WO2014188633A1 - 通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体 - Google Patents

通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体 Download PDF

Info

Publication number
WO2014188633A1
WO2014188633A1 PCT/JP2014/000568 JP2014000568W WO2014188633A1 WO 2014188633 A1 WO2014188633 A1 WO 2014188633A1 JP 2014000568 W JP2014000568 W JP 2014000568W WO 2014188633 A1 WO2014188633 A1 WO 2014188633A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
power
communication
power source
power supply
Prior art date
Application number
PCT/JP2014/000568
Other languages
English (en)
French (fr)
Inventor
重雄 山田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP14801725.4A priority Critical patent/EP3001536A4/en
Priority to US14/892,814 priority patent/US20160173290A1/en
Publication of WO2014188633A1 publication Critical patent/WO2014188633A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a communication system, a power supply control method, and a power supply control non-transitory computer-readable medium, and in particular, power in any direction via a communication line between an indoor side communication device and an outdoor side communication device.
  • the present invention relates to a communication system, a power supply control method, and a power supply control non-transitory computer-readable medium having a mechanism capable of supplying the power.
  • Japanese Patent Application Laid-Open No. 2002-359579 “Cable equalization method in communication apparatus”, includes an outdoor communication apparatus (ODU: Out Door Unit) and an indoor communication apparatus (IDU: In Door Unit).
  • ODU Out Door Unit
  • IDU In Door Unit
  • a separate communication system is described.
  • the outdoor communication device is installed outdoors and has a high-frequency wireless signal transmission / reception function
  • the indoor communication device is installed indoors and has a transmission / reception signal generation / decoding function and the like. Have.
  • a communication system having such a configuration when power is supplied from an indoor communication device (IDU) having an indoor power supply to an outdoor communication device (ODU), a coaxial cable originally provided for the purpose of transmitting a signal.
  • the technology of superimposing electric power on a communication line such as the above and supplying electric power to an outdoor communication device (ODU) on the other side has been adopted.
  • an outdoor power source using wind power generation or solar power generation is drawn indoors through a power line, and attempts to supply power to an indoor communication device (IDU) have been activated. ing.
  • FIG. 7 is a system configuration diagram showing a configuration of a conventional communication system in the case of using both indoor power and outdoor power.
  • the indoor side communication device 101 is supplied with electric power by selecting either the indoor power source 105 or the outdoor power source 106 via the power source selection circuit 104, and further, the outdoor side communication device 102 On the other hand, power is transmitted via the communication line 103 so as to be superimposed on the signal.
  • the power source selection circuit 104 is connected to both an indoor power source 105 connected to a power outlet such as a commercial power source and an outdoor power source 106 such as wind power and solar cells drawn from the outside through the power line 107, Power is supplied to the indoor communication apparatus 101 from any one of the indoor power supply 105 and the outdoor power supply 106 selected.
  • the indoor side communication device 101 and the outdoor side communication device 102 constituting the communication system can only be operated by the indoor power source 105 according to the selection operation of the power source selection circuit 104. In addition, it can be operated by the outdoor power source 106.
  • a power input mechanism for taking in power from a power source is provided only on the indoor side communication device 101 side. Power is supplied from the inner communication device 101 to the communication line 103 so as to be superimposed on the signal. For this reason, when trying to use not only the indoor power supply 105 but also the outdoor power supply 106 using wind power generation, solar power generation, etc., a power supply line 107 for drawing indoors from the outside is required separately from the communication line 103. It is said.
  • the indoor side communication device 101 that draws the outdoor power source 106 through the power line 107 is The power transmission distance is extended by an amount corresponding to the outer communication device 102 via the communication line 103, and there is a problem that a power transmission loss occurs.
  • the outdoor side communication device 102 is newly provided with a power input mechanism for taking in the power from the outdoor power source 106, for example, a solar cell, and the power from the solar cell is used for indoor side communication.
  • the outdoor power source 106 for example, a solar cell
  • an indoor power supply 105 for example, a power failure of a commercial power supply occurs, and the indoor power supply 105 receives the indoor communication apparatus 101.
  • the power supply is stopped, it is impossible to supply power from the outdoor power supply 106 to the indoor communication device 101 even when the power generation capability of the solar cell as the outdoor power supply 106 is sufficient.
  • Ethernet registered trademark
  • PoE Power over Ethernet (registered trademark)
  • the power transmission to the communication line is gradually increased.
  • the amount of power required for the operation is reached. In some cases, the power superimposed on the communication line is not reached.
  • the present invention has been made in view of the above circumstances, and includes a first communication device (for example, an indoor communication device) and a second communication device (for example, an outdoor communication device) that are connected to each other via a communication line.
  • a communication that can be continuously operated by connecting a power source to both of them and making it possible to select a power source to be supplied to the first communication device and the second communication device according to the power state output from each power source. It is an object to provide a system, a power supply control method, and a power supply control non-transitory computer-readable medium.
  • the communication system, the power supply control method, and the power supply control non-transitory computer-readable medium according to the present invention mainly adopt the following characteristic configuration.
  • a communication system is a communication system having a first communication device and a second communication device connected to each other via a communication line for transmitting and receiving signals, the first communication device and the second communication device.
  • Each is connected to a built-in power supply or a first power supply that is an external power supply disposed in the vicinity, and power is superimposed on the signal in the communication line, and the superimposed power is used as the second power supply for the communication line.
  • the first communication device and the second communication device transmit power to the counterpart communication device via the first power source according to the power states of the first power source and the second power source, respectively.
  • the power of the second power source transmitted from the communication device on the other side through the communication line or the communication line is selected as the power source for operation and fed.
  • a power supply control method is a power supply control method in a communication system having a first communication device and a second communication device connected to each other via a communication line for transmitting and receiving signals, wherein the first communication
  • Each of the device and the second communication device is connected to a first power source that is a built-in power source or an external power source disposed in the vicinity, and power is superimposed on the signal in the communication line, and the superimposed power is Power is transmitted as a second power source to the communication device on the other side via the communication line, and the first communication device and the second communication device are in power states of the first power source and the second power source, respectively. Accordingly, either the electric power from the first power source or the electric power transmitted from the communication device on the other side via the communication line is selected as an operation power source to supply power.
  • a power supply control non-transitory computer readable medium is that the power supply control method described in (2) is implemented as a non-transitory computer readable medium executable by a computer.
  • the second A power line for transmitting power from a power source (for example, a solar battery) installed in or near a communication device (for example, an outdoor side communication device) to a first communication device (for example, an indoor side communication device) is separate from the communication line.
  • the installation cost is reduced, the installation cost can be reduced, the power transmission path for supplying power to the second communication device (for example, the outdoor communication device) can be shortened, and the power transmission loss is reduced.
  • the first communication device for example, the indoor side communication device
  • the second communication device can be selected in a state optimal for the power state of each power source.
  • Device e.g., outdoor communication device
  • FIG. 1 is a system configuration diagram showing an example of a system configuration of a communication system according to the present invention. It is a system configuration
  • FIG. 5A and FIG. 5B of the internal structure of the indoor side communication apparatus which comprises the communication system shown in FIG. 2, and the outdoor side communication apparatus It is a block block diagram which shows the example different from FIG. 5A and FIG. 5B of the internal structure of the indoor side communication apparatus which comprises the communication system shown in FIG. 2, and the outdoor side communication apparatus. It is a system block diagram which shows the structure of the conventional communication system in the case of using the electric power of both an indoor power supply and an outdoor power supply.
  • the power supply control method is implemented as a non-transitory computer-readable medium that can be executed by a computer.
  • a non-transitory computer-readable medium for power supply control may be recorded on a computer-readable recording medium.
  • the present invention relates to a mechanism for selecting a power supply for supplying power to each communication device constituting a communication system.
  • the communication system includes a plurality of communication devices, for example, an indoor communication device (IDU: In Door Unit) and an outdoor communication device (ODU: Out Door Unit).
  • IDU In Door Unit
  • ODU Out Door Unit
  • Each communication device is connected to a first power source constituted by a built-in or externally connected power source.
  • each communication device superimposes the power from the first power supply on the other side by superimposing it on the signal on the communication line connecting the power input mechanism for taking in the power from the first power supply as an operation power supply.
  • the communication line between the indoor side communication device (IDU) and the outdoor side communication device (ODU) allows signals and power to be superimposed and sent in any direction, and the indoor side communication device ( When power is superimposed on the communication line between the IDU) and the outdoor side communication device (ODU), the indoor side communication device (IDU) is transferred from the outdoor side communication device (ODU) to the outdoor side communication device (ODU). It has a mechanism that enables bidirectional power transmission to the indoor communication device (IDU).
  • FIG. 1 is a conceptual diagram showing an outline of a system configuration of a communication system according to the present invention, in the communication apparatus of both an indoor communication apparatus (IDU) and an outdoor communication apparatus (ODU) interconnected by communication lines.
  • IDU indoor communication apparatus
  • ODU outdoor communication apparatus
  • a power supply selection circuit including three mechanisms of a power supply input mechanism, a power transmission mechanism, and a power extraction mechanism that can be switched by a control circuit is built in. That is, the indoor side communication device 1 and the outdoor side communication device 2 constituting the communication system are connected by a communication line 3 capable of transmitting power by bi-directionally superimposing power on a signal.
  • the outdoor side communication device 2 are respectively provided with a power supply selection circuit 12 and switches 2a, 2b having three switches 1a, 1b, 1c that can be opened and closed by a control circuit 11 and a control circuit 21, respectively.
  • a power source selection circuit 22 having 2c is incorporated.
  • an indoor power source 13 is connected to the indoor side communication device 1 as a first power source for supplying power to each local communication device and transmitting power to the counterpart side communication device, and an outdoor power source 23 is connected to the outdoor side communication device 2. Is connected.
  • the switch 1a of the power supply selection circuit 12 of the indoor side communication device 1 forms a power input mechanism for taking in power from the indoor power supply 13 (first power supply) as an operation power supply, and the switch 1b is used indoors.
  • the switch 1c forms a power extraction mechanism for taking in the power transmitted as the second power source as a second power source superimposed on the signal from the counterpart outdoor side communication device 2 via the communication line 3.
  • the switch 2a of the power source selection circuit 22 of the outdoor side communication device 2 forms a power input mechanism for taking in the power from the outdoor power source 23 (first power source) as an operation power source
  • the switch 2b is an outdoor power source.
  • a power transmission mechanism for superimposing power from a power source 23 (first power source) as a second power source on a signal and transmitting the signal to the indoor indoor communication device 1 side via the communication line 3 is formed, and the switch 2c forms a power extraction mechanism for taking in the power transmitted as the second power source, which is superimposed on the signal from the partner indoor side communication device 1 via the communication line 3, as an operation power source.
  • an outdoor power source 23 (for example, wind power / solar cell)
  • the outdoor side communication device 2 can connect the outdoor power source 23 directly to the indoor side communication device 1. Power supply It is not necessary to return the electric power transmitted via the communication line 3 to the outdoor communication device 2 side, and the transmission distance can be shortened, so that it is possible to reduce transmission loss. The effect of becoming can be produced.
  • the present invention employs the following technology in order to solve the conventional problems.
  • the outdoor side communication device (ODU) When using an outdoor power source such as solar power generation, for example, the outdoor side communication device (ODU) is not provided with a power input mechanism for taking in power from the power source as in the prior art.
  • the outdoor side communication device (ODU) In the case where only the indoor side communication device (IDU) is provided, even if the outdoor power source is installed in the vicinity of the outdoor side communication device (ODU), the outdoor side communication device (ODU) Installation of the power line from the outdoor power supply near the indoor side to the indoor communication unit (IDU) is necessary, and installation cost is increased, and the indoor side communication unit (IDU) is moved to the outdoor side communication unit (ODU) side. There is also a power transmission loss in which the power is transmitted through the communication line.
  • the outdoor side communication unit (ODU) is also provided with a power input mechanism for taking in power from the power source, and the power line from the outdoor power source to the indoor side communication unit (IDU). Therefore, the outdoor side communication unit (ODU) can operate using the electric power directly taken from the outdoor power source.
  • the power supply line from the outdoor power supply to the indoor communication device (IDU) is abolished, and power is supplied only from the outdoor power supply to the outdoor communication device (ODU).
  • the indoor communication device (IDU) Power supply operation completely stops, and the operation as the indoor side communication device (IDU) stops.
  • the outdoor side communication apparatus (ODU) is equipped with the electric power transmission mechanism which superimposes electric power on a signal on the communication line which goes to an indoor side communication apparatus (IDU), and an indoor side communication apparatus (IDU) and On the communication line connecting the outdoor side communication device (ODU), not only power transmission from the indoor side communication device (IDU) to the outdoor side communication device (ODU) but also from the outdoor side communication device (ODU) Power transmission in the reverse direction of the inner side communication device (IDU) is also possible, enabling bidirectional power transmission operation.
  • the indoor side communication device (IDU) has a power extraction mechanism that takes in the power transmitted by being superimposed on the signal via the communication line as an operation power source, so that power supply from the indoor power source is stopped. Even if a situation occurs, the operation of the indoor communication device (IDU) can be continued by switching the power supply to the indoor communication device (IDU) to the power from the communication line.
  • PoE Power over Ethernet
  • the operation of gradually increasing the voltage of the electric power superimposed on the communication line is performed.
  • the power supply function is provided, the power supply from the power source via the power input mechanism of one of the communication devices (for example, the outdoor power source via the power input mechanism of the outdoor communication device (ODU)) is cut off.
  • the voltage level of the power supply is constantly monitored, and control is performed so as to select the power supply to be taken in based on the monitoring result.
  • the system enables continuous operation as a system.
  • the present invention is not limited to a communication system including an indoor side communication device and an outdoor side communication device, and the first communication device and the second communication device divided into any two functions regardless of whether indoors or outdoors. It may be a communication system consisting of For example, in a communication system divided into two functions of a first communication device and a second communication device, each of the first communication device and the second communication system has a built-in power supply as the first power supply, or each A communication system having a configuration in which a first communication device and a second communication system are connected to an external power supply existing in the vicinity and power is supplied to each of the first communication device and the second communication device.
  • the present invention may be a communication system including a plurality (arbitrary number) of communication apparatuses as in the case of configuring a communication network including a plurality of neckwork devices as well as two communication apparatuses. Absent.
  • each communication device constituting a network device has a built-in power supply for each communication device installed in a distributed manner, or each communication device
  • the present invention is suitable for a communication system that is connected to a power source arranged in the vicinity and can transmit power superimposed on a signal in any direction on a communication line constituting a communication network. Can be applied.
  • FIG. 2 is a system configuration diagram showing an example of the system configuration of the communication system according to the present invention, and shows a case where a solar cell is used as the outdoor power source 23 shown in the conceptual diagram of FIG.
  • a bidirectional communication line 3 is connected between the indoor side communication device 1 and the outdoor side communication device 2 constituting the communication system shown in FIG. 2, as shown in the conceptual diagram of FIG. A bidirectional communication line 3 is connected. Furthermore, as the first power source used for power feeding to each own communication device and for power transmission to the counterpart communication device, an indoor power source 13 connected to the indoor side communication device 1 is provided on the indoor side, and the outdoor side Are provided with a solar cell 23 a as an outdoor power source 23 connected to the outdoor side communication device 2.
  • the indoor side communication device 1 and the outdoor side communication device 2 have the same internal configuration as the conceptual diagram shown in FIG. 1, and a power supply selection circuit 12 and a power supply selection circuit 22 are included in each communication device.
  • Each of the power supply selection circuit 12 and the power supply selection circuit 22 is provided with three switches capable of switching the power supply route according to the power supply status.
  • the power source selection circuit 12 and the power source selection circuit 22 allow the indoor side communication device 1 and the outdoor side communication device 2 to be in the vicinity of the first power source side (in the case of the indoor side communication device 1, the indoor power source 13 and the outdoor side communication).
  • power is received from the solar battery 23 a) as a power source for operation by a power input mechanism, or is transmitted as a second power source from the other communication device via the communication line 3 (indoor side)
  • the power of the solar battery 23 a transmitted from the outdoor side communication device 2 and in the case of the outdoor side communication device 2, the power of the indoor power supply 13 transmitted from the indoor side communication device 1).
  • the communication device on the other side ie, from the first power source, that is, from the indoor power source 13 in the case of the indoor side communication device 1
  • Power when the outdoor-side communication device 2, or can choose whether to power on the communication line 3 side by the power transmitting mechanism of power
  • the communication status or control signal from the other side communication device autonomously or in each communication device. It is controlled according to.
  • the communication line 3 between the indoor side communication device 1 and the outdoor side communication device 2, and the indoor side communication device 1 and the signal source are connected by a wired cable.
  • 2 modulates a signal received from the indoor side communication device 1 and outputs the signal as a wireless signal to the wireless space, and demodulates the signal received from the wireless space via the communication line 3 of the wired cable.
  • 1 shows an example of a configuration for transmitting to 1. That is, the communication system shown in FIG. 2 has a signal source ⁇ (wired) ⁇ ⁇ indoor communication device 1 ⁇ communication line 3 (wired) ⁇ outdoor communication device 2 ⁇ ⁇ (wireless) ⁇ ⁇ outdoor communication device 2 ⁇ communication. Line 3 (wired) ⁇ indoor communication device 1 ⁇ ⁇ (wired) ⁇ signals are transmitted and received through the signal path of the signal source.
  • FIG. 3 shows a configuration example of a communication system different from FIG.
  • FIG. 3 is a system configuration diagram showing a configuration different from that of FIG. 2 of the communication system according to the present invention, and shows an example of a system configuration when three or more communication devices are connected to one communication line.
  • the communication system shown in FIG. 3 shows a configuration example in which three communication devices 31, a communication device 32, and a communication device 33 are connected to one communication line 3.
  • the communication device 31, the communication device 32, and the communication device 33 A power source 41, a power source 42, and a power source 43 are connected to each.
  • the communication device 31, the communication device 32, and the communication device 33 are normally Power is transmitted to a communication line 3 from a specific communication device, for example, a communication device 31 predetermined as a default power transmission device, and power is supplied as operation power to other communication devices, for example, the communication device 32 and the communication device 33. It is configured to be able to do. Then, as shown in FIG. 3 with an X mark, the default power transmission device, for example, the communication device 31 stops the power transmission operation via the communication line 3 because the power supply from the power source 41 is cut off for some reason.
  • a specific communication device for example, a communication device 31 predetermined as a default power transmission device
  • the default power transmission device for example, the communication device 31 stops the power transmission operation via the communication line 3 because the power supply from the power source 41 is cut off for some reason.
  • an operation of transmitting power from one of the communication devices to the communication line 3 is started in a predetermined order among the other communication devices, for example, the communication device 32 and the communication device 33, and the power transmission operation
  • the default power transmission device for example, the communication device 31 that has stopped the operation, is switched to the operation of receiving power from the communication line 3.
  • FIG. 4 shows a configuration example of a communication system different from those shown in FIGS.
  • FIG. 4 is a system configuration diagram showing a configuration different from FIGS. 2 and 3 of the communication system according to the present invention.
  • the indoor side communication device 1 and the outdoor side communication device 2 shown in FIG. An example of a system configuration is shown in which the communication device is configured as a communication device and a combination of the communication device and a battery with a communication function having a communication function.
  • the communication device 51 in a state where the indoor side communication device 1 and the outdoor side communication device 2 shown in FIG. 2 are integrated is connected to a solar battery 23 a that is an example of the outdoor power source 23.
  • the battery 61 with a communication function is connected to the battery 61 with the communication function via the communication line 3a, and the power supply 13a similar to the indoor power supply 13 is connected to the battery 61 with the communication function.
  • the battery 61 with a communication function has a function of communicating the remaining capacity, failure, control signal, and the like of the power supply 13a with the communication device 51 via the communication line 3a. That is, the battery 61 with a communication function corresponds to the indoor communication device 1 shown in FIG. 2, and the communication device 51 corresponds to the outdoor communication device 2 shown in FIG.
  • the communication line 3a between the communication device 51 and the communication device 51 and the signal source are connected by a wired cable, and the communication device 51 receives the signal from the signal source.
  • a configuration in which a signal is processed and then modulated and output to a radio space as a radio signal, a signal obtained by demodulating a radio signal received from the radio space is subjected to signal processing and transmitted to a signal source via a wired cable An example is shown. That is, the communication system shown in FIG. 4 transmits and receives signals through the signal path of signal source ⁇ (wired) ⁇ ⁇ communication device 51 ⁇ ⁇ (wireless) ⁇ ⁇ communication device 51 ⁇ ⁇ (wired) ⁇ signal source.
  • FIGS. 5A and 5B An example of the internal configuration of the indoor side communication device 1 and the outdoor side communication device 2 for realizing the power supply control method in such a case is shown in FIGS. 5A and 5B.
  • FIG. 5A and 5B are block configuration diagrams showing an example of the internal configuration of the indoor side communication device 1 and the outdoor side communication device 2 constituting the communication system shown in FIG. 2, and a solar cell 23 a that is an example of the outdoor power source 23.
  • 3 shows an example of an internal configuration in the case of controlling the power supply route to the indoor side communication device 1 and the outdoor side communication device 2 according to the amount of power generated.
  • FIG. 5A shows an example of the internal configuration of the indoor side communication apparatus 1
  • FIG. 5B shows an example of the internal configuration of the outdoor side communication apparatus 2.
  • the indoor side communication device 1 uses either the power from the indoor power source 13 which is the first power source of the own communication device or the power transmitted as the second power source via the communication line 3 as a communication function. 14 or mixer 15 as an operating power source, or the power from the indoor power source 13 is overlapped with a signal on the communication line 3 as a second power source on the other side for the outdoor side communication device 2 on the other side.
  • a power source selection circuit 12 that selects a power supply route to determine whether or not to transmit power, a communication function 14 that generates a signal for transmission to the communication line 3, and processes a signal received via the communication line 3,
  • the power from the power supply selection circuit 12 and the signal for transmission from the communication function 14 are superimposed, or the signal and power received via the communication line 3 are separated and output to the communication function 14 and the power supply selection circuit 12.
  • Less mixer 15 Is also configured comprise. Note that the three diode symbols in the power source selection circuit 12 are switches that autonomously switch according to the voltage levels of the power from the indoor power source 13 and the power transmitted through the communication line 3 (shown in FIG. 2). Switch 1a, 1b, 1c).
  • the outdoor-side communication device 2 is transmitted as power from the solar cell 23 a that is an example of the first power source of the communication device, that is, the outdoor power source 23, and as the second power source via the communication line 3.
  • Which of the incoming power is taken in as a power source for operation of the communication function 24, the mixer 25, etc., or the power from the solar battery 23a is overlapped with the signal on the communication line 3 to the indoor communication device 1 on the other side.
  • a power supply selection circuit 22 that selects a power supply route to determine whether or not to transmit power as a second power source on the other side, generates a signal for transmission to the communication line 3, or receives a signal received via the communication line 3
  • the communication function 24 to be processed, the power from the power source selection circuit 22 and the signal for transmission from the communication function 24 are superimposed, or the signal received via the communication line 3 and the power are separated to communicate with each other.
  • 24 and power supply selection circuit 22 Mixer 25 it is at least comprise configure or to output.
  • the power source selection circuit 22 in FIG. 5B is configured to transmit power transmitted as a second power source from the indoor indoor communication device 1 via the communication line 3.
  • the first voltage sensor 26 that detects the voltage level, the second voltage sensor 27 that detects the voltage level of the power from the solar battery 23a, which is the first power source of the communication device, and the power from the solar battery 23a When power is transmitted to the communication device 1 via the communication line 3, it is configured to include at least a booster circuit 28 for boosting the voltage level of power from the solar battery 23 a.
  • control circuit 21 is operated by the electric power directly output from the first voltage sensor 26 or the second voltage sensor 27, and is output from the first voltage sensor 26 and the second voltage sensor 27 for supplying power. Based on the power and received signal monitoring results, the power supply route is controlled, and a control signal for controlling the operation of the booster circuit 28 is generated and output.
  • the two diode symbols in the power supply selection circuit 22 are switches that switch according to the voltage levels of the power from the solar cell 23a and the power transmitted through the communication line 3 (switch 2a shown in FIG. 2). 2c).
  • the control relating to the power supply route in the indoor side communication device 1 and the outdoor side communication device 2 shown in FIGS. 5A and 5B is performed as follows as an example.
  • the second voltage sensor 27 detects that the power generation amount of the solar battery 23a is small and that it is impossible to supply the amount of power necessary for the operation of the outdoor communication device 2 alone
  • the indoor side communication device 1 Since the indoor side communication device 1 is in a situation where the voltage level of the electric power superimposed on the signal from the communication line 3 has not increased, the electric power from the indoor power source 13 is selected by the power source selection circuit 12 as the operation power source.
  • the power from the indoor power supply 13 is controlled to be transmitted to the mixer 15 and the communication line 3 side.
  • the outdoor side communication device 2 selects the power transmitted from the indoor side communication device 1 via the communication line 3 as the operation power source by the power source selection circuit 22 based on the control from the control circuit 21. Control to work.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 operate with the power output from the first voltage sensor 26 via the power supply selection circuit 22.
  • the control circuit 21 in the outdoor side communication device 2 operates with electric power directly output from the first voltage sensor 26.
  • the power supply selection circuit in the outdoor side communication apparatus 2 is controlled by the control circuit 21 22 booster circuit 28 does not perform boosting operation of power from solar cell 23a.
  • the second voltage sensor 27 detects that the power generation amount of the solar battery 23a has increased from a level at which the outdoor communication device 2 alone cannot be operated to a level at which the outdoor communication device 2 alone can operate. If The outdoor side communication device 2 changes the selection state of the power transmitted from the indoor side communication device 1 through the communication line 3 by the power source selection circuit 22 based on the control from the control circuit 21. Is controlled to be switched to a state of selecting as a power source for operation.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 are in a state of being operated by the power output from the second voltage sensor 27 via the power supply selection circuit 22.
  • the control circuit 21 in the outdoor side communication device 2 operates with electric power directly output from the second voltage sensor 27.
  • the booster circuit 28 of the power supply selection circuit 22 in the outdoor side communication apparatus 2 continues the state which does not perform the pressure
  • the indoor side communication device 1 continues to operate by selecting the power from the indoor power supply 13 as the operation power supply.
  • the outdoor side communication device 2 performs the boosting operation of the electric power from the solar cell 23a by the boosting circuit 28 in the power supply selection circuit 22 based on the control from the control circuit 21, and then superimposes it on the signal in the mixer 25. An operation of transmitting power to the indoor indoor communication device 1 via the communication line 3 is performed.
  • the power selection circuit 12 of the indoor side communication device 1 detects that the voltage level of the power superimposed on the signal via the communication line 3 is rising, the power selection circuit 12 indicates the selection state of the power from the indoor power source 13. 3 is controlled to switch to a state in which the power from 3 is selected as the power source for operation.
  • the communication function 14 and the mixer 15 in the indoor side communication device 1 are switched to a state in which they are operated by power from the communication line 3.
  • the outdoor side communication apparatus 2 continues the state which selects the electric power from the solar cell 23a as an operation power supply, and operates.
  • the power generation amount of the solar battery 23a has decreased from a level at which the outdoor communication device 2 and the indoor communication device 1 can operate simultaneously to a level at which only the outdoor communication device 2 can operate alone.
  • the outdoor-side communication device 2 stops the boosting operation of the booster circuit 28 in the power supply selection circuit 22 based on the control from the control circuit 21 and supplies power from the solar battery 23 a to the mixer 25 and the communication line 3. Stop the power transmission operation.
  • the power source selection circuit 12 of the indoor side communication device 1 detects that the voltage level of the power superimposed on the signal via the communication line 3 has dropped, the power source selection state from the communication line 3 is changed from the indoor power source 13. Is controlled so as to autonomously switch to the state of selecting the power as the power source for operation.
  • the communication function 14 and the mixer 15 in the indoor communication device 1 are switched to a state in which they are operated by electric power from the indoor power supply 13.
  • the outdoor side communication apparatus 2 continues the state which selects the electric power from the solar cell 23a as an operation power supply, and operates.
  • the second voltage sensor indicates that the power generation amount of the solar battery 23a has decreased from a level at which only the outdoor side communication device 2 can operate alone to a level at which the outdoor side communication device 2 alone cannot operate.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 operate with the power output from the first voltage sensor 26 via the power supply selection circuit 22.
  • the control circuit 21 in the outdoor side communication device 2 is in a state of being operated by electric power directly output from the first voltage sensor 26.
  • the indoor side communication device 1 continues to operate by selecting the power from the indoor power supply 13 as the operation power supply.
  • the indoor side communication device 1 and the outdoor side communication device 2 appropriately select either the indoor power source 13 or the solar cell 23a as the operation power source. Can operate continuously.
  • FIGS. 6A and 6B are block configuration diagrams showing an example of the internal configuration of the indoor side communication device 1 and the outdoor side communication device 2 constituting the communication system shown in FIG.
  • the example of an internal structure in case the apparatus 1 and the outdoor side communication apparatus 2 cooperate and select a power supply route is shown. That is, in the operation example of the indoor side communication device 1 and the outdoor side communication device 2 shown in FIGS. 5A and 5B, the control circuit 21 in one communication device, that is, the outdoor side communication device 2 is connected to the indoor side communication device 1 and Although control related to the power supply route of the outdoor side communication device 2 has been performed, in the present embodiment of FIGS. 6A and 6B, the indoor side communication device 1 and the outdoor side communication device 2 cooperate with each other to perform indoor side communication.
  • FIG. 6A shows an example of the internal configuration in the case of implementing control regarding the power supply route of the apparatus 1 and the outdoor side communication apparatus 2
  • FIG. 6B shows an example of the internal configuration of the outdoor side communication apparatus 2.
  • the indoor-side communication device 1 uses either the power from the indoor power source 13 that is the first power source of the own communication device or the power transmitted as the second power source via the communication line 3 as a communication function. 14 or mixer 15 as an operating power source, or the power from the indoor power source 13 is overlapped with a signal on the communication line 3 as a second power source on the other side for the outdoor side communication device 2 on the other side.
  • a power selection circuit 12a for selecting a power supply route for whether or not to transmit power, a communication function 14 for generating a signal for transmission to the communication line 3, or processing a signal received via the communication line 3,
  • the power from the power supply selection circuit 12a and the signal for transmission from the communication function 14 are superimposed, or the signal received via the communication line 3 and the power are separated to provide the communication function 14 and the power supply selection circuit 12a.
  • the power source selection circuit 12a in FIG. 6A is configured to transmit power transmitted as a second power source from the indoor indoor communication device 1 via the communication line 3. Based on the control from the first voltage sensor 16 that detects the voltage level, the second voltage sensor 17 that detects the voltage level of the power from the indoor power supply 13 that is the first power supply of the communication device, and the control from the control circuit 11 It includes at least three switches 1a, 1b, and 1c that open and close the supply route.
  • the switch 1a takes in the power from the indoor power supply 13 as an operation power supply and forms a power input mechanism for supplying power to the communication function 14, the mixer 15 and the ODU switch 18, and the switch 1b includes the power from the indoor power supply 13. Is superimposed on the signal to form a power transmission mechanism for transmitting power to the counterpart outdoor communication device 2 side via the communication line 3, and the switch 1 c is connected to the counterpart outdoor side via the communication line 3.
  • a power extraction mechanism is formed for taking in the power transmitted from the communication device 2 while being superimposed on the signal as an operation power source and feeding the power to the communication function 14, the mixer 15, and the ODU switch 18.
  • control circuit 11 operates by the electric power directly output from the first voltage sensor 16 or the second voltage sensor 17 and is output from the first voltage sensor 16 and the second voltage sensor 17 for supplying power. Based on the power and the received signal, the power supply route is controlled, and a control signal for controlling the operation of the communication function 14 is generated and output.
  • the ODU switch 18 is a control signal for instructing the control circuit 11 to stop or release the operation of the communication function 24 of the counterpart outdoor side communication device 2 when pressed down by the operator. Is generated and transmitted to the outdoor side communication device 2 on the counterpart side via the communication line 3.
  • the outdoor side communication device 2 also has substantially the same internal configuration as the indoor side communication device 1 of FIG. 6A, and is an example of the first power source of the own communication device, that is, the outdoor power source 23.
  • a power supply selection circuit 22a for selecting a power supply route for determining whether or not to transmit power as a second power source on the partner side to the indoor side communication device 1 on the partner side by overlapping the signal on the line 3, and to the communication line 3
  • a communication function 24 that generates a signal for transmission or processes a signal received via the communication line 3, superimposes the power from the power selection circuit 22 a and the signal for transmission from the communication function 24, Via communication line 3 Separates the received signal and the power, are configured communication function 24 and the power supply selecting circuit 22a and the mixer 25 and
  • the power source selection circuit 22a in FIG. 6B is configured to transmit power transmitted as a second power source from the indoor indoor communication device 1 via the communication line 3.
  • Control from the first voltage sensor 26 that detects the voltage level, the second voltage sensor 27 that detects the voltage level of the power from the solar battery 23a that is an example of the first power source of the communication device, that is, the outdoor power source 23, and the control circuit 21. Is configured to include at least three switches 2a, 2b, and 2c that open and close the power supply route.
  • the switch 2a takes in the power from the solar cell 23a as an operation power source and forms a power input mechanism for supplying power to the communication function 24 and the mixer 25.
  • the switch 2b uses the power from the solar cell 23a as a signal.
  • a power transmission mechanism is formed to superimpose and transmit power to the indoor indoor communication device 1 side via the communication line 3.
  • the switch 2 c is connected to the indoor indoor communication device 1 via the communication line 3.
  • a power extraction mechanism is formed to take in the power transmitted by being superimposed on the signal as an operation power source and to supply power to the communication function 24 and the mixer 25.
  • control circuit 21 is operated by the electric power directly output from the first voltage sensor 26 or the second voltage sensor 27, and is output from the first voltage sensor 26 and the second voltage sensor 27 for supplying power. Based on the power and the received signal, the power supply route is controlled, and a control signal for controlling the operation of the communication function 24 is generated and output.
  • the control relating to the power supply route in the indoor side communication device 1 and the outdoor side communication device 2 shown in FIGS. 6A and 6B is performed as follows as an example.
  • the outdoor side communication device 2 opens the switches 2a and 2b and closes the switch 2c by the power source selection circuit 22a based on the control from the control circuit 21, and connects the indoor side communication device 1 via the communication line 3. Then, control is performed so as to select and operate the power transmitted as the power source for operation.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 operate with the power output from the first voltage sensor 26 via the power supply selection circuit 22a.
  • the control circuit 21 in the outdoor side communication device 2 operates with electric power directly output from the first voltage sensor 26.
  • the indoor side communication device 1 is in a situation where the voltage level of the electric power superimposed on the signal from the communication line 3 has not risen as a detection result of the first voltage sensor 16 and the second voltage sensor 17, and Since it is detected that the power from the indoor power supply 13 is in a normal output state, the switches 1c and 1b are opened and the switch 1a is closed by the power supply selection circuit 12a based on the control from the control circuit 21. Then, control is performed so that the power from the indoor power supply 13 is selected as the power supply for operation.
  • the communication function 14, the mixer 15 and the ODU switch 18 in the indoor side communication device 1 operate with the power output from the second voltage sensor 17 via the power supply selection circuit 12a.
  • the control circuit 11 in the indoor side communication apparatus 1 operates with electric power directly output from the second voltage sensor 17.
  • the second voltage sensor 27 detects that the power generation amount of the solar battery 23a has increased from a level at which the outdoor communication device 2 alone cannot be operated to a level at which the outdoor communication device 2 alone can operate. If The outdoor side communication device 2 opens the switch 2c and closes the switch 2a by the power source selection circuit 22a based on the control from the control circuit 21, and transmits power from the indoor side communication device 1 via the communication line 3. Control is performed so that the selection state of the electric power is switched to a state in which the electric power from the solar battery 23a is selected as the operation power source. The switch 2b continues to be in an open state.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 are in a state of being operated by the power output from the first voltage sensor 26 via the power supply selection circuit 22a.
  • the control circuit 21 in the outdoor side communication device 2 is in a state of being operated by electric power directly output from the first voltage sensor 26.
  • the indoor side communication device 1 continues the state of selecting and operating the electric power from the indoor power supply 13 because there is no change in the detection results of the first voltage sensor 16 and the second voltage sensor 17.
  • the control circuit 21 of the outdoor side communication device 2 controls to generate a notification signal for notifying that the power generation amount of the solar battery 23a has increased to a level at which the indoor side communication device 1 can be operated simultaneously.
  • the signal is output to the communication function 24.
  • the communication function 24 that has received the control signal generates a notification signal instructed by the control circuit 21 and transmits the notification signal to the counterpart indoor side communication device 1 via the mixer 25 and the communication line 3.
  • the communication function 14 of the indoor side communication device 1 that has received the notification signal from the outdoor side communication device 2 via the communication line 3 and the mixer 15 transfers the notification signal to the control circuit 11.
  • the control circuit 11 confirms whether or not the power source of the supply source can be switched from the indoor power source 13 that has been receiving power to the power from the communication line 3, and can be switched without any problem.
  • Control signal instructing generation of a response signal requesting that power from the solar battery 23a be superimposed on the signal and transmitted to the indoor communication device 1 via the communication line 3 Is output to the communication function 14.
  • the communication function 14 that has received the control signal generates a response signal instructed from the control circuit 11 and sends it back to the counterpart outdoor side communication device 2 via the mixer 15 and the communication line 3.
  • the communication function 24 of the outdoor side communication device 2 that has received the response signal from the indoor side communication device 1 via the communication line 3 and the mixer 25 transfers the response signal to the control circuit 21.
  • the control circuit 21 that has received the response signal shifts not only the outdoor side communication device 2 but also the indoor side communication device 1 to a state in which power from the solar battery 23a is supplied. That is, based on the control from the control circuit 21, the switch 2 b is closed by the power source selection circuit 22 a, and the power from the solar battery 23 a is superimposed on the signal from the communication function 24 in the mixer 25, and the communication line 3 is connected. And control to switch to a state where power is transmitted to the indoor communication device 1 on the other side. Note that the switch 2c continues to be in the open state and the switch 2a remains in the closed state.
  • the indoor-side communication device 1 that has returned a response signal requesting power transmission from the solar battery 23a has substantially the same timing as the timing at which the switch 2b is closed in the other-side outdoor-side communication device 2.
  • the power source selection circuit 12 a closes the switch 1 c and opens the switch 1 a to change the power selection state from the indoor power source 13 from the outdoor side communication device 2 through the communication line 3. Control is performed so as to switch to a state in which the transmitted power is selected as an operation power source.
  • the switch 1b continues to be in an open state.
  • the communication function 14, the mixer 15, and the ODU switch 18 in the indoor communication device 1 are in a state of being operated by the power output from the first voltage sensor 16 via the power supply selection circuit 12a.
  • the control circuit 11 in the indoor side communication apparatus 1 operates with electric power directly output from the first voltage sensor 16.
  • both the indoor side communication device 1 and the outdoor side communication device 2 are set to a state in which the power from the solar battery 23a is operated as the power source for operation.
  • the indoor power supply 13 has a power level at which both the indoor side communication device 1 and the outdoor side communication device 2 can operate simultaneously.
  • the control circuit 11 of the indoor side communication device 1 first sets the power amount of the indoor power source 13 to the indoor side in order to reset the state to operate with the power from the indoor power source 13 instead of the power from the communication line 3.
  • a control signal for instructing generation of a notification signal for notifying that the communication device 1 has been reduced to a level that allows only the operation of the single communication device 1 is output to the communication function 14.
  • the communication function 14 that has received the control signal generates a notification signal instructed from the control circuit 11 and transmits the notification signal to the counterpart outdoor communication device 2 via the mixer 15 and the communication line 3.
  • the communication function 24 of the outdoor side communication device 2 that has received the notification signal from the indoor side communication device 1 via the communication line 3 and the mixer 25 transfers the notification signal to the control circuit 21.
  • the control circuit 21 confirms whether or not the power from the solar battery 23a that has been transmitted to the communication line 3 can be stopped so far, and can be stopped without any problem. If it is confirmed, a control signal for instructing generation of a response signal indicating that power transmission from the solar battery 23 a may be stopped is output to the communication function 24.
  • the communication function 24 that has received the control signal generates a response signal instructed from the control circuit 21 and returns the response signal to the indoor indoor communication device 1 via the mixer 25 and the communication line 3.
  • the communication function 14 of the indoor side communication device 1 that has received the response signal from the outdoor side communication device 2 via the communication line 3 and the mixer 15 transfers the response signal to the control circuit 11.
  • the control circuit 11 that has received the response signal selects the power supply source of the indoor side communication apparatus 1 from the state in which the power from the communication line 3 is selected as the power source for operation. To migrate. That is, based on the control from the control circuit 11, the power source selection circuit 12a closes the switch 1a and opens the switch 1c so that the power from the indoor power source 13 is selected as the operation power source. To control. Note that the switch 1b continues to be opened.
  • the communication function 14, the mixer 15, and the ODU switch 18 in the indoor communication device 1 are in a state of being operated by the power output from the second voltage sensor 17 via the power supply selection circuit 12a.
  • the control circuit 11 in the indoor side communication apparatus 1 operates with electric power directly output from the second voltage sensor 17.
  • the outdoor-side communication device 2 that has returned a response signal indicating that power transmission from the solar cell 23a may be stopped is substantially the same as the timing at which the switch 1c is opened in the counterpart indoor-side communication device 1.
  • the power source selection circuit 22 a performs control so that the switch 2 b is opened and the operation of transmitting power from the solar battery 23 a via the communication line 3 is stopped.
  • the switch 2c continues to be in the open state and the switch 2a remains in the closed state.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 continue to operate with the power output from the second voltage sensor 27 via the power supply selection circuit 22a.
  • the control circuit 21 in the outdoor side communication device 2 continues to operate with the power directly output from the second voltage sensor 27.
  • the indoor side communication device 1 and the outdoor side communication device 2 operate using the power from the first power source of the communication device, that is, the power from the indoor power source 13 and the power from the solar battery 23a, respectively, as the operation power source. Will be set to.
  • the power amount of the indoor power supply 13 is changed from a level at which only the indoor communication device 1 can operate alone to a level at which the indoor communication device 1 as well as the outdoor communication device 2 can operate simultaneously.
  • the second voltage sensor 17 detects that it has increased to In order to reset the control circuit 11 of the indoor side communication device 1 to a state where it operates with the power from the communication line 3 instead of the power from the indoor power source 13, first, the power amount of the indoor power source 13 is set to the outdoor side communication device. 2 is output to the communication function 14 instructing the generation of a notification signal for notifying that two are at a level at which they can operate simultaneously.
  • the communication function 14 that has received the control signal generates a notification signal instructed from the control circuit 11 and transmits the notification signal to the counterpart outdoor communication device 2 via the mixer 15 and the communication line 3.
  • the communication function 24 of the outdoor side communication device 2 that has received the notification signal from the indoor side communication device 1 via the communication line 3 and the mixer 25 transfers the notification signal to the control circuit 21.
  • the control circuit 21 confirms whether or not the operation of transmitting the power from the solar battery 23a that has been stopped until now to the communication line 3 can be resumed, and can be resumed without any problem. If it confirms that it is in a state, a control signal instructing generation of a response signal indicating that power transmission from the solar battery 23 a may be resumed is output to the communication function 24.
  • the communication function 24 that has received the control signal generates a response signal instructed from the control circuit 21 and returns the response signal to the indoor indoor communication device 1 via the mixer 25 and the communication line 3.
  • the communication function 14 of the indoor side communication device 1 that has received the response signal from the outdoor side communication device 2 via the communication line 3 and the mixer 15 transfers the response signal to the control circuit 11.
  • the control circuit 11 that has received the response signal selects the power supply source of the indoor side communication device 1 from the state in which the power from the indoor power source 13 is selected as the power source for operation. To migrate. That is, based on the control from the control circuit 11, the power source selection circuit 12a closes the switch 1c and opens the switch 1a so that the power from the communication line 3 is selected as the operation power source. To control. Note that the switch 1b continues to be opened.
  • the communication function 14, the mixer 15, and the ODU switch 18 in the indoor communication device 1 are in a state of being operated by the power output from the first voltage sensor 16 via the power supply selection circuit 12a.
  • the control circuit 11 in the indoor side communication apparatus 1 operates with electric power directly output from the first voltage sensor 16.
  • the outdoor side communication device 2 that has returned the response signal indicating that the power transmission from the solar cell 23a is resumed is substantially the same as the timing at which the switch 1c is closed in the counterpart indoor side communication device 1.
  • the power source selection circuit 22 a controls the switch 2 b to be closed so that the operation of transmitting the power from the solar battery 23 a via the communication line 3 is resumed. .
  • the switch 2c continues to be in the open state and the switch 2a remains in the closed state.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 continue to operate with the power output from the second voltage sensor 27 via the power supply selection circuit 22a.
  • the control circuit 21 in the outdoor side communication device 2 continues to operate with the power directly output from the second voltage sensor 27.
  • both the indoor side communication device 1 and the outdoor side communication device 2 are set to a state in which the power from the solar battery 23a is operated as the power source for operation.
  • the power generation amount of the solar cell 23a decreased from a level at which the outdoor communication device 2 and the indoor communication device 1 can operate simultaneously to a level at which only the outdoor communication device 2 can operate alone.
  • the control circuit 21 of the outdoor side communication device 2 detects this, First, the control circuit 21 of the outdoor side communication device 2 generates a notification signal for notifying that the power generation amount of the solar battery 23a has decreased to a level at which the indoor side communication device 1 cannot operate simultaneously. Is output to the communication function 24.
  • the communication function 24 that has received the control signal generates a notification signal instructed by the control circuit 21 and transmits the notification signal to the counterpart indoor side communication device 1 via the mixer 25 and the communication line 3.
  • the communication function 14 of the indoor side communication device 1 that has received the notification signal from the outdoor side communication device 2 via the communication line 3 and the mixer 15 transfers the notification signal to the control circuit 11.
  • the control circuit 11 confirms whether or not the power source of the supply source can be switched from the power from the communication line 3 to the power from the indoor power source 13, and can be switched without any problem. If it confirms that it is in the state, a control signal instructing generation of a response signal indicating that power transmission from the solar battery 23 a may be stopped is output to the communication function 14.
  • the communication function 14 that has received the control signal generates a response signal instructed from the control circuit 11 and sends it back to the counterpart outdoor side communication device 2 via the mixer 15 and the communication line 3.
  • the communication function 24 of the outdoor side communication device 2 that has received the response signal from the indoor side communication device 1 via the communication line 3 and the mixer 25 transfers the response signal to the control circuit 21.
  • the control circuit 21 that has received the response signal stops power transmission from the solar battery 23a to the indoor communication device 1 and shifts it to a state in which only the outdoor communication device 2 is supplied. That is, based on the control from the control circuit 21, the power source selection circuit 22a opens the switch 2b and stops the operation of transmitting the power from the solar battery 23a to the indoor communication device 1 on the other side. Control to switch to. Note that the switch 2c continues in the open state and the switch 2a continues in the closed state, and the outdoor-side communication device 2 continues to operate by selecting the power from the solar battery 23a as the operation power source.
  • the indoor side communication device 1 that has returned a response signal indicating that power transmission from the solar cell 23a may be stopped is substantially the same as the timing at which the switch 2b is opened in the counterpart outdoor side communication device 2. Then, based on the control from the control circuit 11, the power selection circuit 12a closes the switch 1a and opens the switch 1c, so that the power transmitted from the outdoor side communication device 2 via the communication line 3 can be reduced.
  • the selection state is controlled to be switched to a state in which the power from the indoor power supply 13 is selected as the operation power supply.
  • the communication function 14, the mixer 15, and the ODU switch 18 in the indoor communication device 1 are in a state of being operated by the power output from the second voltage sensor 17 via the power supply selection circuit 12a.
  • the control circuit 11 in the indoor side communication apparatus 1 operates with electric power directly output from the second voltage sensor 17.
  • the indoor side communication device 1 and the outdoor side communication device 2 operate using the power from the first power source of the communication device, that is, the power from the indoor power source 13 and the power from the solar battery 23a, respectively, as the operation power source. Will be set to.
  • the open state may be continued as it is.
  • the indoor power source 13 is a stable power source that consumes less power
  • the amount of power generated by the solar cell 23a is reduced. If the amount of power of the indoor power supply 13 is at a level at which both the indoor side communication device 1 and the outdoor side communication device 2 can be operated at the same time, in case the sudden drop of the Alternatively, the switch 1b may be closed and power may be transmitted in advance to the counterpart outdoor side communication device 2 via the communication line 3.
  • the second voltage sensor indicates that the power generation amount of the solar battery 23a has decreased from a level at which only the outdoor side communication device 2 can operate alone to a level at which the outdoor side communication device 2 alone cannot operate.
  • the control circuit 21 of the outdoor side communication device 2 instructs to generate a notification signal for notifying that the power generation amount of the solar battery 23a has been reduced to a level at which the outdoor side communication device 2 alone cannot operate.
  • the control signal to be output is output to the communication function 24.
  • the communication function 24 that has received the control signal generates a notification signal instructed by the control circuit 21 and transmits the notification signal to the counterpart indoor side communication device 1 via the mixer 25 and the communication line 3.
  • the communication function 14 of the indoor side communication device 1 that has received the notification signal from the outdoor side communication device 2 via the communication line 3 and the mixer 15 transfers the notification signal to the control circuit 11.
  • the control circuit 11 confirms whether or not the amount of power of the indoor power supply 13 is restored to the amount of power that can simultaneously supply power to the indoor side communication device 1 and the outdoor side communication device 2. When it is confirmed that there is no problem, the outdoor communication device 2 is restored to a state where power can be transmitted through the communication line 3 and then power transmission from the indoor power supply 13 is started.
  • a control signal for instructing generation of a response signal indicating that the response is good is output to the communication function 14.
  • the communication function 14 that has received the control signal generates a response signal instructed from the control circuit 11 and sends it back to the counterpart outdoor side communication device 2 via the mixer 15 and the communication line 3.
  • the control circuit 21 that has received the response signal stops the power supply operation of the power from the solar battery 23a, and shifts to a state in which the power transmitted from the indoor communication device 1 side through the communication line 3 is supplied. . That is, based on the control from the control circuit 21, the switch 2c is closed and the switch 2a is opened by the power source selection circuit 22a, and the selection state of the power from the solar battery 23a is changed from the indoor side communication device 1 to the communication line. 3 is controlled so as to switch to a state in which the electric power transmitted through 3 is selected as an operation power source. The switch 2b continues to be in an open state.
  • the communication function 24 and the mixer 25 in the outdoor side communication device 2 are in a state of being operated by the power output from the first voltage sensor 26 via the power supply selection circuit 22a.
  • the control circuit 21 in the outdoor side communication device 2 operates with electric power directly output from the first voltage sensor 26.
  • the indoor side communication device 1 that has returned a response signal indicating that power transmission from the indoor power supply 13 is started is substantially the same as the timing at which the switch 2c is closed in the counterpart outdoor side communication device 2, Based on the control from the control circuit 11, the power source selection circuit 12 a closes the switch 1 b and selects the power transmitted from the indoor power source 13 to the counterpart outdoor side communication device 2 via the communication line 3. Control to switch to the state.
  • the switch 1b may be already closed in some cases.
  • the switch 1c is in the open state and the switch 1a is in the closed state as it is, and the indoor-side communication device 1 continues to operate by selecting the power from the indoor power supply 13 as the operation power supply.
  • the communication function 14, the mixer 15, and the ODU switch 18 in the indoor communication device 1 continue to operate with the power output from the second voltage sensor 17 via the power supply selection circuit 12a.
  • the control circuit 11 in the indoor side communication apparatus 1 operates with electric power directly output from the second voltage sensor 17.
  • both the indoor side communication device 1 and the outdoor side communication device 2 are set to a state in which the electric power from the indoor power source 13 is operated as the operation power source.
  • the operation of the communication function 24 of the outdoor communication device 2 on the other side is stopped and released from the stop in the indoor communication device 1 separately from the above operation.
  • the control circuit 11 detects that the ODU switch 18 has been pressed in the indoor side communication device 1, it prompts generation of a stop instruction signal for instructing to stop the operation of the communication function 24 of the counterpart outdoor side communication device 2.
  • a control signal is output to the communication function 14.
  • the communication function 14 that has received the control signal generates a stop instruction signal instructed by the control circuit 11 and transmits the stop instruction signal to the counterpart outdoor side communication device 2 via the mixer 15 and the communication line 3.
  • the communication function 24 of the outdoor side communication device 2 that has received the stop instruction signal from the indoor side communication device 1 via the communication line 3 and the mixer 25 transfers the stop instruction signal to the control circuit 21.
  • the control circuit 21 confirms that it is an instruction to stop the operation of the communication function 24
  • both the switch 2a and the switch 2c of the power supply selection circuit 22a are set in an open state, and power is supplied to the communication function 24 and the mixer 25. Is stopped, the operation of the communication function 24 is stopped.
  • the control circuit 21 is in an operable state by receiving power from the communication line 3 directly from the first voltage sensor 26 or power from the solar cell 23 a directly from the second voltage sensor 27. . Further, the first voltage sensor 26 passes through the mixer 25 and is electrically connected to the communication line 3 in which power and a signal can be superimposed, and the control circuit 21 receives the first voltage. It is possible to operate with the electric power from the sensor 26 and to send and receive signals directly to and from the indoor communication device 1 on the other side via the first voltage sensor 26. Therefore, the control circuit 21 generates a response signal indicating that the operation of the communication function 24 has been stopped based on the received stop instruction signal, and directly transmits the response signal from the first voltage sensor 26 via the communication line 3. It can be returned to the inner communication device 1.
  • the control circuit 11 When the ODU switch 18 is pressed again in the indoor side communication device 1, the control circuit 11 generates a stop release signal for canceling the stop of the operation of the communication function 24 of the counterpart outdoor side communication device 2. Then, the data is transmitted to the outdoor communication device 2 on the counterpart side via the communication line 3.
  • the control circuit 21 of the outdoor side communication device 2 that has received the stop release signal from the indoor side communication device 1 from the first voltage sensor 26 via the communication line 3 and the mixer 25, the first voltage sensor 26 and the second voltage sensor 27. It returns to the selection state of the power supply for operation according to the electric power state at that time detected.
  • the indoor side communication device 1 and the outdoor side communication device 2 perform a cooperative operation, and based on the monitoring result of the power from the indoor power source 13 and the solar cell 23a, the indoor power source 13, the solar cell
  • the indoor side communication device 1 and the outdoor side communication device 2 can continuously operate by appropriately selecting any one of 23a as an operation power source.
  • the selection operation regarding the power supply route in the case of the indoor side communication device 1 and the outdoor side communication device 2 having the internal configurations of FIGS. 5A, 5B, 6A, and 6B is not limited to the above-described operation. . That is, in a communication system that is divided into communication devices corresponding to a plurality of functions such as the indoor side communication device 1 and the outdoor side communication device 2, paying attention to a predetermined communication device, The power supply route of each communication device constituting the communication system is determined according to the state of the amount of power input from the power source existing in the vicinity or the built-in power source (the amount of power input by the power input mechanism). You may make it control.
  • the indoor side communication device 1 in which the power source with the most stable electric energy is arranged nearby is selected, and the indoor side communication device 1 is selected.
  • the amount of power of the indoor power supply 13 connected to the indoor side communication device 1 has reached a level at which both the indoor side communication device 1 and the outdoor side communication device 2 can be operated simultaneously.
  • the indoor power source 13 is used to operate both the indoor side communication device 1 and the outdoor side communication device 2 regardless of the amount of power generated by the solar battery 23a as an example of the outdoor power source 23. Also good.
  • the solar power that is an example of the outdoor power supply 23 When the power generation amount of the battery 23a has reached a level at which the outdoor communication device 2 can operate alone, the indoor power supply 13 is used to operate both the indoor communication device 1 and the outdoor communication device 2.
  • the indoor communication device 1 may be operated using the indoor power supply 13
  • the outdoor communication device 2 may be operated using a solar battery 23 a that is an example of the outdoor power supply 23.
  • the power generation amount of the solar battery 23a which is an example of the outdoor power supply 23, is reduced to the outdoor communication. If the operation of the device 2 alone has reached a level higher than possible, the indoor communication device 1 is operated using the indoor power supply 13, and the outdoor communication device 2 includes a solar battery 23 a that is an example of the outdoor power supply 23. You may make it operate
  • the power generation amount of the solar battery 23a which is an example of the outdoor power supply 23 is If the outdoor communication device 2 and the indoor communication device 1 have reached a level at which both the indoor communication device 1 and the indoor communication device 1 can be operated simultaneously, the indoor communication device 1 is immediately switched to the electric power from the solar battery 23a and operated. You may make it operate both the indoor side communication apparatus 1 and the outdoor side communication apparatus 2 simultaneously using the battery 23a.
  • the configuration example of the communication system in the case of using two power sources of one indoor power source and one outdoor power source has been described. It is not limited to only.
  • a communication system configured with a plurality of communication devices arranged at the positions of the respective distributed power supplies is preferable as a network device. It goes without saying that it is possible to apply to.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize arbitrary processing by causing a CPU (Central Processing Unit) to execute a computer program.
  • the above-described program can be stored using various types of non-transitory computer readable media and supplied to a computer.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer-readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

通信線により相互に接続された例えば屋内側通信装置(1)と屋外側通信装置(2)との双方にそれぞれの動作用の電源(13)(23)を備え、各電源からの電力を通信線を介して相手側の通信装置にも送電して給電することが可能な通信システムを提供する。信号を送受信する通信線(3)を介して互いに接続した屋内側通信装置(1)と屋外側通信装置(2)とにより構成される。屋内側通信装置(1)および屋外側通信装置(2)それぞれは、第1電源としての屋内電源(13)および屋外電源(23)が接続され、かつ、通信線(3)を介して相手側の通信装置に対して信号に重畳させて電力を第2電源として送電することが可能である。さらに、屋内側通信装置(1)および屋外側通信装置(2)は、前記第1電源および前記第2電源の電力状態に応じて、前記第1電源または前記第2電源のいずれかの電力を動作用電源として選択して給電する電源選択回路(12)および電源選択回路(22)をそれぞれ備える。

Description

通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体
 本発明は、通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体に関し、特に、屋内側通信装置と屋外側通信装置との間で通信線を介していずれの方向にも電力の供給が可能な仕組みを備えた通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体に関する。
 近年、通信システムの機能の高度化に応じて、複数の機能モジュールに分割して通信システムを構成する技術が採用されることがある。例えば、特許文献1の特開2002-359579号公報「通信装置におけるケーブル等化方式」には、屋外側通信装置(ODU:Out Door Unit)と屋内側通信装置(IDU:In Door Unit)とに分離して構成した通信システムが記載されている。この特許文献1の通信システムでは、屋外側通信装置は、屋外に設置され、高周波無線信号の送受信機能を有し、屋内側通信装置は、屋内に設置され、送受信信号の生成・復号機能等を有する。このような構成の通信システムにおいて、屋内電源を有する屋内側通信装置(IDU)から屋外側通信装置(ODU)に対して電力供給を行う際に、本来は信号を伝送する用途に設けられる同軸ケーブル等の通信線に電力も重畳させて、相手側の屋外側通信装置(ODU)に電力を供給するという技術が採用されるようになってきている。また、風力発電や太陽光発電等を利用した屋外電源を、例えば、図7に示すように、電源線を介して屋内に引き込んで、屋内側通信装置(IDU)に給電する試みも活発化してきている。
 図7は、屋内電源と屋外電源との双方の電力を利用する場合の従来の通信システムの構成を示すシステム構成図である。図7に示すように、屋内側通信装置101は、電源選択回路104を介して、屋内電源105と屋外電源106とのいずれかを選択して電力を給電され、さらに、屋外側通信装置102に対して、通信線103を介して、信号に重畳させて電力を送電するように構成されている。つまり、電源選択回路104には、商用電源等の電源コンセントに接続した屋内電源105と電源線107を介して屋外から引き込んだ風力・太陽光電池などの屋外電源106との双方が接続されていて、屋内電源105と屋外電源106とのうち選択したいずれかの電源から屋内側通信装置101に対して電力を供給するように構成されている。
 図7のような構成を採用することによって、通信システムを構成する屋内側通信装置101および屋外側通信装置102は、電源選択回路104の選択動作に応じて、屋内電源105によって動作する場合のみならず、屋外電源106によっても動作することが可能になっている。
特開2002-359579号公報(第3-4頁)
 図7に示すような従来の通信システムにおいては、電源からの電力を取り込むための電源入力機構が屋内側通信装置101側にのみ備えられており、屋外側通信装置102に対する電力供給については、屋内側通信装置101から通信線103に信号に重畳させて電力供給がなされるように構成されている。このため、屋内電源105のみでなく、風力発電や太陽光発電等を利用した屋外電源106を利用しようとする場合は、通信線103とは別に、屋外から屋内に引き込むための電源線107を必要としている。また、たとえ、屋外電源106が屋外側通信装置102の近傍に設置されているような環境下にあったとしても、電源線107を介して屋外電源106を引き込んだ屋内側通信装置101において、屋外側通信装置102に対して通信線103を介して折り返す分だけ、送電距離が延びることになり、送電ロスを生じるという問題も生じている。
 ここで、電源線107の配線を節約するために、屋外電源106例えば太陽電池からの電力を取り込むための電源入力機構を屋外側通信装置102に新たに備え、太陽電池からの電力は屋内側通信装置101には供給しないで、屋外側通信装置102にのみ供給するように構成した場合には、屋内電源105例えば商用電源の停電等が発生して、屋内電源105からの屋内側通信装置101に対する電力供給が停止した場合、屋外電源106としての太陽電池の発電能力が十分にあった場合であっても、屋外電源106から屋内側通信装置101に対して電力を供給することができなくなる。
 また、IEEE802.3規格にPoE(Power over Ethernet(登録商標))として規定されているイーサネット(登録商標)通信線上への電力重畳技術においては、電源を投入した際に、通信線への給電が可能か否かを確認するために、通信線への送電電力を徐々に上昇させていくように動作することが規定されている。しかし、電源投入直後のかくのごとき緩やかな送電電力の上昇動作のみを実装させた場合には、相手側の通信装置における電源からの電力供給が絶たれた際に、動作に必要な電力量までには通信線に重畳された電力が達していない場合も存在する。したがって、電源の電力量が、たとえ、自通信装置のみならず相手側の通信装置の動作にも必要とする十分な電力を供給することが可能な状態にあったとしても、相手側の通信装置は、通信線に重畳された電力を利用しても動作を継続させることが不可能な状態に陥り、動作が停止する場合も発生してしまう。したがって、通信線上への電力重畳技術としてかくのごときPoE技術のみの実装では課題が残る。
(本発明の目的)
 本発明は、以上のような事情に鑑みてなされたものであり、通信線により相互に接続された第1通信装置(例えば屋内側通信装置)と第2通信装置(例えば屋外側通信装置)との双方に電源を接続し、各電源から出力される電力状態に応じて、第1通信装置、第2通信装置へ供給する電源を選択可能とすることにより継続的に動作させることが可能な通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体を提供することを、その目的としている。
 前述の課題を解決するため、本発明による通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体は、主に、次のような特徴的な構成を採用している。
 (1)本発明による通信システムは、信号を送受信する通信線を介して互いに接続した第1通信装置および第2通信装置を有する通信システムであって、前記第1通信装置および前記第2通信装置それぞれは、内蔵電源または近傍に配置された外部の電源でなる第1電源に接続され、かつ、前記通信線における前記信号に電力を重畳させ、重畳させた前記電力を第2電源として前記通信線を介して相手側の通信装置に対して送電し、かつ、前記第1通信装置および前記第2通信装置は、前記第1電源および前記第2電源それぞれの電力状態に応じて、前記第1電源からの電力または前記通信線を介して相手側の通信装置から送電されてきた前記第2電源の電力のいずれを動作用電源として選択して給電することを特徴とする。
 (2)本発明による電力供給制御方法は、信号を送受信する通信線を介して互いに接続した第1通信装置および第2通信装置を有する通信システムにおける電力供給制御方法であって、前記第1通信装置および前記第2通信装置それぞれは、内蔵電源または近傍に配置された外部の電源でなる第1電源に接続し、かつ、前記通信線における前記信号に電力を重畳させ、重畳させた前記電力を第2電源として前記通信線を介して相手側の通信装置に対して送電し、かつ、前記第1通信装置および前記第2通信装置は、前記第1電源および前記第2電源それぞれの電力状態に応じて、前記第1電源からの電力または前記通信線を介して相手側の通信装置から送電されてきた電力のいずれを動作用電源として選択して給電することを特徴とする。
 (3)本発明による電力供給制御非一時的なコンピュータ可読媒体は、前記(2)に記載の電力供給制御方法を、コンピュータによって実行可能な非一時的なコンピュータ可読媒体として実施していることを特徴とする。
 本発明の通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体によれば、以下のような効果を奏することができる。
 すなわち、第1通信装置(例えば屋内側通信装置)、第2通信装置(例えば屋外側通信装置)のように複数の通信装置に機能を分割した通信システムにおいて、従来の技術とは異なり、第2通信装置(例えば屋外側通信装置)の内部または近傍に設置された電源(例えば太陽電池)の電力を第1通信装置(例えば屋内側通信装置)まで送電するための電源線を通信線とは別個に敷設することが不要となり、設置コストの低減が得られ、かつ、第2通信装置(例えば屋外側通信装置)に対する電力供給用の送電経路を短縮することが可能になり、送電ロスを低減することができるとともに、各電源の電力状態に応じて、動作用の電源を選択することにより、各電源の電力状況に最適な状態で、第1通信装置(例えば屋内側通信装置)、第2通信装置(例えば屋外側通信装置)を継続的に動作させることが可能になる。
本発明による通信システムのシステム構成の概要を示す概念図である。 本発明による通信システムのシステム構成の一例を示すシステム構成図である。 本発明による通信システムの図2とは異なる構成を示すシステム構成図である。 本発明による通信システムの図2、図3とは異なる構成を示すシステム構成図である。 図2に示す通信システムを構成する屋内側通信装置および屋外側通信装置の内部構成の一例を示すブロック構成図である。 図2に示す通信システムを構成する屋内側通信装置および屋外側通信装置の内部構成の一例を示すブロック構成図である。 図2に示す通信システムを構成する屋内側通信装置および屋外側通信装置の内部構成の図5A、図5Bと異なる例を示すブロック構成図である。 図2に示す通信システムを構成する屋内側通信装置および屋外側通信装置の内部構成の図5A、図5Bと異なる例を示すブロック構成図である。 屋内電源と屋外電源との双方の電力を利用する場合の従来の通信システムの構成を示すシステム構成図である。
 以下、本発明による通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体の好適な実施形態について添付図を参照して説明する。なお、以下の説明においては、本発明による通信システムおよび電力供給制御方法について説明するが、かかる電力供給制御方法をコンピュータにより実行可能な電力供給制御非一時的なコンピュータ可読媒体として実施するようにしても良いし、あるいは、電力供給制御非一時的なコンピュータ可読媒体をコンピュータにより読み取り可能な記録媒体に記録するようにしても良いことは言うまでもない。
(本発明の特徴)
 本発明の実施形態の説明に先立って、本発明の特徴についてその概要をまず説明する。本発明は、通信システムを構成する各通信装置に対して給電する電源を選択する仕組みに関するものである。通信システムは、複数の通信装置、例えば屋内側通信装置(IDU:In Door Unit)および屋外側通信装置(ODU:Out Door Unit)で構成される。各通信装置は、内蔵または外部接続の電源で構成される第1電源に接続される。さらに、各通信装置は、その第1電源からの電力を動作用電源として取り込むための電源入力機構と、互いを接続した通信線上の信号に重畳させて該第1電源からの電力を相手側の通信装置に対して第2電源として送電する電力送電機構と、該通信線上の信号に重畳されて相手側の通信装置から第2電源として送電されてきた電力を動作用電源として取り込む電力抽出機構とを備える。さらに、屋内側通信装置(IDU)と屋外側通信装置(ODU)との間の通信線は、いずれの方向にも、信号と電力とを重畳させて送ることを可能にし、屋内側通信装置(IDU)と屋外側通信装置(ODU)との間の通信線に電源を重畳する際には、屋内側通信装置(IDU)から屋外側通信装置(ODU)へ、屋外側通信装置(ODU)から屋内側通信装置(IDU)への双方向の送電を可能にする仕組みを備えている。
 図1は、本発明による通信システムのシステム構成の概要を示す概念図であり、通信線により相互接続された屋内側通信装置(IDU)と屋外側通信装置(ODU)との双方の通信装置内に、制御回路により切り替え制御が可能な電源入力機構、電力送電機構、電力抽出機構の3つの機構を備えた電源選択回路を内蔵した構成からなっている例を示している。すなわち、通信システムを構成する屋内側通信装置1と屋外側通信装置2とは、双方向に電力を信号に重畳させて送電することが可能な通信線3によって接続されていて、屋内側通信装置1および屋外側通信装置2の内部には、それぞれ、制御回路11および制御回路21によってそれぞれ開閉することが可能な3つのスイッチ1a、1b、1cを備えた電源選択回路12およびスイッチ2a、2b、2cを備えた電源選択回路22が内蔵されている。さらに、各自通信装置への給電および相手側通信装置への送電を行うための第1電源として屋内側通信装置1には屋内電源13が接続され、また、屋外側通信装置2には屋外電源23が接続されている。
 図1において、屋内側通信装置1の電源選択回路12のスイッチ1aは、屋内電源13(第1電源)からの電力を動作用電源として取り込むための電源入力機構を形成し、スイッチ1bは、屋内電源13(第1電源)からの電力を、第2電源として、信号に重畳させて、通信線3を介して相手側の屋外側通信装置2側に送電するための電力送電機構を形成し、スイッチ1cは、通信線3を介して相手側の屋外側通信装置2から信号に重畳されて第2電源として送電されてきた電力を動作用電源として取り込むための電力抽出機構を形成している。同様に、屋外側通信装置2の電源選択回路22のスイッチ2aは、屋外電源23(第1電源)からの電力を動作用電源として取り込むための電源入力機構を形成し、スイッチ2bは、屋外電源23(第1電源)からの電力を、第2電源として、信号に重畳させて、通信線3を介して相手側の屋内側通信装置1側に送電するための電力送電機構を形成し、スイッチ2cは、通信線3を介して相手側の屋内側通信装置1から信号に重畳されて第2電源として送電されてきた電力を動作用電源として取り込むための電力抽出機構を形成している。
 図1のごとく構成することにより、屋内側通信装置1から屋外側通信装置2への通信線3に電力を重畳して供給する構成の通信システムにおいて、屋外電源23(例えば風力・太陽電池など)を使用する場合であって、屋外電源23が屋外側通信装置2の近傍に設置されている場合には、通信線3とは別に、屋外電源23から屋内側通信装置1に引き込むための電源線を追加することなく、屋外側通信装置2から屋内側通信装置1への通信線3上に屋外電源23からの電力を信号に重畳させて送電することが可能になり、設置コストの低減を図ることが可能になるとともに、屋外電源23が屋外側通信装置2の近傍に設置されている場合には、屋外側通信装置2は、屋外電源23を直接接続することにより、屋内側通信装置1において電源線を介して送電されてきた電力を、通信線3を介して屋外側通信装置2側に折り返す必要がなく、送電距離を短縮させることが可能になるので、送電ロスの低減を図ることも可能になるという効果を奏することができる。
 つまり、本発明は、従来の問題を解決するために、次のような技術を採用している。
 (1)例えば太陽光発電のような屋外電源を利用する際に、従来技術のように、電源からの電力を取り込むための電源入力機構が、屋外側通信装置(ODU)には備えられていなく、屋内側通信装置(IDU)のみに備えられている場合、たとえ、屋外電源が屋外側通信装置(ODU)の近傍に設置されているような場合であっても、屋外側通信装置(ODU)の近傍の屋外電源から屋内側通信装置(IDU)までの電源線の敷設工事が必要であり、設置コストがかかってしまうとともに、屋内側通信装置(IDU)から屋外側通信装置(ODU)側に電力を通信線を介して折り返して送電するという送電ロスも発生してしまう。
 これに対して、本発明においては、屋外側通信装置(ODU)にも電源からの電力を取り込むための電源入力機構を備えるように構成し、屋外電源から屋内側通信装置(IDU)に対する電源線の敷設を不要にし、屋外側通信装置(ODU)が屋外電源から直接取り込んだ電力を利用して動作することを可能にしている。
 (2)ここで、(1)のごとく、屋外電源から屋内側通信装置(IDU)までの電源線の敷設を廃止して、屋外電源から屋外側通信装置(ODU)のみに給電する構成とした場合は、何らかの要因で、屋内電源から屋内側通信装置(IDU)に対する給電が停止する事態が発生すると、屋外電源が十分に発電している状態にあっても、屋内側通信装置(IDU)への給電動作が完全に停止してしまい、屋内側通信装置(IDU)としての動作が停止してしまう。
 このため、本発明においては、屋外側通信装置(ODU)に、屋内側通信装置(IDU)に向かう通信線上に電力を信号に重畳させる電力送電機構を備えて、屋内側通信装置(IDU)と屋外側通信装置(ODU)とを接続する通信線上には、屋内側通信装置(IDU)から屋外側通信装置(ODU)の方向への電力送電のみならず、屋外側通信装置(ODU)から屋内側通信装置(IDU)の逆方向への電力送電も可能とし、双方向の電力送電動作を可能にしている。さらに、屋内側通信装置(IDU)には、通信線を介して信号に重畳されて送電されてきた電力を動作用電源として取り込む電力抽出機構を備えることにより、たとえ、屋内電源からの給電が停止する事態が発生しても、屋内側通信装置(IDU)に対する電力の供給を通信線からの電力に切り替えて、屋内側通信装置(IDU)の動作を継続させることができる。
 (3)通信線に電力を重畳させる技術としてIEEE802.3規格に規定されているPoE(Power over Ethernet)の場合、前述したように、電源の投入後、通信線への給電が可能か否かを確認するために、通信線に重畳する電力の電圧を徐々に上昇させていく動作を行っている。かくのごとき緩やかな電圧上昇動作のみを実装した場合には、たとえ、通信線に接続された屋内側通信装置(IDU)と屋外側通信装置(ODU)との双方の通信装置がPoE技術による電力供給機能を備えていたとしても、いずれか一方の通信装置の電源入力機構を介した電源(例えば屋外側通信装置(ODU)の電源入力機構を介した屋外電源)からの電力供給が断たれた場合、たとえ、通信線を介して相手側の通信装置(例えば屋内側通信装置(IDU)の電源入力機構を介した屋内電源)から電力供給を受けようとしても、当該通信装置の動作に必要な電力レベルには到達していなく、当該通信装置の動作が停止してしまう可能性がある。
 このため、本発明においては、常時、電源の電圧レベルを監視し、監視結果に基づいて取り込むべき電源の選択を行うように制御することによって、電源出力の変動・切断に適切に対応し、通信システムとしての継続的な動作を可能にする構成としている。
 以上のような構成を採用することにより、前述したように、屋外電源の電力を屋内側通信装置(IDU)まで送電するための電源線の敷設が不要となり、設置コストの低減が得られるとともに、屋外側通信装置(ODU)に対する電力供給用の送電経路を短縮することが可能になり、送電ロスを低減することができ、さらには、通信システムとしての動作をより確実に継続させることができる。
 なお、本発明は、屋内側通信装置、屋外側通信装置からなる通信システムに限るものではなく、屋内、屋外とは関係なく、任意の2つの機能に分割した第1通信装置と第2通信装置とからなる通信システムであって構わない。例えば、第1通信装置と第2通信装置との2つの機能に分割した通信システムにおいて、第1電源として、第1通信装置および第2通信システムそれぞれに内蔵電源を備えているか、または、それぞれの近傍に存在する外部の電源に第1通信装置および第2通信システムを接続して、第1通信装置および第2通信装置それぞれに給電する構成からなる通信システムであって、第2電源として、第1通信装置と第2通信装置との間を接続する通信線に、いずれの方向にも、信号に重畳させて前記第1電源からの電力を相手側の通信装置に対して送電することが可能であり、かつ、第1通信装置および第2通信装置それぞれの電源の供給状況の監視結果に基づいて、第1電源、第2電源のいずれから電力を取り込むかを選択することが可能である。
 さらには、本発明は、2つの通信装置のみならず、複数のネックワーク機器からなる通信ネットワークを構成する場合のように、複数(任意の個数)の通信装置からなる通信システムであっても構わない。つまり、複数の電源が分散して設置された環境下において、ネットワーク機器を構成する各通信装置には、分散設置された各通信装置それぞれに電源が内蔵されるか、または、各通信装置それぞれの近傍に配置された電源に接続され、通信ネットワークを構成する通信線には、いずれの方向にも、信号に重畳させて電力を送電させることが可能な通信システムに対して、本発明を好適に適用することができる。
(実施形態の構成例)
 次に、本発明による通信システムのシステム構成の一例について、図面を参照しながら詳細に説明する。まず、図2に示す通信システムのシステム構成について説明する。図2は、本発明による通信システムのシステム構成の一例を示すシステム構成図であり、図1の概念図に示した屋外電源23として太陽電池を用いて構成されている場合を示している。
 図2に示す通信システムを構成する屋内側通信装置1と屋外側通信装置2との間には、図1の概念図に示したように、信号に電力を重畳させて送電することが可能な双方向の通信線3が接続されている。さらに、各自通信装置への給電用および相手側通信装置への送電用として用いる第1電源として、屋内側には、屋内側通信装置1に接続される屋内電源13が備えられ、また、屋外側には、屋外側通信装置2に接続される屋外電源23として太陽電池23aが備えられている。
 さらに、屋内側通信装置1と屋外側通信装置2とは、図1に示した概念図と同様の内部構成からなり、それぞれの通信装置内には、電源選択回路12と電源選択回路22とが内蔵されて構成されており、電源選択回路12と電源選択回路22とのそれぞれには、電力の供給状況に応じて、電源供給ルートの切り替え制御が可能な3つのスイッチが備えられている。
 つまり、電源選択回路12と電源選択回路22とによって、屋内側通信装置1と屋外側通信装置2とは、近傍の第1電源側(屋内側通信装置1の場合、屋内電源13、屋外側通信装置2の場合、太陽電池23a)から電力を動作用電源として電源入力機構により受電するか、または、通信線3を介して相手側の通信装置から第2電源として送電されてくる電力(屋内側通信装置1の場合、屋外側通信装置2から送電されてくる太陽電池23aの電力、屋外側通信装置2の場合、屋内側通信装置1から送電されてくる屋内電源13の電力)を動作用電源として電力抽出機構により受電するかを選択したり、あるいは、相手側の通信装置に対する送電電力(すなわち、第1電源からの電力、つまり、屋内側通信装置1の場合、屋内電源13からの電力、屋外側通信装置2の場合、太陽電池23aからの電力)を第2電源として電力送電機構により通信線3側に送電するか否かを選択したりすることができる。ここで、電源選択回路12と電源選択回路22とにおける電力の供給状態に応じた選択動作については、それぞれの通信装置において、自律的に、あるいは、相手側の通信装置からの通信状況や制御信号に応じて制御される。
 図2に示す通信システムにおいては、屋内側通信装置1と屋外側通信装置2との間の通信線3、屋内側通信装置1と信号源との間は有線ケーブルにより接続され、屋外側通信装置2は、屋内側通信装置1から受信した信号を変調して無線信号として無線空間に出力し、無線空間から受信した無線信号を復調した信号を有線ケーブルの通信線3を介して屋内側通信装置1に対して送信する構成例を示している。すなわち、図2に示す通信システムは、信号源→(有線)→{屋内側通信装置1→通信線3(有線)→屋外側通信装置2}→(無線) →{屋外側通信装置2→通信線3(有線) →屋内側通信装置1}→(有線) →信号源の信号経路により信号を送受信する。
 次に、図2とは異なる通信システムの構成例を図3に示す。図3は、本発明による通信システムの図2とは異なる構成を示すシステム構成図であり、3つ以上の複数の通信装置を一つの通信線に接続している場合のシステム構成例を示している。図3に示す通信システムは、3つの通信装置31、通信装置32、通信装置33が一つの通信線3に接続された構成例を示しており、通信装置31、通信装置32、通信装置33のそれぞれには、電源41、電源42、電源43が接続されている。
 図3に示すように、複数の通信装置31、通信装置32、通信装置33が一つの通信線3に接続されている場合、通常時には、通信装置31、通信装置32、通信装置33のうち、デフォルト送電装置としてあらかじめ定めた特定の通信装置例えば通信装置31から通信線3に対して電力を送電して、他の通信装置例えば通信装置32、通信装置33に対して動作用電源として電力を供給することが可能な構成としている。そして、図3に×印を付して示すように、デフォルト送電装置例えば通信装置31が、何らかの理由により、電源41からの電力供給が絶たれて、通信線3を介した電力送電動作を停止した場合には、他の通信装置例えば通信装置32、通信装置33のうち、あらかじめ定めた順番に、いずれかの通信装置から通信線3に対して電力を送電する動作を開始し、電力送電動作を停止した当該デフォルト送電装置例えば通信装置31は、通信線3から電力を受電する動作に切り替えられる。
 次に、図2、図3とはさらに異なる通信システムの構成例を図4に示す。図4は、本発明による通信システムの図2、図3とは異なる構成を示すシステム構成図であり、図2に示した屋内側通信装置1と屋外側通信装置2とを統合して一つの通信装置として構成するとともに、該通信装置と通信機能を有する通信機能付き電池とを組み合わせた構成からなっている場合のシステム構成例を示している。図4に示す通信システムは、図2に示した屋内側通信装置1と屋外側通信装置2とが統合された状態の通信装置51が、屋外電源23の一例である太陽電池23aを接続するとともに、通信線3aを介して通信機能付き電池61に接続され、通信機能付き電池61には、屋内電源13と同様の電源13aが接続されている構成例を示している。ここで、通信機能付き電池61は、電源13aの残容量や障害、制御信号などを通信装置51との間で通信線3aを介して通信する機能を有している。つまり、通信機能付き電池61が、図2に示した屋内側通信装置1に相当し、通信装置51が、図2に示した屋外側通信装置2に相当している関係にある。
 また、図4に示す通信システムにおいては、通信装置51との間の通信線3a、および、通信装置51と信号源との間は有線ケーブルにより接続され、通信装置51は、信号源から受信した信号を信号処理した後、変調して無線信号として無線空間に出力し、無線空間から受信した無線信号を復調した信号に信号処理を施して、有線ケーブルを介して信号源に対して送信する構成例を示している。すなわち、図4に示す通信システムは、信号源→(有線)→{通信装置51}→(無線) →{通信装置51}→(有線)→信号源の信号経路により信号を送受信する。
(実施形態の動作の説明)
 次に、本発明による通信システムの動作の一例について、図2に示した通信システムの構成例を例にとって、本発明による電力供給制御方法の一例を示すものとして詳細に説明する。ここで、図2に示した通信システムにおいては、屋内電源13は、商用電源の停電等が発生しない限り常時電力供給が可能な状態にあり、一方、屋外電源の一例の太陽電池23aは、日照状態の如何により電力供給が不安定になる電源であり、太陽電池23aの発電量に応じて、電力供給状態を制御することが必要になるという場合の動作についてまず説明する。かくのごとき場合における電力供給制御方法を実現するための屋内側通信装置1および屋外側通信装置2の内部構成の一例を、図5A、図5Bに示している。
 図5A、図5Bは、図2に示す通信システムを構成する屋内側通信装置1および屋外側通信装置2の内部構成の一例を示すブロック構成図であり、屋外電源23の一例である太陽電池23aの発電量に応じて、屋内側通信装置1および屋外側通信装置2に対する電力供給ルートを制御する場合の内部構成の一例を示している。ここで、図5Aが屋内側通信装置1の内部構成の一例を示し、図5Bが屋外側通信装置2の内部構成の一例を示している。
 図5Aに示すように、屋内側通信装置1は、自通信装置の第1電源である屋内電源13からの電力、通信線3を介して第2電源として送電されてくる電力のいずれを通信機能14やミキサ15等の動作用電源として取り込むか、また、屋内電源13からの電力を通信線3上に信号と重複させて相手側の屋外側通信装置2に対して相手側の第2電源として送電するか否かという電力供給ルートの選択を行う電源選択回路12、通信線3への送信用の信号を生成したり、通信線3を介して受信した信号を処理したりする通信機能14、電源選択回路12からの電力と通信機能14からの送信用の信号を重畳したり、通信線3を介して受信した信号と電力とを分離して、通信機能14と電源選択回路12とに出力したりするミキサ15、を少なくとも含んで構成されている。なお、電源選択回路12内の3つのダイオード記号は、屋内電源13からの電力および通信線3を介して送電されてくる電力それぞれの電圧レベルに応じて自律的に切り替わるスイッチ(図2に示したスイッチ1a、1b、1cに相当)を意味している。
 また、図5Bに示すように、屋外側通信装置2は、自通信装置の第1電源すなわち屋外電源23の一例である太陽電池23aからの電力、通信線3を介して第2電源として送電されてくる電力のいずれを通信機能24やミキサ25等の動作用電源として取り込むか、また、太陽電池23aからの電力を通信線3上に信号と重複させて相手側の屋内側通信装置1に対して相手側の第2電源として送電するか否かという電力供給ルートの選択を行う電源選択回路22、通信線3への送信用の信号を生成したり、通信線3を介して受信した信号を処理したりする通信機能24、電源選択回路22からの電力と通信機能24からの送信用の信号とを重畳したり、通信線3を介して受信した信号と電力とを分離して、通信機能24と電源選択回路22とに出力したりするミキサ25、を少なくとも含んで構成されている。
 また、図5Bの電源選択回路22は、電源の供給ルートを制御する制御回路21の他に、通信線3を介して相手側の屋内側通信装置1から第2電源として送電されてくる電力の電圧レベルを検知する第1電圧センサ26、自通信装置の第1電源である太陽電池23aからの電力の電圧レベルを検知する第2電圧センサ27、太陽電池23aからの電力を相手側の屋内側通信装置1に対して通信線3を介して送電する際に太陽電池23aからの電力の電圧レベルを昇圧するための昇圧回路28を少なくとも含んで構成される。
 ここで、制御回路21は、第1電圧センサ26または第2電圧センサ27から直接出力されてくる電力によって動作し、第1電圧センサ26および第2電圧センサ27から電源供給用として出力されてくる電力や受信信号の監視結果に基づいて、電源の供給ルートを制御するとともに、昇圧回路28の動作を制御するための制御信号を生成して出力する。なお、電源選択回路22内の2つのダイオード記号は、太陽電池23aからの電力および通信線3を介して送電されてくる電力それぞれの電圧レベルに応じて切り替わるスイッチ(図2に示したスイッチ2a、2cに相当)を意味している。
 図5A、図5Bに示す屋内側通信装置1および屋外側通信装置2における電源供給ルートに関する制御は、一例として、次のように実施される。
 (1)太陽電池23aの発電量が少なく、屋外側通信装置2単体の動作に必要な電力量の給電も不可能な状態にあることを第2電圧センサ27が検知した場合、
 屋内側通信装置1は、通信線3からの信号に重畳されてくる電力の電圧レベルが上昇していない状況にあるので、電源選択回路12によって、屋内電源13からの電力を動作用電源として選択して動作するとともに、屋内電源13からの電力をミキサ15、通信線3側に送電するように制御する。一方、屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22によって、屋内側通信装置1から通信線3を介して送電されてくる電力を動作用電源として選択して動作するように制御する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22を経由して、第1電圧センサ26から出力される電力により動作する。なお、屋外側通信装置2内の制御回路21は、第1電圧センサ26から直接出力される電力により動作する。また、太陽電池23aからの電力を相手側の屋内側通信装置1に対して通信線3を介して送電する状況ではないので、制御回路21の制御により、屋外側通信装置2内の電源選択回路22の昇圧回路28は、太陽電池23aからの電力の昇圧動作を行わない。
 (2)太陽電池23aの発電量が、屋外側通信装置2単体の動作が不可能なレベルから屋外側通信装置2単体の動作が可能なレベルまで増加したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22によって、屋内側通信装置1から通信線3を介して送電されてくる電力の選択状態を太陽電池23aからの電力を動作用電源として選択する状態に切り替えるように制御する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22を経由して、第2電圧センサ27から出力される電力により動作する状態になる。なお、屋外側通信装置2内の制御回路21は、第2電圧センサ27から直接出力される電力により動作する。また、屋外側通信装置2内の電源選択回路22の昇圧回路28は、太陽電池23aからの電力の昇圧動作を行わない状態を継続する。この結果、屋内側通信装置1は、屋内電源13からの電力を動作用電源として選択して動作する状態を継続する。
 (3)太陽電池23aの発電量が、屋外側通信装置2のみならず屋内側通信装置1の動作を同時に可能にするレベルまで増加したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22内の昇圧回路28によって太陽電池23aからの電力の昇圧動作を行った後、ミキサ25において信号に重畳させて、通信線3を介して相手側の屋内側通信装置1に対して送電する動作を行う。屋内側通信装置1の電源選択回路12は、通信線3を介して信号に重畳されてくる電力の電圧レベルが上昇していることを検知すると、屋内電源13からの電力の選択状態を通信線3からの電力を動作用電源として選択する状態に切り替えるように制御される。
 つまり、屋内側通信装置1内の通信機能14およびミキサ15は、通信線3からの電力により動作する状態に切り替わる。なお、屋外側通信装置2は、太陽電池23aからの電力を動作用電源として選択して動作する状態を継続する。
 (4)しかる後、太陽電池23aの発電量が、屋外側通信装置2と屋内側通信装置1との同時動作が可能なレベルから屋外側通信装置2単体の動作のみが可能なレベルまで減少したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22内の昇圧回路28の昇圧動作を停止させるとともに、ミキサ25、通信線3に対して太陽電池23aからの電力を送電する動作を停止させる。屋内側通信装置1の電源選択回路12は、通信線3を介して信号に重畳されてくる電力の電圧レベルが下降したことを検知すると、通信線3からの電力の選択状態を屋内電源13からの電力を動作用電源として選択する状態に自律的に切り替えるように制御する。
 つまり、屋内側通信装置1内の通信機能14およびミキサ15は、屋内電源13からの電力により動作する状態に切り替わる。なお、屋外側通信装置2は、太陽電池23aからの電力を動作用電源として選択して動作する状態を継続する。
 (5)しかる後、太陽電池23aの発電量が、屋外側通信装置2単体の動作のみが可能なレベルから屋外側通信装置2単体の動作すら不可能なレベルまで減少したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22によって、太陽電池23aからの電力の選択状態から通信線3を介して屋内側通信装置1から送電されてくる電力を動作用電源として選択する状態に切り替えるように制御する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22を経由して、第1電圧センサ26から出力される電力により動作する。なお、屋外側通信装置2内の制御回路21は、第1電圧センサ26から直接出力される電力により動作する状態になる。一方、屋内側通信装置1は、屋内電源13からの電力を動作用電源として選択して動作する状態を継続する。
 以上のように、太陽電池23aからの電力の監視結果に基づいて、屋内側通信装置1、屋外側通信装置2は、屋内電源13、太陽電池23aのいずれかを動作用電源として適切に選択して、継続的に動作することができる。
 次に、本発明による通信システムの動作の図5A、図5Bの場合とは異なる例について、図2に示した通信システムの構成例を例にとって、本発明による電力供給制御方法の他の例を示すものとして図6A、図6Bを参照しながら詳細に説明する。
 図6A、図6Bは、図2に示す通信システムを構成する屋内側通信装置1および屋外側通信装置2の内部構成の図5A、図5Bと異なる例を示すブロック構成図であり、屋内側通信装置1と屋外側通信装置2とが協調して、電源供給ルートを選択する場合の内部構成例を示している。つまり、図5A、図5Bに示した屋内側通信装置1および屋外側通信装置2の動作例においては、一方の通信装置すなわち屋外側通信装置2内の制御回路21が、屋内側通信装置1および屋外側通信装置2の電源供給ルートに関する制御を実施していたが、図6A、図6Bの本実施例においては、屋内側通信装置1および屋外側通信装置2が互いに協調して、屋内側通信装置1および屋外側通信装置2の電源供給ルートに関する制御を実施する場合の内部構成の例を示している。また、図6A、図6Bには、安全性・運用性の観点から、供給される電力の状況に応じて、本通信システムの運用者の操作により、無線信号として出力する屋外側通信装置2側の通信機能の動作の一時停止および再開(停止解除)の動作を可能にする場合の内部構成の一例についても示している。ここで、図6Aが屋内側通信装置1の内部構成の一例を示し、図6Bが屋外側通信装置2の内部構成の一例を示している。
 図6Aに示すように、屋内側通信装置1は、自通信装置の第1電源である屋内電源13からの電力、通信線3を介して第2電源として送電されてくる電力のいずれを通信機能14やミキサ15等の動作用電源として取り込むか、また、屋内電源13からの電力を通信線3上に信号と重複させて相手側の屋外側通信装置2に対して相手側の第2電源として送電するか否かという電力供給ルートの選択を行う電源選択回路12a、通信線3への送信用の信号を生成したり、通信線3を介して受信した信号を処理したりする通信機能14、電源選択回路12aからの電力と通信機能14からの送信用の信号とを重畳したり、通信線3を介して受信した信号と電力とを分離して、通信機能14と電源選択回路12aとに出力したりするミキサ15、および、屋外側通信装置2に対する制御信号を生成するためのODUスイッチ18、を少なくとも含んで構成されている。
 また、図6Aの電源選択回路12aは、電源の供給ルートを制御する制御回路11の他に、通信線3を介して相手側の屋内側通信装置1から第2電源として送電されてくる電力の電圧レベルを検知する第1電圧センサ16、自通信装置の第1電源である屋内電源13からの電力の電圧レベルを検知する第2電圧センサ17、制御回路11からの制御に基づいて、電源の供給ルートを開閉する3つのスイッチ1a、1b、1c、を少なくとも含んで構成される。
 スイッチ1aは、屋内電源13からの電力を動作用電源として取り込んで、通信機能14、ミキサ15およびODUスイッチ18に給電するための電源入力機構を形成し、スイッチ1bは、屋内電源13からの電力を、信号に重畳させて、通信線3を介して相手側の屋外側通信装置2側に送電するための電力送電機構を形成し、スイッチ1cは、通信線3を介して相手側の屋外側通信装置2から信号に重畳されて送電されてきた電力を動作用電源として取り込んで、通信機能14、ミキサ15およびODUスイッチ18に給電するための電力抽出機構を形成している。
 ここで、制御回路11は、第1電圧センサ16または第2電圧センサ17から直接出力されてくる電力によって動作し、第1電圧センサ16および第2電圧センサ17から電源供給用として出力されてくる電力や受信信号に基づいて、電源の供給ルートを制御するとともに、通信機能14の動作を制御するための制御信号を生成して出力する。なお、ODUスイッチ18は、運用者により押下操作された際に、制御回路11に対して、相手側の屋外側通信装置2の通信機能24の動作の停止や停止解除を指示するための制御信号を生成して、通信線3を介して相手側の屋外側通信装置2に送信することを要求するものである。
 また、図6Bに示すように、屋外側通信装置2も、図6Aの屋内側通信装置1とほぼ同様の内部構成からなっており、自通信装置の第1電源すなわち屋外電源23の一例である太陽電池23aからの電力、通信線3を介して第2電源として送電されてくる電力のいずれを通信機能24やミキサ25等の動作用電源として取り込むか、また、太陽電池23aからの電力を通信線3上に信号と重複させて相手側の屋内側通信装置1に対して相手側の第2電源として送電するか否かという電力供給ルートの選択を行う電源選択回路22a、通信線3への送信用の信号を生成したり、通信線3を介して受信した信号を処理したりする通信機能24、電源選択回路22aからの電力と通信機能24からの送信用の信号とを重畳したり、通信線3を介して受信した信号と電力とを分離して、通信機能24と電源選択回路22aとに出力したりするミキサ25、を少なくとも含んで構成されている。
 また、図6Bの電源選択回路22aは、電源の供給ルートを制御する制御回路21の他に、通信線3を介して相手側の屋内側通信装置1から第2電源として送電されてくる電力の電圧レベルを検知する第1電圧センサ26、自通信装置の第1電源すなわち屋外電源23の一例である太陽電池23aからの電力の電圧レベルを検知する第2電圧センサ27、制御回路21からの制御に基づいて、電源の供給ルートを開閉する3つのスイッチ2a、2b、2cを、少なくとも含んで構成される。
 スイッチ2aは、太陽電池23aからの電力を動作用電源として取り込んで、通信機能24、ミキサ25に給電するための電源入力機構を形成し、スイッチ2bは、太陽電池23aからの電力を、信号に重畳させて、通信線3を介して相手側の屋内側通信装置1側に送電するための電力送電機構を形成し、スイッチ2cは、通信線3を介して相手側の屋内側通信装置1から信号に重畳されて送電されてきた電力を動作用電源として取り込んで、通信機能24、ミキサ25に給電するための電力抽出機構を形成している。
 ここで、制御回路21は、第1電圧センサ26または第2電圧センサ27から直接出力されてくる電力によって動作し、第1電圧センサ26および第2電圧センサ27から電源供給用として出力されてくる電力や受信信号に基づいて、電源の供給ルートを制御するとともに、通信機能24の動作を制御するための制御信号を生成して出力する。
 図6A、図6Bに示す屋内側通信装置1および屋外側通信装置2における電源供給ルートに関する制御は、一例として、次のように実施される。
 (1)太陽電池23aの発電量が少なく、屋外側通信装置2単体の動作に必要な電力量の給電も不可能な状態にあることを第2電圧センサ27が検知した場合、
 屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2a、2bを開放し、スイッチ2cを閉成して、屋内側通信装置1から通信線3を介して送電されてくる電力を動作用電源として選択して動作するように制御する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22aを経由して、第1電圧センサ26から出力される電力により動作する。なお、屋外側通信装置2内の制御回路21は、第1電圧センサ26から直接出力される電力により動作する。
 一方、屋内側通信装置1は、第1電圧センサ16および第2電圧センサ17の検知結果として、通信線3からの信号に重畳されてくる電力の電圧レベルが上昇していない状況で、かつ、屋内電源13からの電力は正常な出力状態にあることを検知しているので、制御回路21からの制御に基づいて、電源選択回路12aによって、スイッチ1c、1bを開放し、スイッチ1aを閉成して、屋内電源13からの電力を動作用電源として選択して動作するように制御する。
 つまり、屋内側通信装置1内の通信機能14、ミキサ15およびODUスイッチ18は、電源選択回路12aを経由して、第2電圧センサ17から出力される電力により動作する。なお、屋内側通信装置1内の制御回路11は、第2電圧センサ17から直接出力される電力により動作する。
 (2)太陽電池23aの発電量が、屋外側通信装置2単体の動作が不可能なレベルから屋外側通信装置2単体の動作が可能なレベルまで増加したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2は、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2cを開放し、スイッチ2aを閉成して、屋内側通信装置1から通信線3を介して送電されてくる電力の選択状態を太陽電池23aからの電力を動作用電源として選択する状態に切り替えるように制御する。なお、スイッチ2bは、開放した状態をそのまま継続する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22aを経由して、第1電圧センサ26から出力される電力により動作する状態になる。なお、屋外側通信装置2内の制御回路21は、第1電圧センサ26から直接出力される電力により動作する状態になる。一方、屋内側通信装置1は、第1電圧センサ16および第2電圧センサ17の検知結果に変化がないので、屋内電源13からの電力を選択して動作する状態を継続する。
 (3)太陽電池23aの発電量が、屋外側通信装置2のみならず屋内側通信装置1の動作を同時に可能にするレベルまで増加したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2の制御回路21は、まず、太陽電池23aの発電量が屋内側通信装置1を同時に動作可能なレベルまで上昇した旨を通知するための通知信号を生成することを指示する制御信号を、通信機能24に対して出力する。該制御信号を受け取った通信機能24は、制御回路21から指示された通知信号を生成して、ミキサ25、通信線3を介して、相手側の屋内側通信装置1に対して送信する。
 屋外側通信装置2からの通知信号を通信線3、ミキサ15を介して受け取った屋内側通信装置1の通信機能14は、該通知信号を制御回路11に転送する。制御回路11は、供給元の電源を、今まで受電していた屋内電源13から、通信線3からの電力に切り替えることが可能な状態にあるか否かを確認し、何ら問題なく、切り替え可能な状態にあることを確認すると、太陽電池23aからの電力を信号に重畳させて通信線3を介して屋内側通信装置1に対して送電することを要求する応答信号の生成を指示する制御信号を、通信機能14に対して出力する。該制御信号を受け取った通信機能14は、制御回路11から指示された応答信号を生成して、ミキサ15、通信線3を介して、相手側の屋外側通信装置2に対して返送する。
 屋内側通信装置1からの応答信号を通信線3、ミキサ25を介して受け取った屋外側通信装置2の通信機能24は、該応答信号を制御回路21に転送する。該応答信号を受け取った制御回路21は、屋外側通信装置2のみならず屋内側通信装置1に対しても太陽電池23aからの電力を供給する状態に移行させる。すなわち、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2bを閉成して、太陽電池23aからの電力をミキサ25において通信機能24からの信号と重畳させて通信線3を介して相手側の屋内側通信装置1に対して送電する状態に切り替えるように制御する。なお、スイッチ2cは開放状態、スイッチ2aは閉成状態をそのまま継続する。
 一方、太陽電池23aからの電力の送電を要求する応答信号を返送した屋内側通信装置1は、相手側の屋外側通信装置2においてスイッチ2bが閉成されるタイミングとほぼ同じタイミングで、制御回路11からの制御に基づいて、電源選択回路12aによって、スイッチ1cを閉成するとともに、スイッチ1aを開放し、屋内電源13からの電力の選択状態を屋外側通信装置2から通信線3を介して送電されてくる電力を動作用電源として選択する状態に切り替えるように制御する。なお、スイッチ1bは、開放した状態をそのまま継続する。
 つまり、屋内側通信装置1内の通信機能14、ミキサ15およびODUスイッチ18は、電源選択回路12aを経由して、第1電圧センサ16から出力される電力により動作する状態になる。なお、屋内側通信装置1内の制御回路11は、第1電圧センサ16から直接出力される電力により動作する。
 この結果、屋内側通信装置1および屋外側通信装置2のいずれも、太陽電池23aからの電力を動作用電源として動作する状態に設定されることになる。
 なお、太陽電池23aのみならず、屋内電源13も、屋内側通信装置1、屋外側通信装置2の双方を同時に動作可能な電力レベルになっていた場合には、前述の動作とは異なり、屋内側通信装置1においては、あらかじめ定めた順番に、太陽電池23a、屋内電源13のいずれかを動作用電源として選択するようにしても良い。
 (4)しかる後、屋内電源13の電力量が、屋内側通信装置1単体の動作のみが可能なレベルまで減少していることを第2電圧センサ17が検知した場合、
 屋内側通信装置1の制御回路11は、一旦、通信線3からの電力ではなく、屋内電源13からの電力により動作する状態に設定し直すために、まず、屋内電源13の電力量が屋内側通信装置1単体の動作のみ可能なレベルまで減少した旨を通知するための通知信号を生成することを指示する制御信号を、通信機能14に対して出力する。該制御信号を受け取った通信機能14は、制御回路11から指示された通知信号を生成して、ミキサ15、通信線3を介して、相手側の屋外側通信装置2に対して送信する。
 屋内側通信装置1からの通知信号を通信線3、ミキサ25を介して受け取った屋外側通信装置2の通信機能24は、該通知信号を制御回路21に転送する。制御回路21は、今まで通信線3に送電していた太陽電池23aからの電力を停止させることが可能な状態にあるか否かを確認し、何ら問題なく、停止させることが可能な状態にあることを確認すると、太陽電池23aからの電力の送電を停止しても良い旨を示す応答信号の生成を指示する制御信号を、通信機能24に対して出力する。該制御信号を受け取った通信機能24は、制御回路21から指示された応答信号を生成して、ミキサ25、通信線3を介して、相手側の屋内側通信装置1に対して返送する。
 屋外側通信装置2からの応答信号を通信線3、ミキサ15を介して受け取った屋内側通信装置1の通信機能14は、該応答信号を制御回路11に転送する。該応答信号を受け取った制御回路11は、屋内側通信装置1の電源の供給元を、通信線3からの電力を選択していた状態から屋内電源13からの電力を動作用電源として選択する状態に移行させる。すなわち、制御回路11からの制御に基づいて、電源選択回路12aによって、スイッチ1aを閉成するとともに、スイッチ1cを開放して、屋内電源13からの電力を動作用電源として選択する状態に切り替えるように制御する。なお、スイッチ1bは開放した状態をそのまま継続する。
 つまり、屋内側通信装置1内の通信機能14、ミキサ15およびODUスイッチ18は、電源選択回路12aを経由して、第2電圧センサ17から出力される電力により動作する状態になる。なお、屋内側通信装置1内の制御回路11は、第2電圧センサ17から直接出力される電力により動作する。
 一方、太陽電池23aからの電力の送電を停止しても良い旨の応答信号を返送した屋外側通信装置2は、相手側の屋内側通信装置1においてスイッチ1cが開放されるタイミングとほぼ同じタイミングで、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2bを開放し、通信線3を介して太陽電池23aからの電力を送電する動作を停止する状態に切り替えるように制御する。なお、スイッチ2cは開放状態、スイッチ2aは閉成状態をそのまま継続する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22aを経由して、第2電圧センサ27から出力される電力により動作する状態を継続する。なお、屋外側通信装置2内の制御回路21は、第2電圧センサ27から直接出力される電力により動作する状態を継続する。
 この結果、屋内側通信装置1および屋外側通信装置2は、それぞれ、自通信装置の第1電源からの電力すなわち屋内電源13からの電力および太陽電池23aからの電力を動作用電源として動作する状態に設定されることになる。
 (5)しかる後、屋内電源13の電力量が、屋内側通信装置1単体の動作のみが可能なレベルから屋内側通信装置1のみならず屋外側通信装置2との同時動作が可能なレベルにまで増加したことを第2電圧センサ17が検知した場合、
 屋内側通信装置1の制御回路11は、屋内電源13からの電力ではなく、通信線3からの電力により動作する状態に設定し直すために、まず、屋内電源13の電力量が屋外側通信装置2を同時に動作可能なレベルにある旨を通知するための通知信号を生成することを指示する制御信号を、通信機能14に対して出力する。該制御信号を受け取った通信機能14は、制御回路11から指示された通知信号を生成して、ミキサ15、通信線3を介して、相手側の屋外側通信装置2に対して送信する。
 屋内側通信装置1からの通知信号を通信線3、ミキサ25を介して受け取った屋外側通信装置2の通信機能24は、該通知信号を制御回路21に転送する。制御回路21は、今まで停止していた太陽電池23aからの電力を通信線3に送電する動作の再開が可能な状態にあるか否かを確認し、何ら問題なく、再開させることが可能な状態にあることを確認すると、太陽電池23aからの電力の送電を再開しても良い旨を示す応答信号の生成を指示する制御信号を、通信機能24に対して出力する。該制御信号を受け取った通信機能24は、制御回路21から指示された応答信号を生成して、ミキサ25、通信線3を介して、相手側の屋内側通信装置1に対して返送する。
 屋外側通信装置2からの応答信号を通信線3、ミキサ15を介して受け取った屋内側通信装置1の通信機能14は、該応答信号を制御回路11に転送する。該応答信号を受け取った制御回路11は、屋内側通信装置1の電源の供給元を、屋内電源13からの電力を選択していた状態から通信線3からの電力を動作用電源として選択する状態に移行させる。すなわち、制御回路11からの制御に基づいて、電源選択回路12aによって、スイッチ1cを閉成するとともに、スイッチ1aを開放して、通信線3からの電力を動作用電源として選択する状態に切り替えるように制御する。なお、スイッチ1bは開放した状態をそのまま継続する。
 つまり、屋内側通信装置1内の通信機能14、ミキサ15およびODUスイッチ18は、電源選択回路12aを経由して、第1電圧センサ16から出力される電力により動作する状態になる。なお、屋内側通信装置1内の制御回路11は、第1電圧センサ16から直接出力される電力により動作する。
 一方、太陽電池23aからの電力の送電を再開する旨の応答信号を返送した屋外側通信装置2は、相手側の屋内側通信装置1においてスイッチ1cが閉成されるタイミングとほぼ同じタイミングで、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2bを閉成して、通信線3を介して太陽電池23aからの電力を送電する動作を再開する状態に切り替えるように制御する。なお、スイッチ2cは開放状態、スイッチ2aは閉成状態をそのまま継続する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22aを経由して、第2電圧センサ27から出力される電力により動作する状態を継続する。なお、屋外側通信装置2内の制御回路21は、第2電圧センサ27から直接出力される電力により動作する状態を継続する。
 この結果、屋内側通信装置1および屋外側通信装置2のいずれも、太陽電池23aからの電力を動作用電源として動作する状態に設定されることになる。
 (6)しかる後、太陽電池23aの発電量が、屋外側通信装置2と屋内側通信装置1との同時動作が可能なレベルから屋外側通信装置2単体の動作のみが可能なレベルまで減少したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2の制御回路21は、まず、太陽電池23aの発電量が屋内側通信装置1を同時動作することが不可能なレベルまで減少した旨を通知するための通知信号を生成することを指示する制御信号を、通信機能24に対して出力する。該制御信号を受け取った通信機能24は、制御回路21から指示された通知信号を生成して、ミキサ25、通信線3を介して、相手側の屋内側通信装置1に対して送信する。
 屋外側通信装置2からの通知信号を通信線3、ミキサ15を介して受け取った屋内側通信装置1の通信機能14は、該通知信号を制御回路11に転送する。制御回路11は、供給元の電源を、今までの通信線3からの電力から屋内電源13からの電力に切り替えることが可能な状態にあるか否かを確認し、何ら問題なく、切り替え可能な状態にあることを確認すると、太陽電池23aからの電力の送電を停止しても良い旨を示す応答信号の生成を指示する制御信号を、通信機能14に対して出力する。該制御信号を受け取った通信機能14は、制御回路11から指示された応答信号を生成して、ミキサ15、通信線3を介して、相手側の屋外側通信装置2に対して返送する。
 屋内側通信装置1からの応答信号を通信線3、ミキサ25を介して受け取った屋外側通信装置2の通信機能24は、該応答信号を制御回路21に転送する。該応答信号を受け取った制御回路21は、屋内側通信装置1に対する太陽電池23aからの電力の送電を停止して、屋外側通信装置2のみに供給する状態に移行させる。すなわち、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2bを開放して、太陽電池23aからの電力を相手側の屋内側通信装置1に対して送電する動作を停止する状態に切り替えるように制御する。なお、スイッチ2cは開放状態、スイッチ2aは閉成状態をそのまま継続しており、屋外側通信装置2は、太陽電池23aからの電力を動作用電源として選択して動作する状態を継続する。
 一方、太陽電池23aからの電力の送電を停止しても良い旨の応答信号を返送した屋内側通信装置1は、相手側の屋外側通信装置2においてスイッチ2bが開放されるタイミングとほぼ同じタイミングで、制御回路11からの制御に基づいて、電源選択回路12aによって、スイッチ1aを閉成するとともに、スイッチ1cを開放し、屋外側通信装置2から通信線3を介して送電されてくる電力の選択状態を屋内電源13からの電力を動作用電源として選択する状態に切り替えるように制御する。
 つまり、屋内側通信装置1内の通信機能14、ミキサ15およびODUスイッチ18は、電源選択回路12aを経由して、第2電圧センサ17から出力される電力により動作する状態になる。なお、屋内側通信装置1内の制御回路11は、第2電圧センサ17から直接出力される電力により動作する。
 この結果、屋内側通信装置1および屋外側通信装置2は、それぞれ、自通信装置の第1電源からの電力すなわち屋内電源13からの電力および太陽電池23aからの電力を動作用電源として動作する状態に設定されることになる。
 ここで、スイッチ1bについては、開放した状態をそのまま継続するようにしても良いが、屋内電源13が電力量の消耗が少ない安定性がある電源であった場合には、太陽電池23aの発電量の急激な低下が発生する場合に備えて、屋内電源13の電力量が、屋内側通信装置1および屋外側通信装置2の双方を同時に動作させることが可能なレベルになっていれば、場合によっては、スイッチ1bを閉成させて、通信線3を介して相手側の屋外側通信装置2に対してあらかじめ送電しておくようにしても良い。
 (7)しかる後、太陽電池23aの発電量が、屋外側通信装置2単体の動作のみが可能なレベルから屋外側通信装置2単体の動作すら不可能なレベルまで減少したことを第2電圧センサ27が検知した場合、
 屋外側通信装置2の制御回路21は、まず、太陽電池23aの発電量が屋外側通信装置2単体の動作すら不可能なレベルまで減少した旨を通知するための通知信号を生成することを指示する制御信号を、通信機能24に対して出力する。該制御信号を受け取った通信機能24は、制御回路21から指示された通知信号を生成して、ミキサ25、通信線3を介して、相手側の屋内側通信装置1に対して送信する。
 屋外側通信装置2からの通知信号を通信線3、ミキサ15を介して受け取った屋内側通信装置1の通信機能14は、該通知信号を制御回路11に転送する。制御回路11は、屋内電源13の電力量が屋内側通信装置1と屋外側通信装置2とを同時給電することが可能な電力量まで回復している状態にあるか否かを確認し、何ら問題なく、屋外側通信装置2に対しても通信線3を介して電力を送電することが可能な状態にまで回復していることを確認すると、屋内電源13からの電力の送電を開始しても良い旨を示す応答信号の生成を指示する制御信号を、通信機能14に対して出力する。該制御信号を受け取った通信機能14は、制御回路11から指示された応答信号を生成して、ミキサ15、通信線3を介して、相手側の屋外側通信装置2に対して返送する。
 屋内側通信装置1からの応答信号を通信線3、ミキサ25を介して受け取った屋外側通信装置2の通信機能24は、該応答信号を制御回路21に転送する。該応答信号を受け取った制御回路21は、太陽電池23aからの電力の給電動作を停止して、屋内側通信装置1側から通信線3を介して送電されてくる電力を供給する状態に移行させる。すなわち、制御回路21からの制御に基づいて、電源選択回路22aによって、スイッチ2cを閉成するとともに、スイッチ2aを開放し、太陽電池23aからの電力の選択状態を屋内側通信装置1から通信線3を介して送電されてくる電力を動作用電源として選択する状態に切り替えるように制御する。なお、スイッチ2bは、開放した状態をそのまま継続する。
 つまり、屋外側通信装置2内の通信機能24およびミキサ25は、電源選択回路22aを経由して、第1電圧センサ26から出力される電力により動作する状態になる。なお、屋外側通信装置2内の制御回路21は、第1電圧センサ26から直接出力される電力により動作する。
 一方、屋内電源13からの電力の送電を開始する旨の応答信号を返送した屋内側通信装置1は、相手側の屋外側通信装置2においてスイッチ2cが閉成されるタイミングとほぼ同じタイミングで、制御回路11からの制御に基づいて、電源選択回路12aによって、スイッチ1bを閉成し、通信線3を介して相手側の屋外側通信装置2に対して屋内電源13からの電力を送電する選択状態に切り替えるように制御する。なお、前述したように、スイッチ1bは、場合によっては、既に、閉成されている場合もあり得る。スイッチ1cは開放状態、スイッチ1aは閉成状態をそのまま継続しており、屋内側通信装置1は、屋内電源13からの電力を動作用電源として選択して動作する状態を継続する。
 つまり、屋内側通信装置1内の通信機能14、ミキサ15およびODUスイッチ18は、電源選択回路12aを経由して、第2電圧センサ17から出力される電力により動作する状態を継続する。なお、屋内側通信装置1内の制御回路11は、第2電圧センサ17から直接出力される電力により動作する。
 この結果、屋内側通信装置1および屋外側通信装置2のいずれも、屋内電源13からの電力を動作用電源として動作する状態に設定されることになる。
 さらに、図6A、図6Bの通信システムの構成例においては、以上の動作とは別に、屋内側通信装置1内に、相手側の屋外側通信装置2の通信機能24の動作の停止および停止解除を指示するためのODUスイッチ18が備えられている。屋内側通信装置1において、ODUスイッチ18が押下操作されたことを制御回路11が検知すると、相手側の屋外側通信装置2の通信機能24の動作の停止を指示する停止指示信号の生成を促す制御信号を、通信機能14に対して出力する。該制御信号を受け取った通信機能14は、制御回路11から指示された停止指示信号を生成して、ミキサ15、通信線3を介して、相手側の屋外側通信装置2に対して送信する。
 屋内側通信装置1からの停止指示信号を通信線3、ミキサ25を介して受け取った屋外側通信装置2の通信機能24は、該停止指示信号を制御回路21に転送する。制御回路21は、通信機能24の動作を停止させる指示であることを確認すると、電源選択回路22aのスイッチ2aおよびスイッチ2cの双方を開放状態に設定して、通信機能24およびミキサ25に対する電力供給を停止させることにより、通信機能24の動作を停止させる。
 かかる状態においては、制御回路21は、第1電圧センサ26から直接通信線3からの電力を、または、第2電圧センサ27から直接太陽電池23aからの電力を給電されて動作可能な状態にある。さらに、第1電圧センサ26は、ミキサ25をスルーして、電力と信号とが重畳された状態が可能な通信線3と電気的に接続された状態になり、制御回路21は、第1電圧センサ26からの電力により動作することが可能であるとともに、相手側の屋内側通信装置1との間で第1電圧センサ26を介して直接信号を送受信することが可能な状態になっている。したがって、制御回路21は、受け取った停止指示信号に基づいて通信機能24の動作を停止させた旨を示す応答信号を生成して、直接、第1電圧センサ26から通信線3を介して、屋内側通信装置1に対して返送することができる。
 しかる後、屋内側通信装置1において再度ODUスイッチ18の押下操作がなされると、制御回路11は、相手側の屋外側通信装置2の通信機能24の動作の停止を解除する停止解除信号を生成して、通信線3を介して、相手側の屋外側通信装置2に送信することになる。
 屋内側通信装置1からの停止解除信号を通信線3、ミキサ25を介して第1電圧センサ26から受け取った屋外側通信装置2の制御回路21は、第1電圧センサ26および第2電圧センサ27が検知したその時点の電力状態に応じた動作用電源の選択状態に復帰する。
 以上のような動作を行うことにより、屋内側通信装置1、屋外側通信装置2が協調動作を行い、屋内電源13および太陽電池23aからの電力の監視結果に基づいて、屋内電源13、太陽電池23aのいずれかを動作用電源としてより適切に選択して、屋内側通信装置1、屋外側通信装置2は、継続的に動作することができる。
 なお、図5A、図5B、図6A、図6Bの内部構成を備えた屋内側通信装置1および屋外側通信装置2の場合の電源供給ルートに関する選択動作は、前述の動作のみに限るものではない。つまり、屋内側通信装置1、屋外側通信装置2等のごとく複数の機能それぞれに対応する通信装置に分割して構成される通信システムにおいて、あらかじめ定めた通信装置に着目して、該通信装置の近傍に存在する電源または内蔵の電源から入力されてくる電力の電力量(電源入力機構により入力される電力の電力量)の状態に応じて、通信システムを構成する各通信装置の電源供給ルートを制御するようにしても良い。
 例えば、図6A、図6Bの内部構成の場合、あらかじめ定めた通信装置として、電力量が最も安定した電源が近傍に配置されている屋内側通信装置1を選択して、該屋内側通信装置1の近傍に位置し、該屋内側通信装置1に接続されている屋内電源13の電力量が、屋内側通信装置1および屋外側通信装置2の双方を同時に動作させることが可能なレベルに達していた場合には、屋外電源23の一例である太陽電池23aの発電量の如何に関わらず、屋内電源13を用いて、屋内側通信装置1および屋外側通信装置2の双方を動作させるようにしても良い。
 あるいは、屋内電源13の電力量が、屋内側通信装置1および屋外側通信装置2の双方を同時に動作させることが可能なレベルに達していた場合であっても、屋外電源23の一例である太陽電池23aの発電量が、屋外側通信装置2単体の動作が可能なレベル以上に達していた場合には、屋内電源13を用いて、屋内側通信装置1および屋外側通信装置2の双方を動作させる代わりに、屋内側通信装置1は屋内電源13を用いて動作させ、屋外側通信装置2は屋外電源23の一例である太陽電池23aを用いて動作させるようにしても良い。
 また、屋内電源13の電力量が、屋内側通信装置1単体の動作のみが可能なレベルまでに低下していた場合に、屋外電源23の一例である太陽電池23aの発電量が、屋外側通信装置2単体の動作が可能なレベル以上に達していた場合には、屋内側通信装置1は屋内電源13を用いて動作させ、屋外側通信装置2は屋外電源23の一例である太陽電池23aを用いて動作させるようにしても良い。さらに、屋内電源13の電力量がさらに低下してしまう場合に備えて、屋外電源23の一例である太陽電池23aが、屋外側通信装置2のみならず屋内側通信装置1への給電も可能な状態にあった場合には、通信線3上には太陽電池23aからの電力を屋内側通信装置1に送電させる状態にあらかじめ設定しておいても良い。
 而して、屋内電源13の電力量が、屋内側通信装置1単体の動作も不可能なレベルまでに低下してしまった場合に、屋外電源23の一例である太陽電池23aの発電量が、屋外側通信装置2および屋内側通信装置1の双方を同時に動作させることが可能なレベルに達していた場合には、屋内側通信装置1を太陽電池23aからの電力に直ちに切り替えて動作させ、太陽電池23aを用いて、屋内側通信装置1および屋外側通信装置2の双方を同時に動作させるようにしても良い。
 また、以上の説明においては、1個の屋内電源と1個の屋外電源との2つの電源を用いている場合の通信システムの構成例について説明したが、本発明は、かかる2つの電源の場合のみに限るものではない。例えば、複数の電源が分散して設置されているような環境において、ネットワーク機器として、それぞれの分散した電源の位置に配置した複数の通信機器から構成されるような通信システムであっても、好適に適用することが可能であることは言うまでもない。
 以上、本発明の好適な実施形態の構成を説明した。しかし、かかる実施形態は、本発明の単なる例示に過ぎず、何ら本発明を限定するものではないことに留意されたい。本発明の要旨を逸脱することなく、特定用途に応じて種々の変形変更が可能であることが、当業者には容易に理解できよう。
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2013年5月23日に出願された日本出願特願2013-109019を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1     屋内側通信装置
1a    スイッチ
1b    スイッチ
1c    スイッチ
2     屋外側通信装置
2a    スイッチ
2b    スイッチ
2c    スイッチ
3     通信線
3a    通信線
11    制御回路
12    電源選択回路
12a   電源選択回路
13    屋内電源
13a   電源
14    通信機能
15    ミキサ
16    第1電圧センサ
17    第2電圧センサ
18    ODUスイッチ
21    制御回路
22    電源選択回路
22a   電源選択回路
23    屋外電源
23a   太陽電池
24    通信機能
25    ミキサ
26    第1電圧センサ
27    第2電圧センサ
28    昇圧回路
31    通信装置
32    通信装置
33    通信装置
41    電源
42    電源
43    電源
51    通信装置
61    通信機能付き電池
101   屋内側通信装置
102   屋外側通信装置
103   通信線
104   電源選択回路
105   屋内電源
106   屋外電源
107   電源線

Claims (10)

  1.  信号を送受信する通信線を介して互いに接続した第1通信装置および第2通信装置を有し、
     前記第1通信装置および前記第2通信装置それぞれは、内蔵電源または近傍に配置された外部の電源でなる第1電源に接続され、かつ、前記通信線における前記信号に電力を重畳させ、重畳させた前記電力を第2電源として前記通信線を介して相手側の通信装置に対して送電する電力送電機構を有し、
     かつ、前記第1通信装置および前記第2通信装置は、前記第1電源および前記第2電源それぞれの電力状態に応じて、前記第1電源からの電力または前記通信線を介して相手側の通信装置から送電されてきた前記第2電源の電力のいずれを動作用電源として選択して給電することを特徴とする通信システム。
  2.  前記第1通信装置および前記第2通信装置それぞれは、自通信装置の前記第1電源からの電力の電力量が、自通信装置と相手側の通信装置とを同時に動作させることが可能なレベルに達していた場合、前記電力送電機構により、自通信装置の前記第1電源からの電力を相手側の通信装置に対して前記通信線を介して前記信号に重畳させて前記第2電源として送電し、さらに、自通信装置の前記第1電源からの電力を動作用電源として選択して給電するか、あるいは、相手側の通信装置から前記第2電源として前記通信線を介して電力が送電されてきた場合には、自通信装置の前記第1電源からの電力または相手側の通信装置から前記通信線を介して前記第2電源として送電されてきた電力のいずれをあらかじめ定めた順番に動作用電源として選択して給電することを特徴とする請求項1に記載の通信システム。
  3.  前記第1通信装置および前記第2通信装置それぞれは、自通信装置の前記第1電源から供給される電力量が、自通信装置と相手側の通信装置とを同時に動作させるには不足であるが、自通信装置単体のみを動作させることが可能なレベルになった場合、前記第1通信装置および前記第2通信装置それぞれは、自通信装置の前記第1電源からの電力を動作用電源として選択して給電することを特徴とする請求項1または2に記載の通信システム。
  4.  前記第1通信装置および前記第2通信装置それぞれは、自通信装置においては、前記第1電源から供給される電力量が、自通信装置と相手側の通信装置とを同時に動作させるには不足であって、自通信装置単体のみを動作させることが可能なレベルになった場合であり、かつ、相手側の通信装置においては、前記第1電源からの電力の電力量が、自通信装置と相手側の通信装置とを同時に動作させ得るレベルに達していた場合、相手側の通信装置から前記通信線を介して前記第2電源として送電されてきた電力を動作用電源として選択して給電することを特徴とする請求項1ないし3のいずれかに記載の通信システム。
  5.  前記第1通信装置および前記第2通信装置それぞれは、自通信装置の前記第1電源から供給される電力量が、自通信装置単体の動作が不可能なレベルに低下した場合、相手側の通信装置から前記通信線を介して前記第2電源として送電されてきた電力を動作用電源として選択して給電することを特徴とする請求項1ないし4のいずれかに記載の通信システム。
  6.  前記第1通信装置および前記第2通信装置のうち、特定通信装置としてあらかじめ定めた通信装置における前記第1電源から供給される電力量が、自通信装置と相手側の通信装置とを同時に動作させ得るレベルに達していた場合、相手側の通信装置は、自通信装置における前記第1電源からの電力の電力量の如何に関係なく、相手側の前記特定通信装置から前記通信線を介して前記第2電源として送電されてきた電力を動作用電源として選択して給電することを特徴とする請求項1ないし5のいずれかに記載の通信システム。
  7.  前記第1通信装置および前記第2通信装置のうち、特定通信装置としてあらかじめ定めた通信装置に操作スイッチを備え、該操作スイッチの操作により、相手側の通信装置の通信機能の動作の停止および停止解除を指示する信号を該相手側の通信装置に対して前記通信線を介して送信することを特徴とする請求項1ないし6のいずれかに記載の通信システム。
  8.  前記第1通信装置が、屋内に設置される屋内側通信装置であり、前記第2通信装置が、屋外に設置される屋外側通信装置であることを特徴とする請求項1ないし7のいずれかに記載の通信システム。
  9.  信号を送受信する通信線を介して互いに接続した第1通信装置および第2通信装置を有する通信システムにおける電力供給制御方法であって、前記第1通信装置および前記第2通信装置それぞれは、内蔵電源または近傍に配置された外部の電源でなる第1電源に接続し、かつ、前記通信線における前記信号に電力を重畳させ、重畳させた前記電力を第2電源として前記通信線を介して相手側の通信装置に対して送電し、かつ、前記第1通信装置および前記第2通信装置は、前記第1電源および前記第2電源それぞれの電力状態に応じて、前記第1電源からの電力または前記通信線を介して相手側の通信装置から送電されてきた電力のいずれを動作用電源として選択して給電することを特徴とする電力供給制御方法。
  10.  請求項9に記載の電力供給制御方法を、コンピュータによって実行可能な非一時的なコンピュータ可読媒体として実施していることを特徴とする電力供給制御非一時的なコンピュータ可読媒体。
PCT/JP2014/000568 2013-05-23 2014-02-04 通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体 WO2014188633A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14801725.4A EP3001536A4 (en) 2013-05-23 2014-02-04 COMMUNICATION SYSTEM, METHOD FOR CONTROLLING AN ELECTRIC POWER SUPPLY, AND NON-TRANSIENT COMPUTER READABLE MEDIUM FOR CONTROLLING AN ELECTRICAL POWER SUPPLY
US14/892,814 US20160173290A1 (en) 2013-05-23 2014-02-04 Communication system, power supply control method, and power supply control non-transitory computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109019 2013-05-23
JP2013109019 2013-05-23

Publications (1)

Publication Number Publication Date
WO2014188633A1 true WO2014188633A1 (ja) 2014-11-27

Family

ID=51933208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000568 WO2014188633A1 (ja) 2013-05-23 2014-02-04 通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体

Country Status (3)

Country Link
US (1) US20160173290A1 (ja)
EP (1) EP3001536A4 (ja)
WO (1) WO2014188633A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019224883A1 (ja) * 2018-05-21 2019-11-28 三菱電機株式会社 モデム
WO2021220564A1 (ja) * 2020-04-28 2021-11-04 日立Astemo株式会社 車載ネットワークシステムおよび電子制御装置
WO2022219920A1 (ja) * 2021-04-16 2022-10-20 日立Astemo株式会社 電子制御装置及び電子制御システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944701A (zh) * 2017-05-26 2020-03-31 费雪派克医疗保健有限公司 为呼吸装置供电
EP3716437A1 (de) * 2019-03-28 2020-09-30 Siemens Aktiengesellschaft Verfahren und system zum überwachen des betriebszustandes von hochspannungsgeräten eines energieversorgungsnetzes
DE102022124705A1 (de) 2022-09-26 2024-03-28 Phoenix Contact Gmbh & Co. Kg Netzwerkgerät und System mit bidirektionaler Energieversorgung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259696A (ja) * 2007-03-30 2007-10-04 Matsushita Electric Works Ltd 配線システム
JP2010258769A (ja) * 2009-04-24 2010-11-11 Sumitomo Electric Ind Ltd 給電付通信システム及びモデム
JP2010263680A (ja) * 2009-04-30 2010-11-18 Sony Corp 電力供給装置および電力供給方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359579A (ja) * 2001-05-31 2002-12-13 Nec Eng Ltd 通信装置におけるケーブル等化方式
WO2007091423A1 (ja) * 2006-02-10 2007-08-16 Matsushita Electric Industrial Co., Ltd. 監視カメラシステム
JP5315621B2 (ja) * 2007-03-15 2013-10-16 富士電機株式会社 無停電電源装置
KR101215388B1 (ko) * 2008-05-30 2012-12-26 가부시키가이샤 어드밴티스트 시험 장치 및 송신 장치
JP5446239B2 (ja) * 2008-12-16 2014-03-19 ソニー株式会社 電力供給システム
EP2525466B1 (en) * 2010-01-13 2020-03-11 Panasonic Corporation Electric power supply device and vehicle charge system
KR101706102B1 (ko) * 2010-02-12 2017-02-27 삼성전자주식회사 공기 조화기
US9035626B2 (en) * 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
JP5802463B2 (ja) * 2011-07-22 2015-10-28 株式会社東芝 電気量調整装置、電気量調整方法、電気量調整プログラム及び電力供給システム
KR20140116377A (ko) * 2011-10-20 2014-10-02 엘에스산전 주식회사 전기 자동차 및 그 동작 방법
JP6082886B2 (ja) * 2013-02-22 2017-02-22 株式会社高砂製作所 電力調整装置及び電力調整方法
US9091154B2 (en) * 2013-03-28 2015-07-28 Schlumberger Technology Corporation Systems and methods for hybrid cable telemetry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259696A (ja) * 2007-03-30 2007-10-04 Matsushita Electric Works Ltd 配線システム
JP2010258769A (ja) * 2009-04-24 2010-11-11 Sumitomo Electric Ind Ltd 給電付通信システム及びモデム
JP2010263680A (ja) * 2009-04-30 2010-11-18 Sony Corp 電力供給装置および電力供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001536A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019224883A1 (ja) * 2018-05-21 2019-11-28 三菱電機株式会社 モデム
CN112106338A (zh) * 2018-05-21 2020-12-18 三菱电机株式会社 调制解调器
JPWO2019224883A1 (ja) * 2018-05-21 2021-01-07 三菱電機株式会社 モデム
US11314316B2 (en) 2018-05-21 2022-04-26 Mitsubishi Electric Corporation Modem to selectively superpose electric power
WO2021220564A1 (ja) * 2020-04-28 2021-11-04 日立Astemo株式会社 車載ネットワークシステムおよび電子制御装置
JP7377351B2 (ja) 2020-04-28 2023-11-09 日立Astemo株式会社 車載ネットワークシステムおよび電子制御装置
WO2022219920A1 (ja) * 2021-04-16 2022-10-20 日立Astemo株式会社 電子制御装置及び電子制御システム

Also Published As

Publication number Publication date
US20160173290A1 (en) 2016-06-16
EP3001536A4 (en) 2016-12-07
EP3001536A1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2014188633A1 (ja) 通信システム、電力供給制御方法および電力供給制御非一時的なコンピュータ可読媒体
US11188072B2 (en) Unmanned aerial vehicle, remote controller, and control method thereof
JP6536736B2 (ja) 接地回路及び接地方法
WO2014185203A1 (ja) フィールド無線中継装置
EP3445095A1 (en) Auxiliary base unit with independent wireless augmentation
JP5171591B2 (ja) ネットワークシステム、ネットワーク中継装置の電力制御方法
KR102371501B1 (ko) 휴대 단말과 외부 기기 간의 usb 인터페이스 장치 및 그 방법
JP2008035496A (ja) 光送受信装置及び光送受信方法
JP6583928B2 (ja) ネットワーク接続装置およびネットワーク接続装置給電方法
WO2020216017A1 (zh) 一种低待机功耗的电源系统
JP2013148943A (ja) 電力供給システム、給電側機器及び受電側機器
JP6147936B2 (ja) リバース電力供給式送信装置
JP2005045669A (ja) 移動体通信機
JP5734899B2 (ja) 突入電流重なり回避システム
US20180048180A1 (en) Standby control circuit and operating method thereof, playing apparatus
JP2020174021A (ja) 照明システム、通信機器、照明装置および照明システムのデータ伝送方法
JP6962441B2 (ja) 海底ケーブルシステム、分岐装置及びその状態応答方法
JP2006235782A (ja) 住宅用火災警報システム
CN103686573B (zh) 带有飞行模式的头戴式装置
JP7043473B2 (ja) スイッチ装置
JP2007267057A (ja) 電力線通信装置
KR101818707B1 (ko) EMS(Energy Management System)를 위한 대기 전류 제어 시스템
JP6369915B2 (ja) 消費電力削減装置、通信システム、中継装置、端末装置、電力削減方法、プログラム
JP2023176080A (ja) 電池制御装置
KR20150082988A (ko) 무선 통신을 이용한 비사용 기기절전 인터페이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014801725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014801725

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP