the first electrode 20, corresponding to the green light quantum dot The black matrix 50 is formed between the blue quantum dot 403 and the first electrode 20 corresponding to the blue quantum dot, and the second electrode 30 covers the substrate 10.
  • the second electrode 30 can be laid flat on a layer to achieve independent control of the excited quantum dots.
  • a method of fabricating one of the above-described quantum dot light-emitting diodes will be described in detail below by way of a specific embodiment.
  • the method comprises the following steps:
  • Step S10 forming a conductive film on the substrate, and forming a matrix of the first electrode 20 as shown in FIG. 8 in a certain area of the substrate by one patterning process.
  • the above-described certain region is a pixel region.
  • a conductive film may be formed on the substrate by, for example, magnetron sputtering or chemical vapor deposition, and the conductive film may be made of a metal such as calcium, aluminum, magnesium, silver, or antimony or the like.
  • the alloy is made of a transparent conductive material such as ITO (Indium Tin Oxides) or IZO (Indium Zinc Oxide).
  • the first electrode 20 is formed in a certain area of the substrate by a masking process such as exposure, development, etching, and peeling using a mask.
  • Step S11 on the substrate on which step S10 is completed, a first mixture formed by dissolving 10-12 nm of the nano-semiconductor compound in an organic solvent is coated on the substrate, processed by a patterning process, and volatilized by an organic solvent. Thereafter, a red light quantum dot 401 as shown in FIG. 9 is formed.
  • a sulfided nano-semiconductor compound having a particle diameter of 10 to 12 nm may be first dissolved in an organic solvent to form a first mixture, and then a first mixture film may be coated on the substrate, wherein the organic solvent may be acetone. Thereafter, the masking process is performed by a masking process such as exposure, development, etching, and peeling, and after the organic solvent is volatilized, the red light quantum dots 401 are formed in a certain region of the substrate.
  • Step S12 on the substrate on which step S11 is completed, a second mixture formed by dissolving a sulfide-containing nano-semiconductor compound having a particle diameter of 7 to 8 nm in an organic solvent is coated on a substrate, processed by one patterning process, and subjected to an organic solvent. After volatilization, a green light quantum dot 402 as shown in Fig. 10 is formed.
  • Step S13 on the substrate on which step S12 is completed, a third mixture formed by dissolving a sulfide-containing nano-semiconductor compound having a particle diameter of 4 to 5 nm in an organic solvent is coated on the substrate, processed by one patterning process, and passed through an organic solvent. After volatilization, a blue quantum dot 403 as shown in Fig. 11 is formed.
  • the red light quantum dot 401, the green light quantum dot 402, and the blue light quantum dot 403 constitute the quantum dot light emitting layer 40.
  • Step S14 on the substrate on which step S13 is completed, a black resin film is formed, and the structure is once formed. a process of the red light quantum dot 401 and the first electrode 20 corresponding to the red light quantum dot, the green light quantum dot 402, and the first electrode 20 corresponding to the green light quantum dot Between the blue light quantum dot 403 and the first electrode 20 corresponding to the blue quantum dot, a black matrix 50 as shown in FIG. 12 is formed.
  • Step S15 on the substrate on which step S14 is completed, a transparent conductive film is formed to form a reference pattern.
  • a transparent conductive film may be formed on a substrate by chemical vapor deposition, and the conductive film may be a transparent conductive material such as ruthenium or iridium.
  • Embodiments of the present invention provide a method for fabricating a quantum dot light emitting diode, which can adjust red, green, and blue light effects by adjusting an input voltage of the first electrode 20 to control the intensity of light emitted from the excited quantum dot.
  • a full-color display can be realized; in addition, a black matrix is disposed between the red, green, and blue quantum dots, which can effectively prevent the occurrence of poor coloration, and is compared with the prior art.
  • the array substrate and the color filter substrate are paired with the cartridge, there is a deviation of the cartridge, and the quantum dot light emitting diode can effectively increase the pixel aperture ratio when applied to the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种量子点发光二极管包括:第一电极(20)和第二电极(30),设置于两电极之间的量子点发光层(40),所述量子点发光层(40)至少包括红光量子点(401)、绿光量子点(402)和蓝光量子点(403),以及至少设置于所述红光量子点(401)、绿光量子点(402)以及蓝光量子点(403)之间的黑矩阵(50);其中,所述第一电极(20)和所述第二电极(30)中位于出光一侧的电极至少为透明。该量子点发光二极管可实现全彩化显示,并可有效提高像素开口率。还公开了量子点发光二极管的制备方法、显示器件。

Description

量子点发光二极管及其制备方法、 显示器件 技术领域
本发明的实施例涉及一种量子点发光二极管及其制备方法、 显示器件。 背景技术
量子点( Quantum Dot, 筒称 QD )通常是一种由 II-VI族或 III-V族元素 组成的纳米颗粒, 受激后可以发射荧光。 变量子点的发光光语可以通过改变 量子点的尺寸大小来控制, 且其荧光强度和稳定性都 4艮好, 因此变量子点是 一种很好的电致发光材料。
量子点的种类 4艮多, 代表性的有 II-VI族的 CdS、 CdSe、 CdTe、 ZnO、 ZnS、 ZnSe、 ZnTe等和 III-V族 GaAs、 GaP、 GaAs、 GaSb、 HgS、 HgSe、 HgTe、 InAs、 InP、 InSb、 AlAs、 A1P、 AlSb等。 变量子点的制备方法主要有 分子束外延法、 金属有机化学气相沉淀法、 自组织生长、 以及胶体化学等。 可根据不同的化学条件制备出不同尺寸的量子点。
与一般有机发光二极管 ( Organic Light-Emitting Diode, OLED )显示器 件相比, 量子点发光二极管显示器件 ( Quantum Dot Light-Emitting Display, QD-LED )是使用量子点发光层材料的显示设备。 由于量子点为无机材料, 可以克服有机发光材料对氧气和水汽敏感、 稳定性差、 寿命短、 封装难度大 等缺点, 具有广阔的发展前景。 发明内容
本发明的实施例提供一种量子点发光二极管及其制备方法、 显示器件, 可实现全彩化显示, 并可有效提高像素开口率。
本发明的一方面提供一种量子点发光二极管, 其包括第一电极和第二电 极, 设置于两电极之间的量子点发光层, 所述量子点发光层至少包括红光量 子点、 绿光量子点和蓝光量子点, 以及至少设置于所述红光量子点、 绿光量 子点以及蓝光量子点之间的黑矩阵; 所述第一电极和所述第二电极中位于出 光一侧的电极至少为透明电极。 例如, 所述量子点发光层中的量子点包括硫化辞纳米半导体化合物; 所 述红光量子点包含的硫化辞纳米半导体化合物的粒径为 10 ~ 12nm, 所述绿 光量子点包含的硫化辞纳米半导体化合物的粒径为 7 ~ 8nm, 所述蓝光量子 点包含的硫化辞纳米半导体化合物的粒径为 4 ~ 5nm。
例如, 所述黑矩阵将所述第一电极或所述第二电极分割成用于分别驱动 各发光量子点的矩阵电极。
本发明的另一方面提供一种显示器件, 其包括上述任一种所述的量子点 发光二极管。
例如, 所述显示器件还包括设置于基板和所述量子点发光二极管中靠近 所述基板的第一电极或第二电极之间的薄膜晶体管; 所述薄膜基板管包括栅 极、 栅绝缘层、 有源层、 以及源极和漏极, 且所述漏极与所述第一电极和所 述第二电极中的其中一个电极连接。
例如, 所述量子点发光二极管的黑矩阵设置于量子点发光层的红光量子 点以及与所述红光量子点对应的所述靠近所述基板的第一电极或第二电极、 绿光量子点以及与所述绿光量子点对应的所述靠近所述基板的第一电极或第 二电极、 蓝光量子点与所述蓝光量子点对应的所述靠近所述基板的第一电极 或第二电极之间, 且远离所述基板的所述第二电极或第一电极覆盖所述基板 设置。
例如, 所述有源层包括非晶硅半导体层, 或金属氧化物半导体层, 或低 温多晶硅层, 或高温多晶硅层。
例如, 在所述有源层包括非晶硅半导体层的情况下, 所述有源层还包括 欧姆接触层; 或者, 在所述有源层包括金属氧化物半导体层的情况下, 所述 薄膜晶体管还包括刻蚀阻挡层。
例如, 所述基板为不透明基板或透明基板。
例如, 所述基板的材质为金属, 或玻璃, 或柔性材质。
本发明的再一方面提供了一种量子点发光二极管的制备方法, 该方法包 括: 在基板上形成第一电极和第二电极, 在两电极之间形成量子点发光层, 所述量子点发光层至少包括红光量子点、 绿光量子点以及蓝光量子点, 以及 至少在所述红光量子点、 绿光量子点以及蓝光量子点之间形成黑矩阵。
例如, 所述形成红光量子点包括: 将粒径为 10 ~ 12nm的^ £化辞纳米半 导体化合物溶解在有机溶剂中形成第一混合物, 并将所述第一混合物涂布在 基板上, 经构图工艺处理, 并在所述有机溶剂挥发后, 形成所述红光量子点。
例如, 所述形成绿光量子点包括: 将粒径为 7 ~ 8nm 的石充化辞纳米半导 体化合物溶解在有机溶剂中形成第二混合物, 并将所述第二混合物涂布在基 板上, 经构图工艺处理, 并在所述有机溶剂挥发后, 形成所述绿光量子点。
例如, 所述形成蓝光量子点包括: 将粒径为 4 ~ 5nm 的石充化辞纳米半导 体化合物溶解在有机溶剂中形成第三混合物, 并将所述第三混合物涂布在基 板上, 经构图工艺处理, 并在所述有机溶剂挥发后, 形成所述蓝光量子点。
例如, 所述形成位于所述红光量子点、 绿光量子点以及蓝光量子点之间 的黑矩阵包括: 在所述红光量子点以及与所述红光量子点对应的所述第二电 极、 所述绿光量子点以及与所述绿光量子点对应的所述第二电极、 所述蓝光 量子点以及与所述蓝光量子点对应的所述第二电极之间形成所述黑矩阵, 且 所述第一电极覆盖所述基板; 或者, 在所述红光量子点以及与所述红光量子 点对应的所述第一电极、 所述绿光量子点以及与所述绿光量子点对应的所述 第一电极、 所述蓝光量子点以及与所述蓝光量子点对应的所述第一电极之间 形成所述黑矩阵, 且所述第二电极覆盖所述基板。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例提供的一种量子点发光二极管的结构示意图一; 图 2为本发明实施例提供的一种量子点发光二极管的结构示意图二; 图 3为本发明实施例提供的一种量子点发光二极管的结构示意图三; 图 4为本发明实施例提供的一种量子点发光二极管的结构示意图四; 图 5为本发明实施例提供的一种包括薄膜晶体管的显示器件的结构示意 图一;
图 6为本发明实施例提供的一种包括薄膜晶体管的显示器件的结构示意 图二;
图 7为本发明实施例提供的一种包括薄膜晶体管的显示器件的结构示意 图三;
图 8〜图 12为本发明实施例提供的一种量子点发光二极管的制备过程示 意图。
附图标记:
01-量子点发光二极管; 10-基板; 20-第一电极; 30-第二电极; 40-量子 点发光层, 401-红光量子点, 402-绿光量子点, 403-蓝光量子点; 50-黑矩阵; 60-薄膜晶体管, 601-栅极, 602-栅绝缘层, 603-有源层, 603a-非晶硅半导体 层, 603b-欧姆接触层, 603c-金属氧化物半导体层, 604a-源极, 604b-漏极, 605-刻蚀阻挡层; 70-保护层。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种量子点发光二极管 01。 如图 1至图 4所示, 该 量子点发光二极管 01包括:设置于基板 10上的第一电极 20和第二电极 30, 设置于两电极之间的量子点发光层 40。 量子点发光层 40至少包括红光量子 点 401、绿光量子点 402和蓝光量子点 403 , 以及至少设置于所述红光量子点
401、 绿光量子点 402以及蓝光量子点 403之间的黑矩阵 50。 第一电极 20和 第二电极 30中位于出光一侧的电极至少为透明电极。
需要说明的是, 所述量子点发光层 40除包括红光量子点 401、 绿光量子 点 402以及蓝光量子点 403外, 也可以包括白色量子点或其他色量子点, 在 此不做限定。
当所述量子点发光层 40还包括白色量子点或其他色彩的量子点时,也可 在白色量子点或其他色量子点与红光量子点 401、或绿光量子点 402、或蓝光 量子点 403之间设置所述黑矩阵 50, 具体根据实际情况进行设定, 在此不进 行赘述。
在本发明的实施例中, 不对所述第一电极 20和第二电极 30的相对位置 进行限定, 可以是第一电极 20在下, 第二电极 30在上, 在此情况下, 所述 第二电极 30至少为透明电极; 或者可以是第一电极 20在上, 第二电极 30 在下, 在此情况下, 所述第一电极 20至少为透明电极。
在本发明实施例中, 当该量子点发光二极管引用于显示装置时, 任一红 光量子点、 绿光量子点或蓝光量子点处发出的光的强度可独立控制, 也就是 说, 与任一红光量子点、 绿光量子点或蓝光量子点对应的第一电极和第二电 极中至少有一个电极是独立的, 即, 通过给该电极输入不同的电压便可激发 量子点发出不同强度的光。
在本发明所有实施例中, 量子点为 II-VI族或 III-V族元素组成的纳米颗 粒。
本发明实施例提供了一种量子点发光二极管,该量子点发光二极管包括: 第一电极和第二电极, 设置于两电极之间的量子点发光层, 所述量子点发光 层至少包括红光量子点、 绿光量子点和蓝光量子点, 以及至少设置于所述红 光量子点、 绿光量子点以及蓝光量子点之间的黑矩阵, 所述第一电极和所述 第二电极中位于出光一侧的电极至少为透明电极。通过调节第一电极和 /或第 二电极的输入电压,控制激发量子点所发射光的强度来调节红、绿、蓝光效, 将该量子点发光二极管应用于显示器件时, 可实现全彩化显示。此外, 在红、 绿、 蓝光量子点之间设置黑矩阵, 可有效防止串色不良的发生, 并且相比现 有的阵列基板和彩膜基板对盒时存在对盒偏差, 该量子点发光二极管应用于 显示器件时可有效提高像素开口率。
考虑到 π-νι族或 m-v族的某些元素例如 Cd、 Hg等具有毒性, 在本发 明实施例中, 优选的, 选用硫化辞(ZnS )纳米半导体化合物作为主要的量 子点材料。在此情况下,发射红光时,即红光量子点,可选择粒径为 10 ~ 12nm 的硫化辞(ZnS )纳米半导体化合物; 发射绿光时, 即绿光量子点, 可选择 粒径为 7 ~ 8nm的所述硫化辞纳米半导体化合物; 发射蓝光时, 即蓝光量子 点, 可选择粒径为 4 ~ 5nm的所述硫化辞纳米半导体化合物。
为了能控制各量子点发出光的强度,例如,所述黑矩阵 50将所述第一电 极 20或所述第二电极 30分割成用于分别驱动各发光量子点的矩阵电极。
在所述第一电极 20为矩阵电极的情况,如图 1和图 2所示,所述黑矩阵 50设置于所述红光量子点 401 以及与所述红光量子点对应的所述第一电极 20、 所述绿光量子点 402以及与所述绿光量子点对应的所述第一电极 20、 所 述蓝光量子点 403以及与所述蓝光量子点对应的所述第一电极 20之间,且所 述第二电极 30覆盖所述基板 10设置。
需要说明的是, 本发明所有实施例中所述的第一电极 20或第二电极 30 覆盖所述基板 10,指所述第一电极 20或第二电极 30平铺一层在基板 10上, 即在制作时无需通过构图工艺处理形成图案。此外,这里的基板 10可以是在 其上形成了图案层的基板。
这样,所述第二电极 30可平铺一层设置,在实现独立控制激发量子点所 发射光的强度, 从而调节红光、 绿光、 蓝光的光效的同时, 可节省工艺步骤, 从而可节省成本。
在所述第二电极 30为矩阵电极的情况,如图 3和图 4所示,所述黑矩阵 50设置于所述红光量子点 401 以及与所述红光量子点对应的所述第二电极 30、 所述绿光量子点 402以及与所述绿光量子点对应的所述第二电极 30、 所 述蓝光量子点 403以及与所述蓝光量子点对应的所述第二电极 30之间,且所 述第一电极 20覆盖所述基板 10设置。
这样,所述第一电极 20可平铺一层设置,在实现独立控制激发量子点所 发射光的强度, 从而调节红光、 绿光、 蓝光的光效的同时, 可节省工艺步骤, 从而可节省成本。
本发明实施例还提供了一种显示器件, 包括上述量子点发光二极管 01。 此处, 所述量子点发光二极管 01 , 可以适用无源矩阵型显示器件, 也可以适 用有源矩阵显示器件, 在此不做限定。
本发明实施例提供了一种显示器件, 包括上述任一种量子点发光二极管 01 , 通过调节第一电极和 /或第二电极的输入电压, 控制激发量子点所发射光 的强度来调节红、 绿、 蓝光效, 实现全彩化显示; 此外, 在红、 绿、 蓝光量 子点之间设置黑矩阵, 可有效防止串色不良的发生, 并且相比现有的阵列基 板和彩膜基板对盒时存在对盒偏差, 该显示器件可有效提高像素开口率。
当适用无源矩阵型显示器件时, 行驱动线和列驱动线分别接在所述量子 点发光二极管 01的第一电极和第二电极,同时选通某一行驱动线和列驱动线 可点亮与之对应的一个像素。
考虑到无源矩阵应用于大尺寸显示器件时尤其不足的一面, 优选的, 本 发明实施例提供的显示器件可为有源矩阵型显示器件, 即, 如图 5至图 7所 述显示器件还包括: 设置于基板 10和所述量子点发光二极管 01中靠近所述 基板的第一电极 20或第二电极 30之间作为开关器件的薄膜晶体管 60。
薄膜基板管 60可以包括栅极 601、 栅绝缘层 602、 有源层 603、 以及源 极 604a和漏极 604b , 且所述漏极 604b与所述第一电极 20和所述第二电极 30中的其中一个电极连接。
需要说明的是,在本发明实施例中不对所述薄膜晶体管的结构进行限定, 所述薄膜晶体管的结构可以是顶栅型, 也可以是底栅型。
如图 5所示, 若当所述第一电极 20靠近所述基板 10, 第二电极 30远离 所述基板 10设置时, 即第一电极 20在下, 第二电极 30在上时, 所述薄膜晶 体管 60设置于所述第一电极 20和所述基板 10之间, 且所述薄膜晶体管 60 的漏极 604b与所述第一电极 20连接。 同理, 第二电极 30在下, 第一电极 20在上的情况, 在此不再赘述。
进一步优选的, 参考图 5所示, 当第一电极 20在下, 第二电极 30在上 时,所述漏极 604b与所述靠近所述基板的第一电极 20通过设置在保护层 70 上的过孔连接;黑矩阵设置于所述量子点发光层 40的红光量子点 401以及与 所述红光量子点对应的靠近所述基板的第一电极 20、绿光量子点 402以及与 所述绿光量子点对应的所述第一电极 20、蓝光量子点 403与所述蓝光量子点 对应的所述第一电极 20之间, 且远离所述基板的所述第二电极 30覆盖所述 基板 10设置。
这样, 将所述漏极 604b与所述靠近所述基板的第一电极 20通过设置在 保护层 70上的过孔连接, 可筒化制作工艺难度; 所述黑矩阵的设置位置, 在 实现独立控制激发量子点所发射光的强度, 从而调节红光、 绿光、 蓝光的光 效的同时, 可节省工艺步骤, 从而可节省成本。
对于第二电极 30在下,第一电极 20在上的情况,所述漏极 604b与所述 靠近所述基板的第二电极 30连接;所述黑矩阵 50设置于所述红光量子点 401 以及与所述红光量子点对应的靠近所述基板的所述第二电极 30、所述绿光量 子点 402以及与所述绿光量子点对应的所述第二电极 30、所述蓝光量子点以 及与所述蓝光量子点对应的所述第二电极 30之间 ,且远离所述基板的所述第 一电极 20覆盖所述基板 10设置。 例如,薄膜晶体管 01中有源层 603可以为非晶硅半导体层,或金属氧化 物半导体层, 或低温多晶硅层, 或高温多晶硅层。
非晶硅半导体层是通过在基板上沉积一层非晶硅薄膜,经构图工艺处理, 在基板一定区域形成所述非晶硅半导体层。
金属氧化物半导体层是通过在基板上制作一层金属氧化物半导体薄膜, 经构图工艺处理, 在基板一定区域形成所述金属氧化物半导体层。
低温多晶硅层是通过在基板上沉积一层非晶硅薄膜, 并在小于 600°C下 经处理转变为多晶硅薄膜, 经构图工艺处理, 在基板一定区域形成所述多晶 硅层。
与低温多晶硅层相对应的高温多晶硅层, 则是通过在基板上沉积一层非 晶硅薄膜, 并在大于 1000°C下经处理转变为多晶硅薄膜, 经构图工艺处理, 在基板一定区域形成多晶硅层; 其中, 由于这个过程温度较高, 因此对基板 的材质有限制, 目前一般为耐高温的石英玻璃。
例如, 如图 6所示, 当所述有源层 603包括非晶硅半导体层 603a时, 所 述有源层 603还包括欧姆接触层 603b。 这样, 可减小金属层与半导体层的接 触电阻, 提升 TFT的性能。
如图 7所示, 当有源层 603包括金属氧化物半导体层 603c时,所述薄膜 晶体管 60还包括刻蚀阻挡层 605。
这样可避免在后续工艺中刻蚀氧化物半导体有源层上的金属层时对氧化 物半导体有源层造成影响, 也可避免氧化物半导体有源层暴露在外与空气中 的氧气或水反应进而导致薄膜晶体管特性的变化。
本发明实施例提供的显示器件,由于其发光是通过控制第一电极 20和第 二电极 30的输入电压来激发量子点发光以及发射光的强度,因此只需位于出 光一侧的电极为透明即可, 故而本发明所有实施例中的所述基板可以为透明 也可以为不透明。
所述基板的材质可以为金属, 玻璃, 或柔性材质等。
下面提供一具体的实施例, 以详细描述上述的其中一种显示器件。 参考 图 7所示, 该显示器件包括: 基板 10、 依次设置在所述基板上的栅极 601、 栅绝缘层 602、 金属氧化物半导体层 603c、 刻蚀阻挡层 605、 源极 604a和漏 极 604b、设置于所述源极和漏极上方的保护层 70、设置于所述保护层上方的 第一电极 20, 且所述第一电极 20通过设置于所述保护层上的过孔与所述漏 极 604b连接、 以及设置于所述第一电极上方的第二电极 30, 其中在所述第 一电极和第二电极之间还设置有包括红光量子点 401、 绿光量子点 402和蓝 光量子点 403的量子点发光层, 以及设置于所述红光量子点 401以及与所述 红光量子点对应的下方的第一电极 20、所述绿光量子点 402以及与所述绿光 量子点对应的下方的第一电极 20、所述蓝光量子点 403以及与所述蓝光量子 点对应的下方的第一电极 20之间的黑矩阵 50。
所述基板 10为透明或不透明基板; 所述第二电极 30平铺一层覆盖所述 基板设置; 所述保护层 70包括露出所述漏极 604b的过孔; 所述栅极 601、 栅绝缘层 602、 金属氧化物半导体层 603c、 刻蚀阻挡层 605、 源极 604a和漏 极 604b构成薄膜晶体管 01。
此外, 该显示器件还包括与所述薄膜晶体管的栅极 601连接的栅线(图 中未标识出) , 与所述源极 604a连接的数据线(图中未标识出)等。
本发明实施例提供了一种显示器件, 该显示器件可通过调节第一电极的 输入电压, 控制激发各量子点所发射光的强度来调节红、 绿、 蓝光效, 实现 全彩化显示; 此外, 在红、 绿、 蓝光量子点之间设置黑矩阵, 可有效防止串 色不良的发生, 并且相比现有技术中阵列基板和彩膜基板对盒时存在对盒偏 差, 该显示器件将黑矩阵和薄膜晶体管制作在同一基板上, 可有效提高像素 开口率。
本发明实施例还提供了一种量子点发光二极管的制备方法,该方法包括: 在基板 10上形成第一电极 20和第二电极 30,在两电极之间形成量子点发光 层 40, 所述量子点发光层至少包括红光量子点 401、 绿光量子点 402以及蓝 光量子点 403, 以及至少在所述红光量子点、 绿光量子点以及蓝光量子点之 间形成黑矩阵 50。
这样, 可通过控制激发量子点所发射光的强度来调节红、 绿、 蓝光效, 将该量子点发光二极管应用于显示器件时, 可实现全彩化显示; 此外, 在红、 绿、 蓝光量子点之间设置黑矩阵, 可有效防止串色不良的发生。
考虑到 II-VI族或 III-V族的某些元素例如 Cd、 Hg等具有毒性, 在本发 明实施例中, 例如, 选用硫化辞(ZnS )纳米半导体化合物作为主要的量子 点材料。 在此情况下, 所述形成红光量子点 401包括: 将粒径为 10 ~ 12nm的石克 化辞纳米半导体化合物溶解在有机溶剂中形成第一混合物, 并将所述第一混 合物涂布在基板上, 经构图工艺处理, 并在所述有机溶剂挥发后, 在基板一 定区域形成所述红光量子点 401。
所述有机溶剂例如可以为丙酮, 或异丙醇, 或乙醇等常见的有机溶剂均 可, 在此处可优选为丙酮。
所述形成绿光量子点 402包括: 将粒径为 7 ~ 8nm的硫化辞纳米半导体 化合物溶解在有机溶剂中形成第二混合物, 并将所述第二混合物涂布在基板 上, 经构图工艺处理, 并在所述有机溶剂挥发后, 在基板一定区域形成所述 绿光量子点 402。
所述形成蓝光量子点 403包括: 将粒径为 4 ~ 5nm的硫化辞纳米半导体 化合物溶解在有机溶剂中形成第三混合物, 并将所述第三混合物涂布在基板 上, 经构图工艺处理, 并在所述有机溶剂挥发后, 在基板一定区域形成所述 蓝光量子点 403。
需要说明的是, 本发明实施例中, 不对形成红光量子点 401、 绿光量子 点 402、 蓝光量子点 403顺序进行限定。
进一步地, 所述形成位于所述红光量子点 401、 绿光量子点 402以及蓝 光量子点 403之间的黑矩阵 50可以包括如下两种情况:
第一种, 在所述红光量子点 401以及与所述红光量子点对应的所述第二 电极 30、所述绿光量子点 402以及与所述绿光量子点对应的所述第二电极 30、 所述蓝光量子点 403以及与所述蓝光量子点对应的所述第二电极 30之间形成 所述黑矩阵 50, 且所述第一电极 20覆盖所述基板 10。
这样,所述第一电极 20可平铺一层设置,在实现独立控制激发量子点所 发射光的强度, 从而调节红光、 绿光、 蓝光的光效的同时, 可节省工艺步骤, 从而可节省成本。
第二种, 在所述红光量子点 401以及与所述红光量子点对应的所述第一 电极 20、所述绿光量子点 402以及与所述绿光量子点对应的所述第一电极 20、 所述蓝光量子点 403以及与所述蓝光量子点对应的所述第一电极 20之间形成 所述黑矩阵 50, 且所述第二电极 30覆盖所述基板 10。
这样,所述第二电极 30可平铺一层设置,在实现独立控制激发量子点所 发射光的强度, 从而调节红光、 绿光、 蓝光的光效的同时, 可节省工艺步骤, 从而可节省成本。
下面通过一个具体的实施例, 以详细描述上述的其中一种量子点发光二 极管的制备方法。 该方法包括如下步骤:
步骤 S10、 在基板制作导电薄膜, 通过一次构图工艺处理在基板的一定 区域形成如图 8所示的第一电极 20矩阵。
这里当所述量子点发光二极管应用于显示器件时, 上述的一定区域即为 像素区域。
例如, 可以先在基板上例如使用磁控溅射法或化学气相沉积法等制备形 成一层导电薄膜, 所述导电薄膜可以采用钙、 铝、 镁、 银、 钡等金属或包括 上述任一种的合金,或采用 ITO( Indium Tin Oxides,铟锡氧化物)、IZO( Indium Zinc Oxide, 铟辞氧化物)等透明导电材料。 然后用掩膜板通过曝光、 显影、 刻蚀、 剥离等构图工艺处理, 在基板的一定区域形成所述第一电极 20。
步骤 Sll、 在完成步骤 S10的基板上, 将 10 ~ 12nm的^ £化辞纳米半导 体化合物溶解在有机溶剂中形成的第一混合物涂布在基板上, 通过一次构图 工艺处理, 并经有机溶剂挥发后, 形成如图 9所示的红光量子点 401。
例如, 可以先将粒径为 10 ~ 12nm的硫化辞纳米半导体化合物溶解在有 机溶剂中形成第一混合物, 然后在基板上涂布一层第一混合物薄膜, 其中所 述有机溶剂可以为丙酮。 之后用掩膜板通过曝光、 显影、 刻蚀、 剥离等构图 工艺处理, 并待所述有机溶剂挥发后, 在基板的一定区域形成所述红光量子 点 401。
步骤 S12、 在完成步骤 S11的基板上, 将粒径为 7 ~ 8nm的硫化辞纳米 半导体化合物溶解在有机溶剂中形成的第二混合物涂布在基板上, 通过一次 构图工艺处理, 并经有机溶剂挥发后, 形成如图 10所示的绿光量子点 402。
步骤 S13、 在完成步骤 S12的基板上, 将粒径为 4 ~ 5nm的硫化辞纳米 半导体化合物溶解在有机溶剂中形成的第三混合物涂布在基板上, 通过一次 构图工艺处理, 并经有机溶剂挥发后, 形成如图 11所示的蓝光量子点 403。
经上述步骤 S11-S13后, 所述红光量子点 401、 所述绿光量子点 402、 所 述蓝光量子点 403构成量子点发光层 40。
步骤 S14、 在完成步骤 S13的基板上, 制作黑色树脂薄膜, 通过一次构 图工艺处理, 在所述红光量子点 401以及与所述红光量子点对应的所述第一 电极 20、所述绿光量子点 402以及与所述绿光量子点对应的所述第一电极 20、 所述蓝光量子点 403以及与所述蓝光量子点对应的所述第一电极 20之间,形 成如图 12所示的黑矩阵 50。
步骤 S15、 在完成步骤 S14的基板上, 制作透明导电薄膜, 形成参考图
1所示的第二电极。
例如, 可以使用化学气相沉积法在基板上制备形成一层透明导电薄膜, 所述导电薄膜采用 ΙΤΟ、 ΙΖΟ等透明导电材料。
本发明实施例提供了一种量子点发光二极管的制备方法, 该方法可通过 调节第一电极 20的输入电压,控制激发量子点所发射光的强度来调节红、绿、 蓝光效, 将该量子点发光二极管应用于显示器件时, 可实现全彩化显示; 此 夕卜, 在红、 绿、 蓝光量子点之间设置黑矩阵, 可有效防止串色不良的发生, 并且相比现有技术中阵列基板和彩膜基板对盒时存在对盒偏差, 该量子点发 光二极管应用于显示器件时可有效提高像素开口率。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种量子点发光二极管, 包括: 第一电极和第二电极, 设置于两电极 之间的量子点发光层,
其中, 所述量子点发光层至少包括红光量子点、 绿光量子点和蓝光量子 点, 以及至少设置于所述红光量子点、 所述绿光量子点以及所述蓝光量子点 之间的黑矩阵;
其中, 所述第一电极和所述第二电极中位于出光一侧的电极至少为透明 电极。
2、根据权利要求 1所述的量子点发光二极管, 其中, 所述量子点发光层 中的量子点包括硫化辞纳米半导体化合物;
其中, 所述红光量子点包括粒径为 10 ~ 12nm的所述硫化辞纳米半导体 化合物, 所述绿光量子点包括粒径为 7 ~ 8nm的所述硫化辞纳米半导体化合 物, 所述蓝光量子点包括粒径为 4 ~ 5nm的所述硫化辞纳米半导体化合物。
3、根据权利要求 1或 2所述的量子点发光二极管, 其中, 所述黑矩阵将 所述第一电极或所述第二电极分割成用于分别驱动各发光量子点的矩阵电 极。
4、一种显示器件, 包括设置在基板上的如权利要求 1至 3任一项所述的 量子点发光二极管。
5、根据权利要求 4所述的显示器件,还包括设置于所述基板和所述量子 点发光二极管中靠近所述基板的第一电极或第二电极之间的薄膜晶体管; 其中, 所述薄膜基板管包括栅极、栅绝缘层、有源层、 以及源极和漏极, 且所述漏极与所述第一电极和所述第二电极中的其中一个电极连接。
6、根据权利要求 5所述的显示器件, 其中, 所述漏极与所述靠近所述基 板的第一电极或第二电极连接;
所述量子点发光二极管的黑矩阵设置于量子点发光层的红光量子点以及 与所述红光量子点对应的所述靠近所述基板的第一电极或第二电极、 绿光量 子点以及与所述绿光量子点对应的所述靠近所述基板的第一电极或第二电 极、 蓝光量子点与所述蓝光量子点对应的所述靠近所述基板的第一电极或第 二电极之间,且远离所述基板的所述第二电极或第一电极覆盖所述基板设置。
7、根据权利要求 5所述的显示器件, 其中, 所述有源层包括非晶硅半导 体层, 或金属氧化物半导体层, 或低温多晶硅层, 或高温多晶硅层。
8、根据权利要求 7所述的显示器件, 其中, 在所述有源层包括非晶硅半 导体层的情况下, 所述有源层还包括欧姆接触层; 或者
在所述有源层包括金属氧化物半导体层的情况下, 所述薄膜晶体管还包 括刻蚀阻挡层。
9、根据权利要求 4至 8任一项所述的显示器件, 其中, 所述基板为不透 明基板或透明基板。
10、 根据权利要求 9所述的显示器件, 其中, 所述基板的材质为金属、 玻璃或柔性材质。
11、 一种量子点发光二极管的制备方法, 包括: 在基板上形成第一电极 和第二电极, 在两电极之间形成量子点发光层, 所述量子点发光层至少包括 红光量子点、 绿光量子点以及蓝光量子点, 以及至少在所述红光量子点、 绿 光量子点以及蓝光量子点之间形成黑矩阵。
12、根据权利要求 11所述的制备方法,其中,所述形成红光量子点包括: 将粒径为 10 ~ 12nm的硫化辞纳米半导体化合物溶解在有机溶剂中形成 第一混合物, 并将所述第一混合物涂布在基板上, 经构图工艺处理, 并在所 述有机溶剂挥发后, 形成所述红光量子点;
所述形成绿光量子点包括:
将粒径为 7 ~ 8nm的硫化辞纳米半导体化合物溶解在有机溶剂中形成第 二混合物, 并将所述第二混合物涂布在基板上, 经构图工艺处理, 并在所述 有机溶剂挥发后, 形成所述绿光量子点;
所述形成蓝光量子点包括:
将粒径为 4 ~ 5nm的硫化辞纳米半导体化合物溶解在有机溶剂中形成第 三混合物, 并将所述第三混合物涂布在基板上, 经构图工艺处理, 并在所述 有机溶剂挥发后, 形成所述蓝光量子点。
13、 根据权利要求 11或 12所述的制备方法, 其中, 所述形成位于所述 红光量子点、 绿光量子点以及蓝光量子点之间的黑矩阵包括:
在所述红光量子点以及与所述红光量子点对应的所述第二电极、 所述绿 光量子点以及与所述绿光量子点对应的所述第二电极、 所述蓝光量子点以及 与所述蓝光量子点对应的所述第二电极之间形成所述黑矩阵, 且所述第一电 极覆盖所述基板; 或者
在所述红光量子点以及与所述红光量子点对应的所述第一电极、 所述绿 光量子点以及与所述绿光量子点对应的所述第一电极、 所述蓝光量子点以及 与所述蓝光量子点对应的所述第一电极之间形成所述黑矩阵, 且所述第二电 极覆盖所述基板。
PCT/CN2013/080827 2013-05-27 2013-08-05 量子点发光二极管及其制备方法、显示器件 WO2014190613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/347,849 US9548331B2 (en) 2013-05-27 2013-08-05 Manufacturing method of quantum dot light emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310201938.5A CN103346154B (zh) 2013-05-27 2013-05-27 一种量子点发光二极管及其制备方法、显示器件
CN201310201938.5 2013-05-27

Publications (1)

Publication Number Publication Date
WO2014190613A1 true WO2014190613A1 (zh) 2014-12-04

Family

ID=49280939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080827 WO2014190613A1 (zh) 2013-05-27 2013-08-05 量子点发光二极管及其制备方法、显示器件

Country Status (3)

Country Link
US (1) US9548331B2 (zh)
CN (1) CN103346154B (zh)
WO (1) WO2014190613A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021735B (zh) * 2014-05-23 2016-08-17 京东方科技集团股份有限公司 一种量子点发光显示屏及其制备方法
CN104051672B (zh) * 2014-07-09 2019-01-01 深圳市华星光电技术有限公司 Oled像素结构
CN104253247A (zh) * 2014-10-13 2014-12-31 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN104241553A (zh) * 2014-10-13 2014-12-24 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN105156931B (zh) * 2015-10-20 2017-07-04 京东方科技集团股份有限公司 一种背光源、背光模组和显示装置
CN105182601B (zh) * 2015-10-27 2019-01-22 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置及制作方法
CN105204104B (zh) 2015-10-30 2018-05-25 京东方科技集团股份有限公司 滤光片及其制作方法、显示基板及显示装置
CN105718105B (zh) * 2015-12-25 2018-12-11 业成科技(成都)有限公司 有机发光二极管触控显示面板
CN105552241B (zh) 2016-01-13 2017-11-03 京东方科技集团股份有限公司 可交联量子点及其制备方法、阵列基板及其制备方法
CN105609535B (zh) * 2016-01-15 2018-11-13 京东方科技集团股份有限公司 显示基板、显示装置及其制作方法
CN105720176A (zh) * 2016-02-19 2016-06-29 京东方科技集团股份有限公司 一种胶囊量子点和发光二极管、制备方法及显示装置
EP3611021B1 (en) * 2017-05-19 2023-06-21 Institute of Chemistry, Chinese Academy of Science Printing head module, system and method for printing laser light sources
KR20190043085A (ko) * 2017-10-17 2019-04-25 엘지디스플레이 주식회사 발광체, 이를 포함하는 발광 필름, 발광다이오드 및 발광장치
CN109671837B (zh) * 2017-10-17 2021-08-10 乐金显示有限公司 发光体以及包括其的发光膜、发光二极管和发光装置
US10181495B1 (en) * 2017-12-21 2019-01-15 X Development Llc Multi-color monolithic light-emitting diodes and methods for making the same
US10424614B2 (en) 2017-12-21 2019-09-24 X Development Llc Multi-color monolithic light-emitting diodes and methods for making the same
CN108269941B (zh) * 2018-01-23 2019-08-09 福州大学 一种基于垂直孔道sba-15限域的量子点发光二极管器件的制作方法
CN108735102B (zh) * 2018-05-26 2021-07-02 矽照光电(厦门)有限公司 一种柔性显示屏及其生产方法
KR102520554B1 (ko) * 2018-07-30 2023-04-13 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
CN110823845B (zh) * 2018-08-08 2021-05-25 京东方科技集团股份有限公司 光谱仪及其制作方法
US20220158108A1 (en) * 2019-02-27 2022-05-19 Sharp Kabushiki Kaisha Light-emitting element and display device using light-emitting element
KR102655061B1 (ko) * 2019-03-25 2024-04-09 삼성디스플레이 주식회사 양자점층 제조 방법, 양자점층을 포함하는 발광 소자 제조 방법, 및 양자점층을 포함하는 표시 장치
CN109765726B (zh) * 2019-03-27 2022-09-02 合肥京东方光电科技有限公司 量子点膜、制备方法、背光模组、驱动方法
CN110311049B (zh) * 2019-07-03 2021-09-28 京东方科技集团股份有限公司 量子点显示基板及其制作方法、显示装置
CN110931526B (zh) * 2019-11-25 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法与显示装置
US20220399397A1 (en) * 2020-03-03 2022-12-15 Hcp Technology Co., Ltd. Light emitting diode and preparation method therefor
CN111627962B (zh) * 2020-05-19 2024-05-14 武汉华星光电半导体显示技术有限公司 显示面板、显示装置以及显示面板的制作方法
CN113707037A (zh) * 2020-05-22 2021-11-26 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏及显示器
US11626534B2 (en) 2021-06-08 2023-04-11 Sharp Kabushiki Kaisha UV patternable matrix containing blue light emitting quantum dots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080041780A (ko) * 2006-11-08 2008-05-14 엘지디스플레이 주식회사 유기발광다이오드 및 이의 제조 방법
CN102280546A (zh) * 2010-05-25 2011-12-14 乐金显示有限公司 量子点发光二极管器件及具有其的显示设备
CN103091895A (zh) * 2013-01-22 2013-05-08 北京京东方光电科技有限公司 一种显示装置及制备方法
CN203250777U (zh) * 2013-05-27 2013-10-23 北京京东方光电科技有限公司 一种量子点发光二极管及显示器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412264B2 (ja) * 2005-09-12 2010-02-10 ソニー株式会社 表示装置および表示装置の製造方法
KR20080084235A (ko) * 2007-03-15 2008-09-19 삼성전자주식회사 퀀텀 도트를 이용한 무기 전계발광소자
US8013516B2 (en) * 2008-01-23 2011-09-06 Global Oled Technology Llc LED device having improved power distribution
US20100060553A1 (en) * 2008-08-21 2010-03-11 Zimmerman Scott M LED display utilizing freestanding epitaxial LEDs
JP2012119664A (ja) * 2010-11-12 2012-06-21 Kobe Steel Ltd 配線構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080041780A (ko) * 2006-11-08 2008-05-14 엘지디스플레이 주식회사 유기발광다이오드 및 이의 제조 방법
CN102280546A (zh) * 2010-05-25 2011-12-14 乐金显示有限公司 量子点发光二极管器件及具有其的显示设备
CN103091895A (zh) * 2013-01-22 2013-05-08 北京京东方光电科技有限公司 一种显示装置及制备方法
CN203250777U (zh) * 2013-05-27 2013-10-23 北京京东方光电科技有限公司 一种量子点发光二极管及显示器件

Also Published As

Publication number Publication date
CN103346154A (zh) 2013-10-09
US20160218141A1 (en) 2016-07-28
US9548331B2 (en) 2017-01-17
CN103346154B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2014190613A1 (zh) 量子点发光二极管及其制备方法、显示器件
US11849594B2 (en) Quantum dot emitting diode and quantum dot display device including the same
US8017952B2 (en) Inorganic electroluminescent diode and method of fabricating the same
US9064822B2 (en) Organic electroluminescent device and method of manufacturing the same
TW580776B (en) Organic LED device and manufacturing method of the same
CN102646695B (zh) 有机电致发光显示装置及其制造方法
US20080237611A1 (en) Electroluminescent device having improved contrast
KR102000591B1 (ko) 유기전계 발광소자 및 그 제조방법
EP3242341A1 (en) Array substrate and manufacturing method therefor, display panel and display device
US20160155970A1 (en) Vertical organic light-emitting transistor and organic led illumination apparatus having the same
KR102547915B1 (ko) 양자점 발광다이오드, 그 제조 방법 및 양자점 발광표시장치
KR20110127897A (ko) 양자점 발광 소자 및 이의 제조 방법
WO2015103837A1 (zh) 薄膜晶体管及其制作方法、阵列基板及有机发光显示面板
WO2018068388A1 (zh) Qled显示装置的制作方法
WO2019019614A1 (zh) 显示面板及其制作方法、显示装置
WO2017088807A1 (zh) 有机电致发光器件及其制作方法、显示装置
KR20190029470A (ko) 양자점 발광다이오드 및 이를 포함하는 양자점 발광표시장치
CN203250777U (zh) 一种量子点发光二极管及显示器件
WO2021059452A1 (ja) 電界発光素子及び電界発光装置
KR102584638B1 (ko) 표시 기판 및 이의 제조 방법
TW201438250A (zh) 顯示面板及其製作方法
KR20120016342A (ko) 양자점 발광 소자
JP7474345B2 (ja) 光電変換素子、表示装置、および光電変換素子の製造方法
US10700138B2 (en) Active illuminating display panels and manufacturing methods thereof comprising plural illuminating patterns providing plural color lights
US20230165056A1 (en) Display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14347849

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885642

Country of ref document: EP

Kind code of ref document: A1