WO2014188672A1 - モータ、位置決め装置、搬送装置 - Google Patents

モータ、位置決め装置、搬送装置 Download PDF

Info

Publication number
WO2014188672A1
WO2014188672A1 PCT/JP2014/002427 JP2014002427W WO2014188672A1 WO 2014188672 A1 WO2014188672 A1 WO 2014188672A1 JP 2014002427 W JP2014002427 W JP 2014002427W WO 2014188672 A1 WO2014188672 A1 WO 2014188672A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotation output
cylindrical portion
seal
output portion
Prior art date
Application number
PCT/JP2014/002427
Other languages
English (en)
French (fr)
Inventor
正幸 丸山
裕介 太田
和則 小泉
逸男 渡辺
佐藤 俊徳
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to KR1020157033222A priority Critical patent/KR101728625B1/ko
Priority to CN201480000583.6A priority patent/CN104380580B/zh
Priority to US14/892,442 priority patent/US20160118855A1/en
Priority to JP2014524179A priority patent/JP5765486B2/ja
Publication of WO2014188672A1 publication Critical patent/WO2014188672A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the present invention relates to a waterproof and dustproof motor, a positioning device driven by the motor, and a conveying device.
  • direct drive motors with high torque and high resolution can directly drive the index table, and have high-speed operation and no backlash, so applications that require high-precision positioning. It is preferably used.
  • an index table having a direct drive motor is used for transporting a polishing process or a cleaning process of a semiconductor wafer
  • liquid such as water adheres to the semiconductor wafer, and the attached liquid falls and direct drive is performed. May accumulate on top of motor.
  • liquid enters the direct drive motor it causes electrical failure such as corrosion or short circuit inside the motor. Accordingly, there is a need for a direct drive motor having performance (waterproofness) that prevents the ingress of liquid and performance (dustproofness) that prevents intrusion of dust.
  • the motor body is covered with an output shaft (a rotating body that outputs rotational force) 160 and a motor housing 100 having a cylindrical portion 120.
  • the output shaft 160 is substantially T-shaped, and includes a shaft portion 161, a disk-shaped umbrella portion 162, a peripheral wall 163, and a positioning cylindrical portion 164.
  • a cylindrical portion 120 that covers the outer peripheral surface of the motor body and a housing base 123 are integrated.
  • a seal housing 124 is fitted into the opening end of the cylindrical portion 120 of the motor housing 100 on the output shaft 160 side via an O-ring 113.
  • An oil seal 191 seals between the inner peripheral surface of the seal housing 124 and the positioning cylindrical portion 164 of the output shaft 160.
  • a space between the upper side of the seal housing 124 and the disk-shaped umbrella portion 162 of the output shaft 160 is sealed with a dust seal 192.
  • An oil seal 193 is sealed between the shaft portion 161 of the output shaft 160 and the central opening portion 123 a of the housing base 123 of the motor housing 100.
  • a side opening 120 a is formed in the cylindrical portion 120 of the motor housing 100, and a waterproof connector 131 is attached via a connector spacer 129.
  • a seal 128 seals between the connector spacer 129 and the side opening 120a.
  • An opening 123 b is formed at the bottom of the housing base 123, and the opening 123 b is covered with a cover plate 125. As a result, a wiring space 125 a is formed below the housing base 123.
  • a motor rotor 141 and a resolver rotor 151 constituting the motor body are fixed in the axial direction and fixed to the outer ring of the rolling bearing 106.
  • the resolver rotor 151 is fixed in the positioning cylindrical portion 164 of the output shaft 160.
  • a motor core 142 is fixed to the cylindrical portion 210 of the motor housing 100.
  • the resolver stator 152 is fixed to the inner ring of the rolling bearing 6 together with the inner portion 123 c of the housing base 123. That is, the motor body of this waterproof motor is an inner rotor type.
  • the output shaft 160 is fixed to the resolver rotor 151 with a bolt 170 at a portion closer to the center than the positioning cylindrical portion 164.
  • the other end of the wiring whose one end is connected to the resolver stator 152 is connected to the waterproof connector 131.
  • This wiring is arranged in the through hole 152a of the resolver stator 152, the through hole 123d of the housing base 123, the wiring space 125a, and the internal space 129a of the connector spacer 129.
  • Patent Document 2 describes that a motor having no waterproof property is used as a waterproof motor by covering the entire motor with a waterproof cover in which an oil seal and a dust seal are assembled and completely sealing.
  • the example of the waterproof motor described in Patent Document 2 has a substantially T-shaped output shaft, and includes a central opening of the housing base and a shaft portion of the output shaft. Is sealed with an oil seal, and has a double sealing structure with an oil seal and a dust seal at the outer edge of the output shaft. The lower end of the housing base and the waterproof cover are sealed with an O-ring.
  • An object of the present invention is to provide a motor that has a small number of parts and is provided with waterproof performance by a low-cost method, a positioning device that is driven by the motor, and a conveying device.
  • a motor according to an aspect of the present invention includes a cylindrical motor body having a central hole penetrating in the axial direction, and a housing that houses the motor body.
  • a cylindrical portion that covers the outer peripheral surface of the motor body, a rotation output portion that is provided on the upper side in the axial direction of the cylindrical portion and that is fixed to the rotating body of the motor body, and an axially lower side of the cylindrical portion.
  • a fixed portion fixed to the fixed body of the motor main body, and the housing is sealed by a sealing mechanism (oil seal, V seal, labyrinth, etc.) only in one axial direction of the cylindrical portion. It is characterized by being sealed.
  • the motor of this aspect since the housing is sealed by a sealing mechanism at only one axial direction of the cylindrical portion, the number of parts is smaller than that of the waterproof motor described in Patent Documents 1 and 2.
  • the waterproof performance is imparted by a low cost method.
  • a normal sealing mechanism since a normal sealing mechanism has not only waterproof performance but also dustproof performance, the motor of this aspect also has dustproof performance (performance that prevents dust from entering).
  • the sealing mechanism may be disposed between the cylindrical portion and the rotation output portion to seal between the cylindrical portion and the rotation output portion.
  • the housing includes a wiring cable having a through hole corresponding to the central hole of the motor body and one end fixed to the motor body, and the wiring cable. It is preferable that the other end of the bull is disposed outside (outside of the motor) through the vicinity of the center hole of the axial end surface of the motor body and the through hole of the housing.
  • the cylindrical portion may be formed integrally with at least one of the fixed portion and the rotation output portion.
  • (a) the configuration in which the cylindrical portion is formed integrally with the fixed portion, (b) the configuration in which the cylindrical portion is formed integrally with the rotation output portion, and (c) the cylindrical portion is The structure currently formed integrally with both the fixing
  • the sealing mechanism is disposed between the cylindrical portion and the rotation output portion, and seals between the cylindrical portion and the rotation output portion.
  • the sealing mechanism is disposed between the rotation output portion and the fixed portion, and seals between the rotation output portion and the fixed portion.
  • the cylindrical portion is divided in two in the axial direction, each divided body is formed integrally with each of the fixed portion and the rotation output portion, and the sealing mechanism is provided between the divided bodies. It arranges in and seals between divided bodies. In addition, it is preferable that they are a structure (a) and a structure (b) rather than a structure (c).
  • the configuration (a) and the configuration (b) in which the sealing mechanism is arranged at the end of the cylindrical portion Is preferred.
  • the configuration (a) is preferable. That is, since the cylindrical portion is formed integrally with the fixed portion, the inertia of the rotation output portion can be made smaller than in the cases of the configurations (b) and (c).
  • the fixed portion has a connection surface with a base
  • the rotation output portion has a connection surface with an attachment rotating body
  • the connection surface of the fixed portion and the rotation output portion It is preferable that a groove for arranging a seal material (O-ring, sealing compound, adhesive, caulking material) is formed on at least one of the connection surfaces.
  • the sealing mechanism includes a sealing material that is provided between the cylindrical portion and the rotation output portion and seals between the cylindrical portion and the rotation output portion.
  • the output portion may be made of a lightweight material in which the hardness of the seal contact surface with which the seal material contacts is higher than the hardness of the portion other than the seal contact surface. According to this motor, it is possible to reduce the weight and reduce the inertia of the rotation output portion while ensuring the necessary hardness for the seal contact surface in the rotation output portion.
  • the rotation output unit is a member in which at least the seal contact surface is subjected to a hardness improvement process.
  • the hardness improving process may be a surface process.
  • the lightweight material is an aluminum material.
  • the hardness improvement treatment may be a heat treatment, and the lightweight material may be cemented carbide duralumin.
  • the surface roughness of the seal contact surface is Ra 0.05 to 1.60, and the fit between the inner diameter of the seal material and the outer diameter of the seal mounting portion to which the seal material is attached is 5.0. An interference fit of up to 25.00 mm may be used.
  • the motor main body incorporates a resolver having a resolver stator on the inner side and a resolver rotor on the outer peripheral side of the resolver stator.
  • a groove for a sealing material provided on a connection surface of the rotation output portion with respect to the attachment rotating body or a connection surface of the attachment rotation body with respect to the rotation output portion is provided on the outer peripheral side with respect to the resolver rotor.
  • An opening that opens from the center of the rotation axis of the rotation output portion to the inside of the groove and the vicinity of the resolver rotor may be provided.
  • the sealing mechanism includes a sealing material that is provided between the cylindrical portion and the rotation output portion and seals between the cylindrical portion and the rotation output portion, and the rotation
  • the output portion is made of a lightweight material in which the hardness of the seal contact surface with which the seal material contacts is higher than the hardness of the portion other than the seal contact surface, and the rotation output portion is subjected to a hardness improvement process at least on the seal contact surface.
  • the hardness improvement treatment is a surface treatment
  • the lightweight material is an aluminum material
  • the surface roughness of the seal contact surface is Ra 0.05 to 1.60
  • the inner diameter of the seal material and the The fit with the outer diameter of the seal mounting portion for attaching the seal material is 5.0 to 25.00 mm
  • the motor body is provided with a resolver stator on the inner side and an outer surface of the resolver stator.
  • a resolver having a resolver rotor on the side is built in, the rotation output unit and the resolver rotor are integrated, and provided on the connection surface of the rotation output unit to the mounting rotating body or the connection surface of the mounting rotating body to the rotation output unit
  • the seal material groove is provided on the outer peripheral side of the resolver rotor, and the rotation output portion is a portion extending from the rotation shaft center of the rotation output portion to the inside of the seal material groove and in the vicinity of the resolver rotor. You may provide the opening part opened to.
  • the sealing mechanism is provided between the cylindrical portion and the rotation output portion, and liquid enters the inside through the space between the cylindrical portion and the rotation output portion. It may constitute a liquid intrusion prevention means for preventing this.
  • the liquid intrusion prevention means is an oil seal.
  • the liquid intrusion prevention means may be a dust seal.
  • the liquid intrusion prevention means may be a low rotation resistance seal.
  • the liquid intrusion prevention means further has a labyrinth.
  • the liquid intrusion prevention means may be a labyrinth.
  • a peripheral edge projecting toward the cylindrical portion is formed on the outer edge of the rotation output portion, and a step that makes the outer diameter different is formed at the upper end in the axial direction of the cylindrical portion,
  • the labyrinth provides a predetermined gap between the outer peripheral surface of the small diameter portion due to the step of the cylindrical portion and the inner peripheral surface of the peripheral edge portion of the rotation output portion, and the large diameter portion and the small diameter portion of the cylindrical portion. It is preferable that a predetermined gap is provided between a step surface which is a boundary and a lower end surface of the peripheral edge portion of the rotation output portion.
  • the outer diameter of the small diameter portion of the cylindrical portion and the inner diameter of the peripheral portion of the rotation output portion are increased from the upper side in the axial direction of the cylindrical portion toward the lower side in the axial direction. You may incline with respect to the rotating shaft of the said rotation output part.
  • the liquid intrusion prevention unit may include a porous member in the vicinity of the labyrinth.
  • the motor internal pressure is preferably increased by air purge.
  • a space between a connection surface of the rotation output portion with respect to the attachment rotating body and a connection surface of the attachment rotation body with respect to the rotation output portion is sealed.
  • a groove for a sealing material is provided on a connection surface of the rotation output portion with respect to the attachment rotation body or a connection surface of the attachment rotation body with respect to the rotation output portion.
  • the sealing mechanism is provided between the cylindrical portion and the rotation output portion, and liquid enters the inside through the space between the cylindrical portion and the rotation output portion.
  • a liquid intrusion preventing unit that prevents the liquid from entering may be configured, and a failure preventing unit that prevents a failure when the liquid enters the inside may be provided.
  • the liquid detection sensor or the liquid through hole is provided in the fixed portion provided on the lower side in the axial direction of the cylindrical portion.
  • the fixed portion includes an inclined portion that is inclined with respect to the axial direction of the cylindrical portion, and a bottom surface portion that extends horizontally from the axially lowermost portion of the inclined portion,
  • the failure prevention means is preferably installed on the bottom surface.
  • the sealing mechanism includes a sealing material that is disposed between the cylindrical portion and the rotation output portion and seals between the cylindrical portion and the rotation output portion, and the rotation The output unit may be configured to close the central hole of the motor body.
  • the liquid intrusion prevention means constitutes foreign matter intrusion prevention means for preventing foreign matter from entering the inside through the space between the cylindrical portion and the rotation output portion. Also good. That is, in the motor of this aspect, the sealing mechanism is provided between the cylindrical portion and the rotation output portion, and foreign matter enters the inside through the space between the cylindrical portion and the rotation output portion. It may constitute a foreign matter intrusion preventing means for preventing the above.
  • the foreign matter intrusion prevention means is an oil seal.
  • the foreign matter intrusion preventing means may be a dust seal.
  • the foreign matter intrusion prevention means may be a low rotation resistance seal.
  • the liquid intrusion prevention means further has a labyrinth.
  • the foreign matter intrusion preventing means may be a labyrinth.
  • a peripheral edge projecting toward the cylindrical portion is formed on the outer edge of the rotation output portion, and a step that makes the outer diameter different is formed at the upper end in the axial direction of the cylindrical portion,
  • the labyrinth provides a predetermined gap between the outer peripheral surface of the small diameter portion due to the step of the cylindrical portion and the inner peripheral surface of the peripheral edge portion of the rotation output portion, and the large diameter portion and the small diameter portion of the cylindrical portion. It is preferable that a predetermined gap is provided between a step surface which is a boundary and a lower end surface of the peripheral edge portion of the rotation output portion.
  • the outer diameter of the small diameter portion of the cylindrical portion and the inner diameter of the peripheral portion of the rotation output portion are increased from the upper side in the axial direction of the cylindrical portion toward the lower side in the axial direction. You may incline with respect to the rotating shaft of the said rotation output part.
  • the foreign matter intrusion preventing means may include a porous member in the vicinity of the labyrinth.
  • the motor internal pressure is preferably increased by air purge.
  • it is preferable that a space between a connection surface of the rotation output portion with respect to the attachment rotating body and a connection surface of the attachment rotation body with respect to the rotation output portion is sealed.
  • a groove for a sealing material is provided on a connection surface of the rotation output portion with respect to the attachment rotation body or a connection surface of the attachment rotation body with respect to the rotation output portion.
  • the motor body is preferably an outer rotor type. It is preferable that the motor main body is an outer rotor type because wiring of the wiring cable in the motor main body is easier than in the case of the inner rotor type. Furthermore, a positioning device according to another aspect of the present invention is driven by the motor described above. Moreover, the conveying apparatus of another aspect of this invention makes the above-mentioned motor a drive source.
  • the motor compared to the motors described in Patent Documents 1 and 2, the motor has a reduced number of parts and is provided with waterproof performance by a low-cost method, and is driven by positioning by the motor.
  • a positioning device and a conveying device can be provided.
  • FIG. 18 is a plan view of first to third, fifth to thirteenth, and fifteenth to twenty-second embodiments of a motor according to the present invention.
  • 1 is a cross-sectional view of a motor according to a first embodiment of the present invention (a cross-sectional view taken along line AA in FIG. 1).
  • FIG. 24 is a bottom view of first to twenty-second embodiments of a motor according to the present invention.
  • FIG. 6 is a cross-sectional view (a cross-sectional view taken along the line AA in FIG. 1) of a second embodiment of the motor according to the present invention.
  • FIG. 6 is a cross-sectional view showing a waterproof motor of Patent Document 1.
  • the motor A of this embodiment includes a cylindrical motor body 1, a housing 2, and wiring cables 31 and 32.
  • the motor A is a direct drive motor and drives a positioning device (not shown) for positioning.
  • the motor body 1 has a center hole 11 penetrating in the axial direction.
  • the motor body 1 includes a motor unit 4, a resolver (magnetic rotation sensor) 5, and a rolling bearing 6.
  • the motor unit 4 is disposed on the lower side in the axial direction, and the resolver 5 is disposed on the upper side in the axial direction.
  • the motor unit 4 includes a motor stator (fixed body) 42 disposed on the inner side and a motor rotor (rotary body) 41 disposed on the outer peripheral side of the motor stator 42, and is an outer rotor type.
  • the resolver 5 includes a resolver stator (fixed body) 52 disposed on the inner side, and a resolver rotor (rotary body) 51 disposed on the outer peripheral side of the resolver stator 52.
  • the motor stator 42 has a motor core 42a and a substantially cylindrical inner portion 42b, and the motor core 42a is fixed to the outer periphery of the inner portion 42b. A coil 43 is wound around the motor core 42a.
  • the motor rotor 41 is formed in a substantially cylindrical shape and constitutes a yoke.
  • An annular permanent magnet 41 a is provided on the inner peripheral surface of the motor rotor 41.
  • the motor rotor 41 and the resolver rotor 51 are fixed to the outer ring of the rolling bearing 6.
  • the inner part 42 b of the motor stator 42 and the resolver stator 52 are fixed to the inner ring of the rolling bearing 6.
  • the motor rotor 41 and the resolver rotor 51 are fixed with bolts B1.
  • the inner part 42b of the motor stator 42 and the resolver stator 52 are fixed with bolts B2.
  • the motor body 1 further includes a motor cover 7 that closes the lower end surface in the axial direction of the motor portion 4 and a resolver cover 8 that closes the upper end surface in the axial direction of the resolver 5.
  • the motor part cover 7 has a center hole 71 having an inner diameter slightly larger than the outer diameter of the inner part 42 b of the motor stator 42. The lower end in the axial direction of the inner part 42 b of the motor stator 42 is inserted into the center hole 71 of the motor part cover 7.
  • the resolver cover 8 has a center hole 81 having substantially the same diameter as the inner diameter of the resolver stator 52.
  • a through hole 42c extending in the axial direction is formed in the inner portion 42b of the motor stator 42.
  • Cutouts 42d are formed at two locations on the lower end in the axial direction of the inner portion 42b (the end opposite to the resolver 5).
  • One end of the outer skin of the wiring cables 31 and 32 is disposed in each notch portion 42d.
  • One end of the internal wiring of the wiring cable 31 is connected to the rotational position detector of the resolver 5 through the through hole 42 c of the motor stator 42 and the through hole of the resolver stator 52.
  • a connector 31 a is attached to the other end of the wiring cable 31.
  • One end of the internal wiring of the wiring cable 32 is connected to the coil 43 wound around the motor core 42a, and the connector 32a (fourth is attached to the other end of the wiring cable 32.
  • AA section in FIG. Does not show the connector of the wiring cable 32.
  • Female screws 42e are formed at six locations where the notches 42d are not formed at the lower end in the axial direction of the inner portion 42b (the end opposite to the resolver 5).
  • the outer edge portion 51 a of the resolver rotor 51 is disposed outside the resolver cover 8.
  • An insertion hole for the bolt B1 is formed on the end surface of the outer edge 51a of the resolver rotor 51 on the motor rotor 41 side, and a female screw 51b for screwing the bolt B3 is formed on the opposite end surface.
  • the central hole 11 of the motor body 1 is composed of inner peripheral surfaces (central holes) of the motor stator 42 and the resolver stator 52 and a central hole 81 of the resolver cover 8.
  • the housing 2 includes a cylindrical portion 21 that covers the outer peripheral surface of the motor main body 1, a rotation output portion 22 that is provided on the upper side in the axial direction of the cylindrical portion 21, and is fixed to the rotating body of the motor main body 1.
  • the cylindrical portion 21 and the fixing portion 23 are integrally formed.
  • the fixing portion 23 is provided on the lower side in the axial direction of the portion 21 and is fixed to the fixing body of the motor body 1.
  • the rotation output part 22 is a disk-like member having the same outer diameter as the cylindrical part 21, and has a center hole (through hole) 22 a having the same diameter as the center hole 11 of the motor body 1.
  • a thin peripheral portion 22 b that protrudes toward the cylindrical portion 21 is formed on the outer edge of the rotation output portion 22.
  • the rotation output portion 22 is formed with a bolt hole 22c corresponding to the female screw 51b of the resolver rotor 51, and an annular groove 22d is formed inside the bolt hole 22c.
  • a female screw 22 e is formed on the outer edge of the rotation output unit 22.
  • a thin peripheral edge 21a protruding toward the rotation output section 22 is formed on the inner edge of the upper end in the axial direction (on the rotation output section 22) of the cylindrical section 21, and a labyrinth together with the peripheral edge 22b of the rotation output section 22 on the outer edge.
  • a step portion 21b for forming L is formed.
  • the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22. That is, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed by the sealing mechanism 10 including the oil seal 9 and the labyrinth L.
  • the fixing portion 23 is a disk-like member having a flange portion 23a that protrudes from the outer diameter of the cylindrical portion 21, and a bolt insertion hole 23b is formed in the flange portion 23a.
  • the fixing portion 23 has a center hole (through hole) 23 c having the same diameter as the center hole 11 of the motor body 1.
  • Concave portions 23d that are recessed in a U shape on the radially outer side are formed at two locations of the center hole 23c. Due to the presence of the recess 23 d, the wiring cables 31 and 32 pass through each recess 23 d without being bent and extend to the outside of the housing 2.
  • a bolt insertion hole 23 e is formed in the fixing portion 23 at a position combined with the female screw 42 e of the motor stator 42.
  • the rotation output unit 22 is fixed to a resolver rotor (rotary body) 51 of the motor body 1 with a bolt B3.
  • the fixing portion 23 is fixed to the inner side portion 42b of the motor stator (fixed body) 42 of the motor body 1 with a bolt B4.
  • the member (housing base) in which the cylindrical portion 21 and the fixing portion 23 are integrated can be obtained by aluminum cutting or die casting, and the rotation output portion 22 can be obtained in the same manner.
  • the surface of the rotation output portion 22 on which the lip portion of the oil seal 9 slides needs to be anodized to increase the hardness and reduce the surface roughness.
  • a fixing portion 23 is fixed on a base 61 having a center hole 61a, and a table having a center hole 62a on a rotation output portion 22 (
  • the mounting rotating body 62 can be fixed and used.
  • the fixing portion 23 is fixed to the base 61 by screwing the bolt B5 that has passed through the bolt insertion hole 23b into the female screw of the base 61.
  • the table 62 is fixed to the rotation output unit 22 by screwing a bolt B6 that has passed through the bolt insertion hole of the table 62 into the female screw 22e of the rotation output unit 22.
  • the motor A of this embodiment can be used as a drive source, and can be used as a transport device that places electronic components on the table 62 and rotates and moves them. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • an O-ring as the sealing material 63 in the groove 22d of the rotation output portion 22 waterproofing between the table 62 and the upper side in the axial direction of the motor A can be obtained.
  • An annular groove 61b is provided on the upper surface of the base 61, and an O-ring as the sealing material 63 is disposed in the groove 61b, or the motor A is installed, and the flange portion 23a of the fixed portion 23 and the base 61 are Waterproofing the table 62 and the lower side of the motor A can be obtained by sealing the corners with a caulking material (sealing material) 64.
  • the center holes 22a and 23c of the housing 2 and the center hole 11 of the motor body 1 communicate with each other, but there is no sealing mechanism for these center holes. This is because, as described above, in normal use, there is no problem because it is only necessary to consider the waterproofness of the outer peripheral surface of the motor.
  • the waterproof motor of this embodiment has a small number of parts and a low cost. In addition, since the number of parts is small, assembly and disassembly are easy, and productivity and maintainability are high.
  • the motor A according to this embodiment since only the oil seal 9 attached at one place is worn out by sliding, the number of man-hours for maintenance and the cost of replacement parts are low.
  • the motor A of this embodiment has not only waterproof performance but also dustproof performance due to the oil seal 9 and the labyrinth L.
  • the cylindrical portion 21 is formed integrally with the fixed portion 23, the inertia is reduced as compared with the case where the cylindrical portion 21 is formed integrally with the rotation output portion 22. There is an effect.
  • the motor A of this embodiment also has an effect that an air purge mechanism can be easily provided.
  • a motor main body 1 made of a non-waterproof motor having a wiring cable with a non-waterproof connector is placed in a housing base in which a fixed portion 23 and a cylindrical portion 21 are integrated, and a rotation output portion It can be obtained by capping 22, bringing the lip portion of the oil seal 9 into contact with the rotation output portion 22, and fixing the motor body 1 and the housing 2 with bolts B 3 and B 4.
  • the housing 2 may be one in which the cylindrical portion 21 is formed integrally with the rotation output portion 22.
  • the oil seal 9 may be fixed to the rotation output unit 22, and the lip portion of the oil seal 9 may be in contact with the cylindrical portion 21.
  • the labyrinth L can be provided without installing the oil seal 9.
  • the sealing mechanism 10 may be one having only one lip portion, such as the oil seal 9, or may be one having both a dust lip and a seal lip.
  • the motor A of this embodiment is the same as that of the first embodiment shown in FIG. 2 except that the section AA in FIG. 1 has the shape shown in FIG. 4, members that are the same as those shown in FIG. 2 are given the same reference numerals, and descriptions thereof may be omitted. That is, in the motor A of this embodiment, as in the first embodiment, a thin peripheral edge portion 22b that protrudes toward the cylindrical portion 21 side is formed on the outer edge of the rotation output portion 22, but its end face is on the outer peripheral side. The taper surface 22f expands in diameter.
  • a tapered surface 21d facing the tapered surface 22f with a predetermined gap is formed on the outer edge portion of one end of the cylindrical portion 21 in the axial direction (rotation output portion 22 side). That is, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed only by the oil seal 9 to constitute the sealing mechanism 10. Although the outer peripheral side of the oil seal 9 is enclosed, it does not have a sealing mechanism made of labyrinth.
  • the motor A of this embodiment in addition to the same effect as the motor A of the first embodiment, the space K formed by the peripheral edge portion 22b of the rotation output portion 22, the cylindrical portion 21 and the oil seal 9 is provided.
  • the inside liquid is also discharged by centrifugal force when the motor A rotates through the gap between the tapered surface 22f of the peripheral portion 22b and the tapered surface 21d of the cylindrical portion 21. That is, the motor A of this embodiment has a higher effect of preventing the liquid in the space K from entering the motor body 1 than the motor A of the first embodiment.
  • the motor A of this embodiment is the same as that of the first embodiment shown in FIG. 2 except that the AA cross section of FIG. 1 has the shape shown in FIG.
  • the same members as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A of this embodiment, the thin peripheral edge portion 22 b that protrudes toward the cylindrical portion 21 is not formed on the outer edge of the rotation output portion 22. Further, the step portion 21 b is not formed on the outer edge portion of the cylindrical portion 21 at the upper end in the axial direction (on the rotation output portion 22 side). That is, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed only by the oil seal 9 to constitute the sealing mechanism 10, and the outer peripheral side of the oil seal 9 is open.
  • the thin peripheral edge portion 22b is not formed on the outer edge of the rotation output portion 22, so that the rotation output portion 22 Since the shape becomes simple, an effect that the cost can be reduced is also obtained.
  • the motor body is a gear reduction type motor (a motor whose torque is amplified using a reduction gear) or a general motor (for example, rotating only in one direction). It can also be applied to motors that are motors that are).
  • the motor A of this embodiment is the same as the first embodiment shown in FIG. 2 except that its cross section has the shape shown in FIG. 6, the same members as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 6, the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 is provided between the cylindrical portion 21 and the rotation output portion 22 and rotates with the cylindrical portion 21.
  • the rotary output unit 22 includes a sealing material 12 that seals between the output unit 22 and the rotation output unit 22 is a lightweight material in which the hardness of the seal contact surface 22h that the seal material 12 contacts is higher than the hardness of a portion other than the seal contact surface 22h. It is made up of.
  • the sealing material 12 is preferably composed of an oil seal, and is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21.
  • the seal material 12 is attached to the cylindrical portion 21, and the lip portion of the seal material 12 is in contact with the seal contact surface 22 h of the rotation output portion 22.
  • the base material of the rotation output part 22 is made of steel and electroless nickel is required. For this reason, since the whole rotation output part is steel materials, it is very heavy.
  • the rotation output portion 22 is made of a lightweight material in which the hardness of the seal contact surface 22h is higher than the hardness of portions other than the seal contact surface 22h. For this reason, after ensuring the required hardness for the seal contact surface 22h in the rotation output portion 22, it is possible to reduce the weight and reduce the inertia of the rotation output portion 22.
  • the rotation output part 22 is what the hardness improvement process was made to at least the seal contact surface 22h, and the hardness improvement process is a surface treatment.
  • the lightweight material of the rotation output part 22 is an aluminum material.
  • the rotation output portion 22 uses an aluminum material having a hard surface treatment applied to the seal contact surface 22h, thereby ensuring the necessary hardness for the seal contact surface 22h in the rotation output portion 22.
  • the rotation output unit 22 can be reduced in weight and reduced inertia.
  • an aluminum material having a high thermal conductivity for the rotation output portion 22 the heat dissipation can be improved and the rated output of the motor A can be improved.
  • the “aluminum material” is a material mainly made of aluminum and includes an aluminum alloy.
  • an anodic oxidation treatment is suitable.
  • the above-described hardness improvement treatment may be heat treatment, and the above-mentioned lightweight material may be super hard duralumin.
  • the surface roughness of the seal contact surface 22h of the rotation output portion 22 is set to Ra 0.05 to 1.60, and the inner diameter of the seal material 12 and the seal attachment portion for attaching the seal material 12 (formed on the cylindrical portion 21).
  • the fit with the outer diameter of the peripheral edge 21a) is an interference fit of 5.0 to 25.00 mm.
  • the motor body 1 is an outer rotor type.
  • the motor body 1 has a resolver stator 52 on the inner side and a resolver rotor 51 on the outer peripheral side of the resolver stator 52.
  • the resolver 5 having In the motor A of this embodiment, the rotation output portion 22 and the resolver rotor 51 are integrated, and the bolt output hole 22g formed in the portion where the rotation output portion 22 and the resolver rotor 51 are integrated.
  • a member in which the rotation output unit 22 and the resolver rotor 51 are integrated is attached to the motor rotor 41 by the bolt B1.
  • the resolver 5 is a sensor that uses magnetism, it is necessary to use a nonmagnetic material with little magnetic influence for peripheral members including the resolver rotor 51 of the resolver 5. Therefore, conventionally, the peripheral member including the resolver rotor 51 of the resolver 5 and the rotation output unit 22 made of steel cannot be integrated.
  • a nonmagnetic material such as an aluminum material or super hard duralumin is used for the rotation output unit 22, so that the resolver rotor 51 and the rotation output unit 22 of the resolver 5 are integrated.
  • the thermal conductivity is increased, the heat dissipation is improved, and the restriction on the rated output of MoA due to heat generation is relaxed. Will be able to.
  • the resolver rotor 51 of the resolver 5 and the rotation output unit 22 are integrated, and the groove 22d for the sealing material 63 provided on the connection surface of the rotation output unit 22 with respect to the table (attachment rotating body) 62 is provided on the outer periphery of the resolver rotor 51.
  • the rotation output unit 22 is provided with an opening 22 i that opens from the center of the rotation axis of the rotation output unit 22 to the inside of the groove 22 d for the sealing material 63 and to the vicinity of the resolver rotor 51. .
  • the diameter of the opening 22i is larger than the diameter of the center hole 11 of the motor A, that is, the diameter of the center hole (through hole) 22a formed in the rotation output portion 22 of the motor A of the first embodiment shown in FIG.
  • the freedom degree of wiring piping can be increased compared with 1st Embodiment.
  • the opening 22i opens from the center of the rotation axis of the rotation output unit 22 to the inside of the groove 22d for the sealant 63 and near the resolver rotor 51, the parts replacement and adjustment of the resolver 5 have a diameter. This can be easily done through the large opening 22i.
  • the groove 22d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output portion 22 without being provided on the connection surface of the rotation output portion 22 with respect to the table (attachment rotating body) 62.
  • the structure of the rotation output unit 22 can be simplified, and the degree of freedom in layout can be increased.
  • the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor.
  • the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor main body 1 may be an inner rotor type in which an inner peripheral side rotates.
  • the motor A of this embodiment is the same as the first embodiment shown in FIG. 2 except that its cross section has the shape shown in FIG.
  • the same members as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 7, the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 is provided between the cylindrical portion 21 and the rotation output portion 22, and the liquid is supplied from the outside.
  • the liquid intrusion prevention means 13 is configured to prevent intrusion into the inside through between the cylindrical portion 21 and the rotation output portion 22.
  • the liquid intrusion prevention means 13 that prevents liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22 is provided at one axial position of the cylindrical portion 21. Therefore, the number of liquid intrusion prevention means (seal), which are consumable parts, can be reduced, a low cost structure can be realized, and maintenance labor can be reduced.
  • the liquid intrusion prevention means 13 includes an oil seal 9, and the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21. Yes.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22. Thereby, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed with the oil seal 9.
  • the liquid intrusion prevention means 13 may be a dust seal or a low rotation resistance seal used for a bearing seal portion instead of the oil seal 9.
  • the liquid intrusion prevention means 13 is the oil seal 9
  • the material used for the rotation member 22 is limited, or the seal contact surface needs to be surface-treated. It occurs.
  • the surface treatment applied to the rotation output unit 22 and the rotation output unit 22 can be freely selected.
  • the motor A can be obtained as an energy-saving motor A with low rotation resistance and high efficiency. Further, the output of the motor A can be improved, and the rated output of the motor A can be improved because there is little heat generation due to friction.
  • the motor internal pressure is increased by air purge. More specifically, the internal pressure airway 23g extending from the bottom surface of the fixed part 23 to the through hole 72 of the motor part cover 7 is provided in the fixed part 23 and the motor part cover 7 of the housing 2.
  • a hose 82 is connected to the outside of the fixing portion 23 of the internal pressure airway 23g, and air is supplied from the hose 82 in the direction of arrow X. Then, the air supplied from the hose 82 in the direction of the arrow X passes through the internal pressure airway 23g and enters the motor body 1 from the through hole 72 of the motor cover 7. Thereby, the internal pressure in the motor main body 1 can be raised. Thereby, also in the site
  • the space between the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the connection surface of the table 62 to the rotation output unit 22 is sealed. This prevents liquid from entering the center hole 11 of the motor body 1.
  • the connection of the rotation output unit 22 to the table 62 is sealed in order to seal between the connection surface of the rotation output unit 22 to the table 62 and the connection surface of the table 62 to the rotation output unit 22.
  • a groove 22d for the sealing material 63 is provided on the surface, and the sealing material 63 is disposed in the groove 22d, thereby preventing liquid from entering the central hole 11 of the motor body 1.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor body 1 is an outer rotor type as described above. Further, the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor A of this embodiment is the same as the fifth embodiment shown in FIG. 7 except that its cross section has the shape shown in FIG. 8, the same members as those shown in FIG. 7 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 8, the liquid intrusion prevention means 13 further has a labyrinth L compared to the motor A shown in FIG. Specifically, the liquid intrusion prevention means 13 includes an oil seal 9 and a labyrinth L. The oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22. Further, a step 21 c that varies the outer diameter is formed at the upper end in the axial direction of the cylindrical portion 21. A predetermined gap is provided between the peripheral surface and a predetermined gap between the surface of the step 21 c that is the boundary between the large diameter portion and the small diameter portion of the cylindrical portion 21 and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22. Is provided.
  • the liquid intrudes from the outside through the space between the cylindrical portion 21 and the rotation output portion 22 by the liquid intrusion preventing means 13 constituted by the oil seal 9 and the labyrinth L. Can be prevented.
  • a low rotation resistance seal such as a dust seal or a bearing seal portion may be used instead of the oil seal 9 depending on the application.
  • the liquid intrusion prevention means 13 is provided only at one axial direction of the cylindrical portion 21, the liquid which is a consumable part The number of intrusion prevention means can be reduced, a low cost structure can be realized, and maintenance labor can be reduced.
  • the motor internal pressure may be increased by air purge, similarly to the motor A of the fifth embodiment.
  • the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the connection surface of the table 62 to the rotation output unit 22 The space between them is sealed.
  • the space between the connection surface of the rotation output unit 22 to the table 62 and the connection surface of the table 62 to the rotation output unit 22 is sealed.
  • a groove 22d for the sealing material 63 is provided on the connection surface of the rotation output unit 22 to the table 62, and the sealing material 63 is disposed in the groove 22d, so that liquid enters the central hole 11 of the motor body 1. Try to prevent.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor main body 1 is an outer rotor type
  • the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor A of this embodiment is the same as that of the sixth embodiment except that its cross section has the shape shown in FIG. 9, members that are the same as those shown in FIG. 8 are given the same reference numerals, and descriptions thereof may be omitted.
  • the labyrinth L is provided with a predetermined gap between the outer peripheral surface of the small diameter portion due to the step 21 c of the cylindrical portion 21 and the inner peripheral surface of the peripheral edge portion 21 a of the rotation output portion 22, and the large diameter portion of the cylindrical portion 21.
  • the liquid intrusion prevention means 13 constituted by the labyrinth L can prevent liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22. it can.
  • the labyrinth L In order to prevent liquid intrusion more reliably, it is better to combine the labyrinth L with the oil seal 9 as in the sixth embodiment. However, depending on the application, the labyrinth L may be sufficient. Since the oil seal 9 is not used, not only the manufacturing cost is reduced, but also the oil seal 9 is not required to be replaced, so that the maintainability is excellent. In addition, the liquid intrusion prevention means 13 becomes non-contact, and unlike the case where the oil seal 9 is used, it is possible to avoid restrictions on the hardness and surface roughness of the seal contact surface in the rotation output portion 22 and to reduce the rotational resistance. The output can be improved. Moreover, since there is no heat generation due to friction of the oil seal, the rated output of the motor A can be improved.
  • the liquid intrusion prevention means 13 is provided only in one axial direction of the cylindrical portion 21 as in the motor A of the fifth embodiment and the motor A of the sixth embodiment.
  • the motor internal pressure may be increased by air purge, similarly to the motor A of the fifth embodiment and the motor A of the sixth embodiment.
  • the air purge functions particularly effectively against the liquid intrusion.
  • connection surface with respect to the table (attachment rotary body) 62 of the rotation output part 22 and the table 62 is similar to the motor A of 5th Embodiment and the motor A of 6th Embodiment.
  • the space between the connection surface for the rotation output unit 22 is sealed.
  • connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the table 62 In order to seal between the connection surface with respect to the rotation output portion 22, a groove 22d for the sealing material 63 is provided on the connection surface with respect to the table 62 of the rotation output portion 22, and the sealing material 63 is disposed in the groove 22d. The liquid is prevented from entering the central hole 11 of the motor body 1.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor body 1 is an outer rotor type similarly to the motor A of the fifth embodiment and the motor A of the sixth embodiment. Further, the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor A of this embodiment is the same as the seventh embodiment shown in FIG. 9 except that its cross section has the shape shown in FIG. 10, members that are the same as the members shown in FIG. 9 are given the same reference numerals, and descriptions thereof may be omitted. That is, in the motor A shown in FIG. 10, the liquid intrusion prevention means 13 includes the porous member 14 in the vicinity of the labyrinth L. More specifically, the labyrinth L is provided with a predetermined gap between the outer peripheral surface of the small diameter portion due to the step 21 c of the cylindrical portion 21 and the inner peripheral surface of the peripheral edge portion 21 a of the rotation output portion 22.
  • a predetermined gap is provided between the surface of the step 21 c which is the boundary between the large diameter portion and the small diameter portion and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22.
  • An annular concave groove carved from the outer periphery is formed on the outer periphery of the small diameter portion of the cylindrical portion 21, and the annular porous member 14 is disposed in the concave groove.
  • the porous member 14 has an annular shape, but is configured by combining a plurality of members for assembly.
  • the porous member 14 since the porous member 14 is in the vicinity of the labyrinth L, if the amount of liquid that has entered the labyrinth L is small, it can be absorbed by capillary action.
  • a porous member airway 21 f that connects the inside of the motor body 1 and the porous member 14 is provided in the small diameter portion of the cylindrical portion 61.
  • the hose 82 is connected to the internal pressure airway 23g provided in the fixed portion 23 of the housing 2 and the motor portion cover 7, and the direction of the arrow X is extended from the hose 82. This is done by supplying air.
  • the liquid intrusion prevention means 13 becomes non-contact, and unlike the case where the oil seal 9 is used, it is free from restrictions on the hardness and surface roughness of the seal contact surface in the rotation output unit 22, The rotational resistance can be reduced, and the motor output can be improved. Moreover, since there is no heat generation due to friction of the oil seal, the rated output of the motor A can be improved.
  • the liquid intrusion preventing means 13 is provided only at one axial position of the cylindrical portion 21 as in the motor A of the fifth to seventh embodiments.
  • the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit of the table 62 are similar to the motor A of the fifth to seventh embodiments.
  • the connection surface with respect to 22 is sealed.
  • the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit of the table 62 are the same as the motor A of the fifth to seventh embodiments.
  • the groove 22 d for the seal material 63 is provided on the connection surface with respect to the table 62 of the rotation output portion 22, and the seal material 63 is disposed in the groove 22 d, so that the liquid is supplied to the motor. Intrusion into the central hole 11 of the main body 1 is prevented.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor body 1 is an outer rotor type similarly to the motor A of the fifth to seventh embodiments. Further, the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor body 1 may be an inner rotor type that rotates on the inner peripheral side instead of the outer rotor type.
  • the motor A of this embodiment is the same as the fifth embodiment shown in FIG. 7 except that its cross section has the shape shown in FIG.
  • the same members as those shown in FIG. 7 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 11, as in the motor A shown in FIG. 7, the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 includes the cylindrical portion 21 and the rotation output portion 22.
  • the liquid intrusion prevention means 13 is configured to prevent the liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22 from the outside.
  • the liquid intrusion prevents liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22 from the outside. Since the prevention means 13 is provided only in one axial direction of the cylindrical portion 21, the number of liquid intrusion prevention means (seal) which are consumable parts is reduced, a low cost structure is realized, and maintenance work is also reduced. Can be reduced.
  • the liquid intrusion prevention means 13 includes an oil seal 9 and a labyrinth L.
  • the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22.
  • a step 21 c that varies the outer diameter is formed at the upper end in the axial direction of the cylindrical portion 21.
  • a predetermined gap is provided between the peripheral surface and a predetermined gap between the surface of the step 21 c that is the boundary between the large diameter portion and the small diameter portion of the cylindrical portion 21 and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22. Is provided.
  • the outer diameter of the small diameter portion of the cylindrical portion 21 and the inner diameter of the peripheral edge portion 22b of the rotation output portion 22 are rotated so as to increase from the upper side in the axial direction of the cylindrical portion 21 toward the lower side in the axial direction. It is inclined at an angle ⁇ with respect to the rotation axis CL of the output unit 22.
  • the labyrinth L in such a tapered shape, it is easy to fit the cylindrical portion 21 of the housing 2 and the peripheral edge portion 22b of the rotation output portion 22 during the assembly of the motor A, and the assembling property and the maintenance property are improved. Can be improved.
  • the aforementioned angle ⁇ of the labyrinth L is 1 ° to 20 °, preferably 5 ° to 15 °. If the angle ⁇ is less than 1 °, the effect of drainage due to centrifugal force and the effect of improving the assemblability and maintenance are not obtained. In addition, when the angle ⁇ is larger than 20 °, the influence of gravity acting on the liquid is reduced, the drainage performance is lowered, the distance of the labyrinth L is difficult to be secured, and the intrusion of liquid or foreign matter cannot be prevented. There is a fear that it is not preferable. Similar to the motor A of the fifth embodiment, a low rotational resistance seal such as a dust seal or a bearing seal portion may be used instead of the oil seal 9 depending on the application.
  • the hardness of the seal contact surface in the rotating member 22 is increased, so that the material used for the rotating member 22 is limited or the seal contact surface needs to be surface-treated.
  • the surface treatment applied to the rotation output unit 22 and the rotation output unit 22 can be freely selected.
  • the motor A can be provided with low rotational resistance and high efficiency and energy saving. Further, the output of the motor A can be improved, and the rated output of the motor A can be improved because there is little heat generation due to friction.
  • the motor internal pressure may be increased by air purge, similarly to the motor A of the fifth embodiment shown in FIG.
  • the connection surface of the rotation output unit 22 with respect to the table (attachment rotating body) 62 and the rotation output unit 22 of the table 62 similarly to the motor A of the fifth embodiment shown in FIG. 7, the connection surface of the rotation output unit 22 with respect to the table (attachment rotating body) 62 and the rotation output unit 22 of the table 62. The space between the connection surfaces is sealed. This prevents liquid from entering the center hole 11 of the motor body 1.
  • the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit 22 of the table 62 are similar to the motor A of the fifth embodiment shown in FIG.
  • a groove 22d for the seal material 63 is provided on the connection surface of the rotation output unit 22 to the table 62, and the seal material 63 is disposed in the groove 22d, so that the liquid is supplied to the motor body 1. Intrusion into the center hole 11 is prevented.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor main body 1 is an outer rotor type
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor A of this embodiment is the same as the ninth embodiment shown in FIG. 11 except that its cross section has the shape shown in FIG. In FIG. 12, the same members as those shown in FIG.
  • the labyrinth L is provided with a predetermined gap between the outer peripheral surface of the small diameter portion due to the step 21 c of the cylindrical portion 21 and the inner peripheral surface of the peripheral edge portion 21 a of the rotation output portion 22, and the large diameter portion of the cylindrical portion 21.
  • a predetermined gap is provided between the surface of the step 21 c that is the boundary between the small diameter portion and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22.
  • the outer diameter of the small diameter portion of the cylindrical portion 21 and the inner diameter of the peripheral edge portion 22b of the rotation output portion 22 are rotated so as to increase from the upper side in the axial direction of the cylindrical portion 21 toward the lower side in the axial direction. It is inclined at an angle ⁇ with respect to the rotation axis CL of the output unit 22.
  • the liquid intrusion prevention means 13 constituted by the labyrinth L can prevent liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22. it can. In order to more reliably prevent liquid from entering, it is better to combine the labyrinth L with the oil seal 9 as in the motor A of the ninth embodiment shown in FIG. It may be enough. Since the oil seal 9 is not used, not only the manufacturing cost is reduced, but also the oil seal 9 is not required to be replaced, so that the maintenance is excellent.
  • liquid intrusion prevention means 13 becomes non-contact, and unlike the case where the oil seal 9 is used, it is possible to avoid restrictions on the hardness and surface roughness of the seal contact surface in the rotation output portion 22 and to reduce the rotational resistance.
  • the output can be improved.
  • the rated output of the motor A can be improved.
  • the liquid intrusion prevention means 13 is provided only in one axial direction of the cylindrical portion 21 as in the motor A of the ninth embodiment shown in FIG. Further, in the motor A of the tenth embodiment, as in the motor A of the ninth embodiment, the motor internal pressure may be increased by air purge. In the motor A of the tenth embodiment, since the liquid intrusion prevention means 13 is only the labyrinth L, the air purge functions particularly effectively against the liquid intrusion. Further, in the motor A of the tenth embodiment, similarly to the motor A of the ninth embodiment shown in FIG. 11, the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit 22 of the table 62. It is sealed between the connection surface to.
  • connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit 22 of the table 62 are similar to the motor A of the ninth embodiment shown in FIG.
  • a groove 22d for the seal material 63 is provided on the connection surface with respect to the table 62 of the rotation output unit 22, and the seal material 63 is disposed in the groove 22d, so that the liquid is supplied to the motor body. Intrusion into one central hole 11 is prevented.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor body 1 is an outer rotor type similarly to the motor A of the ninth embodiment shown in FIG. Further, the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor A of this embodiment is the same as the tenth embodiment shown in FIG. 12 except that its cross section has the shape shown in FIG.
  • the same members as those shown in FIG. 12 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 13, the liquid intrusion prevention means 13 includes the porous member 14 in the vicinity of the labyrinth L. More specifically, the labyrinth L is provided with a predetermined gap between the outer peripheral surface of the small diameter portion due to the step 21 c of the cylindrical portion 21 and the inner peripheral surface of the peripheral edge portion 21 a of the rotation output portion 22.
  • a predetermined gap is provided between the surface of the step 21 c which is the boundary between the large diameter portion and the small diameter portion and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22.
  • the outer diameter of the small diameter portion of the cylindrical portion 21 and the inner diameter of the peripheral edge portion 22b of the rotation output portion 22 are rotated so as to increase from the upper side in the axial direction of the cylindrical portion 21 toward the lower side in the axial direction. It is inclined at an angle ⁇ with respect to the rotation axis CL of the output unit 22.
  • An annular concave groove carved from the outer periphery is formed on the outer periphery of the small diameter portion of the cylindrical portion 21, and the annular porous member 14 is disposed in the concave groove.
  • the porous member 14 has an annular shape, but is configured by combining a plurality of members for assembly.
  • the porous member 14 since the porous member 14 is in the vicinity of the labyrinth L, if the amount of liquid that has entered the labyrinth L is small, it can be absorbed by capillary action.
  • a porous member airway 21 f that connects the inside of the motor body 1 and the porous member 14 is provided in the small diameter portion of the cylindrical portion 61.
  • the air purge is performed by connecting a hose 82 to the internal pressure airway 23g provided in the fixed portion 23 of the housing 2 and the motor portion cover 7 and supplying air from the hose 82 in the direction of arrow X.
  • the liquid intrusion prevention means 13 becomes non-contact, and unlike the case where the oil seal 9 is used, While avoiding restrictions on the hardness and surface roughness of the seal contact surface, it is possible to reduce rotational resistance and improve motor output. Moreover, since there is no heat generation due to friction of the oil seal, the rated output of the motor A can be improved.
  • the liquid intrusion prevention means 13 is provided only at one axial position of the cylindrical portion 21 as in the motor A of the ninth embodiment and the tenth embodiment. Further, in the motor A of the eleventh embodiment, as in the motor A of the ninth and tenth embodiments, the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit of the table 62 The connection surface with respect to 22 is sealed. Further, in the motor A of the eleventh embodiment, the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit of the table 62 are the same as the motor A of the ninth embodiment and the tenth embodiment.
  • the groove 22 d for the seal material 63 is provided on the connection surface with respect to the table 62 of the rotation output portion 22, and the seal material 63 is disposed in this groove 22 d, so Intrusion into the central hole 11 of the main body 1 is prevented.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor body 1 is an outer rotor type similarly to the motor A of the ninth embodiment and the tenth embodiment.
  • the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A of this embodiment can be used as a driving source, and can be used as a transport device that rotates electronically by placing electronic components on the table 62. Further, the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor. Moreover, the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a reduction gear)
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, a motor that rotates only in one direction). It can also be applied to motors that are).
  • the motor body 1 may be an inner rotor type that rotates on the inner peripheral side instead of the outer rotor type.
  • the motor A of this embodiment is the same as the first embodiment shown in FIG. 2 except that its cross section has the shape shown in FIG. 14, the same members as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 is provided between the cylindrical portion 21 and the rotation output portion 22, and the liquid is supplied from the outside to the cylindrical portion.
  • the liquid intrusion prevention means 13 is configured to prevent the liquid from entering the inside through the space between the rotary output portion 22 and the rotation output section 22, and further includes the failure prevention means 90 for preventing a failure when the liquid enters the inside. Yes.
  • the liquid intrusion prevention means 13 that prevents liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22 is provided on the shaft of the cylindrical portion 21. Since it is provided only in one direction, it is possible to reduce the number of liquid intrusion prevention means (seal) that are consumable parts, to realize a low cost structure, and to reduce maintenance work.
  • the liquid intrusion prevention means 13 includes an oil seal 9, and the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21. Yes.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22. Thereby, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed with the oil seal 9.
  • the failure prevention means 90 is a liquid detection sensor 91 and is installed in the fixed portion 23 of the housing 2 provided on the lower side in the axial direction of the cylindrical portion 21.
  • the liquid detection sensor 91 can detect liquid that has entered the interior of the motor body 1 from the outside of the housing 2 through the space between the cylindrical portion 21 and the rotation output portion 22.
  • the liquid sensing sensor 91 senses liquid, it sends an abnormality signal to the abnormality notification means such as an abnormality lamp (not shown) through the code 92.
  • the abnormality notification means receives the abnormality signal, the abnormality notification means notifies the operator of the abnormality due to the intrusion of the liquid with sound or light.
  • the liquid detection sensor 91 is connected to a controller of the motor A (not shown), and an abnormal signal from the liquid detection sensor 91 is transmitted to the controller, so that the motor A is moved to a safe position by the controller. You may make it stop.
  • the operator can take appropriate notice such as replacement of the liquid intrusion prevention means 13 in response to the liquid intrusion into the motor body 1 upon receiving the abnormality notification due to the liquid intrusion.
  • the fixing unit 23 on which the liquid detection sensor 91 constituting the failure prevention unit 90 is installed includes an inclined portion 93 that is inclined with respect to the axial direction of the cylindrical portion 21 and a horizontal portion from the axially lowermost portion of the inclined portion 93.
  • the liquid sensing sensor 91 is installed on the bottom surface portion 94.
  • the inclination method of the inclination part 93 should just incline with respect to the axial direction of the cylindrical part 21.
  • FIG. In the motor A shown in FIG. 14, the inclined portion 93 is positioned such that the inner peripheral side of the fixed portion 23 is located at a higher position on the upper side in the axial direction, and the outer peripheral side of the fixed portion 23 is located at a lower position on the lower side in the axial direction.
  • the inner peripheral side of the fixing portion 23 may be positioned at a lower position on the lower side in the axial direction
  • the outer peripheral side of the fixing portion 23 may be positioned at a higher position on the upper side in the axial direction.
  • the inclined portion 93 may change not only the height in the radial direction of the fixed portion 23 but also the height in the circumferential direction.
  • the bottom surface portion 94 is configured to extend horizontally from the axially lowermost portion of the inclined portion 93, and the liquid detection sensor 91 is installed on the bottom surface portion 94.
  • the motor A of this embodiment is the same as the twelfth embodiment shown in FIG. 14 except that its cross section has the shape shown in FIG. 15, members that are the same as those shown in FIG. 14 are given the same reference numerals, and descriptions thereof may be omitted.
  • the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 is provided between the cylindrical portion 21 and the rotation output portion 22, and the liquid is supplied from the outside to the cylindrical portion.
  • the liquid intrusion prevention means 13 is configured to prevent the liquid from entering the inside through the space between the rotation output unit 22 and the rotation output unit 22, and further includes a failure prevention means 90 for preventing a failure when the liquid enters the inside. Yes.
  • the liquid intrusion prevention means 13 that prevents liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22 is provided on the shaft of the cylindrical portion 21. Since it is provided only in one direction, it is possible to reduce the number of liquid intrusion prevention means (seal) that are consumable parts, to realize a low cost structure, and to reduce maintenance work.
  • the liquid intrusion prevention means 13 includes an oil seal 9, and the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21. Yes.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22. Thereby, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed with the oil seal 9.
  • the failure prevention means 90 is a liquid through hole 95 formed in the fixing portion 23 of the housing 2 provided on the lower side in the axial direction of the cylindrical portion 21.
  • the liquid through hole 95 is formed so as to penetrate from the upper surface in the axial direction of the fixing portion 23 to the lower surface in the axial direction.
  • the liquid passage hole 95 allows the liquid that has entered the inside of the motor body 1 through the space between the cylindrical portion 21 and the rotation output portion 22 from the outside of the housing 2 to escape downward in the axial direction of the housing 2.
  • the liquid flows downward by gravity, and when the liquid reaches the liquid through hole 95, the liquid is discharged to the lower side of the housing 2 through the liquid through hole 95.
  • fixed part 23 in which the liquid through-hole 95 which comprises the failure prevention means 90 is formed is an inclination part inclined with respect to the axial direction of the cylindrical part 21, like the motor A of 12th Embodiment shown in FIG. 93 and a bottom surface portion 94 extending horizontally from the lowermost portion in the axial direction of the inclined portion 93.
  • the liquid through hole 95 is formed to penetrate the bottom surface portion 94 vertically in the axial direction.
  • the inclination method of the inclination part 93 should just incline with respect to the axial direction of the cylindrical part 21, like 12th Embodiment shown in FIG.
  • the inclined portion 93 is positioned such that the inner peripheral side of the fixed portion 23 is located at a higher position on the upper side in the axial direction, and the outer peripheral side of the fixed portion 23 is located at a lower position on the lower side in the axial direction.
  • the inner peripheral side of the fixing portion 23 may be positioned at a lower position on the lower side in the axial direction
  • the outer peripheral side of the fixing portion 23 may be positioned at a higher position on the upper side in the axial direction.
  • the inclined portion 93 may change not only the height in the radial direction of the fixed portion 23 but also the height in the circumferential direction.
  • the bottom surface portion 94 is configured to extend horizontally from the lowermost portion in the axial direction of the inclined portion 93, and the liquid passage hole 95 is formed so as to penetrate the bottom surface portion 94 vertically in the axial direction.
  • connection surface of the rotation output unit 22 to the table (attached rotating body) 62 and the connection of the table 62 to the rotation output unit 22 In order to seal the space between the surfaces, a groove 22d for the seal material 63 is provided on the connection surface of the rotation output portion 22 to the table 62, and the seal material 63 is disposed in the groove 22d, so that the liquid is supplied to the motor body 1. Intrusion into the center hole 11 is prevented. For this reason, the central hole 11 of the motor body 1 does not need to be sealed by the liquid intrusion preventing means 13, and the liquid intrusion preventing means 13 is disposed only at one axial outer peripheral side of the housing 2.
  • the number of rolling bearings 6 is one.
  • the number of constituent members can be reduced, the structure can be simplified, the assembly can be facilitated, and the number of constituent members can be reduced to reduce the size of the motor A.
  • the rolling bearing 6 a four-point contact ball bearing, a cross roller bearing, or a deep groove ball bearing capable of receiving both axial and radial loads is preferable.
  • the liquid detection sensor 91 is used as the failure prevention means 90, and in the motor A of the thirteenth embodiment shown in FIG.
  • the present invention is not limited to this, and the failure prevention means 90 may be configured to include the liquid detection sensor 91 and the liquid through hole 95.
  • the rotation output unit 22 is fixed to the motor rotor 41 via the resolver rotor 51. With this configuration, the resolver 5 can be easily adjusted.
  • the motor A of the twelfth embodiment shown in FIG. 14 and the thirteenth embodiment shown in FIG. It is not necessary to adopt waterproof specifications.
  • the motor A according to the twelfth embodiment shown in FIG. 14 and the thirteenth embodiment shown in FIG. can also be used as a drive source for the rotation mechanism of the belt conveyor.
  • the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a direct drive motor (a motor that directly drives a load without using a speed reducer).
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a speed reducer) or general motor.
  • the present invention can also be applied to a motor that is a typical motor (for example, a motor that rotates only in one direction).
  • the motor body 1 may be an inner rotor type in which the inner peripheral side rotates instead of the outer rotor type.
  • the motor A of this embodiment is the same as that of the first embodiment shown in FIG. 2 except that its cross section has the shape shown in FIG. 16, the same members as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 16, the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 is disposed between the cylindrical portion 21 and the rotation output portion 22 and rotates with the cylindrical portion 21.
  • the rotation output unit 22 is configured to close the center hole 11 of the motor body 1.
  • An oil seal is suitable as the sealing material 12.
  • the central hole 11 is used for wiring and piping, so the output side (rotation output unit 22 side) is also opened, and the motor fixing side to the output side Wiring and piping can be passed through.
  • the rotation output part 22 also has a center hole penetrating in the axial direction.
  • waterproofness is required, but the rotation output portion 22 is configured to close the central hole 11 of the motor body 1 and wiring is performed through the central hole 11 of the motor body 1. Suitable for when no pipes are required.
  • the number of rolling bearings 6 is one. By using only one rolling bearing 6, the number of constituent members can be reduced, the structure can be simplified, the assembly can be facilitated, and the number of constituent members can be reduced to reduce the size of the motor A.
  • the rolling bearing 6 a four-point contact ball bearing, a cross roller bearing, or a deep groove ball bearing capable of receiving both axial and radial loads is preferable.
  • the rotation output unit 22 is fixed to the motor rotor 41 via the resolver rotor 51. With this configuration, the resolver 5 can be easily adjusted.
  • the connectors 31a and 32a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1, and an expensive waterproof specification need not be adopted.
  • the motor A according to the fourteenth embodiment shown in FIG. the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor.
  • the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body is a gear reduction type motor (a motor whose torque is amplified by using a reduction gear) or a general motor (for example, one motor). It can also be applied to motors that rotate only in the direction.
  • the motor body 1 may be an inner rotor type that rotates on the inner peripheral side instead of the outer rotor type.
  • the motor A of this embodiment is the same as the fifth embodiment shown in FIG. 7 except that its cross section has the shape shown in FIG. In FIG. 17, the same members as those shown in FIG. That is, in the motor A of the fifth embodiment shown in FIG. 7, the sealing mechanism 10 that seals the housing 2 at only one axial direction of the cylindrical portion 21 is provided between the cylindrical portion 21 and the rotation output portion 22.
  • the liquid intrusion prevention means 13 is configured to prevent the liquid from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22, but the motor A of the fifteenth embodiment shown in FIG. In this case, the liquid intrusion prevention means 13 constitutes the foreign matter intrusion prevention means 15 that prevents foreign matter from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22.
  • the sealing mechanism 10 is provided between the cylindrical portion 21 and the rotation output portion 22, and foreign matter is externally connected between the cylindrical portion 21 and the rotation output portion 22.
  • Foreign matter intrusion prevention means 15 for preventing intrusion into the interior through the gap is configured.
  • the foreign matter intrusion prevention means 15 that prevents foreign matter from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22 is provided at one axial position of the cylindrical portion 21. Therefore, the number of foreign matter intrusion prevention means (seal) 15 that are consumable parts can be reduced, a low-cost structure can be realized, and maintenance labor can be reduced.
  • the “foreign matter” liquid such as water or oil, powder such as dust or metal powder, and the like are assumed.
  • the foreign matter intrusion prevention means 15 includes an oil seal 9, and the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21. Yes.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22. Thereby, the space between the cylindrical portion 21 and the rotation output portion 22 is sealed with the oil seal 9.
  • the foreign matter intrusion prevention means 15 may be a low rotation resistance seal such as a dust seal or a bearing seal portion instead of the oil seal 9.
  • the foreign matter intrusion prevention means 15 is the oil seal 9, in order to increase the hardness of the seal contact surface in the rotating member 22, the material used for the rotating member 22 is limited, or the seal contact surface needs to be surface-treated. It occurs.
  • a dust seal or a low rotation resistance seal is used as the foreign matter intrusion prevention means 15, the surface treatment applied to the rotation output unit 22 and the rotation output unit 22 can be freely selected.
  • the motor A can be provided with low rotational resistance and high efficiency and energy saving. Further, the output of the motor A can be improved, and the rated output of the motor A can be improved because there is little heat generation due to friction.
  • the motor internal pressure is increased by air purge. More specifically, the internal pressure airway 23g extending from the bottom surface of the fixed part 23 to the through hole 72 of the motor part cover 7 is provided in the fixed part 23 and the motor part cover 7 of the housing 2.
  • a hose 82 is connected to the outside of the fixing portion 23 of the internal pressure airway 23g, and air is supplied from the hose 82 in the direction of arrow X. Then, the air supplied from the hose 82 in the direction of the arrow X passes through the internal pressure airway 23g and enters the motor body 1 from the through hole 72 of the motor cover 7. Thereby, the internal pressure in the motor main body 1 can be raised. Thereby, also in the site
  • the space between the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the connection surface of the table 62 to the rotation output unit 22 is sealed. This prevents foreign matter from entering the center hole 11 of the motor body 1.
  • the rotation output unit 22 is sealed in order to seal between the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the connection surface of the table 62 to the rotation output unit 22.
  • a groove 22d for the sealing material 63 is provided on the connection surface to the table 62, and the sealing material 63 is disposed in the groove 22d, thereby preventing foreign matter from entering the center hole 11 of the motor body 1.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor body 1 is an outer rotor type as described above.
  • the motor A of this embodiment is the same as the fifteenth embodiment shown in FIG. 17 except that its cross section has the shape shown in FIG. 18, the same members as those shown in FIG. 17 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. 18, the foreign matter intrusion prevention means 15 further has a labyrinth L compared to the motor A shown in FIG. More specifically, the foreign matter intrusion prevention means 15 includes an oil seal 9 and a labyrinth L.
  • the oil seal 9 is disposed in a space formed by the peripheral edge portion 22 b of the rotation output portion 22 and the peripheral edge portion 21 a of the cylindrical portion 21.
  • the oil seal 9 is attached to the cylindrical portion 21, and the lip portion of the oil seal 9 is in contact with the rotation output portion 22.
  • a step 21 c that varies the outer diameter is formed at the upper end in the axial direction of the cylindrical portion 21.
  • a predetermined gap is provided between the peripheral surface and a predetermined gap between the surface of the step 21 c that is the boundary between the large diameter portion and the small diameter portion of the cylindrical portion 21 and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22. Is provided.
  • the foreign matter intrusion prevention means 15 configured by the oil seal 9 and the labyrinth L causes the foreign matter to enter the inside through the space between the cylindrical portion 21 and the rotation output portion 22. Can be prevented.
  • a low rotation resistance seal such as a dust seal or a bearing seal portion is used instead of the oil seal 9 depending on the application. May be used.
  • the foreign matter intrusion prevention means 15 is provided only in one axial direction of the cylindrical portion 21 as in the case of the motor A of the fifteenth embodiment. The number of intrusion prevention means can be reduced, a low-cost structure can be realized, and maintenance work can be reduced.
  • the motor internal pressure may be increased by air purge.
  • the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the connection surface of the table 62 to the rotation output unit 22 The space between them is sealed.
  • the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the connection surface of the table 62 to the rotation output unit 22 In order to seal the gap, a groove 22d for the sealing material 63 is provided on the connection surface of the rotation output portion 22 to the table 62, and the sealing material 63 is disposed in the groove 22d, so that foreign matter can be removed from the central hole of the motor body 1. 11 is prevented from entering.
  • the groove 22 d for the sealing material 63 may be provided on the connection surface of the table 62 with respect to the rotation output unit 22.
  • the motor main body 1 is an outer rotor type as in the fifteenth embodiment.
  • the motor A of this embodiment is the same as the sixth embodiment shown in FIG. 18 except that its cross section has the shape shown in FIG. 19, the same members as those shown in FIG. 18 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the labyrinth L is provided with a predetermined gap between the outer peripheral surface of the small diameter portion due to the step 21 c of the cylindrical portion 21 and the inner peripheral surface of the peripheral edge portion 21 a of the rotation output portion 22, and the large diameter portion of the cylindrical portion 21.
  • the foreign matter intrusion prevention means 15 constituted by the labyrinth L can prevent foreign matter from entering the inside through the space between the cylindrical portion 21 and the rotation output portion 22. it can.
  • the labyrinth L In order to more reliably prevent foreign matter from entering, it is better to combine the labyrinth L with the oil seal 9 as in the sixteenth embodiment. However, depending on the application, the labyrinth L may be sufficient. Since the oil seal 9 is not used, not only the manufacturing cost is reduced, but also the oil seal 9 is not required to be replaced, so that the maintainability is excellent. Further, unlike the case where the oil seal 9 is used, the foreign matter intrusion prevention means 15 becomes non-contact, so that the restrictions on the hardness and surface roughness of the seal contact surface in the rotation output portion 22 can be avoided and the rotation resistance can be reduced. The output can be improved. Moreover, since there is no heat generation due to friction of the oil seal, the rated output of the motor A can be improved.
  • the foreign matter intrusion prevention means 15 is provided only at one axial position of the cylindrical portion 21 as in the motor A of the fifteenth embodiment and the motor A of the sixteenth embodiment.
  • the motor internal pressure may be increased by air purge, similarly to the motor A of the fifteenth embodiment and the motor A of the sixteenth embodiment.
  • the air purge functions particularly effectively against liquid intrusion.
  • connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the table 62 The space between the connection surface for the rotation output unit 22 is sealed.
  • connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the table 62 In order to seal between the connection surface with respect to the rotation output portion 22, a groove 22d for the sealing material 63 is provided on the connection surface with respect to the table 62 of the rotation output portion 22, and the sealing material 63 is disposed in the groove 22d.
  • the motor body 1 is an outer rotor type similarly to the motor A of the fifteenth embodiment and the motor A of the sixteenth embodiment.
  • the motor A of this embodiment is the same as the seventeenth embodiment shown in FIG. 19 except that its cross section has the shape shown in FIG. 20, the same members as those shown in FIG. 19 are denoted by the same reference numerals, and the description thereof may be omitted. That is, in the motor A shown in FIG. More specifically, the labyrinth L is provided with a predetermined gap between the outer peripheral surface of the small diameter portion due to the step 21 c of the cylindrical portion 21 and the inner peripheral surface of the peripheral edge portion 21 a of the rotation output portion 22. A predetermined gap is provided between the surface of the step 21 c which is the boundary between the large diameter portion and the small diameter portion and the lower end surface of the peripheral edge portion 22 b of the rotation output portion 22.
  • An annular concave groove carved from the outer periphery is formed on the outer periphery of the small diameter portion of the cylindrical portion 21, and the annular porous member 14 is disposed in the concave groove.
  • the porous member 14 has an annular shape, but is configured by combining a plurality of members for assembly.
  • the porous member 14 since the porous member 14 is in the vicinity of the labyrinth L, the liquid that has entered the labyrinth L is a foreign substance, and if it is small, it can be absorbed by a capillary phenomenon.
  • a porous member airway 21 f that connects the inside of the motor body 1 and the porous member 14 is provided in the small diameter portion of the cylindrical portion 61.
  • the porous member 14 Homogeneous air is blown out toward the peripheral edge portion 22b of the rotation output portion 22, and entry of foreign matter from the labyrinth L can be prevented.
  • the hose 82 is connected to the internal pressure airway 23g provided in the fixed portion 23 of the housing 2 and the motor portion cover 7, and the direction from the hose 82 to the arrow X direction is as follows. This is done by supplying air. Also in the motor A of the eighteenth embodiment, the foreign matter intrusion prevention means 15 becomes non-contact, and unlike the case where the oil seal 9 is used, it is free from restrictions on the hardness and surface roughness of the seal contact surface in the rotation output unit 22, The rotational resistance can be reduced, and the motor output can be improved. Moreover, since there is no heat generation due to friction of the oil seal, the rated output of the motor A can be improved.
  • the foreign matter intrusion preventing means 15 is provided only at one axial position of the cylindrical portion 21 as in the motor A of the fifteenth to seventeenth embodiments. Further, in the motor A of the eighteenth embodiment, as in the motor A of the fifteenth to seventeenth embodiments, the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit of the table 62 The connection surface with respect to 22 is sealed. Further, in the motor A of the eighteenth embodiment, the connection surface of the rotation output unit 22 to the table (attachment rotating body) 62 and the rotation output unit of the table 62 are the same as the motor A of the fifteenth to seventeenth embodiments.
  • the motor body 1 is an outer rotor type similarly to the motor A of the fifteenth to seventeenth embodiments.
  • the motor A of this embodiment is the same as the fifteenth embodiment shown in FIG. 17 except that its cross section has the shape shown in FIG. In FIG. 21, the left half is in a phase without wiring connected to the connector 32a.
  • the same members as those shown in FIG. 17 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the motor A of the nineteenth embodiment shown in FIG. 21 has an air purge air passage 85 on the inner peripheral side of the motor body 1 as compared with the motor A of the fifteenth embodiment shown in FIG.
  • the airway 85 is a through hole that is provided in a part of the circumferential surface of the inner portion 42 b of the motor stator 42 that constitutes the motor main body 1 and communicates the center hole 11 of the motor main body 1 with the inside of the motor main body 1. It is configured.
  • a female screw groove is formed on the side of the central hole 11 of the airway 85, and a nipple 84 is screwed into the female screw groove.
  • the nipple 84 is fitted with a hose 83 through the center hole 11 of the motor body 1, and the airway 85 and the hose 83 are connected.
  • the hose 83 is preferably stopped using a clamp so that it does not come off the nipple 84.
  • the air passage 85 for air purge is provided on the inner peripheral side of the motor main body 1 to facilitate the piping of the hose 83. This is because the center hole 11 is originally provided for wiring and piping, and the base 61 side on which the motor A is installed often has similar wiring and piping holes.
  • the internal pressure of the motor main body 1 can be increased, and the internal pressure is made higher than the external pressure at the site of the oil seal 9 constituting the foreign matter intrusion prevention means 15 to further suppress the intrusion of foreign matter. be able to.
  • the motor A of this embodiment is the same as the sixteenth embodiment shown in FIG. 18 except that its cross section has the shape shown in FIG. In FIG. 22, the left half has a phase without wiring connected to the connector 32a. 22, members that are the same as the members shown in FIG. 18 are given the same reference numerals, and descriptions thereof may be omitted.
  • the motor A of the twentieth embodiment shown in FIG. 22 has an air purge air passage 85 on the inner peripheral side of the motor body 1 as compared with the motor A of the sixteenth embodiment shown in FIG.
  • the airway 85 is a through hole that is provided in a part of the circumferential surface of the inner portion 42 b of the motor stator 42 that constitutes the motor main body 1 and communicates the center hole 11 of the motor main body 1 with the inside of the motor main body 1. It is configured.
  • a female screw groove is formed on the side of the central hole 11 of the airway 85, and a nipple 84 is screwed into the female screw groove.
  • the nipple 84 is fitted with a hose 83 through the center hole 11 of the motor body 1, and the airway 85 and the hose 83 are connected.
  • the hose 83 is preferably stopped using a clamp so that it does not come off the nipple 84.
  • the air passage 85 for air purge is provided on the inner peripheral side of the motor main body 1 to facilitate the piping of the hose 83. This is because the center hole 11 is originally provided for wiring and piping, and the base 61 side on which the motor A is installed often has similar wiring and piping holes.
  • the internal pressure of the motor main body 1 can be increased, and the internal pressure is made higher than the external pressure at the site of the oil seal 9 constituting the foreign matter intrusion prevention means 15 to further suppress the intrusion of foreign matter. be able to.
  • the motor A of this embodiment is the same as the seventeenth embodiment shown in FIG. 19 except that its cross section has the shape shown in FIG. In FIG. 23, the left half is in a phase without wiring connected to the connector 32a. 23, the same members as those shown in FIG. 19 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the motor A of the twenty-first embodiment shown in FIG. 23 has an air purge air passage 85 on the inner peripheral side of the motor body 1 as compared with the motor A of the seventeenth embodiment shown in FIG.
  • the airway 85 is provided in a part of the peripheral surface of the inner portion 42 b of the motor rotor 42 that constitutes the motor body 1, and is configured by a through hole that communicates the center hole 11 of the motor body 1 and the inside of the motor body 1.
  • a female screw groove is formed on the side of the central hole 11 of the airway 85, and a nipple 84 is screwed into the female screw groove.
  • the nipple 84 is fitted with a hose 83 through the center hole 11 of the motor body 1, and the airway 85 and the hose 83 are connected.
  • the hose 83 is preferably stopped using a clamp so that it does not come off the nipple 84.
  • the motor A of this embodiment is the same as the eighteenth embodiment shown in FIG. 20 except that its cross section has the shape shown in FIG. In FIG. 24, the left half is in a phase without wiring connected to the connector 32a. 24, the same members as those shown in FIG. 20 are denoted by the same reference numerals, and the description thereof may be omitted.
  • the motor A of the twenty-second embodiment shown in FIG. 24 has an air purge air passage 85 on the inner peripheral side of the motor body 1 as compared with the motor A of the eighteenth embodiment shown in FIG.
  • the airway 85 is provided in a part of the peripheral surface of the inner portion 42 b of the motor rotor 42 that constitutes the motor body 1, and is configured by a through hole that communicates the center hole 11 of the motor body 1 and the inside of the motor body 1.
  • a female screw groove is formed on the side of the central hole 11 of the airway 85, and a nipple 84 is screwed into the female screw groove.
  • the nipple 84 is fitted with a hose 83 through the center hole 11 of the motor body 1, and the airway 85 and the hose 83 are connected.
  • the hose 83 is preferably stopped using a clamp so that it does not come off the nipple 84.
  • the rotation output unit 22 is fixed to the motor rotor 41 via the resolver rotor 51. With this configuration, the resolver 5 can be easily adjusted. Further, in the motor A of the fifteenth embodiment shown in FIG. 17 to the motor A of the twenty-second embodiment shown in FIG. 24, the connectors 31 a and 32 a are provided in the vicinity of the center hole 11 on the inner peripheral side of the motor body 1. It is not necessary to adopt an expensive waterproof specification. In addition, the motor A of the fifteenth embodiment shown in FIG. 17 to the motor A of the twenty-second embodiment shown in FIG.
  • the motor A of this embodiment can also be used as a drive source for the rotation mechanism of the belt conveyor.
  • the motor A of this embodiment can be used as a positioning drive for the positioning device.
  • the motor body directly drives a load without using a direct drive motor (without using a speed reducer).
  • a motor that is a motor is described, the present invention is directed to a motor whose motor body is a gear reduction type motor (a motor whose torque is amplified using a reduction gear). And a motor that is a general motor (for example, a motor that rotates only in one direction). Note that in the motor A of the fifteenth embodiment shown in FIG. 17 to the motor A of the twenty-second embodiment shown in FIG. Good.

Abstract

 部品点数が少なく、コストの低い方法で防水性能が付与されたモータ、そのモータによって位置決め駆動される位置決め装置および搬送装置を提供する。モータ(A)は、軸方向に貫通する中心穴(11)が形成された円柱状のモ-タ本体(1)と、モータ本体(1)を収納するハウジング(2)とを備える。ハウジング(2)は、モータ本体(1)の外周面を覆う円筒部(21)と、円筒部(21)の軸方向上側に設けられた、モータ本体(1)の回転体(51,41)に固定される回転出力部(22)と、円筒部(21)の軸方向下側に設けられた、モ-タ本体(1)の固定体(52,42)に固定される固定部(23)とからなる。ハウジング(2)は、円筒部(21)の軸方向の一ヶ所のみで密封機構(10)により密封されている。

Description

モータ、位置決め装置、搬送装置
 この発明は、防水性や防塵性を有するモータ、そのモータによって位置決め駆動される位置決め装置および搬送装置に関する。
 従来より、高トルク且つ高分解能を有するダイレクトドライブモータは、インデックステーブルを直接駆動することが可能であり、高速動作性を有しながらバックラッシュがないため、高精度な位置決めを必要とする用途で好適に使用されている。
 例えば、ダイレクトドライブモータを有するインデックステーブルが半導体ウエハの研磨工程や洗浄工程の搬送用に使用される場合、半導体ウエハには水などの液体が付着しており、付着した液体が落下してダイレクトドライブモータの上面に溜ることがある。そして、ダイレクトドライブモータ内に液体が浸入すると、モータ内部の腐食や短絡などの電気的故障が生じる原因となる。よって、液体の浸入が防止される性能(防水性)および塵埃の侵入が防止される性能(防塵性)を有するダイレクトドライブモータが求められている。
 防水性を有するダイレクトドライブモータの従来例としては、特許文献1に記載された防水モータが挙げられる。
 この防水モ-タは、図25に示すように、モ-タ本体が、出力軸(回転力を出力する回転体)160と、円筒部120を有するモータハウジング100とで覆われている。出力軸160は略T字状であり、軸部161と、円板状傘部162と、周縁壁163と、位置決め円筒部164を有する。
 モータハウジング100は、モ-タ本体の外周面を覆う円筒部120と、ハウジングベース123とが一体化されたものである。モータハウジング100の円筒部120の出力軸160側の開口端に、Oリング113を介して、シールハウジング124が嵌入されている。シールハウジング124の内周面と出力軸160の位置決め円筒部164との間がオイルシ-ル191で密封されている。シールハウジング124の上側と出力軸160の円板状傘部162との間がダストシ-ル192で密封されている。
 モータハウジング100のハウジングベース123の中央開口部123aには、出力軸160の軸部161との間がオイルシール193で密封されている。また、モータハウジング100の円筒部120には側面開口部120aが形成され、コネクタスペ-サ129を介して防水コネクタ131が取り付けられている。 コネクタスペ-サ129と側面開口部120aとの間がパッキン128で密封されている。
 ハウジングベース123の底部に開口部123bが形成され、開口部123bがカバープレート125で覆われている。これにより、ハウジングベース123の下部に配線空間125aが形成されている。
 モ-タ本体を構成するモータロータ141とレゾルバロータ151が、軸方向で固定されて、転がり軸受106の外輪に固定されている。レゾルバロータ151は出力軸160の位置決め円筒部164内に固定されている。モータコア142がモータハウジング100の円筒部210に固定されている。レゾルバステータ152は、ハウジングベース123の内側部分123cとともに、転がり軸受6の内輪に固定されている。すなわち、この防水モータのモータ本体はインナーロータ型である。
 位置決め円筒部164より中心側の部分で、出力軸160がレゾルバロータ151にボルト170で固定されている。また、一端がレゾルバステータ152に接続された配線の他端が、防水コネクタ131に接続される。この配線は、レゾルバステータ152の貫通穴152a、ハウジングベース123の貫通穴123d、配線空間125a、およびコネクタスペーサ129の内部空間129aに配置される。
 特許文献2には、モータ全体を、オイルシールとダストシールを組み付けた防水カバーで覆って完全密閉した構造とすることで、防水性を持たないモータを防水モータとして使用することが記載されている。特許文献2に記載されている防水モータの例でも、特許文献1の防水モ-タと同様に、略T字状の出力軸を有し、ハウジングベースの中央開口部と出力軸の軸部との間がオイルシールで密閉され、出力軸の外縁部でのオイルシールとダストシールによる二重密封構造を有している。また、ハウジングベースと防水カバーの下端がOリングで密封されている。
特開2011-250504号公報 特開2011-250586号公報
 特許文献1および2に記載された防水モータでは、略T字状の出力軸の形状が複雑であるとともに、複数のオイルシールおよびOリングが配置されているため、コストが高いものであった。
 また、汎用の防水モータでは、円柱状のモータの上下面の防水に関しては、取付時にOリングを用いることなどで簡単に対応できる。また、モータの中心穴は、エアホースや電気配線を通して使用されるため、通常は、取付時に中心穴全体を防水構造としている。よって、実際には、モータの外周面の防水性のみを考慮すればよく、特許文献1および2に記載された防水モータは、防水性能がオーバースペックであると言えるため、コスト削減の点で改善の余地がある。
 この発明の課題は、部品点数が少なく、コストの低い方法で防水性能が付与されたモータ、そのモータによって位置決め駆動される位置決め装置および搬送装置を提供することである。
 上記課題を解決するために、この発明の一態様のモータは、軸方向に貫通する中心穴が形成された円柱状のモ-タ本体と、前記モータ本体を収納するハウジングとを備え、前記ハウジングは、前記モータ本体の外周面を覆う円筒部と、該円筒部の軸方向上側に設けられた、前記モータ本体の回転体に固定される回転出力部と、前記円筒部の軸方向下側に設けられた、前記モ-タ本体の固定体に固定される固定部とからなり、前記ハウジングは、前記円筒部の軸方向の一ヶ所のみで密封機構(オイルシール、Vシール、ラビリンス等)により密封されていることを特徴としている。
 この態様のモータは、前記ハウジングが、前記円筒部の軸方向の一ヶ所のみで密封機構により密封されているため、特許文献1および2に記載された防水モ-タと比較して、部品点数が少なく、コストの低い方法で防水性能が付与されている。また、通常の密封機構は、防水性能だけでなく防塵性能も有するため、この態様のモ-タは防塵性(塵埃の侵入が防止される性能)も有する。
 また、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に配置されて前記円筒部と前記回転出力部との間を密封するものとするとよい。
 また、この態様のモータにおいて、前記ハウジングは、前記モータ本体の前記中心穴に対応する貫通穴を有するとともに、前記モ-タ本体に一端が固定されている配線ケ-ブルを備え、前記配線ケ-ブルは、前記モ-タ本体の軸方向端面の前記中心穴近傍部と前記ハウジングの前記貫通穴を通って、他端が外部(モータの外部)に配置されていることが好ましい。
 また、この態様のモータにおいて、前記円筒部は、前記固定部及び前記回転出力部の少なくとも一方と一体に形成されているとよい。
 この場合、(a)前記円筒部が前記固定部と一体に形成されている構成、(b)前記円筒部が前記回転出力部と一体に形成されている構成、(c)前記円筒部が前記固定部及び前記回転出力部の両方と一体に形成されている構成が含まれる。
 そして、構成(a)の場合、密封機構は、前記円筒部と前記回転出力部との間に配置されて前記円筒部と前記回転出力部との間を密封する。構成(b)の場合、密封機構は、前記回転出力部と前記固定部との間に配置されて前記回転出力部と前記固定部との間を密封する。また、構成(c)の場合、前記円筒部が軸方向で二分割されていて、各分割体が前記固定部及び前記回転出力部のそれぞれに一体に形成され、前記密封機構は、分割体間に配置されて分割体間を密封する。
 なお、構成(c)よりも構成(a)および構成(b)であることが好ましい。構成(c)である場合、前記円筒部の軸方向中間位置に密封機構が配置されるため、前記円筒部の端部に密封機構が配置される構成(a)および構成(b)とすることが好ましい。前記構成(a) と前記構成(b)との比較では、前記構成(a)であることが好ましい。つまり、前記円筒部が前記固定部と一体に形成されていることで、前記構成(b)および(c)の場合よりも、前記回転出力部のイナ-シャを小さくすることができる。
 また、この態様のモータにおいて、前記固定部は基台との接続面を有し、前記回転出力部は取付回転体との接続面を有し、前記固定部の接続面および前記回転出力部の接続面の少なくともいずれか一方に、シ-ル材(Oリング、封止用コンパウンド、接着剤、コーキング材)を配置する溝が形成されていることが好ましい。
 更に、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に設けられて前記円筒部と前記回転出力部との間を密封するシール材を有し、前記回転出力部は、前記シール材が接触するシール接触面の硬度が当該シール接触面以外の部分の硬度よりも高い軽量材からなるようにしてもよい。
 このモータによれば、回転出力部におけるシール接触面に必要な硬度を確保した上で回転出力部の軽量化、低イナーシャ化を実現することができる。
 また、この態様のモータにおいて、前記回転出力部は、少なくとも前記シール接触面に硬度向上処理がなされたものであることが好ましい。
 更に、この態様のモータにおいて、前記硬度向上処理が表面処理であるとよい。
 また、この態様のモータにおいて、前記軽量材がアルミ材であることが好ましい。
 また、この態様のモータにおいて、前記硬度向上処理が熱処理であり、前記軽量材が超硬ジュラルミンであってもよい。
 また、この態様のモータにおいて、前記シール接触面の面粗さをRa0.05~1.60とし、前記シール材の内径と該シール材を取り付けるシール取付部の外径とのはめあいを5.0~25.00mmのしまりばめとしてもよい。
 更に、この態様のモータにおいて、前記モータ本体には、内側にレゾルバステータを、該レゾルバステータの外周側にレゾルバロータを有するレゾルバが内蔵され、前記回転出力部と前記レゾルバロータとを一体化してもよい。
 また、この態様のモータにおいて、前記回転出力部の取付回転体に対する接続面又は前記取付回転体の前記回転出力部に対する接続面に設けたシール材用の溝を前記レゾルバロータよりも外周側に設け、前記回転出力部の回転軸中心から前記溝の内側であって前記レゾルバロータ近傍に至る部分にまで開口する開口部を設けても良い。
 また、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に設けられて前記円筒部と前記回転出力部との間を密封するシール材を有し、前記回転出力部は、前記シール材が接触するシール接触面の硬度が当該シール接触面以外の部分の硬度よりも高い軽量材からなり、前記回転出力部は、少なくとも前記シール接触面に硬度向上処理がなされたものであり、前記硬度向上処理が表面処理であるとともに、前記軽量材がアルミ材であり、前記シール接触面の面粗さをRa0.05~1.60とし、前記シール材の内径と該シール材を取り付けるシール取付部の外径とのはめあいを5.0~25.00mmのしまりばめとするとともに、前記モータ本体には、内側にレゾルバステータを、該レゾルバステータの外周側にレゾルバロータを有するレゾルバが内蔵され、前記回転出力部と前記レゾルバロータとを一体化し、前記回転出力部の取付回転体に対する接続面又は前記取付回転体の前記回転出力部に対する接続面に設けたシール材用の溝を前記レゾルバロータよりも外周側に設け、前記回転出力部に、前記回転出力部の回転軸中心から前記シール材用の溝の内側であって前記レゾルバロータ近傍に至る部分にまで開口する開口部を設けても良い。
 また、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に設けられて、液体が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する液体侵入防止手段を構成するものであってもよい。
 また、この態様のモータにおいて、前記液体侵入防止手段がオイルシールであることが好ましい。
 また、この態様のモータにおいて、前記液体侵入防止手段がダストシールであってもよい。
 また、この態様のモータにおいて、前記液体侵入防止手段が低回転抵抗シールであってもよい。
 また、この態様のモータにおいて、前記液体侵入防止手段が更にラビリンスを有していることが好ましい。
 また、この態様のモータにおいて、前記液体侵入防止手段がラビリンスであってもよい。
 更に、この態様のモータにおいて、前記回転出力部の外縁には、前記円筒部側に突出する周縁部が形成され、前記円筒部の軸方向上端には、外径を異ならせる段差が形成され、前記ラビリンスは、前記円筒部の段差による小径部分の外周面と前記回転出力部の前記周縁部の内周面との間に所定の隙間を設けるとともに、前記円筒部の大径部分と小径部分の境目である段差の面と前記回転出力部の前記周縁部の下端面との間に所定の隙間を設けて構成されていることが好ましい。
 また、この態様のモータにおいて、前記円筒部の小径部分の外径及び前記回転出力部の前記周縁部の内径は、前記円筒部の軸方向上側から軸方向下側に向けて大きくなるように、前記回転出力部の回転軸に対して傾斜していてもよい。
 また、この態様のモータにおいて、前記液体侵入防止手段は、前記ラビリンスの近傍に多孔質部材を備えていてもよい。
 また、この態様のモータにおいて、エアパージによりモータ内圧を上げていることが好ましい。
 また、この態様のモータにおいて、前記回転出力部の取付回転体に対する接続面と前記取付回転体の前記回転出力部に対する接続面との間を密閉することが好ましい。
 また、この態様のモータにおいて、前記回転出力部の取付回転体に対する接続面又は前記取付回転体の前記回転出力部に対する接続面にシール材用の溝を設けることが好ましい。
 更に、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に設けられて、液体が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する液体侵入防止手段を構成し、更に、前記液体が内部に侵入した際に故障を防止する故障防止手段を備えていてもよい。
 また、この態様のモータにおいて、前記円筒部の軸方向下側に設けられた前記固定部に設けられている液体感知センサ又は液体通し孔であることが好ましい。
 更に、この態様のモータにおいて、前記固定部は、前記円筒部の軸方向に対して傾斜する傾斜部と、該傾斜部の軸方向最も下側部分から水平に延びる底面部とを有し、前記故障防止手段は前記底面部上に設置されていることが好ましい。
 また、この態様のモータにおいて、軸受を一つとしていることが好ましい。
 また、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に配置されて前記円筒部と前記回転出力部との間を密封するシール材を有し、前記回転出力部は、前記モータ本体の前記中心穴を塞ぐように構成されていてもよい。
 また、この態様のモータにおいて、前記液体侵入防止手段が、異物が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する異物侵入防止手段を構成していてもよい。
 つまり、この態様のモータにおいて、前記密封機構は、前記円筒部と前記回転出力部との間に設けられて、異物が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する異物侵入防止手段を構成するものであってもよい。
 また、この態様のモータにおいて、前記異物侵入防止手段がオイルシールであることが好ましい。
 また、この態様のモータにおいて、前記異物侵入防止手段がダストシールであってもよい。
 また、この態様のモータにおいて、前記異物侵入防止手段が低回転抵抗シールであってもよい。
 また、この態様のモータにおいて、前記液体侵入防止手段が更にラビリンスを有していることが好ましい。
 また、この態様のモータにおいて、前記異物侵入防止手段がラビリンスであってもよい。
 更に、この態様のモータにおいて、前記回転出力部の外縁には、前記円筒部側に突出する周縁部が形成され、前記円筒部の軸方向上端には、外径を異ならせる段差が形成され、前記ラビリンスは、前記円筒部の段差による小径部分の外周面と前記回転出力部の前記周縁部の内周面との間に所定の隙間を設けるとともに、前記円筒部の大径部分と小径部分の境目である段差の面と前記回転出力部の前記周縁部の下端面との間に所定の隙間を設けて構成されていることが好ましい。
 また、この態様のモータにおいて、前記円筒部の小径部分の外径及び前記回転出力部の前記周縁部の内径は、前記円筒部の軸方向上側から軸方向下側に向けて大きくなるように、前記回転出力部の回転軸に対して傾斜していてもよい。
 また、この態様のモータにおいて、前記異物侵入防止手段は、前記ラビリンスの近傍に多孔質部材を備えていてもよい。
 また、この態様のモータにおいて、エアパージによりモータ内圧を上げていることが好ましい。
 また、この態様のモータにおいて、前記回転出力部の取付回転体に対する接続面と前記取付回転体の前記回転出力部に対する接続面との間を密閉することが好ましい。
 また、この態様のモータにおいて、前記回転出力部の取付回転体に対する接続面又は前記取付回転体の前記回転出力部に対する接続面にシール材用の溝を設けることが好ましい。
 また、この態様のモータにおいて、前記モ-タ本体はアウターロータ型であることが好ましい。
 モータ本体がアウターロータ型であると、インナーロータ型である場合より、配線ケーブルのモータ本体内での配線が容易に行なわれるため、好ましい。
 更に、本発明の別の態様の位置決め装置は、前述のモータによって駆動されるものである。
 また、本発明の更に別の態様の搬送装置は、前述のモータを駆動源とするものである。
 この発明によれば、特許文献1および2に記載されたモ-タと比較して、部品点数が少なく、コストの低い方法で防水性能が付与されたモ-タ、そのモータによって位置決め駆動される位置決め装置および搬送装置を提供できる。
本発明に係るモータの第1~第3、第5~第13、及び第15~第22実施形態の平面図である。 本発明に係るモータの第1実施形態のモータの断面図(図1のA-A線に沿う断面図)である。 本発明に係るモータの第1~第22実施形態の底面図である。但し、図3においては、第8実施形態、第11実施形態、第15実施形態及び第18実施形態における内圧用気道については図示していない。 本発明に係るモータの第2実施形態の断面図(図1のA-A線に沿う断面図)である。 本発明に係るモータの第3実施形態の断面図(図1のA-A線に沿う断面図)である。 本発明に係るモータの第4実施形態の断面図である。 本発明に係るモータの第5実施形態の断面図である。 本発明に係るモータの第6実施形態の断面図である。 本発明に係るモータの第7実施形態の断面図である。 本発明に係るモータの第8実施形態の断面図である。 本発明に係るモータの第9実施形態の断面図である。 本発明に係るモータの第10実施形態の断面図である。 本発明に係るモータの第11実施形態の断面図である。 本発明に係るモータの第12実施形態の断面図である。 本発明に係るモータの第13実施形態の断面図である。 本発明に係るモータの第14実施形態の断面図である。 本発明に係るモータの第15実施形態の断面図である。 本発明に係るモータの第16実施形態の断面図である。 本発明に係るモータの第17実施形態の断面図である。 本発明に係るモータの第18実施形態の断面図である。 本発明に係るモータの第19実施形態の断面図である。 本発明に係るモータの第20実施形態の断面図である。 本発明に係るモータの第21実施形態の断面図である。 本発明に係るモータの第22実施形態の断面図である。 特許文献1の防水モ-タを示す断面図である。
 以下、この発明の実施形態について説明するが、この発明はこの実施形態に限定されない。
[第1実施形態]
 図1~図3に示すように、この実施形態のモ-タAは、円柱状のモ-タ本体1と、ハウジング2と、配線ケ-ブル31,32とからなる。モータAは、ダイレクトドライブモータであり、位置決め装置(図示せず)を位置決め駆動するものである。
 ここで、モータ本体1は、軸方向に貫通する中心穴11を有する。モータ本体1は、モータ部4とレゾルバ(磁気式回転センサ)5と転がり軸受6を有し、軸方向下側にモータ部4を、軸方向上側にレゾルバ5を配置している。モータ部4は、内側に配置されたモータステータ(固定体)42と、モータステータ42の外周側に配置されたモータロータ(回転体)41とを有し、アウターロータ型となっている。また、レゾルバ5は、内側に配置されたレゾルバステータ(固定体)52と、レゾルバステータ52の外周側に配置されたレゾルバロータ(回転体)51とを備えている。
 モータステータ42は、モータコア42aと略円筒状の内側部42bを有し、内側部42bの外周にモータコア42aが固定されている。そして、モータコア42aには、コイル43が巻回されている。
 一方、モータロータ41は、略円筒状に形成され、ヨークを構成している。そして、モータロータ41の内周面には円環状の永久磁石41aが設けられている。
 そして、モータロータ41とレゾルバロータ51は転がり軸受6の外輪に固定されている。モータステータ42の内側部42bとレゾルバステータ52は転がり軸受6の内輪に固定されている。モータロータ41とレゾルバロータ51がボルトB1で固定されている。モータステータ42の内側部42bとレゾルバステータ52がボルトB2で固定されている。
 モ-タ本体1は、さらに、モータ部4の軸方向下端面を塞ぐモータ部カバー7と、レゾルバ5の軸方向上端面を塞ぐレゾルバカバー8とを有する。モータ部カバー7は、モータステータ42の内側部42bの外径より僅かに大きな内径の中心穴71を有する。モータ部カバー7の中心穴71にモータステータ42の内側部42bの軸方向下端部が挿入されている。レゾルバカバー8は、レゾルバステータ52の内径と略同じ径の中心穴81を有する。
 モータステータ42の内側部42bには、軸方向に延びる貫通穴42cが形成されている。内側部42bの軸方向下端(レゾルバ5と反対側の端部)の2箇所に、切欠き部42dが形成されている。各切欠き部42dに配線ケーブル31,32の外皮の一端が配置されている。配線ケーブル31の内部配線の一端は、モータステータ42の貫通穴42cとレゾルバステータ52の貫通穴を通って、レゾルバ5の回転位置検出部に接続されている。配線ケ-ブル31の他端にコネクタ31aが取り付けられている。
 配線ケーブル32の内部配線の一端はモータコア42aに巻回されたコイル43に接続され、配線ケーブル32の他端にコネクタ32a(第4が取り付けられている。図1のA-A断面(図2)には配線ケーブル32のコネクタは見えない。図3では、両配線ケーブル31,32のコネクタが省略されている。
 内側部42bの軸方向下端(レゾルバ5と反対側の端部)の切欠き部42dが形成されていない6箇所に、雌ねじ42eが形成されている。
 レゾルバロータ51の外縁部51aはレゾルバカバー8の外側に配置されている。レゾルバロータ51の外縁部51aのモータロータ41側の端面には、ボルトB1の挿通穴が形成され、反対側の端面にはボルトB3を螺合する雌ねじ51bが形成されている。
 モ-タ本体1の中心穴11は、モータステータ42およびレゾルバステータ52の内周面(中心穴)と、レゾルバカバー8の中心穴81で構成されている。
 ハウジング2は、モ-タ本体1の外周面を覆う円筒部21と、円筒部21の軸方向上側に設けられた、モ-タ本体1の回転体に固定される回転出力部22と、円筒部21の軸方向下側に設けられた、モ-タ本体1の固定体に固定される固定部23とからなり、円筒部21と固定部23が一体に形成されている。
 回転出力部22は、円筒部21の外径と同じ外径を有する円板状部材であり、モ-タ本体1の中心穴11と同じ直径の中心穴(貫通穴)22aを有する。回転出力部22の外縁に、円筒部21側に突出する薄肉の周縁部22bが形成されている。回転出力部22には、レゾルバロ-タ51の雌ねじ51bに合わせたボルト穴22cが形成され、ボルト穴22cより内側に環状の溝22dが形成されている。回転出力部22の外縁部に雌ねじ22eが形成されている。
 円筒部21の軸方向上端(回転出力部22側)の内縁には、回転出力部22側に突出する薄肉の周縁部21aが形成され、外縁には、回転出力部22の周縁部22bとともにラビリンスLを形成する段部21bが形成されている。回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に、オイルシール9が配置されている。オイルシール9は円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。すなわち、円筒部21と回転出力部22との間が、オイルシール9とラビリンスLからなる密封機構10で密封されている。
 固定部23は、円筒部21の外径からはみ出すフランジ部23aを有する円板状部材であり、フランジ部23aにボルト挿通穴23bが形成されている。固定部23は、モータ本体1の中心穴11と同じ直径の中心穴(貫通穴)23cを有する。中心穴23cの2箇所に、径方向外側にU字状に凹む凹部23dが形成されている。凹部23dの存在により、配線ケーブル31,32は曲げられることなく各凹部23dを通り、ハウジング2の外部に延びる。
 固定部23には、モータステータ42の雌ねじ42eと合わせた位置に、ボルト挿通穴23eが形成されている。
 回転出力部22は、モータ本体1のレゾルバロ-タ(回転体)51にボルトB3で固定されている。固定部23は、モ-タ本体1のモータステータ(固定体)42の内側部42bにボルトB4で固定されている。
 円筒部21と固定部23とが一体化された部材(ハウジングベース)は、アルミニウムの切削加工やダイキャスト法により得ることができ、回転出力部22も同様にして得ることができる。オイルシール9のリップ部が摺動する回転出力部22の面は、アルマイト加工等を行い、硬度を上げ、表面粗さを小さくしておく必要がある。
 このモータAは、例えば、図2に二点鎖線で示すように、中心穴61aを有する基台61の上に固定部23を固定し、回転出力部22の上に中心穴62aを有するテーブル(取付回転体)62を固定して使用することができる。基台61に対する固定部23の固定は、ボルト挿通穴23bを通したボルトB5を、基台61の雌ねじに螺合することで行われる。回転出力部22に対するテーブル62の固定は、テーブル62のボルト挿通穴を通したボルトB6を、回転出力部22の雌ねじ22eに螺合することで行われる。
 このようにすれば、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 その際に、回転出力部22の溝22dにシール材63としてのOリングを配置することで、テーブル62とモータAの軸方向上側との防水性を得ることができる。基台61の上面に環状の溝61bを設けて、溝61bにシール材63としてのOリングを配置するか、モータAを設置した状態で、固定部23のフランジ部23aと基台61との角部をコーキング材(シール材)64でシールすることなどにより、テーブル62とモータAの下側との防水性を得ることができる。
 この実施形態のモ-タAは、ハウジング2の中心穴22a,23cとモータ本体1の中心穴11が連通しているが、これらの中心穴に対する密封機構を有さない。これは、前述のように、通常の使用においては、モ-タの外周面の防水性のみを考慮すればよいためであり、問題がない。そして、これにより、この実施形態の防水モ-タは、部品点数が少なく、コストが低いものとなっている。また、部品点数が少ないことで、組立、分解が容易で、生産性とメンテナンス性が高いものとなっている。
 この実施形態モータAは、また、摺動により消耗する部品が一ヶ所に取り付けたオイルシール9のみであるため、メンテナンス時の工数と交換部品のコストが低いものとなっている。
 この実施形態のモータAは、また、オイルシール9とラビリンスLにより、防水性能だけでなく防塵性能も有する。
 この実施形態のモータAは、また、円筒部21が固定部23と一体に形成されているため、円筒部21が回転出力部22と一体に形成されているものと比較して、イナーシャを小さくできる効果がある。
 また、固定部23にエアパージ用の穴を設けることで、オイルシール9の機能が低下することが防止できる。つまり、この実施形態のモータAは、エアパージ機構を簡単に設けることができる効果も有する。
 この実施形態のモータAは、非防水コネクタが付いた配線ケ-ブルを有する非防水モータからなるモータ本体1を、固定部23と円筒部21が一体化されたハウジングベースに入れ、回転出力部22でフタをして、オイルシール9のリップ部を回転出力部22に接触させ、モータ本体1とハウジング2をボルトB3,B4で固定することにより得ることができる。
 なお、ハウジング2は、円筒部21が回転出力部22と一体に形成されているものであってもよい。
 また、オイルシール9は、回転出力部22に固定され、オイルシール9のリップ部が円筒部21に接触していてもよい。
 また、用途によっては、オイルシール9を設置せず、ラビリンスLのみとすることもできる。
 また、密封機構10は、オイルシール9のように、リップ部を一つだけ有するものを使用してもよいし、ダストリップとシールリップの両方を有するものを使用してもよい。
[第2実施形態]
 この実施形態のモ-タAは、図1のA-A断面が図4に示す形状である点を除いて、図2に示す第1実施形態と同じである。図4において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 すなわち、この実施形態のモータAでは、第1実施形態と同様に、回転出力部22の外縁に、円筒部21側に突出する薄肉の周縁部22bが形成されているが、その端面は外周側に拡径するテーパ面22fとなっている。このテーパ面22fと所定隙間で対向するテーパ面21dが、円筒部21の軸方向一端(回転出力部22側)の外縁部に形成されている。つまり、円筒部21と回転出力部22との間がオイルシ-ル9のみで密封されて、密封機構10を構成している。オイルシール9の外周側は囲われているが、ラビリンスからなる密封機構を有していない。
 よって、この実施形態のモータAによれば、第1実施形態のモータAと同じ効果に加えて、回転出力部22の周縁部22bと円筒部21とオイルシ-ル9とで形成される空間K内の液体が、周縁部22bのテーパ面22fと円筒部21のテーパ面21dとの隙間から、モータAの回転時に遠心力で排出されるという効果も得られる。つまり、この実施形態のモータAは、空間K内の液体がモータ本体1内に浸入することを防止できる効果が、第1実施形態のモータAよりも高い。
[第3実施形態]
 この実施形態のモ-タAは、図1のA-A断面が図5に示す形状である点を除いて、図2に示す第1実施形態と同じである。図5において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 すなわち、この実施形態のモータAでは、回転出力部22の外縁に、円筒部21側に突出する薄肉の周縁部22bが形成されていない。また、円筒部21の軸方向上端(回転出力部22側)の外縁部に、段部21bが形成されていない。つまり、円筒部21と回転出力部22との間がオイルシ-ル9のみで密封されて密封機構10を構成し、オイルシール9の外周側は開放されている。
 よって、この実施形態のモータAによれば、第1実施形態のモータAと同じ効果に加えて、回転出力部22の外縁に薄肉の周縁部22bが形成されていないことで回転出力部22の形状が簡単になるため、コストが低減できるという効果も得られる。
 なお、第1~第3実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
[第4実施形態]
 この実施形態のモータAは、その断面が図6に示す形状である点を除いて、図2に示す第1実施形態と同じである。図6において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図6に示すモータAにおいて、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に設けられて円筒部21と回転出力部22との間を密封するシール材12を有し、回転出力部22は、シール材12が接触するシール接触面22hの硬度が当該シール接触面22h以外の部分の硬度よりも高い軽量材からなっている。
 シール材12は、好ましくはオイルシールで構成され、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。シール材12は、円筒部21に取り付けられ、シール材12のリップ部が回転出力部22のシール接触面22hに接触している。
 ここで、通常は、回転出力部22におけるシール接触面22hは、硬度が必要なため、回転出力部22の母材を鋼材とし、無電解ニッケルを施したものを必要とする。このため、回転出力部の全体が鋼材であるため、非常に重い。これに対して、本実施形態のモータAでは、回転出力部22はシール接触面22hの硬度を当該シール接触面22h以外の部分の硬度よりも高くした軽量材からなっている。このため、回転出力部22におけるシール接触面22hに必要な硬度を確保した上で回転出力部22の軽量化、低イナーシャ化を実現することができる。
 そして、回転出力部22は、少なくともシール接触面22hに硬度向上処理がなされたものであり、その硬度向上処理は表面処理である。また、回転出力部22の軽量材がアルミ材である。本実施形態のモータAでは、回転出力部22がシール接触面22hに硬質な表面処理を施したアルミ材を使用することにより、回転出力部22におけるシール接触面22hに必要な硬度を確保した上で回転出力部22の軽量化、低イナーシャ化を実現することができる。
 また、回転出力部22に熱伝導率の高いアルミ材を使用することにより、放熱性が向上し、モータAの定格出力を向上させることができる。
 ここで、「アルミ材」とは、主にアルミニウムからなる材料で、アルミニウム合金が含まれる。また、表面処理としては、陽極酸化処理が好適である。
 また、このモータAにおいて、前述の硬度向上処理が熱処理であり、前述の軽量材が超硬ジュラルミンであってもよい。
 また、モータAにおいて、回転出力部22のシール接触面22hの面粗さをRa0.05~1.60とし、シール材12の内径と該シール材12を取り付けるシール取付部(円筒部21に形成された周縁部21a)の外径とのはめあいを5.0~25.00mmのしまりばめとしてある。
 また、モータAの第1実施形態の説明で述べたように、モータ本体1はアウターロータ型であり、モータ本体1には、内側にレゾルバステータ52を、レゾルバステータ52の外周側にレゾルバロータ51を有するレゾルバ5が内蔵されている。そして、この実施形態のモータAにおいては、回転出力部22とレゾルバロータ51とを一体化し、回転出力部22とレゾルバロータ51とを一体化した部分に形成されたボルト用貫通孔22gを介してボルトB1により、回転出力部22とレゾルバロータ51とを一体した部材をモータロータ41に取り付けている。
 ここで、レゾルバ5は、磁気を利用するセンサであるため、レゾルバ5のレゾルバロータ51を含む周辺部材には、磁気影響の少ない非磁性材料を使用する必要がある。従って、従来においては、レゾルバ5のレゾルバロータ51を含む周辺部材と鋼材で構成される回転出力部22とは一体化できなかった。本実施形態のモータAでは、回転出力部22にアルミ材や超硬ジュラルミンの非磁性材料を利用しているので、レゾルバ5のレゾルバロータ51と回転出力部22とを一体化している。レゾルバ5のレゾルバロータ51と回転出力部22とを非磁性材料を用いて一体化することにより、熱伝導率が高くなり、放熱性が向上し、発熱によるモーAの定格出力の制限を緩和することができることになる。
 なお、レゾルバ5のレゾルバロータ51と回転出力部22とを一体化し、回転出力部22のテーブル(取付回転体)62に対する接続面に設けたシール材63用の溝22dをレゾルバロータ51よりも外周側に設け、回転出力部22には、回転出力部22の回転軸中心からシール材63用の溝22dの内側であってレゾルバロータ51近傍に至る部分にまで開口する開口部22iを設けてある。
 この開口部22iの直径は、モータAの中心穴11の直径、即ち、図2に示した第1実施形態のモータAの回転出力部22に形成された中心穴(貫通穴)22aの直径よりも大きい。このため、配線配管の自由度を第1実施形態に比べて増加させることができる。また、開口部22iは、回転出力部22の回転軸中心からシール材63用の溝22dの内側であってレゾルバロータ51近傍に至る部分にまで開口するので、レゾルバ5の部品交換や調整が直径の大きな開口部22iを介して容易に行なうことができる。
 なお、シール材63用の溝22dは、回転出力部22のテーブル(取付回転体)62に対する接続面に設けることなく、テーブル62の回転出力部22に対する接続面に設けても良い。これにより、回転出力部22の構造を簡素化することができるとともに、レイアウトの自由度を高くすることができる。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第4実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
 また、モータ本体1は、内周側が回転するインナーロータ型であってもよい。
[第5実施形態]
 この実施形態のモータAは、その断面が図7に示す形状である点を除いて、図2に示す第1実施形態と同じである。図7において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図7に示すモータAにおいて、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に設けられて、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13を構成する。
 この実施形態のモータAによれば、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である液体侵入防止手段(シール)の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。
 そして、液体侵入防止手段13は、オイルシール9で構成されており、このオイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。これにより、円筒部21と回転出力部22との間が、オイルシール9で密封されている。
 なお、液体侵入防止手段13は、オイルシール9ではなく、ダストシールや、軸受シール部に使用されるような低回転抵抗シールであってもよい。
 液体侵入防止手段13がオイルシール9の場合には、回転部材22におけるシール接触面の硬度を高くするため、回転部材22に用いる材料が限定されたり、シール接触面に表面処理をする必要性が生じたりする。しかし、液体侵入防止手段13として、ダストシールや低回転抵抗シールを用いる場合、回転出力部22及び回転出力部22に施す表面処理を自由に選択することができる。また、液体侵入防止手段13として、ダストシールや低回転抵抗シールを用いる場合、回転抵抗が少なく効率の高い、省エネルギーなモータAとすることができる。また、モータAの出力を向上させることができ、摩擦による発熱が少ないためモータAの定格出力を向上させることができる。
 また、この実施形態のモータAにおいては、エアパージによりモータ内圧を上げている。具体的に述べると、ハウジング2の固定部23及びモータ部カバー7に、固定部23の底面からモータ部カバー7の貫通孔72まで延びる内圧用気道23gを設けている。この内圧用気道23gの固定部23の外部には、ホース82が接続され、当該ホース82から矢印X向きにエアが供給される。そして、ホース82から矢印X向きに供給されたエアは、内圧用気道23gを通ってモータ部カバー7の貫通孔72からモータ本体1内に入り込む。これにより、モータ本体1内の内圧を上げることができる。これにより、液体侵入防止手段13の部位においても内圧が外圧よりも高くなり、より外部から液体が侵入するのを防止することができる。
 また、この実施形態のモータAにおいては、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。これにより、液体がモータ本体1の中心穴11に侵入するのを防止している。
 更に、この実施形態のモータAにおいては、回転出力部22のテーブル62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止している。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この実施形態のモータAにおいて、モータ本体1は、前述したように、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第5実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
[第6実施形態]
 この実施形態のモータAは、その断面が図8に示す形状である点を除いて、図7に示す第5実施形態と同じである。図8において、図7に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図8に示すモータAにおいては、図7に示すモータAに対し、液体侵入防止手段13が、更にラビリンスLを有している。具体的に述べると、液体侵入防止手段13は、オイルシール9とラビリンスLとからなっている。
 そして、オイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。
 また、円筒部21の軸方向上端には、外径を異ならせる段差21cが形成され、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 この実施形態のモータAにおいては、オイルシール9とラビリンスLとにより構成される液体侵入防止手段13により、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止することができる。
 なお、第5実施形態のモータAと同様に、用途に応じて、オイルシール9ではなく、ダストシールや、軸受シール部に使用されるような低回転抵抗シールであってもよい。
 また、第6実施形態のモータAにおいては、第5実施形態のモータAと同様に、液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である液体侵入防止手段の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。
 また、第6実施形態のモータAにおいては、第5実施形態のモータAと同様に、エアパージによりモータ内圧を上げてもよい。
 また、第6実施形態のモータAにおいては、第5実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第6実施形態のモータAにおいては、第5実施形態のモータAと同様に、回転出力部22のテーブル62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この実施形態のモータAにおいて、モータ本体1は、第5実施形態と同様に、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第6実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
[第7実施形態]
 この実施形態のモータAは、その断面が図9に示す形状である点を除いて、第6実施形態と同じである。図9において、図8に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図9に示すモータAにおいては、液体侵入防止手段13が、オイルシール9を有さず、ラビリンスLのみで構成されている。
 ここで、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 この実施形態のモータAにおいては、ラビリンスLにより構成される液体侵入防止手段13により、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止することができる。
 なお、より確実な液体侵入防止を図るには、第6実施形態のようにラビリンスLをオイルシール9と組み合わせた方がよいが、用途によっては、ラビリンスLのみで十分な場合もある。オイルシール9を用いていないので、製造コストが削減されるだけでなく、オイルシール9の交換も必要ないので、メンテナンス性に優れている。また、液体侵入防止手段13が非接触となり、オイルシール9を用いる場合と異なり、回転出力部22におけるシール接触面の硬度や表面粗さの制約を免れるとともに、回転抵抗を減らすことができ、モータ出力の向上を図ることができる。また、オイルシールの摩擦による発熱がないため、モータAの定格出力を向上させることができる。
 この第7実施形態のモータAにおいては、第5実施形態のモータA及び第6実施形態のモータAと同様に、液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられている。
 また、第7実施形態のモータAにおいては、第5実施形態のモータA及び第6実施形態のモータAと同様に、エアパージによりモータ内圧を上げてもよい。第7実施形態のモータAにおいては、液体侵入防止手段13がラビリンスLのみであるので、液体侵入に対してエアパージが特に有効に機能する。
 また、第7実施形態のモータAにおいては、第5実施形態のモータA及び第6実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第7実施形態のモータAにおいては、第5実施形態のモータA及び第6実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この第7実施形態のモータAにおいて、モータ本体1は、第5実施形態のモータA及び第6実施形態のモータAと同様に、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第7実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
[第8実施形態]
 この実施形態のモータAは、その断面が図10に示す形状である点を除いて、図9に示す第7実施形態と同じである。図10において、図9に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図10に示すモータAにおいては、液体侵入防止手段13は、ラビリンスLの近傍に多孔質部材14を備えている。
 具体的に述べると、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 そして、円筒部21の小径部分の外周には、その外周から彫り込んだ円環状の凹溝が形成され、この凹溝内に円環状の多孔質部材14が配置されている。多孔質部材14は、円環状であるが、その組み立て上、複数の部材を組み合わせて構成される。
 この実施形態のモータAにおいては、ラビリンスLの近傍に多孔質部材14があることで、ラビリンスLに入り込んできた液体がわずかであれば、毛細管現象により吸収することができる。
 また、円筒部61の小径部分には、モータ本体1の内部と多孔質部材14とをつなぐ多孔質部材用気道21fが設けられている。これにより、エアパージを行った際(第8実施形態のモータAにおいて、第5実施形態乃至第7実施形態のモータAと同様に、エアパージによりモータ内圧を上げた際)に、多孔質部材14から回転出力部22の周縁部22bに向けて均質なエアが吹き出され、ラビリンスLからの液体の侵入を防止することができる。
 なお、エアパージは、第5実施形態のモータAで説明したように、ハウジング2の固定部23及びモータ部カバー7に設けた内圧用気道23gにホース82を接続し、当該ホース82から矢印X向きにエアを供給することにより行う。
 この第8実施形態のモータAにおいても、液体侵入防止手段13が非接触となり、オイルシール9を用いる場合と異なり、回転出力部22におけるシール接触面の硬度や表面粗さの制約を免れるとともに、回転抵抗を減らすことができ、モータ出力の向上を図ることができる。また、オイルシールの摩擦による発熱がないため、モータAの定格出力を向上させることができる。
 この第8実施形態のモータAにおいても、第5実施形態乃至第7実施形態のモータAと同様に、液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられている。
 また、第8実施形態のモータAにおいては、第5実施形態乃至第7実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第8実施形態のモータAにおいては、第5実施形態乃至第7実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この第8実施形態のモータAにおいて、モータ本体1は、第5実施形態乃至第7実施形態のモータAと同様に、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第8実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
 なお、第5乃至第8実施形態のモータAにおいて、モータ本体1は、アウターロータ型ではなく、内周側が回転するインナーロータ型であってもよい。
[第9実施形態]
 この実施形態のモータAは、その断面が図11に示す形状である点を除いて、図7に示す第5実施形態と同じである。図11において、図7に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図11に示すモータAにおいては、図7に示すモータAと同様に、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に設けられて、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13を構成する。
 この実施形態のモータAによれば、第5実施形態に示すモータAと同様に、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である液体侵入防止手段(シール)の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。
 そして、液体侵入防止手段13は、オイルシール9及びラビリンスLで構成されている。
 ここで、オイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。
 また、円筒部21の軸方向上端には、外径を異ならせる段差21cが形成され、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 そして、このラビリンスLにおいて、円筒部21の小径部分の外径及び回転出力部22の周縁部22bの内径は、円筒部21の軸方向上側から軸方向下側に向けて大きくなるように、回転出力部22の回転軸CLに対して角度θで傾斜している。
 ラビリンスLをこのようなテーパ形状とすることにより、ラビリンスLに侵入した液体にはモータ回転時の遠心力が作用し、液体の侵入を防止するとともに、侵入した液体を強制的にラビリンスLから排出することができる。
 また、ラビリンスLをこのようなテーパ形状とすることにより、モータAの組立て時において、ハウジング2の円筒部21と回転出力部22の周縁部22bとの嵌め込みがし易く、組立性及びメンテナンス性を向上させることができる。
 ラビリンスLの前述の角度θは、1°以上20°以下、好ましくは5°以上15°以下が良い。角度θが1°未満の場合には、遠心力による排水性の効果や組立性及びメンテナンス性向上の効果が得られないため好ましくない。また、角度θが20°よりも大きい場合には、液体に働く重力の影響が小さくなり、排水性が低下するとともに、ラビリンスLの距離が確保しにくくなり、液体や異物の侵入を防止できなくなるおそれがあり好ましくない。
 なお、第5実施形態のモータAと同様に、用途に応じてオイルシール9ではなく、ダストシールや、軸受シール部に使用されるような低回転抵抗シールを用いても良い。
 オイルシール9を用いる場合には、回転部材22におけるシール接触面の硬度を高くするため、回転部材22に用いる材料が限定されたり、シール接触面に表面処理をする必要性が生じたりする。しかし、ダストシールや低回転抵抗シールを用いる場合、回転出力部22及び回転出力部22に施す表面処理を自由に選択することができる。また、ダストシールや低回転抵抗シールを用いる場合、回転抵抗が少なく効率の高い、省エネルギーなモータAとすることができる。また、モータAの出力を向上させることができ、摩擦による発熱が少ないためモータAの定格出力を向上させることができる。
 また、この実施形態のモータAにおいては、図7に示す第5実施形態のモータAと同様に、エアパージによりモータ内圧を上げてもよい。
 また、この実施形態のモータAにおいては、図7に示す第5実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。これにより、液体がモータ本体1の中心穴11に侵入するのを防止している。
 更に、この実施形態のモータAにおいては、図7に示す第5実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止している。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この実施形態のモータAにおいては、図7に示す第5実施形態のモータAと同様に、モータ本体1は、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第9実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
[第10実施形態]
 この実施形態のモータAは、その断面が図12に示す形状である点を除いて、図11に示す第9実施形態と同じである。図12において、図11に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図12に示すモータAにおいては、液体侵入防止手段13が、オイルシール9を有さず、ラビリンスLのみで構成されている。
 ここで、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。そして、このラビリンスLにおいて、円筒部21の小径部分の外径及び回転出力部22の周縁部22bの内径は、円筒部21の軸方向上側から軸方向下側に向けて大きくなるように、回転出力部22の回転軸CLに対して角度θで傾斜している。
 この実施形態のモータAにおいては、ラビリンスLにより構成される液体侵入防止手段13により、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止することができる。
 なお、より確実な液体侵入防止を図るには、図11に示す第9実施形態のモータAのように、ラビリンスLをオイルシール9と組み合わせた方がよいが、用途によっては、ラビリンスLのみで十分な場合もある。オイルシール9を用いていないので、製造コストが削減されるだけでなく、オイルシール9の交換も必要ないので、メンテナンス性に優れている。また、液体侵入防止手段13が非接触となり、オイルシール9を用いる場合と異なり、回転出力部22におけるシール接触面の硬度や表面粗さの制約を免れるとともに、回転抵抗を減らすことができ、モータ出力の向上を図ることができる。また、オイルシールの摩擦による発熱がないため、モータAの定格出力を向上させることができる。
 この第10実施形態のモータAにおいては、図11に示す第9実施形態のモータAと同様に、液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられている。
 また、第10実施形態のモータAにおいては、第9実施形態のモータAと同様に、エアパージによりモータ内圧を上げてもよい。第10実施形態のモータAにおいては、液体侵入防止手段13がラビリンスLのみであるので、液体侵入に対してエアパージが特に有効に機能する。
 また、第10実施形態のモータAにおいては、図11に示す第9実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第10実施形態のモータAにおいては、図11に示す第9実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この第10実施形態のモータAにおいて、モータ本体1は、図11に示す第9実施形態のモータAと同様に、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第10実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
[第11実施形態]
 この実施形態のモータAは、その断面が図13に示す形状である点を除いて、図12に示す第10実施形態と同じである。図13において、図12に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図13に示すモータAにおいては、液体侵入防止手段13は、ラビリンスLの近傍に多孔質部材14を備えている。
 具体的に述べると、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。そして、このラビリンスLにおいて、円筒部21の小径部分の外径及び回転出力部22の周縁部22bの内径は、円筒部21の軸方向上側から軸方向下側に向けて大きくなるように、回転出力部22の回転軸CLに対して角度θで傾斜している。
 そして、円筒部21の小径部分の外周には、その外周から彫り込んだ円環状の凹溝が形成され、この凹溝内に円環状の多孔質部材14が配置されている。多孔質部材14は、円環状であるが、その組み立て上、複数の部材を組み合わせて構成される。
 この実施形態のモータAにおいては、ラビリンスLの近傍に多孔質部材14があることで、ラビリンスLに入り込んできた液体がわずかであれば、毛細管現象により吸収することができる。
 また、円筒部61の小径部分には、モータ本体1の内部と多孔質部材14とをつなぐ多孔質部材用気道21fが設けられている。これにより、エアパージを行った際に、多孔質部材14から回転出力部22の周縁部22bに向けて均質なエアが吹き出され、ラビリンスLからの液体の侵入を防止することができる。
 なお、エアパージは、ハウジング2の固定部23及びモータ部カバー7に設けた内圧用気道23gにホース82を接続し、当該ホース82から矢印X向きにエアを供給することにより行う。
 この第11実施形態のモータAにおいても、図12に示す第10実施形態のモータAと同様に、液体侵入防止手段13が非接触となり、オイルシール9を用いる場合と異なり、回転出力部22におけるシール接触面の硬度や表面粗さの制約を免れるとともに、回転抵抗を減らすことができ、モータ出力の向上を図ることができる。また、オイルシールの摩擦による発熱がないため、モータAの定格出力を向上させることができる。
 この第11実施形態のモータAにおいても、第9実施形態及び第10実施形態のモータAと同様に、液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられている。
 また、第11実施形態のモータAにおいては、第9実施形態及び第10実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第11実施形態のモータAにおいては、第9実施形態及び第10実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この第11実施形態のモータAにおいて、モータ本体1は、第9実施形態及び第10実施形態のモータAと同様に、アウターロータ型である。
 また、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、この実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、第11実施形態では、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
 なお、第9乃至第11実施形態のモータAにおいて、モータ本体1は、アウターロータ型ではなく、内周側が回転するインナーロータ型であってもよい。
[第12実施形態]
 この実施形態のモータAは、その断面が図14に示す形状である点を除いて、図2に示す第1実施形態と同じである。図14において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 図14に示すモータAにおいて、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に設けられて、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13を構成し、更に、液体が内部に侵入した際に故障を防止する故障防止手段90を備えている。
 ここで、この実施形態のモータAによれば、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である液体侵入防止手段(シール)の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。
 そして、液体侵入防止手段13は、オイルシール9で構成されており、このオイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。これにより、円筒部21と回転出力部22との間が、オイルシール9で密封されている。
 また、故障防止手段90は液体感知センサ91であり、円筒部21の軸方向下側に設けられたハウジング2の固定部23に設置されている。この液体感知センサ91は、ハウジング2の外部から円筒部21と回転出力部22との間を通ってモータ本体1の内部に侵入した液体を感知することができる。液体感知センサ91は、液体を感知した時は、異常信号を発しコード92を通じて図示しない異常ランプなどの異常通知手段に当該異常信号を送る。そして、異常通知手段は、異常信号を受信したときに、液体の侵入による異常を音や光などで作業者に通知する。また、液体感知センサ91を図示しないモータAの制御器に接続しておき、液体感知センサ91からの異常信号を当該制御器に送信するようにして、その制御器でモータAを安全な位置で停止するようにしてもよい。
 作業者は、液体の侵入による異常通知を受けて、モータ本体1への液体の侵入に対し液体侵入防止手段13の交換などの適切な処置を行うことができる。こおのように、第12実施形態のモータAによれば、水や油などの液体がモータ本体1内に溜まるのを未然に防ぎ、モータAの故障を防止することができる。
 そして、故障防止手段90を構成する液体感知センサ91が設置される固定部23は、円筒部21の軸方向に対して傾斜する傾斜部93と、傾斜部93の軸方向最も下側部分から水平に延びる底面部94とを有し、液体感知センサ91は底面部94上に設置されている。これにより、モータ本体1内に侵入した液体は、重力で集約されて液体感知センサ91に集まるので、液体感知センサ91での検知がより早期に可能となり、モータAの故障の可能性をより低く抑えることができる。
 なお、傾斜部93の傾斜の仕方は、円筒部21の軸方向に対して傾斜していれば良い。図14に示すモータAにおいては、傾斜部93は、固定部23の内周側が軸方向で上側の高い位置に位置し、固定部23の外周側が軸方向で下側の低い位置に位置しているが、その逆に、固定部23の内周側が軸方向で下側の低い位置に位置し、固定部23の外周側が軸方向で上側の高い位置に位置していてもよい。また、傾斜部93は、固定部23の径方向に高さを変化させる場合のみならず、周方向に高さを変化させるものであってもよい。いずれにせよ、底面部94が傾斜部93の軸方向最も下側部分から水平に延びるよう構成され、その底面部94上に液体感知センサ91が設置される。
[第13実施形態]
 この実施形態のモータAは、その断面が図15に示す形状である点を除いて、図14に示す第12実施形態と同じである。図15において、図14に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 図15に示すモータAにおいて、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に設けられて、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13を構成し、更に、液体が内部に侵入した際に故障を防止する故障防止手段90を備えている。
 ここで、この実施形態のモータAによれば、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である液体侵入防止手段(シール)の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。
 そして、液体侵入防止手段13は、オイルシール9で構成されており、このオイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。これにより、円筒部21と回転出力部22との間が、オイルシール9で密封されている。
 また、故障防止手段90は、円筒部21の軸方向下側に設けられたハウジング2の固定部23に形成された液体通し孔95である。液体通し孔95は、固定部23の軸方向上面から軸方向下面を貫通するように形成されている。この液体通し孔95は、ハウジング2の外部から円筒部21と回転出力部22との間を通ってモータ本体1の内部に侵入した液体をハウジング2の軸方向下方側に逃がすことができる。液体がモータ本体1内に侵入した時、液体は重力で下方へ流れ、液体が液体通し孔95に至ると、液体通し孔95を通ってハウジング2の下方側へ排出される。液体通し孔95がないと、液体がモータ本体1内に侵入した時、液体は固定部23上に溜まってしまうが、液体通し孔95があることで、液体は液体通し孔95を通ってハウジング2の下方側へ排出される。これにより、モータ本体1内に侵入した液体がハウジング2内で溜まるのを防止することができる。また、モータ本体1の内部に空気を送り込むエアパージなどにより、内圧を上げることで、液体が液体通し孔95からより抜けやすくなり、モータAの故障の可能性をより低く抑えることができる。
 そして、故障防止手段90を構成する液体通し孔95が形成される固定部23は、図14に示す第12実施形態のモータAと同様に、円筒部21の軸方向に対して傾斜する傾斜部93と、傾斜部93の軸方向最も下側部分から水平に延びる底面部94とを有している。そして、液体通し孔95は、底面部94に軸方向上下に貫通するように形成されている。これにより、モータ本体1内に侵入した液体は、重力で集約されて液体通し孔95に集まるので、液体通し孔95による液体逃がし効率が上がり、液体の溜まる量を減らすことができ、モータAの故障の可能性をより低く抑えることができる。
 なお、傾斜部93の傾斜の仕方は、図14に示す第12実施形態と同様に、円筒部21の軸方向に対して傾斜していれば良い。図15に示すモータAにおいては、傾斜部93は、固定部23の内周側が軸方向で上側の高い位置に位置し、固定部23の外周側が軸方向で下側の低い位置に位置しているが、その逆に、固定部23の内周側が軸方向で下側の低い位置に位置し、固定部23の外周側が軸方向で上側の高い位置に位置していてもよい。また、傾斜部93は、固定部23の径方向に高さを変化させる場合のみならず、周方向に高さを変化させるものであってもよい。いずれにせよ、底面部94が傾斜部93の軸方向最も下側部分から水平に延びるよう構成され、底面部94を軸方向上下に貫通するように液体通し孔95が形成される。
 なお、図14に示す第12実施形態及び図15に示す第13実施形態のモータAにおいては、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止している。このため、モータ本体1の中心穴11については、液体侵入防止手段13によって密封する必要はなく、ハウジング2の軸方向外周側一カ所のみに液体侵入防止手段13を配置する。
 また、図14に示す第12実施形態及び図15に示す第13実施形態のモータAにおいては、転がり軸受6を一つとしている。転がり軸受6を一つとすることにより、構成部材を減らし、構造を簡略化し、組立を容易にすると共に、構成部材が少ないことにより、モーAを小型化することが可能となる。転がり軸受6としては、軸方向及び径方向の何れの荷重も受けることができる四点接触玉軸受、クロスローラ軸受又は深溝玉軸受が好ましい。
 また、図14に示す第12実施形態のモータAにおいては、故障防止手段90として液体感知センサ91を用い、図15に示す第13実施形態のモータAにおいては、故障防止手段90として液体通し孔95を用いたが、本発明においては、これに限定されず、故障防止手段90が、液体感知センサ91及び液体通し孔95を有する構成としてもよい。
 また、図14に示す第12実施形態及び図15に示す第13実施形態のモータAにおいて、回転出力部22は、レゾルバロータ51を介してモータロータ41に固定されている。この構成により、レゾルバ5の調整を容易にしている。
 また、図14に示す第12実施形態及び図15に示す第13実施形態のモータAにおいて、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、図14に示す第12実施形態及び図15に示す第13実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、図14に示す第12実施形態及び図15に示す第13実施形態のモータAでは、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
 なお、図14に示す第12実施形態及び図15に示す第13実施形態のモータAにおいて、モータ本体1は、アウターロータ型ではなく、内周側が回転するインナーロータ型であってもよい。
[第14実施形態]
 この実施形態のモータAは、その断面が図16に示す形状である点を除いて、図2に示す第1実施形態と同じである。図16において、図2に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図16に示すモータAにおいて、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に配置されて円筒部21と回転出力部22との間を密封するシール材12を有し、回転出力部22は、モータ本体1の中心穴11を塞ぐように構成されている。シール材12としては、オイルシールが好適である。
 通常、モータ本体1に中心穴11を有するモータAにおいては、中心穴11を配線や配管を通すために使用するため、出力側(回転出力部22側)も開口し、モータ固定側から出力側に配線や配管を通すことができるようにしている。このため、回転出力部22も軸方向に貫通する中心穴を有している。図16に示す第14実施形態のモータAにおいては、防水性が求められるが、回転出力部22をモータ本体1の中心穴11を塞ぐように構成し、モータ本体1の中心穴11を通して行う配線や配管が不要の場合に適している。
 また、図16に示す第14実施形態のモータAにおいては、転がり軸受6を一つとしている。転がり軸受6を一つとすることにより、構成部材を減らし、構造を簡略化し、組立を容易にすると共に、構成部材が少ないことにより、モーAを小型化することが可能となる。転がり軸受6としては、軸方向及び径方向の何れの荷重も受けることができる四点接触玉軸受、クロスローラ軸受又は深溝玉軸受が好ましい。
 また、図16に示す第14実施形態のモータAにおいて、回転出力部22は、レゾルバロータ51を介してモータロータ41に固定されている。この構成により、レゾルバ5の調整を容易にしている。
 また、図16に示す第14実施形態のモータAにおいて、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、図16に示す第14実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、図16に示す第14実施形態のモータAでは、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
 なお、図16に示す第14実施形態のモータAにおいて、モータ本体1は、アウターロータ型ではなく、内周側が回転するインナーロータ型であってもよい。
[第15実施形態]
 この実施形態のモータAは、その断面が図17に示す形状である点を除いて、図7に示す第5実施形態と同じである。図17において、図7に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図7に示す第5実施形態のモータAにおいては、円筒部21の軸方向一カ所のみでハウジング2を密封する密封機構10は、円筒部21と回転出力部22との間に設けられて、液体が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する液体侵入防止手段13を構成するが、図17に示す第15実施形態のモータAの場合、当該液体侵入防止手段13が、異物が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する異物侵入防止手段15を構成する。
 つまり、図17に示す第15実施形態のモータAにおいて、密封機構10は、円筒部21と回転出力部22との間に設けられて、異物が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する異物侵入防止手段15を構成している。
 この実施形態のモータAによれば、異物が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止する異物侵入防止手段15が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である異物侵入防止手段(シール)15の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。ここで、「異物」としては、水や油等の液体、塵埃あるいは金属粉等の粉体等を想定している。
 そして、異物侵入防止手段15は、オイルシール9で構成されており、このオイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。これにより、円筒部21と回転出力部22との間が、オイルシール9で密封されている。
 なお、異物侵入防止手段15は、オイルシール9ではなく、ダストシールや、軸受シール部に使用されるような低回転抵抗シールであってもよい。
 異物侵入防止手段15がオイルシール9の場合には、回転部材22におけるシール接触面の硬度を高くするため、回転部材22に用いる材料が限定されたり、シール接触面に表面処理をする必要性が生じたりする。しかし、異物侵入防止手段15として、ダストシールや低回転抵抗シールを用いる場合、回転出力部22及び回転出力部22に施す表面処理を自由に選択することができる。また、異物侵入防止手段15として、ダストシールや低回転抵抗シールを用いる場合、回転抵抗が少なく効率の高い、省エネルギーなモータAとすることができる。また、モータAの出力を向上させることができ、摩擦による発熱が少ないためモータAの定格出力を向上させることができる。
 また、この実施形態のモータAにおいては、エアパージによりモータ内圧を上げている。具体的に述べると、ハウジング2の固定部23及びモータ部カバー7に、固定部23の底面からモータ部カバー7の貫通孔72まで延びる内圧用気道23gを設けている。この内圧用気道23gの固定部23の外部には、ホース82が接続され、当該ホース82から矢印X向きにエアが供給される。そして、ホース82から矢印X向きに供給されたエアは、内圧用気道23gを通ってモータ部カバー7の貫通孔72からモータ本体1内に入り込む。これにより、モータ本体1内の内圧を上げることができる。これにより、異物侵入防止手段15の部位においても内圧が外圧よりも高くなり、より外部から液体が侵入するのを防止することができる。
 また、この実施形態のモータAにおいては、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。これにより、異物がモータ本体1の中心穴11に侵入するのを防止している。
 更に、この実施形態のモータAにおいては、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、異物がモータ本体1の中心穴11に侵入するのを防止している。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この実施形態のモータAにおいて、モータ本体1は、前述したように、アウターロータ型である。
[第16実施形態]
 この実施形態のモータAは、その断面が図18に示す形状である点を除いて、図17に示す第15実施形態と同じである。図18において、図17に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図18に示すモータAにおいては、図17に示すモータAに対し、異物侵入防止手段15が、更にラビリンスLを有している。具体的に述べると、異物侵入防止手段15は、オイルシール9とラビリンスLとからなっている。
 そして、オイルシール9は、回転出力部22の周縁部22bと円筒部21の周縁部21aとで形成される空間に配置されている。オイルシール9は、円筒部21に取り付けられ、オイルシール9のリップ部が回転出力部22に接触している。
 また、円筒部21の軸方向上端には、外径を異ならせる段差21cが形成され、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 この実施形態のモータAにおいては、オイルシール9とラビリンスLとにより構成される異物侵入防止手段15により、異物が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止することができる。
 なお、第16実施形態のモータAにおいては、第15実施形態のモータAと同様に、用途に応じて、オイルシール9ではなく、ダストシールや、軸受シール部に使用されるような低回転抵抗シールを用いても良い。
 また、第16実施形態のモータAにおいては、第15実施形態のモータAと同様に、異物侵入防止手段15が円筒部21の軸方向一カ所のみに設けられているため、消耗部品である異物侵入防止手段の数を削減し、低コスト構造を実現するとともに、メンテナンスの手間をも削減することができる。
 また、第16実施形態のモータAにおいては、第15実施形態のモータAと同様に、エアパージによりモータ内圧を上げてもよい。
 また、第16実施形態のモータAにおいては、第15実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第16実施形態のモータAにおいては、第15実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、異物がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この実施形態のモータAにおいて、モータ本体1は、第15実施形態と同様に、アウターロータ型である。
[第17実施形態]
 この実施形態のモータAは、その断面が図19に示す形状である点を除いて、図18に示す第6実施形態と同じである。図19において、図18に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図19に示すモータAにおいては、異物侵入防止手段15が、オイルシール9を有さず、ラビリンスLのみで構成されている。
 ここで、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 この実施形態のモータAにおいては、ラビリンスLにより構成される異物侵入防止手段15により、異物が外部から円筒部21と回転出力部22との間を通って内部に侵入するのを防止することができる。
 なお、より確実な異物侵入防止を図るには、第16実施形態のようにラビリンスLをオイルシール9と組み合わせた方がよいが、用途によっては、ラビリンスLのみで十分な場合もある。オイルシール9を用いていないので、製造コストが削減されるだけでなく、オイルシール9の交換も必要ないので、メンテナンス性に優れている。また、異物侵入防止手段15が非接触となり、オイルシール9を用いる場合と異なり、回転出力部22におけるシール接触面の硬度や表面粗さの制約を免れるとともに、回転抵抗を減らすことができ、モータ出力の向上を図ることができる。また、オイルシールの摩擦による発熱がないため、モータAの定格出力を向上させることができる。
 この第17実施形態のモータAにおいては、第15実施形態のモータA及び第16実施形態のモータAと同様に、異物侵入防止手段15が円筒部21の軸方向一カ所のみに設けられている。
 また、第17実施形態のモータAにおいては、第15実施形態のモータA及び第16実施形態のモータAと同様に、エアパージによりモータ内圧を上げてもよい。第17実施形態のモータAにおいては、異物侵入防止手段15がラビリンスLのみであるので、液体侵入に対してエアパージが特に有効に機能する。
 また、第17実施形態のモータAにおいては、第15実施形態のモータA及び第16実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第17実施形態のモータAにおいては、第15実施形態のモータA及び第16実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、異物がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この第17実施形態のモータAにおいて、モータ本体1は、第15実施形態のモータA及び第16実施形態のモータAと同様に、アウターロータ型である。
[第18実施形態]
 この実施形態のモータAは、その断面が図20に示す形状である点を除いて、図19に示す第17実施形態と同じである。図20において、図19に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 即ち、図20に示すモータAにおいては、異物侵入防止手段15は、ラビリンスLの近傍に多孔質部材14を備えている。
 具体的に述べると、ラビリンスLは、円筒部21の段差21cによる小径部分の外周面と回転出力部22の周縁部21aの内周面との間に所定の隙間を設けるとともに、円筒部21の大径部分と小径部分の境目である段差21cの面と回転出力部22の周縁部22bの下端面との間に所定の隙間を設けて構成されている。
 そして、円筒部21の小径部分の外周には、その外周から彫り込んだ円環状の凹溝が形成され、この凹溝内に円環状の多孔質部材14が配置されている。多孔質部材14は、円環状であるが、その組み立て上、複数の部材を組み合わせて構成される。
 この実施形態のモータAにおいては、ラビリンスLの近傍に多孔質部材14があることで、ラビリンスLに入り込んできた液体が異物であり、わずかであれば、毛細管現象により吸収することができる。
 また、円筒部61の小径部分には、モータ本体1の内部と多孔質部材14とをつなぐ多孔質部材用気道21fが設けられている。これにより、エアパージを行った際(第18実施形態のモータAにおいて、第15実施形態乃至第17実施形態のモータAと同様に、エアパージによりモータ内圧を上げた際)に、多孔質部材14から回転出力部22の周縁部22bに向けて均質なエアが吹き出され、ラビリンスLからの異物の侵入を防止することができる。
 なお、エアパージは、第15実施形態のモータAで説明したように、ハウジング2の固定部23及びモータ部カバー7に設けた内圧用気道23gにホース82を接続し、当該ホース82から矢印X向きにエアを供給することにより行う。
 この第18実施形態のモータAにおいても、異物侵入防止手段15が非接触となり、オイルシール9を用いる場合と異なり、回転出力部22におけるシール接触面の硬度や表面粗さの制約を免れるとともに、回転抵抗を減らすことができ、モータ出力の向上を図ることができる。また、オイルシールの摩擦による発熱がないため、モータAの定格出力を向上させることができる。
 この第18実施形態のモータAにおいても、第15実施形態乃至第17実施形態のモータAと同様に、異物侵入防止手段15が円筒部21の軸方向一カ所のみに設けられている。
 また、第18実施形態のモータAにおいては、第15実施形態乃至第17実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉してある。
 更に、第18実施形態のモータAにおいては、第15実施形態乃至第17実施形態のモータAと同様に、回転出力部22のテーブル(取付回転体)62に対する接続面とテーブル62の回転出力部22に対する接続面との間を密閉するために、回転出力部22のテーブル62に対する接続面にシール材63用の溝22dを設け、この溝22dにシール材63を配置することにより、液体がモータ本体1の中心穴11に侵入するのを防止するようにしている。シール材63用の溝22dは、テーブル62の回転出力部22に対する接続面に設けても良い。
 また、この第18実施形態のモータAにおいて、モータ本体1は、第15実施形態乃至第17実施形態のモータAと同様に、アウターロータ型である。
[第19実施形態]
 この実施形態のモータAは、その断面が図21に示す形状である点を除いて、図17に示す第15実施形態と同じである。図21において、左側半分は、コネクタ32aに接続された配線のない位相となっている。図21において、図17に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 図21に示す第19実施形態のモータAにおいては、図17に示す第15実施形態のモータAに対して、エアパージ用の気道85をモータ本体1の内周側に有している。
 ここで、気道85は、モータ本体1を構成するモータステータ42の内側部42bの周面の一部に設けられ、モータ本体1の中心穴11とモータ本体1の内部とを連通させる貫通孔で構成されている。気道85の中心穴11側には、雌ねじ溝が形成され、この雌ねじ溝にニップル84が螺合されている。そして、このニップル84には、モータ本体1の中心穴11を通してホース83が嵌合され、気道85とホース83とが接続されている。ホース83は、ニップル84から外れないようにクランプを用いて止めると好適である。
 このホース83に、矢印Xの方向にエアを送り込むことにより、エアパージが行われ、モータ本体1の内圧を上げることができる。このように、エアパージ用の気道85をモータ本体1の内周側に設けることにより、ホース83の配管を容易にしている。もともと、中心穴11は、配線、配管のために設けられており、モータAを設置する基台61側にも同様の配線、配管用の穴を有する場合が多いからである。
 このように、エアパージを行うことにより、モータ本体1の内圧を上げることができ、異物侵入防止手段15を構成するオイルシール9の部位において外圧よりも内圧を高くし、異物の侵入をより抑制することができる。
[第20実施形態]
 この実施形態のモータAは、その断面が図22に示す形状である点を除いて、図18に示す第16実施形態と同じである。図22において、左側半分は、コネクタ32aに接続された配線のない位相となっている。図22において、図18に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 図22に示す第20実施形態のモータAにおいては、図18に示す第16実施形態のモータAに対して、エアパージ用の気道85をモータ本体1の内周側に有している。
 ここで、気道85は、モータ本体1を構成するモータステータ42の内側部42bの周面の一部に設けられ、モータ本体1の中心穴11とモータ本体1の内部とを連通させる貫通孔で構成されている。気道85の中心穴11側には、雌ねじ溝が形成され、この雌ねじ溝にニップル84が螺合されている。そして、このニップル84には、モータ本体1の中心穴11を通してホース83が嵌合され、気道85とホース83とが接続されている。ホース83は、ニップル84から外れないようにクランプを用いて止めると好適である。
 このホース83に、矢印Xの方向にエアを送り込むことにより、エアパージが行われ、モータ本体1の内圧を上げることができる。このように、エアパージ用の気道85をモータ本体1の内周側に設けることにより、ホース83の配管を容易にしている。もともと、中心穴11は、配線、配管のために設けられており、モータAを設置する基台61側にも同様の配線、配管用の穴を有する場合が多いからである。
 このように、エアパージを行うことにより、モータ本体1の内圧を上げることができ、異物侵入防止手段15を構成するオイルシール9の部位において外圧よりも内圧を高くし、異物の侵入をより抑制することができる。
[第21実施形態]
 この実施形態のモータAは、その断面が図23に示す形状である点を除いて、図19に示す第17実施形態と同じである。図23において、左側半分は、コネクタ32aに接続された配線のない位相となっている。図23において、図19に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 図23に示す第21実施形態のモータAにおいては、図19に示す第17実施形態のモータAに対して、エアパージ用の気道85をモータ本体1の内周側に有している。
 ここで、気道85は、モータ本体1を構成するモータロータ42の内側部42bの周面の一部に設けられ、モータ本体1の中心穴11とモータ本体1の内部とを連通させる貫通孔で構成されている。気道85の中心穴11側には、雌ねじ溝が形成され、この雌ねじ溝にニップル84が螺合されている。そして、このニップル84には、モータ本体1の中心穴11を通してホース83が嵌合され、気道85とホース83とが接続されている。ホース83は、ニップル84から外れないようにクランプを用いて止めると好適である。
 このホース83に、矢印Xの方向にエアを送り込むことにより、エアパージが行われ、モータ本体1の内圧を上げることができる。このように、エアパージ用の気道85をモータ本体1の内周側に設けることにより、ホースホース83の配管を容易にしている。もともと、中心穴11は、配線、配管のために設けられており、モータAを設置する基台61側にも同様の配線、配管用の穴を有する場合が多いからである。
 このように、エアパージを行うことにより、モータ本体1の内圧を上げることができ、異物侵入防止手段15を構成するラビリンスLの部位において外圧よりも内圧を高くし、異物の侵入をより抑制することができる。
[第22実施形態]
 この実施形態のモータAは、その断面が図24に示す形状である点を除いて、図20示す第18実施形態と同じである。図24において、左側半分は、コネクタ32aに接続された配線のない位相となっている。図24において、図20に示す部材と同一の部材については同一の符号を付し、その説明を省略することがある。
 図24に示す第22実施形態のモータAにおいては、図20に示す第18実施形態のモータAに対して、エアパージ用の気道85をモータ本体1の内周側に有している。
 ここで、気道85は、モータ本体1を構成するモータロータ42の内側部42bの周面の一部に設けられ、モータ本体1の中心穴11とモータ本体1の内部とを連通させる貫通孔で構成されている。気道85の中心穴11側には、雌ねじ溝が形成され、この雌ねじ溝にニップル84が螺合されている。そして、このニップル84には、モータ本体1の中心穴11を通してホース83が嵌合され、気道85とホース83とが接続されている。ホース83は、ニップル84から外れないようにクランプを用いて止めると好適である。
 このホース83に、矢印Xの方向にエアを送り込むことにより、エアパージが行われ、モータ本体1の内圧を上げることができる。このように、エアパージ用の気道85をモータ本体1の内周側に設けることにより、ホースホース83の配管を容易にしている。もともと、中心穴11は、配線、配管のために設けられており、モータAを設置する基台61側にも同様の配線、配管用の穴を有する場合が多いからである。
 このように、エアパージを行うことにより、モータ本体1の内圧を上げることができ、異物侵入防止手段15を構成するラビリンスL及び多孔質部材14の部位において外圧よりも内圧を高くし、異物の侵入をより抑制することができる。
 また、図17に示す第15実施形態のモータA乃至図24に示す第22実施形態のモータAにおいて、回転出力部22は、レゾルバロータ51を介してモータロータ41に固定されている。この構成により、レゾルバ5の調整を容易にしている。
 また、図17に示す第15実施形態のモータA乃至図24に示す第22実施形態のモータAにおいて、コネクタ31a,32aは、モータ本体1の内周側で中心穴11の近傍に設けてあり、高価な防水仕様を採用せずともよい。
 また、図17に示す第15実施形態のモータA乃至図24に示す第22実施形態のモータAを駆動源として、テーブル62の上に電子部品などを乗せて回転移動させる搬送装置として使用できる。また、この実施形態のモ-タAは、ベルトコンベヤの回転機構の駆動源として使用することもできる。また、この実施形態のモータAは、位置決め装置を位置決め駆動するものとして使用することができる。
 また、図17に示す第15実施形態のモータA乃至図24に示す第22実施形態のモータAでは、モ-タ本体がダイレクトドライブモ-タ(減速機を使用せず、直接負荷を駆動するモ-タ)であるモ-タの例を説明しているが、この発明は、モ-タ本体がギアリダクション方式のモ-タ(減速機を使用して、トルクが増幅されるモ-タ)や一般的なモ-タ(例えば、一方向にのみ回転するモ-タ等)であるモ-タにも適用できる。
 なお、図17に示す第15実施形態のモータA乃至図24に示す第22実施形態のモータAにおいて、モータ本体1は、アウターロータ型ではなく、内周側が回転するインナーロータ型であってもよい。
 1 モ-タ本体
 11 中心穴
 12 シール材
 13 液体侵入防止手段
 14 多孔質部材
 15 異物侵入防止手段
 2 ハウジング
 21 円筒部
 21a 周縁部(シール取付部)
 21c 段差
 22 回転出力部
 22a 中心穴(貫通穴)
 22b 周縁部
 22f 開口部
 22h シール接触面
 23 固定部
 23c 中心穴(貫通穴)
 23d シール材用の溝
 31 配線ケ-ブル
 32 配線ケ-ブル
 4 モ-タ部
 41 モータロータ(回転体)
 42 モータステータ(固定体)
 5 レゾルバ
 51 レゾルバロータ(回転体)
 52 レゾルバステータ(固定体)
 9 オイルシール
 10 密封機構
 61 基台
 62 テーブル(取付回転体)
 63 シール材
 90 故障防止手段
 91 液体感知センサ
 95 液体通し孔
 A モータ
 L ラビリンス

Claims (23)

  1.  軸方向に貫通する中心穴が形成された円柱状のモ-タ本体と、前記モータ本体を収納するハウジングとを備え、
     前記ハウジングは、前記モータ本体の外周面を覆う円筒部と、該円筒部の軸方向上側に設けられた、前記モータ本体の回転体に固定される回転出力部と、前記円筒部の軸方向下側に設けられた、前記モ-タ本体の固定体に固定される固定部とからなり、
     前記ハウジングは、前記円筒部の軸方向の一ヶ所のみで密封機構により密封されていることを特徴とするモータ。
  2.  前記密封機構は、前記円筒部と前記回転出力部との間に配置されて前記円筒部と前記回転出力部との間を密封することを特徴とする請求項1に記載のモータ。
  3.  前記ハウジングは、前記モータ本体の前記中心穴に対応する貫通穴を有するとともに、前記モ-タ本体に一端が固定されている配線ケ-ブルを備え、
     前記配線ケ-ブルは、前記モ-タ本体の軸方向端面の前記中心穴近傍部と前記ハウジングの前記貫通穴を通って、他端が外部に配置されていることを特徴とする請求項1又は2に記載のモータ。
  4.  前記固定部は基台との接続面を有し、
     前記回転出力部は取付回転体との接続面を有し、
     前記固定部の接続面および前記回転出力部の接続面の少なくともいずれか一方に、シ-ル材を配置する溝が形成されていることを特徴とする請求項1~3のいずれか1項に記載のモ-タ。
  5.  前記密封機構は、前記円筒部と前記回転出力部との間に設けられて前記円筒部と前記回転出力部との間を密封するシール材を有し、前記回転出力部は、前記シール材が接触するシール接触面の硬度が当該シール接触面以外の部分の硬度よりも高い軽量材からなることを特徴とする請求項1に記載のモータ。
  6.  前記回転出力部は、少なくとも前記シール接触面に硬度向上処理がなされたものであることを特徴とする請求項5に記載のモータ。
  7.  前記密封機構は、前記円筒部と前記回転出力部との間に設けられて前記円筒部と前記回転出力部との間を密封するシール材を有し、前記回転出力部は、前記シール材が接触するシール接触面の硬度が当該シール接触面以外の部分の硬度よりも高い軽量材からなり、前記回転出力部は、少なくとも前記シール接触面に硬度向上処理がなされたものであり、前記硬度向上処理が表面処理であるとともに、前記軽量材がアルミ材であり、前記シール接触面の面粗さをRa0.05~1.60とし、前記シール材の内径と該シール材を取り付けるシール取付部の外径とのはめあいを5.0~25.00mmのしまりばめとするとともに、前記モータ本体には、内側にレゾルバステータを、該レゾルバステータの外周側にレゾルバロータを有するレゾルバが内蔵され、前記回転出力部と前記レゾルバロータとを一体化し、前記回転出力部の取付回転体に対する接続面又は前記取付回転体の前記回転出力部に対する接続面に設けたシール材用の溝を前記レゾルバロータよりも外周側に設け、前記回転出力部の回転軸中心から前記シール材用の溝の内側であって前記レゾルバロータ近傍に至る部分にまで開口する開口部を設けたことを特徴とする請求項1に記載のモータ。
  8.  前記密封機構は、前記円筒部と前記回転出力部との間に設けられて、液体が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する液体侵入防止手段を構成することを特徴とする請求項1に記載のモータ。
  9.  前記液体侵入防止手段がオイルシールであることを特徴とする請求項8に記載のモータ。
  10.  前記液体侵入防止手段が更にラビリンスを有していることを特徴とする請求項9に記載のモータ。
  11.  前記液体侵入防止手段がラビリンスであることを特徴とする請求項8に記載のモータ。
  12.  前記回転出力部の外縁には、前記円筒部側に突出する周縁部が形成され、前記円筒部の軸方向上端には、外径を異ならせる段差が形成され、
     前記ラビリンスは、前記円筒部の段差による小径部分の外周面と前記回転出力部の前記周縁部の内周面との間に所定の隙間を設けるとともに、前記円筒部の大径部分と小径部分の境目である段差の面と前記回転出力部の前記周縁部の下端面との間に所定の隙間を設けて構成されていることを特徴とする請求項10又は11に記載のモータ。
  13.  前記円筒部の小径部分の外径及び前記回転出力部の前記周縁部の内径は、前記円筒部の軸方向上側から軸方向下側に向けて大きくなるように、前記回転出力部の回転軸に対して傾斜していることを特徴とする請求項12に記載のモータ。
  14.  前記液体侵入防止手段は、前記ラビリンスの近傍に多孔質部材を備えていることを特徴とする請求項10~13のいずれか1項に記載のモータ。
  15.  エアパージによりモータ内圧を上げていることを特徴とする請求項8~14のいずれか1項に記載のモータ。
  16.  前記回転出力部の取付回転体に対する接続面と前記取付回転体の前記回転出力部に対する接続面との間を密閉することを特徴とする請求項8~15のいずれか1項に記載のモータ。
  17.  前記密封機構は、前記円筒部と前記回転出力部との間に設けられて、液体が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する液体侵入防止手段を構成し、
     更に、前記液体が内部に侵入した際に故障を防止する故障防止手段を備えていることを特徴とする請求項1に記載のモータ。
  18.  前記故障防止手段は、前記円筒部の軸方向下側に設けられた前記固定部に設けられている液体感知センサ又は液体通し孔であることを特徴とする請求項17に記載のモータ。
  19.  前記密封機構は、前記円筒部と前記回転出力部との間に配置されて前記円筒部と前記回転出力部との間を密封するシール材を有し、前記回転出力部は、前記モータ本体の前記中心穴を塞ぐように構成されていることを特徴とする請求項1に記載のモータ。
  20.  前記液体侵入防止手段が、異物が外部から前記円筒部と前記回転出力部との間を通って内部に侵入するのを防止する異物侵入防止手段を構成していることを特徴とする請求項8~16のいずれか1項に記載のモータ。
  21.  前記モ-タ本体はアウターロータ型であることを特徴とする請求項1~20のいずれか1項に記載のモ-タ。
  22.  請求項1~21のいずれか1項に記載されたモ-タによって位置決め駆動される位置決め装置。
  23.  請求項1~21のいずれか1項に記載されたモ-タを駆動原とする搬送装置。
PCT/JP2014/002427 2013-05-20 2014-05-07 モータ、位置決め装置、搬送装置 WO2014188672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157033222A KR101728625B1 (ko) 2013-05-20 2014-05-07 모터, 위치결정장치, 반송장치
CN201480000583.6A CN104380580B (zh) 2013-05-20 2014-05-07 马达、定位装置、输送装置
US14/892,442 US20160118855A1 (en) 2013-05-20 2014-05-07 Motor, Positioning Device, Conveyance Device
JP2014524179A JP5765486B2 (ja) 2013-05-20 2014-05-07 モータ、位置決め装置、搬送装置

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2013106090 2013-05-20
JP2013-106090 2013-05-20
JP2014003833 2014-01-13
JP2014-003833 2014-01-13
JP2014-006153 2014-01-16
JP2014006153 2014-01-16
JP2014-012670 2014-01-27
JP2014012670 2014-01-27
JP2014-019904 2014-02-05
JP2014019904 2014-02-05
JP2014-024985 2014-02-13
JP2014024985 2014-02-13
JP2014085414 2014-04-17
JP2014-085414 2014-04-17

Publications (1)

Publication Number Publication Date
WO2014188672A1 true WO2014188672A1 (ja) 2014-11-27

Family

ID=51933243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002427 WO2014188672A1 (ja) 2013-05-20 2014-05-07 モータ、位置決め装置、搬送装置

Country Status (5)

Country Link
US (1) US20160118855A1 (ja)
JP (1) JP5765486B2 (ja)
KR (1) KR101728625B1 (ja)
CN (1) CN104380580B (ja)
WO (1) WO2014188672A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133921A (ja) * 2017-02-15 2018-08-23 ファナック株式会社 軸受の動作状態検出用のセンサを備える電動機
WO2021153540A1 (ja) * 2020-01-27 2021-08-05 日本精工株式会社 モータ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205716284U (zh) * 2016-04-22 2016-11-23 优利科技有限公司 云台及包含其的航拍机
US10312766B2 (en) 2017-04-19 2019-06-04 Vault Motors LLC Submersible-rated roller table motor
EP3695487A1 (en) 2017-10-10 2020-08-19 Zero E Technologies LLC Electric machine cooling and stabilization systems and methods
JP6599961B2 (ja) 2017-11-20 2019-10-30 ファナック株式会社 端子箱を備えた電動機及び工作機械
CN111863701B (zh) * 2020-07-27 2021-03-16 常州瑞择微电子科技有限公司 一种光掩模湿法工艺卡盘

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299299A (ja) * 2002-04-02 2003-10-17 Nsk Ltd ダイレクトドライブモータのロータ支持構造
JP2005354847A (ja) * 2004-06-11 2005-12-22 Nsk Ltd 回転駆動装置
JP2011250504A (ja) * 2010-05-24 2011-12-08 Nsk Ltd 防水モータ
JP2012249519A (ja) * 2012-09-05 2012-12-13 Nsk Ltd ダイレクトドライブモータ、搬送装置および半導体製造装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355908A (en) * 1986-01-15 1994-10-18 Hiltap Fittings, Ltd. Reusable pipe union assembly with automatic fluid flow checking
JP2573657Y2 (ja) * 1990-07-10 1998-06-04 日本精工株式会社 回転軸のクランプ装置
US20020191877A1 (en) * 1997-04-16 2002-12-19 Hironori Suzuki Rolling bearing unit with shield plate
US20090004035A1 (en) * 2005-11-24 2009-01-01 Horst Steegmuller Motor/Pump Assembly With Improved Sealing
JP2008075724A (ja) * 2006-09-20 2008-04-03 Nsk Ltd スピンドル装置
AU2010231573A1 (en) * 2009-03-30 2011-09-29 Tq-Systems Gmbh Gear, motor-gear unit, vehicle, generator with a gear, and force transmitting element
CN201708619U (zh) * 2010-05-19 2011-01-12 常州市武进金顺机电有限公司 防水轮毂电机
JP5402833B2 (ja) 2010-05-27 2014-01-29 日本精工株式会社 防水モータ
JP5644584B2 (ja) * 2011-02-25 2014-12-24 日本精工株式会社 異物環境用ダイレクトドライブモータ及び機械装置
CN202861783U (zh) * 2012-07-31 2013-04-10 无锡桥联数控机床有限公司 分度回转工作台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299299A (ja) * 2002-04-02 2003-10-17 Nsk Ltd ダイレクトドライブモータのロータ支持構造
JP2005354847A (ja) * 2004-06-11 2005-12-22 Nsk Ltd 回転駆動装置
JP2011250504A (ja) * 2010-05-24 2011-12-08 Nsk Ltd 防水モータ
JP2012249519A (ja) * 2012-09-05 2012-12-13 Nsk Ltd ダイレクトドライブモータ、搬送装置および半導体製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133921A (ja) * 2017-02-15 2018-08-23 ファナック株式会社 軸受の動作状態検出用のセンサを備える電動機
US10461608B2 (en) 2017-02-15 2019-10-29 Fanuc Corporation Motor having sensor for detecting operating state of bearing
WO2021153540A1 (ja) * 2020-01-27 2021-08-05 日本精工株式会社 モータ

Also Published As

Publication number Publication date
JP5765486B2 (ja) 2015-08-19
US20160118855A1 (en) 2016-04-28
CN104380580A (zh) 2015-02-25
CN104380580B (zh) 2018-10-16
KR20160000464A (ko) 2016-01-04
JPWO2014188672A1 (ja) 2017-02-23
KR101728625B1 (ko) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5765486B2 (ja) モータ、位置決め装置、搬送装置
US7642681B2 (en) Rotary electric machine equipped with one or more magnetic sensors
JP5440227B2 (ja) 中空減速機内蔵アクチュエータ
CN109510364B (zh) 驱动装置
US9729026B2 (en) In-wheel motor and in-wheel motor driving device
EP2852844B1 (en) Sensor-bearing unit and apparatus comprising such a unit
TW200935710A (en) Foreign bodies-or water-proof fan and motor
US9966812B2 (en) Static vacuum shafting device for integrated rotary transformer
US20190084408A1 (en) Drive device
JP7155569B2 (ja) 駆動装置
CN101505073A (zh) 可防止异物或水分侵入的风扇及马达
JP5402829B2 (ja) 防水モータ
JP5402833B2 (ja) 防水モータ
EP3892424B1 (en) Motor and industrial robot
JP2008203267A (ja) センサ付転動装置
JP2011035950A (ja) 電動機の防水構造
JP2011217592A (ja) 回転電機
JP5880305B2 (ja) エレベータのドア駆動装置
WO2019186832A1 (ja) 回転電機及びそれを用いたエレベータのドア装置
JP2012213259A (ja) ダイレクトドライブモータ
JP2008259369A (ja) 回転機
CN103840597A (zh) 马达的防水结构
JP2008099520A (ja) アウタロータ型モータ
WO2023026424A1 (ja) 巻上機およびエレベーター
JP5360099B2 (ja) 回転電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014524179

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892442

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157033222

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801088

Country of ref document: EP

Kind code of ref document: A1