WO2014189133A1 - X線ct装置 - Google Patents

X線ct装置 Download PDF

Info

Publication number
WO2014189133A1
WO2014189133A1 PCT/JP2014/063714 JP2014063714W WO2014189133A1 WO 2014189133 A1 WO2014189133 A1 WO 2014189133A1 JP 2014063714 W JP2014063714 W JP 2014063714W WO 2014189133 A1 WO2014189133 A1 WO 2014189133A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
detection
data
scan
column direction
Prior art date
Application number
PCT/JP2014/063714
Other languages
English (en)
French (fr)
Inventor
平岡 学
達郎 前田
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Publication of WO2014189133A1 publication Critical patent/WO2014189133A1/ja
Priority to US14/877,311 priority Critical patent/US10258296B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present embodiment as one aspect of the present invention relates to an X-ray CT (computed tomography) apparatus that generates image data.
  • X-ray CT computed tomography
  • an X-ray source irradiates a subject with a fan-shaped X-ray beam (beam), and the detected X-rays are arranged in accordance with the spread of the fan-shaped X-ray beam. Measurement is performed with an X-ray detector comprising an element.
  • transmission X-ray measurement is performed in a plurality of view directions while rotating the X-ray source and the detection element array around the subject.
  • Such measurement of transmitted X-rays is called a scan.
  • a tomographic image of the subject is reconstructed based on the measurement data of a plurality of views obtained by scanning.
  • Patent Documents 1 and 2 A technique for improving the spatial resolution of a tomographic image in the channel direction by devising the arrangement of a plurality of detection elements of one X-ray detector is disclosed (for example, see Patent Documents 1 and 2).
  • JP-A-6-169911 Japanese Patent Laid-Open No. 7-84052
  • the conventional technique cannot improve the spatial resolution of the tomographic image in the row direction (z-axis direction) of the detection elements.
  • the side view which shows the structure of a switch circuit.
  • the X-ray CT apparatus of the present embodiment includes a first X-ray source that emits first X-rays and a plurality of detection elements in the channel direction and the column direction, A first detector for detecting X-rays, a second X-ray source for emitting second X-rays, and a plurality of detection elements in a channel direction and a column direction, and detecting the second X-rays A scan is performed by controlling the second detector, the first and second X-ray sources, and the first and second detectors, and a plurality of detection elements including a plurality of detection elements in one or a column direction.
  • the first detection area of the first detection area wherein the detection areas corresponding to the first detection area and the plurality of second detection areas are shifted by n (0 ⁇ n ⁇ 1) of the detection areas in the column direction.
  • Scan execution means for acquiring data and second data of the second detection area The acquired first and second Having an image generating means for generating image data based on the over data.
  • the X-ray CT apparatus of the first embodiment has a configuration in which the rotational trajectories of two X-ray detectors are shifted in the column direction of the detection elements, and one detection element (count) of each X-ray detector is detected. It is an area.
  • FIG. 1 is a diagram showing a configuration example showing the X-ray CT apparatus of the first embodiment.
  • FIG. 2 is a perspective view showing a partial configuration (gantry) of the X-ray CT apparatus of the first embodiment.
  • the X-ray CT apparatus 1 is mainly composed of a scanner device 11 and an image processing device (console) 12.
  • the scanner device 11 of the X-ray CT apparatus 1 is usually installed in an examination room and configured to generate X-ray transmission data related to a patient O (subject).
  • the image processing apparatus 12 is usually installed in a control room adjacent to the examination room, and is configured to generate and display a tomographic image based on transmission data.
  • the scanner device 11 of the X-ray CT apparatus 1 includes a gantry 21, X-ray high voltage devices 22 A and 22 B, a bed 23, and a controller 24. Further, the gantry 21 is provided with X-ray tubes 31A and 31B, diaphragms 32A and 32B, X-ray detectors 33A and 33B, DAS (data acquisition system) 34A and 34B, and a rotating unit 35. The X-ray high voltage devices 22A and 22B may be held by the gantry 21.
  • the X-ray tube 31A (31B) generates X-rays by causing an electron beam to collide with a metal target in accordance with the tube voltage supplied from the X-ray high voltage device 22A (22B), and the X-ray detector 33A. Irradiate toward (33B). Fan beam X-rays and cone beam X-rays are formed by X-rays irradiated from the X-ray tube 31A (31B).
  • the X-ray tube 31A (31B) is supplied with electric power necessary for X-ray irradiation under the control of the controller 24 via the X-ray high voltage device 22A (22B).
  • the X-ray tube 31 ⁇ / b> A and the X-ray tube 31 ⁇ / b> B are illustrated as having a view shifted by 90 degrees, but the present invention is not limited to this case.
  • the diaphragm 32A (32B) adjusts the irradiation range in the slice direction (z-axis direction) of X-rays irradiated from the X-ray tube 31A (31B) by a diaphragm driving device (not shown). That is, the X-ray irradiation range in the slice direction can be changed by adjusting the aperture of the diaphragm 32A (32B) with a diaphragm driving device (not shown).
  • the X-ray detector 33A (33B) is a two-dimensional array type detector (also referred to as a multi-slice detector) having a matrix, that is, a plurality of detection elements in the channel direction and a plurality of detection elements in the slice direction.
  • the channel direction of the X-ray detector 33A (33B) is curved in consideration of the spread angle of the X-ray beam from the X-ray tube 31A (31B).
  • the overall shape of the X-ray detector 33A (33B) is determined by the application and may be a flat plate shape. X-rays transmitted through the patient O are detected at regular intervals by the X-ray detector 33A (33B), and an analog value is output for each detection element.
  • the X-ray detector 33B is arranged so as to be shifted by n (0 ⁇ n ⁇ 1) detection elements in the column direction with respect to the X-ray detector 33A.
  • n ⁇ n ⁇ 1 detection elements in the column direction with respect to the X-ray detector 33A.
  • the case where the X-ray detector 33B is arranged so as to be shifted by half the detection element (1/2) in the column direction with respect to the X-ray detector 33A will be described unless otherwise specified.
  • FIG. 3 is a diagram illustrating a configuration example of the X-ray detectors 33A and 33B.
  • FIG. 3 shows a case where the X-ray detectors 33A and 33B are two-dimensional array type detectors, and shows detection elements of the multi-row / multi-channel X-ray detectors 33A and 33B in the same view.
  • the X-ray detector 33 ⁇ / b> B is arranged so as to be shifted from the X-ray detector 33 ⁇ / b> A by 1 ⁇ 2 detection element (length d) in the column direction.
  • the rotation trajectories of the X-ray detectors 33A and 33B are shifted in the column direction by 1/2 the detection element (length d) (see FIG. 2).
  • the X-ray CT apparatus 1 By adopting such a configuration of the X-ray detectors 33A and 33B, the X-ray CT apparatus 1 (shown in FIG. 1) can transmit transmission data in units of 1 ⁇ 2 elements in the column direction twice in each view. Can be detected.
  • the detection elements are illustrated as being arranged in a plane, but the present invention is not limited to this case.
  • the DAS 34 ⁇ / b> A detects the detection region (in the first embodiment) of the X-ray detector 33 ⁇ / b> A (33 ⁇ / b> B) by an integral value (not shown) during a certain time until it is reset. X-rays incident on one detection element) are detected. The resulting analog value is A / D converted and read as digital detection data (raw data).
  • the rotating unit 35 is configured so that the X-ray tube 31A (31B) and the X-ray detector 33A (33B) face each other, the X-ray tube 31A, 31B, the diaphragms 32A, 32B, the X-ray detectors 33A, 33B, and DAS 34A and 34B are held together.
  • the rotating unit 35 is a patient O integrated with the X-ray tubes 31A and 31B, the diaphragms 32A and 32B, the X-ray detectors 33A and 33B, and the DASs 34A and 34B under the control of the controller 24 via a rotation driving device (not shown). It is configured to be able to rotate around.
  • a direction parallel to the rotation center axis of the rotation unit 35 is defined as a z-axis direction, and a plane orthogonal to the z-axis direction is defined as an x-axis direction and a y-axis direction.
  • the X-ray high voltage device 22A (22B) supplies power necessary for X-ray irradiation to the X-ray tube 31A (31B) under the control of the controller 24.
  • the bed 23 can place a patient O thereon.
  • the couch 23 is moved up and down along the y-axis direction and moved in and out along the z-axis direction under the control of the controller 24 via a couch driving device (not shown).
  • the central part of the rotating part 35 has an opening, and the patient O placed on the bed 23 in the opening is inserted.
  • the controller 24 includes a CPU (central processing unit) and a memory (not shown).
  • the controller 24 controls the gantry 21, the X-ray high voltage devices 22A and 22B, the bed 23, and the like according to an instruction from the image processing apparatus 12 to execute scanning.
  • the image processing apparatus 12 of the X-ray CT apparatus 1 is configured based on a computer, and can communicate with a network (local area network) N.
  • the image processing apparatus 12 is mainly composed of basic hardware such as a CPU 41, a memory 42, an HDD (hard disc drive) 43, an input device 44, a display device 45, an IF (interface) 46, and a scan control unit 47. Is done.
  • the CPU 41 is interconnected to each hardware component constituting the image processing device 12 via a bus as a common signal transmission path.
  • the image processing apparatus 12 may include a storage medium drive 48.
  • the CPU 41 is a control device having an integrated circuit (LSI) configuration in which an electronic circuit made of a semiconductor is enclosed in a package having a plurality of terminals.
  • LSI integrated circuit
  • the CPU 41 executes a program stored in the memory 42.
  • the CPU 41 reads a program stored in the HDD 43, a program transferred from the network N and installed in the HDD 43, or a program read from the recording medium installed in the storage medium drive 48 and installed in the HDD 43. It is loaded into the memory 42 and executed.
  • the memory 42 is a storage device including a ROM (read only memory) and a RAM (random access memory).
  • the memory 42 stores IPL (initial program loader), BIOS (basic input / output system), and data, and is used for temporary storage of the work memory of the CPU 41 and data.
  • the HDD 43 is a storage device having a configuration in which a metal disk coated or vapor-deposited with a magnetic material is not removable and is built in.
  • the HDD 43 is a storage device that stores programs installed in the image processing apparatus 12 (including application programs, OS (operating system), and the like) and data.
  • the OS it is also possible to cause the OS to provide a GUI (graphical user interface) that can perform basic operations using the input device 44 by using a lot of graphics for displaying information on the display device 45 to an operator such as an operator. it can.
  • GUI graphical user interface
  • the input device 44 is a pointing device that can be operated by an operator, and an input signal according to the operation is sent to the CPU 41.
  • the display device 45 includes an image composition circuit (not shown), a VRAM (video random access memory), a display, and the like.
  • the image synthesizing circuit generates synthesized data obtained by synthesizing character data of various parameters with image data.
  • the VRAM expands the composite data on the display.
  • the display is configured by a liquid crystal display, a CRT (cathode ray tube) or the like and displays an image.
  • the IF 46 is configured by a connector that matches the parallel connection specification and the serial connection specification.
  • the IF 46 has a function of performing communication control according to each standard and connecting to the network N through a telephone line or the like, thereby connecting the X-ray CT apparatus 1 to the network N network.
  • the scan control unit 47 controls the controller 24 to execute a conventional scan or a helical scan, and corresponds to each of the plurality of detection elements of the X-ray detector 33A and the plurality of detection elements of the X-ray detector 33B.
  • the first raw data (data before preprocessing) and the second raw data in which the detection elements are shifted by 1/2 of the detection elements in the column direction (length d shown in FIG. 2) are converted into DAS 34A and 34B. (Shown in FIG. 1).
  • the scan control unit 47 When performing a full scan (360 degrees) as a conventional scan, the scan control unit 47 rotates the rotation unit 35 by 360 degrees via the controller 24, and transmits transmission data for 360 degrees to the X-ray detectors 33A and 33B, respectively. Is detected. On the other hand, when executing the half scan (180 degrees + fan angle), the scan control unit 47 rotates the rotation unit 35 by 180 degrees via the controller 24 and causes the X-ray detectors 33A and 33B to respectively rotate 180 degrees. Allow transmission data to be detected.
  • FIG. 4 is a block diagram showing functions of the X-ray CT apparatus 1 of the first embodiment.
  • the CPU 41 of the image processing apparatus 12 When the CPU 41 of the image processing apparatus 12 executes the program, it functions as a preprocessing unit 51 and an image generation unit 52 as shown in FIG.
  • the means 51 and 52 will be described by taking an example in which they function as software. However, some or all of the means 51 and 52 may be provided in the image processing apparatus 12 as hardware. Good.
  • the preprocessing unit 51 performs logarithmic conversion processing and correction processing (preprocessing) such as sensitivity correction on the first raw data and the second raw data acquired by the scan control unit 47 (shown in FIG. 1).
  • the first projection data (data before reconstruction) and the second projection data are generated and stored in a storage device such as the HDD 43 (shown in FIG. 1).
  • the preprocessing means 51 has a function of performing scattered radiation removal processing on the preprocessed first projection data and second projection data.
  • the image generation unit 52 generates image data based on the first projection data and the second projection data generated by the preprocessing unit 51 by an image reconstruction processing method such as a successive approximation method or a Fourier calculation method.
  • an image reconstruction processing method such as a successive approximation method or a Fourier calculation method.
  • Has the function of The image generation unit 52 has a function of causing the display device 45 to display the generated image data.
  • the image generating means 52 first, X-rays are incident on overlapping portions in the column direction of the X-ray detectors 33A and 33B (shown in FIG. 1) in the same view by the scan control unit 47 (shown in FIG. 1).
  • first projection data and second projection data of the same view are collected.
  • the image generation means 52 applies the following formulas (1) to (3) to the detection value for each element obtained by dividing one detection element into two in the column direction based on the first projection data and the second projection data.
  • calculation is performed to generate third projection data, and image data is generated based on the third projection data of a plurality of views.
  • FIG. 5 shows some detection elements e11 to e23 of the X-ray detector 33A. According to FIG. 5, X-rays are detected in units of the detection elements e11 to e23.
  • FIG. 6 and 7 show a part of the detection elements e11 to e23 of the X-ray detector 33A shown in FIG. 5, and a part of the detection elements E11 of the X-ray detector 33B when the X-ray detector 33A has the same view.
  • the X-ray detector 33B is arranged so as to be shifted by 1/3 of the detection elements in the column direction with respect to the X-ray detector 33A.
  • the X-ray detector 33 ⁇ / b> B is arranged so as to be shifted by 1/2 of the detection elements (length d) in the column direction with respect to the X-ray detector 33 ⁇ / b> A.
  • the detection element e11 (shown on the left side of FIGS. 6 and 7) of the X-ray detector 33A is divided into two in the column direction and elements P11 and P21 (on the right side of FIGS. 6 and 7).
  • the detection element e21 (shown on the left side of FIGS. 6 and 7) is divided into two in the column direction to form elements P31 and P41 (shown on the right side of FIGS. 6 and 7). Can do. Since the value of the element P11 at the extreme end in the column direction (shown on the right side of FIGS.
  • the calculated value of the element P21 is calculated from the detection value of the detection element e11 by the following formula ( 1)
  • the value of the element P31 can be calculated by the following equation (2) from the detection value of the detection element E11 and the value of the element P21
  • the element P41 can be calculated from the detection value of the detection element e21 and the calculation value of the element P31.
  • the image generating means 52 secondly scans the X-ray detectors 33 ⁇ / b> A and 33 ⁇ / b> B (shown in FIG. 1) in the same direction by the scan control unit 47 (shown in FIG. 1).
  • the image generation means 52 calculates the detection value for each element obtained by dividing one detection element (voxel) into two in the column direction based on the first volume data and the second volume data. ) To generate third volume data, and image data is generated based on the third volume data.
  • the image generation means 52 applies the first projection data of the plurality of views generated by the preprocessing means 51 when the conventional scan or the helical scan is executed by the scan control unit 47 (shown in FIG. 1). 1st image data is produced
  • the image generation means 52 includes a first volume data based on the first projection data of a plurality of views generated by the preprocessing means 51 and a plurality of pieces generated by the preprocessing means 51. Second volume data based on the second projection data of the view may be generated, and the third volume data may be generated by adding the first volume data and the second volume data. In that case, image data is generated based on the third volume data.
  • the spatial resolution in the column direction of the detection elements can be improved.
  • the X-ray CT apparatus of the second embodiment has a configuration in which the rotation trajectories of the two X-ray detectors coincide with each other.
  • the detection element is one detection region.
  • FIG. 8 is a diagram showing a configuration example showing the X-ray CT apparatus of the first embodiment.
  • FIG. 9 is a perspective view showing a partial configuration (gantry) of the X-ray CT apparatus of the second embodiment.
  • the X-ray CT apparatus 1a is mainly composed of a scanner apparatus 11a and an image processing apparatus 12.
  • the scanner device 11a of the X-ray CT apparatus 1a is usually installed in an examination room and configured to generate X-ray transmission data regarding the patient O.
  • the image processing apparatus 12 is usually installed in a control room adjacent to the examination room, and is configured to generate and display a tomographic image based on transmission data.
  • the scanner device 11a of the X-ray CT apparatus 1a includes a gantry 21a, X-ray high voltage devices 22A and 22C, a bed 23, and a controller 24. Further, the gantry 21a is provided with X-ray tubes 31A and 31C, diaphragms 32A and 32C, X-ray detectors 33A and 33C, DAS 34A and 34C, a rotation unit 35, and addition / switch circuits 36A and 36C. The X-ray high voltage devices 22A and 22C may be held by the gantry 21a.
  • the X-ray tube 31C generates X-rays by causing an electron beam to collide with a metal target in accordance with the tube voltage supplied from the X-ray high voltage device 22C, and irradiates the X-ray detector 33C. Fan beam X-rays and cone beam X-rays are formed by X-rays emitted from the X-ray tube 31C.
  • the X-ray tube 31C is supplied with electric power necessary for X-ray irradiation under the control of the controller 24 via the X-ray high voltage device 22C.
  • the X-ray tube 31 ⁇ / b> A and the X-ray tube 31 ⁇ / b> C are illustrated as having a view shifted by 90 degrees, but this is not a limitation.
  • the diaphragm 32C adjusts the irradiation range in the slice direction (z-axis direction) of X-rays irradiated from the X-ray tube 31C by a diaphragm driving device (not shown).
  • the X-ray irradiation range in the slice direction can be changed by adjusting the aperture of the diaphragm 32C with a diaphragm driving device (not shown).
  • the X-ray detector 33C is a two-dimensional array type detector having a matrix, that is, a plurality of detection elements in the channel direction and a plurality of detection elements in the slice direction.
  • the channel direction of the X-ray detector 33C is curved in consideration of the spread angle of the X-ray beam from the X-ray tube 31C. Note that the overall shape of the X-ray detector 33C depends on the application and may be a flat plate shape.
  • the DAS 34C detects X-rays incident on each detection region of the X-ray detector 33C by an integrator (not shown) during a fixed time until reset.
  • the resulting analog value is A / D converted and read as digital detection data (raw data).
  • the addition / switch circuit 36A (36C) is disposed between the X-ray detector 33A (33C) and the DAS 34A (34C).
  • FIG. 10 is a side view showing the configuration of the addition / switch circuit 36A (36C).
  • an addition / switch circuit 36A (36C) is provided between the subdivided detection element of the X-ray detector 33A (33C) and the DAS 34A (34C).
  • the detection signal of the detection element f11 of the X-ray detector 33A (33C) may be directly input to the DAS 34A (34C) ( (Detection area: 1 detection element), added to the detection signal of the adjacent detection element f12 and input to the DAS 34A (34C) (detection area: 2 detection elements).
  • the detection signal of the detection element f12 of the X-ray detector 33A (33C) is directly input to the DAS 34A (34C) under the control of the controller 24 (shown in FIG. 8) via the addition / switch circuit 36A (36C).
  • Detection area: 1 detection element added to the detection signal of the adjacent detection element f11 and input to the DAS 34A (34C) (detection area: 2 detection elements), added to the detection signal of the adjacent detection element f13 Or input to the DAS 34A (34C) (detection area: 2 detection elements).
  • FIG. 11 is a diagram for explaining a method for improving the spatial resolution in the column direction in the X-ray CT apparatus 1a of the second embodiment.
  • FIG. 11 shows some detection elements f11 to f44 of the X-ray detector 33A and some detection elements F11 to F44 of the X-ray detector 33C when the X-ray detector 33A and the view are the same.
  • the two detection elements f11 and f21 of the X-ray detector 33A are used as detection areas, and the detection elements f11 and f21 are detected.
  • Detection signals (the detection element f11 is “0” because it is outside the overlapping portion R), the detection elements f11 and f21 are regarded as one detection element e11 (shown in FIG. 7) and the first raw data
  • the detection elements F21 and F31 are combined into one detection element E11.
  • the second raw data can be generated assuming that (shown in FIG. 7). That is, in the X-ray CT apparatus 1a of the second embodiment, the rotation trajectories of the two X-ray detectors 33A and 33C are not matched, but the rotation trajectories of the two X-ray detectors are shifted.
  • the spatial resolution in the column direction can be improved to twice that of the detection region in the same manner as in the X-ray CT apparatus 1 of one embodiment.
  • FIG. 12 is a diagram for explaining a method for improving the spatial resolution in the channel direction in the X-ray CT apparatus 1a of the second embodiment.
  • FIG. 12 shows some detection elements f11 to f44 of the X-ray detector 33A and some detection elements F11 to F44 of the X-ray detector 33C when the X-ray detector 33A and the view are the same.
  • the two detection elements f11 and f12 of the X-ray detector 33A are used as detection areas, and the detection elements f11 and f12 are detected.
  • the detection signal (“0” because the detection element f11 is outside the overlapping portion R)
  • the first raw data can be generated by regarding the detection elements f11 and f12 as one detection element
  • the detection elements F12 and F13 are regarded as one detection element, and the second raw data Can be generated.
  • the rotation trajectories of the two X-ray detectors 33A and 33C are not matched, but the rotation trajectories of the two X-ray detectors are shifted.
  • the spatial resolution in the channel direction can be improved to twice that of the detection region.
  • FIG. 11 and FIG. 12 it has been described that two detection elements are used as one detection region and X-rays are detected in units of two detection elements.
  • the present invention is not limited to this case.
  • the rotating unit 35 has the X-ray tubes 31A and 31C, the aperture 32A, and the X-ray tube 31A (31C) and the X-ray detector 33A (33C) facing each other.
  • 32C, X-ray detectors 33A and 33C, DAS 34A and 34C, and addition / switch circuits 36A and 36C are held together.
  • the rotating unit 35 is controlled by the controller 24 via a rotation drive device (not shown), and the X-ray tubes 31A and 31C, the diaphragms 32A and 32C, the X-ray detectors 33A and 33C, the DASs 34A and 34C, and the addition / switch circuit 36A and 36C can be rotated around the patient O as a unit.
  • a direction parallel to the rotation center axis of the rotation unit 35 is defined as a z-axis direction, and a plane orthogonal to the z-axis direction is defined as an x-axis direction and a y-axis direction.
  • the X-ray high voltage device 22C supplies electric power necessary for X-ray irradiation to the X-ray tube 31C under the control of the controller 24.
  • FIG. 13 is a block diagram showing functions of the X-ray CT apparatus 1a of the second embodiment.
  • the CPU 41 of the image processing apparatus 12 has a preprocessing means 51 and an image generation means 52 as shown in FIG.
  • symbol is attached
  • the spatial resolution in the column direction of the detector can be improved.
  • the spatial resolution in the channel direction of the detector can be improved even in the two-tube system.
  • the X-ray CT apparatuses 1 and 1a of the present embodiment may be photon counting (photon counting) type X-ray CT apparatuses.
  • the X-ray detectors 33A to 33C detect the X-rays transmitted through the patient O as X-ray photons (particles) by the X-ray detectors 33A to 33C at regular intervals, and an analog value corresponding to the photon energy. Is output for each detection element (pixel).
  • the DASs 34A to 34C receive X incident on the detection regions (one pixel in the first embodiment) of the X-ray detectors 33A to 33C by a plurality of counters (not shown) during a fixed time until reset.
  • the number of line particles is counted for each energy region corresponding to the number of stages of the counter.
  • the resulting count value is read as digital amount detection data (raw data) from a plurality of counters. Data reading is performed for each pixel in the ASIC layer.
  • the X-ray CT apparatuses 1 and 1a are two-tube systems.
  • the X-ray CT apparatus may be a multi-tube system such as a three-tube system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 X線CT装置は、第1のX線源及び第1の検出器と、第2のX線源及び第2の検出器と、スキャン実行手段と、画像生成手段と、を有する。スキャン実行手段は、第1及び第2のX線源と第1及び第2の検出器とを制御してスキャンを実行し、1又は列方向に複数の検出素子からなる複数の第1検出領域及び複数の第2検出領域とでそれぞれ対応する検出領域同士が列方向に検出領域のn(0<n<1)個分ずれた、第1検出領域の第1のデータと第2検出領域の第2のデータとを取得する。画像生成手段は、取得された第1及び第2のデータに基づいて画像データを生成する。

Description

X線CT装置
 本発明の一態様としての本実施形態は、画像データを生成するX線CT(computed tomography)装置に関する。
 X線CT(computed tomography)においては、X線源から扇状のX線ビーム(beam)を被検体に照射し、その透過X線を、扇状X線ビームの広がりに合わせて配列された複数の検出素子からなるX線検出器で測定する。
 そして、透過X線の測定は、X線源と検出素子列を被検体の周囲を回転させながら複数のビュー(view)方向で行なわれる。このような透過X線の測定はスキャン(scan)と呼ばれている。そして、スキャンによって得られた複数ビューの測定データに基づいて、被検体の断層像が再構成される。
 1個のX線検出器の複数の検出素子の配列を工夫することで、チャンネル方向における断層像の空間分解能を向上させる技術が開示されている(例えば、特許文献1,2参照。)。
特開平6-169911号公報 特開平7-84052号公報
 しかしながら、従来技術では、検出素子の列方向(z軸方向)における断層像の空間分解能を向上させることはできない。
 また、従来技術では、2管球システムにおいて、チャンネル方向における断層像の空間分解能を向上させるものがない。
第1実施形態のX線CT装置を示す構成例を示す図。 第1実施形態のX線CT装置の一部構成(ガントリ)を示す斜視図。 X線検出器の構成例を示す図。 第1実施形態のX線CT装置の機能を示すブロック図。 列方向の空間分解能を説明するための図。 列方向の空間分解能を説明するための図。 列方向の空間分解能を説明するための図。 第2実施形態のX線CT装置を示す構成例を示す図。 第2実施形態のX線CT装置の一部構成(ガントリ)を示す斜視図。 スイッチ回路の構成を示す側面図。 第2実施形態のX線CT装置において、列方向の空間分解能を向上させるための方法を説明するための図。 第2実施形態のX線CT装置において、チャンネル方向の空間分解能を向上させるための方法を説明するための図。 第2実施形態のX線CT装置の機能を示すブロック図。
実施形態
 本実施形態のX線CT装置について、添付図面を参照して説明する。
 本実施形態のX線CT装置は、上述した課題を解決するために、第1のX線を発する第1のX線源と、チャンネル方向及び列方向に複数の検出素子を備え、前記第1のX線を検出する第1の検出器と、第2のX線を発する第2のX線源と、チャンネル方向及び列方向に複数の検出素子を備え、前記第2のX線を検出する第2の検出器と、前記第1及び第2のX線源と前記第1及び第2の検出器とを制御してスキャンを実行し、1又は列方向に複数の検出素子からなる複数の第1検出領域及び複数の第2検出領域とでそれぞれ対応する検出領域同士が前記列方向に前記検出領域のn(0<n<1)個分ずれた、前記第1検出領域の第1のデータと前記第2検出領域の第2のデータとを取得するスキャン実行手段前記取得された第1及び第2のデータに基づいて画像データを生成する画像生成手段と、を有する。
 (第1実施形態)
 第1実施形態のX線CT装置は、2個のX線検出器の回転軌道を検出素子の列方向にずらす構成を有し、それぞれのX線検出器の1検出素子を1検出(計数)領域とするものである。
 図1は、第1実施形態のX線CT装置を示す構成例を示す図である。図2は、第1実施形態のX線CT装置の一部構成(ガントリ)を示す斜視図である。
 図1及び図2は、第1実施形態の2管球システムを有するX線CT装置1を示す。X線CT装置1は、大きくは、スキャナ装置11及び画像処理装置(コンソール)12によって構成される。X線CT装置1のスキャナ装置11は、通常は検査室に設置され、患者O(被検体)に関するX線の透過データを生成するために構成される。一方、画像処理装置12は、通常は検査室に隣接する制御室に設置され、透過データに基づく断層像の生成・表示を行なうために構成される。
 X線CT装置1のスキャナ装置11は、ガントリ(架台)21、X線高電圧装置22A,22B、寝台23、及びコントローラ24を備える。さらに、ガントリ21は、X線管31A,31B、絞り32A,32B、X線検出器33A,33B、DAS(data acquisition system)34A,34B、及び回転部35を設ける。なお、X線高電圧装置22A,22Bは、ガントリ21に保持されるものであってもよい。
 X線管31A(31B)は、X線高電圧装置22A(22B)から供給された管電圧に応じて金属製のターゲットに電子線を衝突させることでX線を発生させ、X線検出器33A(33B)に向かって照射する。X線管31A(31B)から照射されるX線によって、ファンビームX線やコーンビームX線が形成される。X線管31A(31B)は、X線高電圧装置22A(22B)を介したコントローラ24による制御によって、X線の照射に必要な電力が供給される。ここで、X線管31Aと、X線管31Bとは、ビューが90度ずれているものとして図示するが、その場合に限定するものではない。
 絞り32A(32B)は、絞り駆動装置(図示しない)によって、X線管31A(31B)から照射されるX線のスライス方向(z軸方向)の照射範囲を調整する。すなわち、絞り駆動装置(図示しない)によって絞り32A(32B)の開口を調整することによって、スライス方向のX線照射範囲を変更できる。
 X線検出器33A(33B)は、マトリクス状、すなわち、チャンネル方向に複数、及びスライス方向に複数の検出素子を有する2次元アレイ型の検出器(マルチスライス型検出器ともいう。)である。しかも、X線検出器33A(33B)のチャンネル方向は、特に、X線管31A(31B)からのX線ビームの広がり角度を考慮して湾曲を持たせている。なお、X線検出器33A(33B)の全体の形状は、用途によって決まり、平板状であってもよい。患者Oを透過したX線は、X線検出器33A(33B)により一定時間毎に検出され、アナログ値が検出素子毎に出力される。
 X線検出器33Bは、X線検出器33Aに対して列方向に、検出素子のn(0<n<1)個分ずれるように配置される。以下、特に言及しない限り、X線検出器33Bが、X線検出器33Aに対して列方向に、検出素子の半個分(1/2個分)ずれるように配置される場合について説明する。
 図3は、X線検出器33A,33Bの構成例を示す図である。
 図3は、X線検出器33A,33Bが2次元アレイ型の検出器である場合であって、同一ビューにおける、多列・多チャンネルのX線検出器33A,33Bの検出素子をそれぞれ示す。図3に示すように、X線検出器33Bは、X線検出器33Aに対して列方向に、検出素子の1/2個分(長さd)ずれるように配置される。すなわち、X線検出器33A,33Bの回転軌道は列方向に検出素子の1/2個分(長さd)ずれる(図2参照)。
 このようなX線検出器33A,33Bの構成とすることで、X線CT装置1(図1に図示)は、各ビューにおいて、列方向に2倍で1/2素子単位での透過データを検出することができる。
 なお、図3に示すX線検出器33A,33Bにおいて、便宜上、検出素子が平面的に配置されるものとして図示されるが、その場合に限定されるものではない。
 図1の説明に戻って、DAS34A(34B)は、リセットされるまでの一定時間の間に、積分値(図示しない)により、X線検出器33A(33B)の検出領域(第1実施形態では1検出素子)に入射したX線を検出する。その結果としてのアナログ値はA/D変換され、デジタル量の検出データ(生データ)として読み出される。
 回転部35は、X線管31A(31B)とX線検出器33A(33B)とを対向させた状態で、X線管31A,31B、絞り32A,32B、X線検出器33A,33B、及びDAS34A,34Bを一体として保持する。回転部35は、回転駆動装置(図示しない)を介したコントローラ24による制御によって、X線管31A,31B、絞り32A,32B、X線検出器33A,33B、及びDAS34A,34Bを一体として患者Oの周りに回転できるように構成されている。なお、回転部35の回転中心軸と平行な方向をz軸方向、そのz軸方向に直交する平面をx軸方向、y軸方向で定義する。
 X線高電圧装置22A(22B)は、コントローラ24による制御によって、X線の照射に必要な電力をX線管31A(31B)に供給する。
 寝台23は、患者Oを載置可能である。寝台23は、寝台駆動装置(図示しない)を介したコントローラ24による制御によって、y軸方向に沿って昇降動されると共に、z軸方向に沿って進入/退避動される。回転部35の中央部分は開口を有し、その開口部の寝台23に載置された患者Oが挿入される。
 コントローラ24は、図示しないCPU(central processing unit)及びメモリ等を備える。コントローラ24は、画像処理装置12からの指示によって、ガントリ21、X線高電圧装置22A,22B、及び寝台23等の制御を行なってスキャンを実行させる。
 X線CT装置1の画像処理装置12は、コンピュータをベースとして構成されており、ネットワーク(local area network)Nと相互通信可能である。画像処理装置12は、大きくは、CPU41、メモリ42、HDD(hard disc drive)43、入力装置44、表示装置45、IF(interface)46、及びスキャン制御部47等の基本的なハードウェアから構成される。CPU41は、共通信号伝送路としてのバスを介して、画像処理装置12を構成する各ハードウェア構成要素に相互接続されている。なお、画像処理装置12は、記憶媒体ドライブ48を具備する場合もある。
 CPU41は、半導体で構成された電子回路が複数の端子を持つパッケージに封入されている集積回路(LSI)の構成をもつ制御装置である。医師等の操作者によって入力装置44が操作等されることにより指令が入力されると、CPU41は、メモリ42に記憶しているプログラムを実行する。又は、CPU41は、HDD43に記憶しているプログラム、ネットワークNから転送されてHDD43にインストールされたプログラム、又は記憶媒体ドライブ48に装着された記録媒体から読み出されてHDD43にインストールされたプログラムを、メモリ42にロードして実行する。
 メモリ42は、ROM(read only memory)及びRAM(random access memory)等を含む記憶装置である。メモリ42は、IPL(initial program loader)、BIOS(basic input/output system)及びデータを記憶したり、CPU41のワークメモリやデータの一時的な記憶に用いられたりする。
 HDD43は、磁性体を塗布又は蒸着した金属のディスクが着脱不能で内蔵されている構成をもつ記憶装置である。HDD43は、画像処理装置12にインストールされたプログラム(アプリケーションプログラムの他、OS(operating system)等も含まれる)や、データを記憶する記憶装置である。また、OSに、術者等の操作者に対する表示装置45への情報の表示にグラフィックを多用し、基礎的な操作を入力装置44によって行なうことができるGUI(graphical user interface)を提供させることもできる。
 入力装置44は、操作者によって操作が可能なポインティングデバイスであり、操作に従った入力信号がCPU41に送られる。
 表示装置45は、図示しない画像合成回路、VRAM(video random access memory)、及びディスプレイ等を含んでいる。画像合成回路は、画像データに種々のパラメータの文字データ等を合成した合成データを生成する。VRAMは、合成データをディスプレイに展開する。ディスプレイは、液晶ディスプレイやCRT(cathode ray tube)等によって構成され画像を表示する。
 IF46は、パラレル接続仕様やシリアル接続仕様に合わせたコネクタによって構成される。IF46は、各規格に応じた通信制御を行ない、電話回線等を通じてネットワークNに接続することができる機能を有しており、これにより、X線CT装置1をネットワークN網に接続させる。
 スキャン制御部47は、コントローラ24を制御してコンベンショナルスキャン又はヘリカルスキャンを実行させる機能と、X線検出器33Aの複数の検出素子と、X線検出器33Bの複数の検出素子とでそれぞれ対応する検出素子同士が列方向に検出素子の1/2個分(図2に図示する長さd)ずれた第1の生データ(前処理前のデータ)及び第2の生データを、DAS34A,34B(図1に図示)からそれぞれ取得する。
 スキャン制御部47は、コンベンショナルスキャンでフルスキャン(360度)を実行する場合、コントローラ24を介して回転部35を360度回転させて、X線検出器33A,33Bにそれぞれ360度分の透過データを検出させる。一方、スキャン制御部47は、ハーフスキャン(180度+ファン角)を実行する場合、コントローラ24を介して回転部35を180度回転させて、X線検出器33A,33Bにそれぞれ180度分の透過データを検出させる。
 図4は、第1実施形態のX線CT装置1の機能を示すブロック図である。
 画像処理装置12のCPU41がプログラムを実行することによって、図4に示すように、前処理手段51及び画像生成手段52として機能する。手段51,52は、ソフトウェア的に機能する場合を例に挙げて説明するが、それら手段51,52の一部又は全部は、画像処理装置12にハードウェア的にそれぞれ設けられるものであってもよい。
 前処理手段51は、スキャン制御部47(図1に図示)によって取得された第1の生データ及び第2の生データに対して対数変換処理や、感度補正等の補正処理(前処理)を行なって第1の投影データ(再構成前のデータ)及び第2の投影データをそれぞれ生成してHDD43(図1に図示)等の記憶装置に記憶させる機能を有する。また、前処理手段51は、前処理された第1の投影データ及び第2の投影データに対して散乱線の除去処理を行なう機能を有する。
 画像生成手段52は、前処理手段51によって生成された、第1の投影データ及び第2の投影データに基づいて、逐次近似法やフーリエ計算法等の画像再構成処理法により、画像データを生成する機能を有する。画像生成手段52は、生成された画像データを表示装置45に表示させる機能を有する。
 画像生成手段52は、第1に、スキャン制御部47(図1に図示)によって、同一ビューにおけるX線検出器33A,33B(図1に図示)の列方向の重複部分にX線が入射されるように絞り32A,32B(図1に図示)が制御されるコンベンショナルスキャンが実行される場合、同一ビューの第1の投影データ及び第2の投影データを収集する。そして、画像生成手段52は、第1の投影データ及び第2の投影データに基づいて、1検出素子を列方向に2分割したエレメント毎の検出値を下記式(1)~(3)を適用して演算して第3の投影データを生成し、複数ビューの第3の投影データに基づいて、画像データを生成する。
 図5、図6、及び図7は、列方向の空間分解能を説明するための図である。
 図5は、X線検出器33Aの一部の検出素子e11~e23を示す。図5によれば、各検出素子e11~e23の単位でX線が検出される。
 図6及び図7は、図5に示すX線検出器33Aの一部の検出素子e11~e23と、X線検出器33Aとビューが同じ場合のX線検出器33Bの一部の検出素子E11~E13とを示す。図6では、X線検出器33Bが、X線検出器33Aに対して列方向に、検出素子の1/3個分ずれるように配置されている。一方、図7では、X線検出器33Bが、X線検出器33Aに対して列方向に、検出素子の1/2個分(長さd)ずれるように配置されている。
 図6及び図7によれば、X線検出器33Aの検出素子e11(図6及び図7の左側に図示)を列方向に2分割してエレメントP11,P21(図6及び図7の右側に図示)を形成することができ、検出素子e21(図6及び図7の左側に図示)を列方向に2分割してエレメントP31,P41(図6及び図7の右側に図示)を形成することができる。そして、列方向に最端部のエレメントP11(図6及び図7の右側に図示)の値が重複部分R外であるから、検出素子e11の検出値からエレメントP21の演算値が次の式(1)で演算でき、検出素子E11の検出値とエレメントP21の値とからエレメントP31の値が次の式(2)で演算でき、検出素子e21の検出値とエレメントP31の演算値とからエレメントP41の値が次の式(3)で演算できる。
 エレメントP21の演算値
   =検出素子e11の検出値              …(1)
 エレメントP31の演算値
   =検出素子E11の検出値-エレメントP21の演算値 …(2)
 エレメントP41の演算値
   =検出素子e21の検出値とエレメントP31の演算値 …(3)
 なお、図6に示す場合(n=1/3)は、エレメントP11,P21(図6の右側に図示)の大きさが一致しないが、図7に示す場合(n=1/2)は、エレメントP11,P21(図7の右側に図示)の大きさが一致する。図6に示す場合であっても図7に示す場合であっても検出素子の列方向の空間分解能を向上できるという効果が得られる。
 図4の説明に戻って、画像生成手段52は、第2に、スキャン制御部47(図1に図示)によって、同一ビューにおけるX線検出器33A,33B(図1に図示)の列方向の重複部分にX線が入射されるように絞り32A,32B(図1に図示)が制御されるコンベンショナルスキャンが実行される場合、第1の投影データに基づく第1のボリュームデータと第2の投影データに基づく第2のボリュームデータとを生成する。そして、画像生成手段52は、第1のボリュームデータ及び第2のボリュームデータに基づいて、1検出素子(ボクセル)を列方向に2分割したエレメント毎の検出値を上記式(1)~(3)を応用して演算して第3のボリュームデータを生成し、第3のボリュームデータに基づいて、画像データを生成する。
 画像生成手段52は、第3に、スキャン制御部47(図1に図示)によって、コンベンショナルスキャン又はヘリカルスキャンが実行される場合、前処理手段51によって生成された複数ビューの第1の投影データに基づいて第1の画像データを生成し、前処理手段51によって生成された複数ビューの第2の投影データに基づいて第2の画像データを生成し、第1の画像データ及び第2の画像データを加算(加算平均)して第3の画像データを生成する。また、画像生成手段52は、コンベンショナルスキャン又はヘリカルスキャンの場合、前処理手段51によって生成された複数ビューの第1の投影データに基づく第1のボリュームデータと、前処理手段51によって生成された複数ビューの第2の投影データに基づく第2のボリュームデータとを生成し、第1のボリュームデータ及び第2のボリュームデータを加算して第3のボリュームデータを生成してもよい。その場合、第3のボリュームデータに基づいて画像データが生成される。
 第1実施形態のX線CT装置1によると、検出素子の列方向の空間分解能を向上させることができる。
 (第2実施形態)
 第2実施形態のX線CT装置は、第1実施形態のX線CT装置と異なり、2個のX線検出器の回転軌道を一致させる構成を有し、それぞれのX線検出器の複数の検出素子を1検出領域とするものである。
 図8は、第1実施形態のX線CT装置を示す構成例を示す図である。図9は、第2実施形態のX線CT装置の一部構成(ガントリ)を示す斜視図である。
 図8及び図9は、第2実施形態の2管球システムを有するX線CT装置1aを示す。X線CT装置1aは、大きくは、スキャナ装置11a及び画像処理装置12によって構成される。X線CT装置1aのスキャナ装置11aは、通常は検査室に設置され、患者Oに関するX線の透過データを生成するために構成される。一方、画像処理装置12は、通常は検査室に隣接する制御室に設置され、透過データに基づく断層像の生成・表示を行なうために構成される。
 X線CT装置1aのスキャナ装置11aは、ガントリ21a、X線高電圧装置22A,22C、寝台23、及びコントローラ24を備える。さらに、ガントリ21aは、X線管31A,31C、絞り32A,32C、X線検出器33A,33C、DAS34A,34C、回転部35、及び加算・スイッチ回路36A,36Cを設ける。なお、X線高電圧装置22A,22Cは、ガントリ21aに保持されるものであってもよい。
 なお、図8及び図9に示すX線CT装置1aにおいて、図1及び図2に示すX線CT装置1と同一部材には同一符号を付して説明を省略する。
 X線管31Cは、X線高電圧装置22Cから供給された管電圧に応じて金属製のターゲットに電子線を衝突させることでX線を発生させ、X線検出器33Cに向かって照射する。X線管31Cから照射されるX線によって、ファンビームX線やコーンビームX線が形成される。X線管31Cは、X線高電圧装置22Cを介したコントローラ24による制御によって、X線の照射に必要な電力が供給される。ここで、X線管31Aと、X線管31Cとは、ビューが90度ずれているものとして図示するが、その場合に限定するものではない。
 絞り32Cは、絞り駆動装置(図示しない)によって、X線管31Cから照射されるX線のスライス方向(z軸方向)の照射範囲を調整する。すなわち、絞り駆動装置(図示しない)によって絞り32Cの開口を調整することによって、スライス方向のX線照射範囲を変更できる。
 X線検出器33Cは、マトリクス状、すなわち、チャンネル方向に複数、及びスライス方向に複数の検出素子を有する2次元アレイ型の検出器である。しかも、X線検出器33Cのチャンネル方向は、特に、X線管31CからのX線ビームの広がり角度を考慮して湾曲を持たせている。なお、X線検出器33Cの全体の形状は、用途によって決まり、平板状であってもよい。
 DAS34Cは、リセットされるまでの一定時間の間に、積分器(図示しない)により、X線検出器33Cの各検出領域に入射したX線を検出する。その結果としてのアナログ値はA/D変換され、デジタル量の検出データ(生データ)として読み出される。
 加算・スイッチ回路36A(36C)は、X線検出器33A(33C)とDAS34A(34C)との間に配設される。
 図10は、加算・スイッチ回路36A(36C)の構成を示す側面図である。
 図10に示すように、X線検出器33A(33C)の細分化された検出素子と、DAS34A(34C)との間には加算・スイッチ回路36A(36C)が備えられる。加算・スイッチ回路36A(36C)を介したコントローラ24(図8に図示)の制御によって、X線検出器33A(33C)の検出素子f11の検出信号は、そのままDAS34A(34C)に入力されたり(検出領域:1検出素子)、隣の検出素子f12の検出信号に加算されてDAS34A(34C)に入力されたり(検出領域:2検出素子)する。また、加算・スイッチ回路36A(36C)を介したコントローラ24(図8に図示)の制御によって、X線検出器33A(33C)の検出素子f12の検出信号は、そのままDAS34A(34C)に入力されたり(検出領域:1検出素子)、隣の検出素子f11の検出信号に加算されてDAS34A(34C)に入力されたり(検出領域:2検出素子)、隣の検出素子f13の検出信号に加算されてDAS34A(34C)に入力されたり(検出領域:2検出素子)する。
 図11は、第2実施形態のX線CT装置1aにおいて、列方向の空間分解能を向上させるための方法を説明するための図である。
 図11は、X線検出器33Aの一部の検出素子f11~f44と、X線検出器33Aとビューが同じ場合のX線検出器33Cの一部の検出素子F11~F44とを示す。
 加算・スイッチ回路36A,36C(図8及び図10に図示)を介して、図11に示すように、X線検出器33Aの2個の検出素子f11,f21を検出領域として検出素子f11,f21の検出信号(検出素子f11は重複部分R外であるので「0」)を加算することで、検出素子f11,f21を1つの検出素子e11(図7に図示)とみなして第1の生データを生成することができ、X線検出器33Cの2個の検出素子F21,F31を検出領域として検出素子F21,F31の検出信号を加算することで、検出素子F21,F31を1つの検出素子E11(図7に図示)とみなして第2の生データを生成することができる。すなわち、第2実施形態のX線CT装置1aでは、2個のX線検出器33A,33Cの回転軌道が一致するにもかかわらず、2個のX線検出器の回転軌道がずれている第1実施形態のX線CT装置1と同様に考えて列方向の空間分解能を検出領域の2倍に向上させることができる。
 ここで、X線検出器33Aのチャンネル方向に複数の検出素子からなる複数の検出領域と、X線検出器33Cのチャンネル方向に複数の検出素子からなる複数の検出領域とでそれぞれ対応する検出領域同士がチャンネル方向に、検出領域の1/2個分ずれるようにしてもよい。
 図12は、第2実施形態のX線CT装置1aにおいて、チャンネル方向の空間分解能を向上させるための方法を説明するための図である。
 図12は、X線検出器33Aの一部の検出素子f11~f44と、X線検出器33Aとビューが同じ場合のX線検出器33Cの一部の検出素子F11~F44とを示す。
 加算・スイッチ回路36A,36C(図8及び図10に図示)を介して、図12に示すように、X線検出器33Aの2個の検出素子f11,f12を検出領域として検出素子f11,f12の検出信号(検出素子f11は重複部分R外であるので「0」)を加算することで、検出素子f11,f12を1つの検出素子とみなして第1の生データを生成することができ、X線検出器33Cの2個の検出素子F12,F13を検出領域として検出素子F12,F13の検出信号を加算することで、検出素子F12,F13を1つの検出素子とみなして第2の生データを生成することができる。すなわち、第2実施形態のX線CT装置1aでは、2個のX線検出器33A,33Cの回転軌道が一致するにもかかわらず、2個のX線検出器の回転軌道がずれている第1実施形態のX線CT装置1と同様に考えてチャンネル方向の空間分解能を検出領域の2倍に向上させることもできる。
 なお、図11及び図12では、2検出素子を1検出領域とし、2検出素子の単位でX線を検出するものとして説明したが、その場合に限定されるものではない。
 図8及び図9の説明に戻って、回転部35は、X線管31A(31C)とX線検出器33A(33C)とを対向させた状態で、X線管31A,31C、絞り32A,32C、X線検出器33A,33C、DAS34A,34C、及び加算・スイッチ回路36A,36Cを一体として保持する。回転部35は、回転駆動装置(図示しない)を介したコントローラ24による制御によって、X線管31A,31C、絞り32A,32C、X線検出器33A,33C、DAS34A,34C、及び加算・スイッチ回路36A,36Cを一体として患者Oの周りに回転できるように構成されている。なお、回転部35の回転中心軸と平行な方向をz軸方向、そのz軸方向に直交する平面をx軸方向、y軸方向で定義する。
 X線高電圧装置22Cは、コントローラ24による制御によって、X線の照射に必要な電力をX線管31Cに供給する。
 図13は、第2実施形態のX線CT装置1aの機能を示すブロック図である。
 画像処理装置12のCPU41がプログラムを実行することによって、図11に示すように、前処理手段51及び画像生成手段52を有する。なお、図13に示す第2実施形態のX線CT装置1aにおいて、図4に示す第1実施形態のX線CT装置1と同一部材には同一符号を付して説明を省略する。
 第2実施形態のX線CT装置1aによると、検出器の列方向の空間分解能を向上させることができる。また、第2実施形態のX線CT装置1aによると、2管球システムにおいても、検出器のチャンネル方向の空間分解能を向上させることができる。
 なお、本実施形態のX線CT装置1,1aは、フォトンカウンティング(光子計数)型のX線CT装置であってもよい。その場合、X線検出器33A~33Cは、患者Oを透過したX線を、X線検出器33A~33CによりX線光子(粒子)として一定時間毎に検出し、光子エネルギーに応じたアナログ値を検出素子(画素)毎に出力する。そして、DAS34A~34Cは、リセットされるまでの一定時間の間に、複数のカウンタ(図示しない)により、X線検出器33A~33Cの検出領域(第1実施形態では1画素)で入射したX線粒子の数をカウンタの段数に応じたエネルギー領域毎にカウントする。その結果としてのカウント値は、複数のカウンタからデジタル量の検出データ(生データ)として読み出される。データ読出しは、ASIC層内に画素毎に行なわれる。また、本実施形態ではX線CT装置1,1aが2管球システムである場合について説明したが、X線CT装置は3管球システムなどの多管球システムであってもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (6)

  1.  第1のX線を発する第1のX線源と、
     チャンネル方向及び列方向に複数の検出素子を備え、前記第1のX線を検出する第1の検出器と、
     第2のX線を発する第2のX線源と、
     チャンネル方向及び列方向に複数の検出素子を備え、前記第2のX線を検出する第2の検出器と、
     前記第1及び第2のX線源と前記第1及び第2の検出器とを制御してスキャンを実行し、1又は列方向に複数の検出素子からなる複数の第1検出領域及び複数の第2検出領域とでそれぞれ対応する検出領域同士が前記列方向に前記検出領域のn(0<n<1)個分ずれた、前記第1検出領域の第1のデータと前記第2検出領域の第2のデータとを取得するスキャン実行手段と、
     前記取得された第1及び第2のデータに基づいて画像データを生成する画像生成手段と、
    を有するX線CT装置。
  2.  前記第1及び第2検出領域が前記1の検出素子からなる場合、
     前記第2の検出器の回転軌道は、前記第1の検出器に対して前記列方向に、前記検出素子の前記n個分ずれるように配置される請求項1に記載のX線CT装置。
  3.  同一ビューにおける前記第1及び第2の検出器の列方向の重複部分に前記第1のX線及び前記第2のX線が入射されるようにそれぞれ制御する第1及び第2の絞りをさらに有し、
     前記スキャン実行手段は、前記スキャンとしてコンベンショナルスキャンを実行し、
     前記画像生成手段は、前記コンベンショナルスキャンによって同一ビューにおける前記取得された第1及び第2のデータに基づいて1検出素子を列方向に2分割したエレメント毎のデータを演算し、そのデータに基づいて前記画像データを生成する請求項2に記載のX線CT装置。
  4.  前記スキャン実行手段は、前記スキャンとしてコンベンショナルスキャン又はヘリカルスキャンを実行し、
     前記画像生成手段は、前記スキャンによって同一ビューにおける前記取得された第1のデータに基づいて第1の画像データを生成し、前記第2のデータに基づいて第2の画像データを生成し、前記第1及び第2の画像データを加算して第3の画像データを生成する請求項2に記載のX線CT装置。
  5.  前記第1及び第2検出領域が前記複数の検出素子からなる場合、
     前記第2の検出器の回転軌道は、前記第1の検出器の回転軌道と一致するように配置される請求項1に記載のX線CT装置。
  6.  前記スキャン実行手段は、前記複数の第1検出領域と、前記複数の第2検出領域とでそれぞれ対応する検出領域同士が前記列方向に前記検出領域の1/2個分ずれた前記第1のデータと前記第2のデータとを取得する請求項1に記載のX線CT装置。
PCT/JP2014/063714 2013-05-23 2014-05-23 X線ct装置 WO2014189133A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/877,311 US10258296B2 (en) 2013-05-23 2015-10-07 X-ray CT apparatus including processing circuitry to improve a spatial resolution in a row direction and a channel direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013109143A JP2014226376A (ja) 2013-05-23 2013-05-23 X線ct装置
JP2013-109143 2013-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/877,311 Continuation US10258296B2 (en) 2013-05-23 2015-10-07 X-ray CT apparatus including processing circuitry to improve a spatial resolution in a row direction and a channel direction

Publications (1)

Publication Number Publication Date
WO2014189133A1 true WO2014189133A1 (ja) 2014-11-27

Family

ID=51933683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063714 WO2014189133A1 (ja) 2013-05-23 2014-05-23 X線ct装置

Country Status (3)

Country Link
US (1) US10258296B2 (ja)
JP (1) JP2014226376A (ja)
WO (1) WO2014189133A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9696452B2 (en) * 2012-11-02 2017-07-04 Analogic Corporation Volumetric and projection image generation
JP2014230600A (ja) * 2013-05-28 2014-12-11 株式会社東芝 X線ct装置およびx線ct装置用x線検出器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346791A (ja) * 2000-06-07 2001-12-18 Hitachi Medical Corp X線ct装置
JP2004325183A (ja) * 2003-04-23 2004-11-18 M & C:Kk 放射線検出方法、放射線検出器、及び、この検出器を搭載した放射線撮像システム
JP2006122483A (ja) * 2004-10-29 2006-05-18 Toshiba Corp X線コンピュータ断層撮影装置
JP2006187453A (ja) * 2005-01-06 2006-07-20 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2007044391A (ja) * 2005-08-12 2007-02-22 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2011104075A (ja) * 2009-11-17 2011-06-02 Toshiba Corp X線ct装置

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054402B2 (ja) * 1997-04-25 2008-02-27 株式会社東芝 X線断層撮影装置
JPH06169911A (ja) 1992-12-04 1994-06-21 Toshiba Corp X線コンピュータトモグラフィ装置
JP3340203B2 (ja) 1993-09-17 2002-11-05 株式会社東芝 X線ct装置
US6421412B1 (en) * 1998-12-31 2002-07-16 General Electric Company Dual cardiac CT scanner
US6363134B1 (en) * 1999-01-13 2002-03-26 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
JP4892673B2 (ja) * 2000-09-28 2012-03-07 フィリップス メディカル システムズ テクノロジーズ リミテッド 時間的に一貫した大きい照射範囲のためのctスキャナ
JP2002301056A (ja) * 2001-04-04 2002-10-15 Toshiba Medical System Co Ltd X線ct装置およびx線検出器
US6834097B2 (en) * 2001-10-05 2004-12-21 Kabushiki Kaisha Toshiba X-ray CT apparatus and X-ray CT imaging method
JP4088058B2 (ja) * 2001-10-18 2008-05-21 株式会社東芝 X線コンピュータ断層撮影装置
US7085343B2 (en) * 2001-10-18 2006-08-01 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
CN1236731C (zh) * 2001-11-29 2006-01-18 株式会社东芝 计算机断层摄像装置
EP2345370A3 (en) * 2002-03-19 2012-05-09 Breakaway Imaging, Llc Computer tomography with a detector following the movement of a pivotable x-ray source
JP2004000356A (ja) 2002-06-03 2004-01-08 Hitachi Medical Corp マルチスライスx線ct装置および方法
US6819738B2 (en) * 2002-08-15 2004-11-16 Ge Medical Systems Global Technology Company, Llc Hybrid scintillator/photo sensor & direct conversion detector
JP4314008B2 (ja) * 2002-10-01 2009-08-12 株式会社東芝 X線ctスキャナ
DE10302565A1 (de) * 2003-01-22 2004-08-12 Siemens Ag Bildgebendes Tomographiegerät mit wenigstens zwei Strahler-Detektor-Kombinationen
WO2004080310A1 (en) * 2003-03-13 2004-09-23 Philips Intellectual Property & Standards Gmbh Computerized tomographic imaging system
DE602004024682D1 (de) * 2003-07-15 2010-01-28 Koninkl Philips Electronics Nv Ung
JP3961468B2 (ja) * 2003-09-19 2007-08-22 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線計算断層画像装置およびそれに用いる放射線検出器
DE10354214A1 (de) * 2003-11-20 2005-06-02 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern eines sich periodisch bewegenden Objektes mit mehreren Fokus-Detektor-Kombinationen
DE10354900A1 (de) * 2003-11-24 2005-06-30 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern eines sich periodisch bewegenden Objektes mit mehreren Fokus-Detektor-Kombinationen
US7280631B2 (en) * 2003-11-26 2007-10-09 General Electric Company Stationary computed tomography system and method
DE102004028124B4 (de) * 2004-06-09 2008-08-07 Siemens Ag Bildgebendes Tomografiegerät mit mehrfachen Betriebsarten sowie ein Verfahren zum Wechsel der Betriebsart des Tomografiegeräts
DE102004030549A1 (de) * 2004-06-24 2006-01-19 Siemens Ag Bildgebendes Tomographiegerät mit zumindest zwei zueinander fest angeordneten Aufnahmesystemen und Verfahren für ein derartiges Tomographiegerät zur Bestimmung der Anordnung der Aufnahmesysteme
DE102004030550A1 (de) * 2004-06-24 2006-01-19 Siemens Ag Bildgebendes Tomographiegerät mit zumindest zwei unter Systemwinkel angeordneten Aufnahmesystemen und Verfahren für ein derartiges Tomographiegerät zur Bestimmung der Systemwinkel der Aufnahmesysteme
CN100393281C (zh) * 2004-07-23 2008-06-11 株式会社东芝 X射线计算机断层摄像装置
US7103138B2 (en) * 2004-08-24 2006-09-05 The Board Of Trustees Of The Leland Stanford Junior University Sampling in volumetric computed tomography
DE102004042491B4 (de) * 2004-08-31 2009-07-09 Siemens Ag Verfahren zur Erzeugung von tomographischen Schnittbildern von einem Untersuchungsobjekt mit mindestens zwei winkelversetzten Strahlenbündeln und Computertomographie-Gerät zur Durchführung dieses Verfahrens
US7194061B2 (en) * 2004-09-14 2007-03-20 Kabushiki Kaisha Toshiba X-ray computer tomography apparatus
DE602006013733D1 (de) * 2005-03-07 2010-06-02 Toshiba Kk Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts
CN1846621A (zh) * 2005-04-15 2006-10-18 株式会社东芝 Ct扫描机
WO2006123581A1 (ja) * 2005-05-18 2006-11-23 Hitachi Medical Corporation 放射線撮影装置及び画像処理プログラム
US7535987B2 (en) * 2005-06-30 2009-05-19 Kabushiki Kaisha Toshiba X-ray CT apparatus
DE102005034876B3 (de) * 2005-07-26 2007-04-05 Siemens Ag Verfahren zur Erstellung von computertomographischen Darstellungen durch ein CT mit mindestens zwei winkelversetzten Strahlenquellen
DE102005037368A1 (de) * 2005-08-08 2007-02-15 Siemens Ag Verfahren zur Berechnung computertomographischer Aufnahmen aus Detektordaten eines CT's mit mindestens zwei Strahlenquellen
DE102005048397A1 (de) * 2005-10-10 2007-04-12 Siemens Ag Verfahren zur Strahlungskorrektur eines CT-Systems
US7831012B2 (en) * 2006-02-09 2010-11-09 L-3 Communications Security and Detection Systems Inc. Radiation scanning systems and methods
US8340241B2 (en) * 2006-02-27 2012-12-25 Kabushiki Kaisha Toshiba Image display apparatus and X-ray computed tomography apparatus
DE102006019923A1 (de) * 2006-04-28 2007-11-15 Siemens Ag Verfahren zur Streustrahlungskorrektur bei einem Röntgen-CT und Röntgen-CT zur Anwendung dieses Verfahrens
DE102006019920B4 (de) * 2006-04-28 2008-04-10 Siemens Ag Verfahren zur Streustrahlungskorrektur eines CT-Systems mit mindestens zwei winkelversetzt angeordneten Fokus-Detektor-Systemen und Röntgen-CT-System
DE102006027221B4 (de) * 2006-06-12 2008-12-24 Siemens Ag Gerät zur medizinischen Bildgebung mit zwei Detektorsystemen
US7616731B2 (en) * 2006-08-30 2009-11-10 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7706499B2 (en) * 2006-08-30 2010-04-27 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US7835486B2 (en) * 2006-08-30 2010-11-16 General Electric Company Acquisition and reconstruction of projection data using a stationary CT geometry
US8488736B2 (en) * 2006-09-19 2013-07-16 General Electric Company Stacked flat panel x-ray detector assembly and method of making same
US8483352B2 (en) * 2006-09-19 2013-07-09 General Electric Company Stacked x-ray detector assembly and method of making same
DE102006051475A1 (de) * 2006-10-31 2008-05-08 Siemens Ag Verfahren zur Bestimmung von Bewegungs- und Ruhephasen eines sich zeitweise bewegenden Teilobjektes bei einer CT-Untersuchung und CT-System
US7428292B2 (en) * 2006-11-24 2008-09-23 General Electric Company Method and system for CT imaging using multi-spot emission sources
US7388940B1 (en) * 2006-11-24 2008-06-17 General Electric Company Architectures for cardiac CT based on area x-ray sources
DE102006056884A1 (de) * 2006-12-01 2008-06-05 Siemens Ag Verfahren und CT-System zur Durchführung einer Cardio-CT-Untersuchung eines Patienten
DE102007008118B4 (de) * 2007-02-19 2011-02-03 Siemens Ag Verfahren zur Erzeugung tomographischer Darstellungen mit einem Röntgen-Computertomographie-System mit Streustrahlungskorrektur
JP2008237886A (ja) * 2007-02-28 2008-10-09 Toshiba Corp X線ct装置及びその制御方法
US7869561B2 (en) * 2007-04-10 2011-01-11 Arineta Ltd. Cone-beam CT
US8189736B2 (en) * 2007-08-06 2012-05-29 Hitachi Medical Corporation X-ray CT apparatus
US7433443B1 (en) * 2007-08-29 2008-10-07 General Electric Company System and method of CT imaging with second tube/detector patching
JP5052281B2 (ja) * 2007-10-02 2012-10-17 株式会社東芝 X線ctにおける散乱線強度分布の推定方法およびx線ct装置
US7801265B2 (en) * 2007-11-23 2010-09-21 Mayo Foundation For Medical Education And Research System and method for creating mixed image from dual-energy CT data
US7949089B2 (en) * 2008-04-10 2011-05-24 Arineta Ltd. Apparatus and method for tracking feature's position in human body
DE102008030552A1 (de) * 2008-06-27 2009-12-31 Siemens Aktiengesellschaft Verfahren zur Erzeugung von Bilddaten zu einer virtuell vorgebbaren Röntgenröhrenspannung aus ersten und zweiten CT-Bilddaten
JP5159543B2 (ja) * 2008-09-30 2013-03-06 株式会社東芝 X線ct装置
JP5537132B2 (ja) * 2008-12-11 2014-07-02 株式会社東芝 X線コンピュータ断層撮影装置、医用画像処理装置、及び医用画像処理プログラム
US8509380B2 (en) * 2010-03-19 2013-08-13 The Board Of Trustees Of The Leland Stanford Junior University Inverse geometry volume computed tomography systems
JP6009755B2 (ja) * 2010-11-12 2016-10-19 東芝メディカルシステムズ株式会社 画像診断装置及び方法
JP6033086B2 (ja) * 2010-12-21 2016-11-30 タカラテレシステムズ株式会社 放射線検出器、及び、この検出器を備えた放射線撮像装置
US8774351B2 (en) * 2011-04-05 2014-07-08 Triple Ring Technologies, Inc. Method and apparatus for advanced X-ray imaging systems
CN103997967B (zh) * 2011-12-12 2016-07-06 株式会社日立医疗器械 X射线ct装置
JP6195337B2 (ja) * 2012-02-24 2017-09-13 東芝メディカルシステムズ株式会社 X線ct装置
WO2013191001A1 (ja) * 2012-06-20 2013-12-27 株式会社日立メディコ X線ct装置
CN104105445B (zh) * 2012-08-30 2017-06-16 东芝医疗系统株式会社 X射线ct装置、图像处理装置以及图像处理方法
WO2014106956A1 (ja) * 2013-01-07 2014-07-10 株式会社東芝 X線コンピュータ断層撮影装置及び医用画像処理装置
DE102013203541A1 (de) * 2013-03-01 2014-09-04 Siemens Aktiengesellschaft Röntgen-CT-Abtastung und Dual-Source-CT-System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346791A (ja) * 2000-06-07 2001-12-18 Hitachi Medical Corp X線ct装置
JP2004325183A (ja) * 2003-04-23 2004-11-18 M & C:Kk 放射線検出方法、放射線検出器、及び、この検出器を搭載した放射線撮像システム
JP2006122483A (ja) * 2004-10-29 2006-05-18 Toshiba Corp X線コンピュータ断層撮影装置
JP2006187453A (ja) * 2005-01-06 2006-07-20 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2007044391A (ja) * 2005-08-12 2007-02-22 Ge Medical Systems Global Technology Co Llc X線ct装置
JP2011104075A (ja) * 2009-11-17 2011-06-02 Toshiba Corp X線ct装置

Also Published As

Publication number Publication date
JP2014226376A (ja) 2014-12-08
US20160022237A1 (en) 2016-01-28
US10258296B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
US9924916B2 (en) X-ray CT apparatus and controlling method
US7876874B2 (en) Radiographing apparatus and image processing program
US10219775B2 (en) Photon-counting X-ray CT apparatus and image processing apparatus
JP3961468B2 (ja) 放射線計算断層画像装置およびそれに用いる放射線検出器
JP2016041387A (ja) 画像表示装置
JP5761972B2 (ja) X線ct装置
JP6494982B2 (ja) X線コンピュータ断層撮影装置、画像処理装置及び画像処理プログラム
JP2007300964A (ja) 放射線撮影装置および放射線撮影方法
US9905044B1 (en) Systems and methods for functional imaging
JP5468190B2 (ja) 画像表示装置及びx線ct装置
US20200005495A1 (en) Medical information processing apparatus
US10682104B2 (en) Computed tomography recording with different sets of energy thresholds
WO2014189133A1 (ja) X線ct装置
US8976923B2 (en) Multislice CT apparatus and method for data preprocessing
JP6985004B2 (ja) 光子計数型x線ct装置及び画像処理装置
JP2020022689A (ja) 医用画像処理装置およびx線ct装置
JP2008267913A (ja) 核医学診断装置およびそれに用いられる診断システム
JP2018143574A (ja) X線ct装置及び画像処理方法
JP2020103571A (ja) 医用処理装置及びx線診断システム
US20220375086A1 (en) Medical information processing method, medical information processing apparatus, and medical image processing apparatus
US20210052236A1 (en) X-ray imaging apparatus, medical information processing apparatus, x-ray detector, and correction method of x-ray detector
US11478203B2 (en) X-ray computed tomography apparatus and imaging condition management apparatus
US20230404514A1 (en) Medical data processing method, model generating method, and medical data processing apparatus
JP7140566B2 (ja) X線ct装置及び撮影計画装置
JP2024082589A (ja) 医用画像処理装置、および医用画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801162

Country of ref document: EP

Kind code of ref document: A1