WO2014188628A1 - ロータおよびモータ - Google Patents

ロータおよびモータ Download PDF

Info

Publication number
WO2014188628A1
WO2014188628A1 PCT/JP2013/084576 JP2013084576W WO2014188628A1 WO 2014188628 A1 WO2014188628 A1 WO 2014188628A1 JP 2013084576 W JP2013084576 W JP 2013084576W WO 2014188628 A1 WO2014188628 A1 WO 2014188628A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
circumferential
rotor according
circumferential direction
Prior art date
Application number
PCT/JP2013/084576
Other languages
English (en)
French (fr)
Inventor
明 一円
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201380055947.6A priority Critical patent/CN104756368B/zh
Priority to DE112013007101.0T priority patent/DE112013007101T5/de
Priority to US14/766,806 priority patent/US10063115B2/en
Publication of WO2014188628A1 publication Critical patent/WO2014188628A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets

Abstract

このインナーロータ型のモータに用いられるロータは、中心軸の周囲に周方向に配列された複数のマグネットと、磁性体からなるロータコアとを有する。ロータコアは、内側コア部および複数の外側コア部を有する。複数の外側コア部と、複数のマグネットとは、内側コア部の径方向外側において周方向に交互に配列される。マグネットは、磁極面である一対の周方向端面を有し、その少なくとも一方は突出面である。また、マグネットは、外端面の周方向の幅よりも周方向の幅の広い部分を有する。これにより、ロータの径を大きくすることなく、マグネットの体積を大きくして、ロータの磁力を増加できる。その結果、このロータをモータに組み込んだ際、モータのトルクを向上できる。

Description

ロータおよびモータ
 本発明は、ロータおよびモータに関する。
 従来、電機子の内側にロータが配置された、いわゆるインナーロータ型のモータが知られている。インナーロータ型のモータに使用されるロータは、主として、ロータコアの外周面に複数のマグネットが貼り付けられたSPM(Surface Permanent Magnet)タイプのロータと、ロータコアの内部にマグネットが埋め込まれたIPM(Interior Permanent Magnet)タイプのロータとに、分類される。
 一般的なIPMタイプのロータにおいては、SPMタイプのロータと同様、各マグネットは、一対の磁極面が径方向外側および径方向内側を向くように、配置される。このため、マグネットの径方向外側の磁極面のみが、モータの駆動に利用されることとなる。そこで、近年では、マグネットの磁極面を有効に利用するために、マグネットの一対の磁極面がそれぞれ周方向を向くように配置された、いわゆるスポーク型のロータ構造が、提案されている。
 マグネットの一対の磁極面が周方向を向くように配置された従来のロータについては、例えば、日本国公開公報第2010-63285号公報に開示されている。日本国公開公報第2010-63285号公報の回転子は、軸部の周囲に略等間隔に配置される略直方体状の磁石を備えている。また、各磁石は、一対の磁極面が周方向を向くように配置され、隣り合う磁石同士は同極が向かい合うように配置されている(段落0060、図4)。
日本国公開公報第2010-63285号公報
 日本国公開公報第2010-63285号公報に記載されているように、スポーク型のロータ構造においては、マグネットの磁極面が有効に利用されている。そのため、SPMタイプのロータやスポーク型以外のIPMタイプのロータと、スポーク型のロータ構造と、を比較すると、同じ磁力を発生させようとした場合に、スポーク型のロータ構造の方が、ロータの径を小さく設計することができる。
 しかしながら、近年、モータの小型化だけでなく、トルクを向上させることが求められている。すなわち、ロータの径を大きくすることなく、ロータの磁力を増加させることが求められている。
 本発明の目的は、スポーク型IPMタイプのロータにおいて、ロータの径を大きくすることなく、ロータの磁力を増加する技術を提供することである。
 本願の例示的な第1発明は、インナーロータ型のモータに用いられるロータであって、上下に延びる中心軸の周囲に、周方向に配列された複数のマグネットと、磁性体からなるロータコアとを有する。前記ロータコアは、前記マグネットより径方向内側において、軸方向に筒状に延びる内側コア部と、前記内側コア部より径方向外側において、周方向に配列された複数の外側コア部とを有する。複数の前記外側コア部と、複数の前記マグネットとが、周方向に交互に配列される。前記マグネットは、磁極面である一対の周方向端面を有する。複数の前記マグネットの同極の磁極面同士が、周方向に対向し、前記一対の周方向端面の少なくとも一方は、その内端と外端とを繋ぐ平面よりも周方向に突出し、前記平面からの距離が最も大きい頂部を有する突出面である。前記マグネットは、外端面の周方向の幅よりも周方向の幅の広い部分を有する、ロータである。
 本願の例示的な第1発明によれば、ロータの径を大きくすることなく、マグネットの体積を大きくできる。これにより、ロータの径を大きくすることなく、ロータの磁力を増加できる。その結果、当該ロータをモータに組み込んだ際、モータのトルクを向上できる。
図1は、第1実施形態に係るロータの横断面図である。 図2は、第2実施形態に係るモータの縦断面図である。 図3は、第2実施形態に係るロータの横断面図である。 図4は、第2実施形態に係るロータの部分横断面図である。 図5は、変形例に係るロータの横断面図である。 図6は、変形例に係るロータの横断面図である。 図7は、変形例に係るロータの横断面図である。 図8は、変形例に係るロータの横断面図である。 図9は、変形例に係るロータの横断面図である。 図10は、従来型マグネットを有するロータの横断面図である。 図11は、シミュレーションの結果を表した図である。
 以下、本発明の例示的な実施形態について、図面を参照しながら説明する。なお、本願では、モータの中心軸と平行な方向を「軸方向」、モータの中心軸に直交する方向を「径方向」、モータの中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。また、本願では、軸方向を上下方向とし、ベース部に対してロータ側を上として、各部の形状や位置関係を説明する。ただし、この上下方向の定義により、本発明に係るモータの使用時の向きを限定する意図はない。
 また、本願において「平行な方向」とは、略平行な方向も含む。また、本願において「直交する方向」とは、略直交する方向も含む。
 <1.第1実施形態>
 図1は、第1実施形態に係るモータのロータ31Aの横断面図である。図1に示すように、ロータ31Aは、上下に延びる中心軸9Aを中心とした略円柱型である。ロータ31Aは、インナーロータ型のモータに用いられるロータであって、中心軸9Aを中心に回転する。
 図1に示すように、ロータ31Aは、ロータコア4Aと、中心軸9Aの周囲に周方向に配列された複数のマグネット5Aと、を有する。
 ロータコア4Aは、内側コア部41Aおよび複数の外側コア部42Aを有し、磁性体からなる。内側コア部41Aは、マグネット5Aより径方向内側において、軸方向に筒状に延びる。複数の外側コア部42Aは、内側コア部41Aより径方向外側において、周方向に配列される。また、複数の外側コア部42Aと、複数のマグネット5Aとは、周方向に交互に配列される。
 マグネット5Aは、磁極面である一対の周方向端面を有する。本実施形態では、マグネット5Aの一対の周方向端面の一方は、突出面51Aであり、他方は、平坦面52Aである。突出面51Aは、その内端と外端とを繋ぐ平面50Aよりも周方向に突出する。突出面51Aは、平面50Aからの距離が最も大きい頂部510Aを有する。また、平坦面52Aは、その内端と外端とを繋ぐ平面50Aと略同一面上に位置する。
 磁極面の一方が平坦面52Aであるマグネット5Aは、磁極面の両方が突出面であるマグネットよりも製造コストが低い。したがって、磁極面の一方が突出面51Aで有り、他方が平坦面52Aであるマグネット5Aを使用することにより、製造コストを抑えつつ、マグネットの体積を大きくすることができる。
 また、マグネット5Aは、最も周方向の幅が広い幅広部55Aを有する。ここで、本実施形態では、マグネット5Aの内端面53Aの周方向の幅と、外端面54Aの周方向の幅とは、略同一である。そのため、幅広部55Aの周方向の幅は、外端面54Aの周方向の幅よりも広い。なお、本実施形態では、幅広部55Aの周方向端部の一方は、突出面51Aの頂部510Aと重なる。
 このように、マグネット5Aは、外端面54Aよりも周方向の幅の広い部分を有する。これにより、ロータ31Aの径を大きくすることなく、マグネット5Aの体積を大きくできる。すなわち、ロータ31Aの径を大きくすることなく、ロータ31Aの磁力を増加できる。その結果、ロータ31Aをモータに組み込んだ際、モータのトルクを向上できる。
 ここで、ロータ31Aが回転した時に、マグネット5Aには、径方向外側に向かう遠心力がかかり、マグネット5Aが、ロータコア4Aの外側に飛びだそうとする。しかし、このロータ31Aでは、マグネット5Aが、外端面54Aの周方向の幅よりも周方向の幅の広い幅広部55Aを有する。すなわち、マグネット5Aの周方向の両側に隣接する外側コア部42Aの外端において、外側コア部42A同士の間隔が幅広部55Aよりも狭い。そのため、マグネット5Aが径方向外側へ抜けるのが抑制される。
 複数のマグネット5Aは、同極の磁極面同士が周方向に対向して配置される。また、図1に示すように、本実施形態の複数のマグネット5Aは、突出面51Aと、平坦面52Aとが周方向に対向して配置される。すなわち、N極突出面511AおよびS極平坦面522Aを有するマグネット5Aと、S極突出面512AおよびN極平坦面521Aを有するマグネット5Aとが、周方向に交互に配置される。
 したがって、1つのマグネット5AのN極突出面511Aと、その隣りに位置するマグネット5AのN極平坦面521Aとが外側コア部42Aを介して周方向に対向する。同様に、1つのマグネット5AのS極突出面512Aと、その隣りに位置するマグネット5AのS極平坦面522Aとが外側コア部42Aを介して周方向に対向する。
 このように、突出面51Aと平坦面52Aとが周方向に対向することにより、複数の外コア部42Aの形状が同一となる。これにより、ロータ31Aの回転時に、各外側コア部42Aにかかる力が均一となる。
 <2.第2実施形態>
 <2-1.モータの全体構成>
 次に、本発明の第2実施形態について、説明する。図2は、モータ1の縦断面図である。モータ1は、例えば、自動車のエンジン冷却用ファンに使用される。ただし、本発明のモータ1は、自動車の他の部位や、自動車以外の機器に使用されるものであってもよい。例えば、本発明のモータ1は、OA機器、医療機器、産業用の大型設備等に搭載されるものであってもよい。
 このモータ1は、電機子24の径方向内側にロータ31が配置された、いわゆるインナーロータ型のモータである。図2に示すように、モータ1は、静止部2と回転部3とを有する。静止部2は、自動車等の機器の枠体に固定される。回転部3は、静止部2に対して、回転可能に支持される。
 本実施形態の静止部2は、シャフト21と、ベース部22と、モータフレーム23と、電機子24と、回路基板25とを有する。
 シャフト21は、中心軸9に沿って上下方向に延びる柱状の部材である。シャフト21の下端部は、ベース部22に固定される。
 ベース部22は、回転部3の下方において、径方向に広がる。ベース部22はアルミニウムなどの金属製である。モータフレーム23は、中心軸9を中心とする円筒形状の円筒部231を有する。ベース部22と、モータフレーム23の下端部とは、ネジ止めにて固定される。
 電機子24は、駆動電流に応じて磁束を発生させる。電機子24は、ベース部22の上方において、ロータ31の径方向外側に配置される。電機子24は、ステータコア241、インシュレータ242、および複数のコイル243を有する。ステータコア241は、例えば、複数の電磁鋼板が軸方向に積層された積層鋼板により形成されている。ステータコア241は、円環状のコアバック71と、コアバック71から径方向内側へ向けて突出した複数のティース72とを有する。コアバック71は、モータフレーム23の円筒部231の内周面に、固定される。複数のティース72は、周方向に略等間隔に配列されている。
 インシュレータ242は、絶縁体である樹脂により形成される。各ティース72の上面、下面、および周方向の両端面は、インシュレータ242に覆われている。コイル243は、インシュレータ242の周囲に巻かれた導線により、構成される。インシュレータ242は、ティース72とコイル243との間に介在することによって、ティース72とコイル243とが電気的に短絡することを、防止している。なお、インシュレータ242に代えて、ティース72の表面に絶縁塗装が施されていてもよい。
 回路基板25は、ベース部22の下方に配置されている。回路基板25には、モータ1を駆動するための電子部品が、実装される。コイル243を構成する導線の端部は、回路基板25に半田付け、または溶接され、回路基板25上の電子部品と電気的に接続される。外部電源から供給される電流は、回路基板25を介して、コイル243へ流れる。
 回転部3は、ロータ31およびロータホルダ32を有し、シャフト21に対して回転可能に支持されている。シャフト21と、ロータ31およびロータホルダ32との間には、軸受機構12が介在している。本実施形態の軸受機構12には、球体を介して外輪と内輪とを相対回転させるボールベアリングが、使用されている。ただし、ボールベアリングに代えて、すべり軸受や流体軸受等の他方式の軸受が使用されてもよい。
 ロータ31は、電機子24の径方向内側に配置されて、中心軸9を中心として回転する。ロータ31の外周面は、電機子24の複数のティース72の内端面と、径方向に対向する。ロータホルダ32は、ロータ31を保持する樹脂製の部材である。ロータホルダ32は、例えば、ロータ31をインサート部品とするインサート成型により形成される。ロータホルダ32は、例えば、ファンのインペラ等の駆動部にネジ止めにて連結される。
 このようなモータ1において、静止部2のコイル243に駆動電流を与えると、ステータコア241の複数のティース72に、径方向の磁束が生じる。そして、ティース72とロータ31との間の磁束の作用により、周方向のトルクが発生する。その結果、静止部2に対して回転部3が、中心軸9を中心として回転する。
 <2-2.ロータの構成>
 続いて、ロータ31の詳細な構造について、説明する。図3は、ロータ31の横断面図である。図4は、ロータ31の部分横断面図である。
 ロータ31は、中心軸9を中心とした略円柱型である。ロータ31は、ロータコア4と、中心軸9の周囲に周方向に配列された複数のマグネット5とを有する。
 ロータコア4は、シャフト21を包囲する筒状の部材である。本実施形態のロータコア4は、磁性体である電磁鋼板を軸方向に積層させた積層鋼板からなる。ロータコア4は、内側コア部41および複数の外側コア部42を有する。
 内側コア部41は、マグネット5より径方向内側において、軸方向に筒状に延びる。内コア部41の略中央には、軸方向に内側コア部41を貫通するシャフト孔43が設けられる。シャフト孔43には、シャフト21が挿入される。
 複数の外側コア部42は、内側コア部41より径方向外側において、周方向に配列される。外側コア部42の内端は、内側コア部41と接続する。また、複数の外側コア部42と、複数のマグネット5とは、周方向に交互に配列される。なお、隣接する外側コア部42とマグネット5とは、周方向に対向する面同士が接触している。ロータコア4の詳細な構成については、後述する。
 各マグネット5は、磁極面である一対の周方向端面を有する。複数のマグネット5は、同極の磁極面同士が周方向に対向して配置される。本実施形態では、各マグネット5の一対の周方向端面は、いずれも突出面51である。図3に示すように、本実施形態では、N極突出面511同士が外側コア部42を介して周方向に対向し、S極突出面512同士が外側コア部42を介して周方向に対向する。
 突出面51は、その内端と外端とを繋ぐ平面50よりも周方向に突出している。突出面51は、平面50からの距離が最も大きい頂部510を有する。
 また、本実施形態の突出面51は、滑らかな曲面である。すなわち、突出面51は、その内端から頂部510に向かう面が、曲面である。また、突出面51は、その外端から頂部510に向かう面が、曲面である。これにより、突出面51の外端から頂部510に向かう面が平面である場合と比較して、径方向外側に向かうにつれ、突出面51の法線が径方向外側を向く。その結果、外側コア部42において、突出面51からの磁束が径方向外側を向きやすい。したがって、ロータ31をモータ1に組み込んだ際、モータ1のトルクをより向上させることができる。
 各マグネット5は、内端面53の周方向の幅と、外端面54の周方向の幅とが、略同一である。各突出面51はそれぞれ、突出面51の内端と頂部510との距離と、突出面51の外端と頂部510との距離とが、略同一である。このため、マグネット5のうち、最も周方向の幅が広い幅広部55の両端部は、一対の突出面51のそれぞれの頂部510と重なる。
 幅広部55は、内端面53および外端面54よりも周方向の幅が広い。これにより、マグネット5の周方向の両側に隣接する外側コア部42の外端面同士の間隔が、幅広部55よりも狭い。したがって、マグネット5が径方向外側へ抜けるのが抑制される。同様に、マグネット5が径方向内側に移動するのが抑制される。
 このように、マグネット5は、外端面54の周方向の幅よりも周方向の幅の広い部分を有する。これにより、ロータ31の径を大きくすることなく、マグネット5の体積を大きくできる。すなわち、ロータ31の径を大きくすることなく、ロータ31の磁力を増加できる。その結果、ロータ31をモータ1に組み込んだ際、モータ1のトルクを向上できる。本実施形態では、マグネット5の一対の周方向端面の両方が突出面51であることから、マグネット5の体積をより大きくすることができる。したがって、モータ1のトルクをより向上できる。
 また、マグネット5は、内端面53の周方向の幅よりも周方向の幅の広い部分を有する。これにより、内端面53の周方向の幅を大きくせずに済む。すなわち、外側コア部42と内側コア部41とを接続する部位の幅を確保しやすい。よって、ロータコア4を製造しやすい。
 なお、本実施形態のマグネット5は、フェライト系マグネットである。近年では、希土類磁石の価格が高騰している。このため、低コスト化を実現するために、希土類磁石に比べて価格の安いフェライト系マグネットを使用することがある。しかしながら、低コスト化と併せて、従来のモータより高いトルクを得たいという技術的要求がある。この点、本実施形態のロータ31の構造を採用すれば、フェライト系マグネットを使用し、かつ、マグネット5の体積を大きくして、モータ1のトルクを向上させることができる。このように、フェライト系マグネットを用いたロータにおいて、本発明は特に有用である。
 ただし、本発明のロータは、フェライト系マグネット以外のマグネットを使用したものであってもよい。例えば、ネオジム系マグネットを使用してもよい。この場合、マグネットの使用量を低減すべく、ロータの径をより一層小さくすることができる。また、マグネットの磁極面である一対の周方向端面のうち一方が突出面であり、他方が平坦面であるマグネットを使用したりすることにより、低コスト化という要求を可能な限り満足するロータを提供することができる。
 ここで、図3に示すように、本実施形態の各マグネット5は、第1磁石片61および第2磁石片62の2つの磁石片からなる。第1磁石片61と第2磁石片62とは、周方向に隣接している。
 第1磁石片61および第2磁石片62はそれぞれ、磁極面である一対の周方向端面を有する。第1磁石片61の一方の周方向端面は、マグネット5のN極突出面511をなす。第1磁石片61の他方の周方向端面は、S極の平坦な磁極面であり、第2磁石片62と吸着するS極吸着面611である。同様に、第2磁石片62の一方の周方向端面は、N極の平坦な磁極面であり、第1磁石片61と吸着するN極吸着面621である。第2磁石片62の他方の周方向端面は、マグネット5のS極突出面512をなす。第1磁石片61のS極吸着面611と、第2磁石片62のN極吸着面621とは、磁力により互いに吸着する。
 このように、各マグネット5は、磁極面の一方が突出面であり、他方が平坦面である2つの磁石片61,62からなる。磁極面の一方が平坦面である磁石は、磁極面の両方が突出面である磁石よりも製造コストが低い。したがって、各マグネット5が、磁極面の両方が突出面である単独の磁石からなる場合と比べて、製造コストを抑えられる。
 また、各マグネット5が、複数の磁石片から構成されていることにより、渦電流損を抑制できる。これにより、ロータ31をモータ1に組み込んだ際、モータ1のトルクをさらに向上させることができる。
 なお、本実施形態では、各マグネット5は、2つの磁石片からなるが、本発明はこれに限られない。各マグネット5は、単独の磁石片であってもよい。また、各マグネット5は、周方向に隣接する3つ以上の磁石片からなってもよい。その場合、当該3つ以上の磁石片のうち、周方向両端の磁石片は、外側コア部42と周方向に隣接する面が突出面51となる。
 続いて、ロータコア4の構成について、詳細を説明する。
 各外側コア部42には、軸方向に外側コア部42を貫通する貫通孔44が設けられる。これにより、ロータ31の重量が低減される。なお、本実施形態では、全ての外側コア部42に貫通孔44が設けられるが、本発明はこれに限られない。複数の外側コア部42には、貫通孔44が設けられなくてもよい。また、複数の外側コア部42のうちのいずれか1つ、または2つ以上の外側コア部42に貫通孔44が設けられてもよい。
 図4に示すように、本実施形態では、貫通孔44は、いわゆる涙型の形状をしている。具体的には、貫通孔44は、周方向外側に向かうにつれ互いに離れる2つの略平面部441と、2つの略平面部441の内端を繋ぐ内側接続部442と、2つの略平面部441の外端を繋ぐ外側接続部443とに囲まれている。
 ここで、外側コア部42の周方向の端面のうち、中心軸9に直交する断面における接線が略平面部441と平行となる点を、平行点421とする。外側コア部42のうち、平行点421の周辺部422においては、略平面部441と、外側コア部42の周方向の端面との周方向の間隔が略一定である。本実施形態では、略平面部441の内端付近と外側コア部42の周方向端面との間に、周辺部422が位置している。すなわち、貫通孔44の内端付近では、貫通孔44の縁と、外側コア部42の周方向の端面との周方向の間隔が略一定である。
 また、周辺部422より径方向外方では、貫通孔44の縁と、外側コア部42の周方向の端面との周方向の間隔が、径方向外側に向かうにつれて広がっている。当該形状により、マグネット5からロータコア4の磁極面である外側コア部42の外端面に向かう磁束の流れが効率よく案内される。これにより、貫通孔の縁と、外側コア部の周方向の端面との周方向の間隔が、径方向外側へ向かうにつれて広がっていない貫通孔を設けたロータと比較して、貫通孔44によるモータ1のトルクの低下を抑制できる。
 図3に示すように、各マグネット5の内端面53と、内側コア部41の外周面との間には、非磁性体層45が介在する。これにより、各マグネット5の径方向内側における磁束の短絡が抑制されている。本実施形態では、非磁性体層45は、ロータホルダ32を構成する樹脂である。なお、非磁性体層45は、他の非磁性体であってもよい。また、非磁性体層45に代えて、各マグネット5の内端面53と、内側コア部41の外周面との間に、空隙が介在してもよい。
 ロータコア4は、内側コア部41の外周面から非磁性体層45内に突出する、突起46を有する。突起46は、マグネット5の内端面53と接触する。これにより、マグネット5の径方向内側への位置ずれを抑制できる。
 なお、本実施形態の突起46は、内側コア部41の外周面から非磁性体層45内に突出したが、本発明はこの限りではない。突起46は、外側コア部42の周方向の側面から非磁性体層45内に突出し、マグネット5の内端面53と接触してもよい。
 また、本実施形態の外側コア部42は、マグネット5の外端面54と径方向に重ならない。これにより、マグネット5の径方向外側における磁束の短絡を抑制できる。したがって、モータ1のトルクの低下を防止できる。
 ここで、前述の通り、仮に、マグネット5が径方向外側に抜けるのを抑制するために、外側コア部42の外端面の周方向端部から、マグネット5の外端面54に沿って延びる固定部を設けると、隣り合う2つの外側コア部42の固定部同士が、マグネット5の外端面54に沿って対向し、磁路を形成する。そうすると、各マグネット5の径方向外側において、N極側の外側コア部42の固定部およびS極側の外側コア部42の固定部を介して、当該マグネット5のN極からS極へと磁束が短絡する。この場合、ロータ31の有効磁束が低下し、モータ1のトルクが低下する。
 本実施形態のロータ31では、マグネット5は、外端面54よりも周方向の幅の広い部分を有するため、マグネット5の径方向外側への抜けが抑制されている。したがって、固定部を設ける必要がない。
 <3.変形例>
 以上、本発明の例示的な実施形態について説明したが、本発明は上記の実施形態に限定されるものではない。
 図5は、一変形例に係るロータ31Bの横断面図である。図5の例では、各マグネット5Bの一対の周方向端面の一方は、突出面51Bであり、他方は、平坦面52Bである。
 複数のマグネット5Bは、同極の磁極面同士が周方向に対向して配置される。また、図5の例では、複数のマグネット5Bは、突出面51B同士が周方向に対向する。すなわち、複数のマグネット5Bは、平坦面52B同士が周方向に対向する。
 したがって、複数の外側コア部42Bは、その一対の周方向端面の両方が突出面51Bと接するか、または、その一対の周方向端面の両方が平坦面52Bと接する。これにより、モータの非稼働時において、外側コア部42Bにおいて、その周方向両側に隣り合うマグネット5Bからの磁束の流れが、対称性を有する。このようなロータ31Bは、正逆両回転のモータに使用する場合に有用である。
 図6は、他の変形例に係るロータ31Cの横断面図である。図6の例では、各マグネット5Cの一対の周方向端面は、いずれも突出面51Cである。突出面51Cは、その内端と外端とを繋ぐ平面50Cよりも周方向に突出している。突出面51Cは、平面50Cからの距離が最も大きい頂部510Cを有する。
 図6の例では、突出面51Cの内端と頂部510Cの距離は、突出面51Cの外端と頂部510Cとの距離よりも小さい。これにより、外側コア部42Cのうち外端面に近い部分を広くとれる。これにより、マグネット5Cの表面から出た磁束が、外側コア部42Cの外端面に向かいやすい。
 図7は、他の変形例に係るロータ31Dの横断面図である。図7の例では、各マグネット5Dの一対の周方向端面は、いずれも突出面51Dである。突出面51Dは、その内端と外端とを繋ぐ平面50Dよりも周方向に突出している。突出面51Dは、平面50Dからの距離が最も大きい頂部510Dを有する。
 図7の例では、頂部510Dは、径方向に幅を有する、平面50Dと平行な平面である。すなわち、頂部510Dは、軸方向に延びる平面である。このように、頂部510Dは、中心軸に直交する断面において点ではなく、径方向の幅を有する線であってもよい。これにより、マグネット5Dの周方向の幅が広い部分を大きくとれる。したがって、マグネット5Dの体積をより大きくできる。その結果、ロータ31Dをモータに組み込んだ際に、モータのトルクをより向上できる。
 なお、上記の実施形態では、突出面が滑らかな曲面であったが、本発明はこの限りではない。図7の例では、突出面51Dは、その外端から頂部510Dに向かう面と、内端から頂部510Dに向かう面とが、曲面である。また、頂部510Dは平面である。このように、突出面51Dは、曲面と平面とにより構成されてもよい。
 図8は、他の変形例に係るロータ31Eの横断面図である。図8の例では、各マグネット5Eの一対の周方向端面は、いずれも突出面51Eである。突出面51Eは、その内端と外端とを繋ぐ平面50Eよりも周方向に突出している。突出面51Eは、平面50Eからの距離が最も大きい頂部510Eを有する。
 図8の例では、突出面51Eは、その内端から頂部510Eに向かう面が、平面である。また、突出面51Eは、その外端から頂部510Eに向かう面が、平面である。これにより、突出面51Eの外端から頂部510Eに向かう面が曲面である場合と比較して、外側コア部42Eの外端面に近い部分を広くとれる。したがって、突出面51Eからの磁束が、外側コア部42Eの外端面に向かいやすい。
 なお、図8の例では、突出面51Eの外端から頂部510Eに向かう面と、内端から頂部510Eに向かう面の両方が平面であったが、本発明はこれに限られない。突出面51Eは、曲面と平面との組み合わせにより構成されてもよい。
 図9は、他の変形例に係るロータ31Fの横断面図である。図9の例では、マグネット5Fにおいて、最も周方向の幅が広い幅広部55Fは、内端面53Fよりも周方向の幅が広い。すなわち、マグネット5Fは、内端面53Fの周方向の幅よりも周方向の幅の広い部分を有する。これにより、マグネット5Fの径方向内側への位置ずれが抑制されている。
 各マグネット5Fの内端面53Fと、内側コア部41Fの外周面との間には、非磁性体層45Fが介在する。これにより、各マグネット5Fの径方向内側において、磁束が短絡するのが抑制される。したがって、ロータ31Fをモータに組み込んだ際に、モータのトルクを向上できる。
 また、図9の例では、マグネット5Fの内端面53F全体が、非磁性体層45Fと隣接している。すなわち、上述の実施形態では、ロータコアがマグネットの内端面に接触する突起を有していたが、図9の例では、ロータコア4Fは、突起を有さない。これにより、各マグネット5Fの径方向内側において、磁束が短絡するのがさらに抑制される。したがって、ロータ31Fをモータに組み込んだ際に、モータのトルクをさらに向上できる。
 また、各部材の細部の形状については、本願の各図に示された形状と、相違していてもよい。また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
 <4.シミュレーション>
 最後に、マグネットの突出面の有無による、ロータの表面磁束密度の違いについて述べる。図10は、略直方体形状の従来型のマグネット5Gを有する、ロータ31Gの断面図である。図11は、ロータ31Gおよびロータ31Bの表面磁束密度のシミュレーション結果を表した図である。
 図10に示す、磁極面である一対の周方向端面の両方が平坦面52Gであるマグネット5Gを有するロータ31Gについて、表面磁束密度を計測するシミュレーションを行った。ロータ31Gは、マグネット5Gおよび外側コア部42Gの周方向の両端面の形状以外は、ロータ31Bと同様の形状および寸法である。
 具体的には、中心軸9Gを中心とし、かつ、最突出点422Gを通る円423G上において、最突出点422Gの1つを起点として、中心軸9Gを中心に0.5度間隔で磁束密度をシミュレーションにより計算した。ここで、最突出点422Gとは、外側コア部42Gの外端面のうち、中心軸9Gからの距離が最も大きい点である。ここでは、各位置における磁束密度の二乗平均平方根を表面磁束密度と定義する。
 また、同様に、図5に示す、磁極面である一対の周方向端面の一方が突出面51Bであり、他方が平坦面52Bであるマグネット5Bを有するロータ31Bについて、表面磁束密度を計測するシミュレーションを行った。
 具体的には、中心軸9Bを中心とし、かつ、最突出点422Bを通る円423B上において、最突出点422Bの1つを起点として、中心軸9Bを中心に0.5度間隔で磁束密度をシミュレーションにより計算した。ここで、最突出点422Bとは、外側コア部42Bの外端面のうち、中心軸9Bからの距離が最も大きい点である。ここでは、ロータ31Gの場合と同様に、各位置における磁束密度の二乗平均平方根を表面磁束密度と定義する。
 図11に示すように、ロータ31Bの表面磁束密度は、ロータ31Gの表面磁束密度と比較して約7.6%大きい。すなわち、一対の周方向端面の一方が突出面であるマグネット5Bを有するロータ31Bは、一対の周方向端面の両方が平坦面であるマグネット5Gを有するロータ31Gと比較して、表面磁束密度が大きい。
 この結果より、従来型のマグネット5Gを有するロータ31Gと比較して、本発明の特徴を有するマグネット5Bを有するロータ31Bは、ロータの径を大きくすることなく、ロータの磁力を増加しているといえる。
 なお、図11に示す表面磁束密度の数値は、例えばマグネットの材料やコアの材料等の、諸条件を変更すると、変化する。その場合であっても、それらの諸条件が同一の下で比較すれば、従来型のロータの表面磁束密度と、本発明の特徴を有するロータの表面磁束密度とが、逆転することはない。すなわち、従来型のロータと比較して、本発明の特徴を有するロータは、表面磁束密度の数値が大きくなる。
 本発明は、ロータおよびモータに利用できる。
 1 モータ
 4,4A,4F ロータコア
 5,5A,5B,5C,5D,5E,5F マグネット
 9,9A 中心軸
 31,31A,31B,31C,31D,31E,31F ロータ
 32 ロータホルダ
 41,41A,41F 内側コア部
 42,42A,42B,42C,42E 外側コア部
 43 シャフト孔
 44 貫通孔
 45,45F 非磁性体層
 46 突起
 50,50A,50C,50D,50E 平面
 51,51A,51B,51C,51D,51E 突出面
 52A,52B 平坦面
 53,53A,53F 内端面
 54,54A,54A 外端面
 55,55A,55F 幅広部
 61 第1磁石片
 62 第2磁石片
 421 平行点
 422 周辺部
 441 略平面部
 510,510A,510C,510D,510E 頂部
 511,511A N極突出面
 512,512A S極突出面
 521A N極平坦面
 522A S極平坦面
 611 N極吸着面
 621 S極吸着面

Claims (21)

  1.  インナーロータ型のモータに用いられるロータであって、
     上下に延びる中心軸の周囲に、周方向に配列された複数のマグネットと、
     磁性体からなるロータコアと、
    を有し、
     前記ロータコアは、
      前記マグネットより径方向内側において、軸方向に筒状に延びる内側コア部と、
      前記内側コア部より径方向外側において、周方向に配列された複数の外側コア部と、
    を有し、
     複数の前記外側コア部と、複数の前記マグネットとが、周方向に交互に配列され、
     前記マグネットは、磁極面である一対の周方向端面を有し、
     複数の前記マグネットの同極の磁極面同士が、周方向に対向し、
     前記一対の周方向端面の少なくとも一方は、その内端と外端とを繋ぐ平面よりも周方向に突出し、前記平面からの距離が最も大きい頂部を有する突出面であり、
     前記マグネットは、外端面の周方向の幅よりも周方向の幅の広い部分を有する、ロータ。
  2.  請求項1に記載のロータにおいて、
     前記マグネットの前記一対の周方向端面の一方は、前記突出面であり、他方は、平坦面である、ロータ。
  3.  請求項2に記載のロータにおいて、
     複数の前記マグネットは、前記突出面と、前記平坦面とが周方向に対向する、ロータ。
  4.  請求項2に記載のロータにおいて、
     複数の前記マグネットの前記突出面同士が、周方向に対向する、ロータ。
  5.  請求項1に記載のロータにおいて、
     前記マグネットの前記一対の周方向端面の両方が前記突出面である、ロータ。
  6.  請求項5に記載のロータにおいて、
     前記マグネットは、周方向に隣接する複数の磁石片からなり、
     前記複数の磁石片のうち、周方向両端の磁石片は、前記外側コア部と周方向に隣接する面が前記突出面である、ロータ。
  7.  請求項1から請求項6までのいずれかに記載のロータにおいて、
     前記マグネットの内端面と前記内側コア部の外周面との間に空隙または非磁性体層が介在し、
     前記ロータコアは、前記内側コア部の外周面または前記外側コア部の周方向の側面から前記空隙または非磁性体層内に突出し、前記マグネットの内端面と接触する突起を有する、ロータ。
  8.  請求項1から請求項6までのいずれかに記載のロータにおいて、
     前記マグネットは、内端面の周方向の幅よりも周方向の幅の広い部分を有する、ロータ。
  9.  請求項8に記載のロータにおいて、
     前記マグネットの内端面全体が、空隙または非磁性体層と隣接する、ロータ。
  10.  請求項1から請求項9までのいずれかに記載のロータにおいて、
     前記突出面は、前記内端から前記頂部に向かう面が平面である、ロータ。
  11.  請求項1から請求項9までのいずれかに記載のロータにおいて、
     前記突出面は、前記内端から前記頂部に向かう面が曲面である、ロータ。
  12.  請求項1から請求項11までのいずれかに記載のロータにおいて、
     前記突出面は、前記外端から前記頂部に向かう面が平面である、ロータ。
  13.  請求項1から請求項11までのいずれかに記載のロータにおいて、
     前記突出面は、前記外端から前記頂部に向かう面が曲面である、ロータ。
  14.  請求項1から請求項13までのいずれかに記載のロータにおいて、
     前記内端と前記頂部との距離は、前記外端と前記頂部との距離よりも小さい、ロータ。
  15.  請求項1から請求項14までのいずれかに記載のロータにおいて、
     前記頂部は、軸方向に延びる平面である、ロータ。
  16.  請求項1から請求項15までのいずれかに記載のロータにおいて、
     前記ロータコアの前記外側コア部は、前記マグネットの外端面と径方向に重ならない、ロータ。
  17.  請求項1から請求項16までのいずれかに記載のロータにおいて、
     複数の前記外側コア部の少なくとも1つは、軸方向に貫通する貫通孔を有する、ロータ。
  18.  請求項17に記載のロータにおいて、
     前記貫通孔の縁と、前記外側コア部の周方向の端面との周方向の間隔が、略一定または径方向外側へ向かうにつれて広がっている、ロータ。
  19.  請求項1から請求項18までのいずれかに記載のロータにおいて、
     前記マグネットは、フェライト系マグネットである、ロータ。
  20.  請求項1から請求項18までのいずれかに記載のロータにおいて、
     前記マグネットは、ネオジム系マグネットである、ロータ。
  21.  静止部と、
     前記静止部に対して回転可能に支持される回転部と、
    を備え、
     前記回転部は、
      請求項1から請求項20までのいずれかに記載のロータを有し、
     前記静止部は、
      前記ロータの径方向外側に配置された電機子を有するモータ。
PCT/JP2013/084576 2013-05-21 2013-12-25 ロータおよびモータ WO2014188628A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380055947.6A CN104756368B (zh) 2013-05-21 2013-12-25 转子以及马达
DE112013007101.0T DE112013007101T5 (de) 2013-05-21 2013-12-25 Rotor und Motor
US14/766,806 US10063115B2 (en) 2013-05-21 2013-12-25 Rotor including specific magnet structure and motor provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-106888 2013-05-21
JP2013106888A JP6083523B2 (ja) 2013-05-21 2013-05-21 ロータおよびモータ

Publications (1)

Publication Number Publication Date
WO2014188628A1 true WO2014188628A1 (ja) 2014-11-27

Family

ID=51933205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084576 WO2014188628A1 (ja) 2013-05-21 2013-12-25 ロータおよびモータ

Country Status (5)

Country Link
US (1) US10063115B2 (ja)
JP (1) JP6083523B2 (ja)
CN (1) CN104756368B (ja)
DE (1) DE112013007101T5 (ja)
WO (1) WO2014188628A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233672A (zh) * 2023-11-10 2023-12-15 上海芬能自动化技术股份有限公司 一种新能源电机转子表磁检测设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022088B1 (fr) * 2014-06-05 2016-06-03 Valeo Equip Electr Moteur Rotor a aimants permanents a concentration de flux pour machine electrique tournante
EP3185402B1 (en) * 2015-12-23 2022-07-13 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Permanent magnet rotor of an electric machine
JP6298086B2 (ja) * 2016-02-24 2018-03-20 ファナック株式会社 電動機のロータ及びその製造方法
CN109075661A (zh) * 2016-03-31 2018-12-21 日本电产株式会社 马达
JP6655500B2 (ja) * 2016-08-09 2020-02-26 株式会社ミツバ 電動モータ
DE102016223976A1 (de) * 2016-12-01 2018-06-07 Schaeffler Technologies AG & Co. KG Rotor eines Elektromotors
CN111971874B (zh) * 2018-03-30 2024-02-02 日本电产株式会社 转子、马达以及电动助力转向装置
CN111903040B (zh) * 2018-03-30 2022-11-25 日本电产株式会社 转子、马达以及电动助力转向装置
EP3579383B1 (de) 2018-06-07 2020-12-23 maxon international ag Drehmomentoptimierter mehrpoliger rotor für einen elektromotor
JP2020174492A (ja) * 2019-04-12 2020-10-22 パナソニックIpマネジメント株式会社 モータ
US20210320574A1 (en) * 2020-04-08 2021-10-14 Board Of Regents, The University Of Texas System High torque density double stator permanent magnet electric machine
KR102625653B1 (ko) * 2021-10-14 2024-01-17 엘지전자 주식회사 자속 집중형 로터 및 이를 구비한 모터
KR102654659B1 (ko) * 2021-10-18 2024-04-05 엘지전자 주식회사 아크 타입 영구자석 및 이를 구비한 자속 집중형 로터

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100050A (en) * 1978-12-26 1980-07-30 Garrett Corp Rotor unit
US6459185B1 (en) * 1998-08-24 2002-10-01 Magnet-Motor Gesellschaft Fur Magnetmotorische Technik Mbh Electrical machine with permanent magnets
JP2009268204A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP2010063285A (ja) * 2008-09-04 2010-03-18 Nidec Shibaura Corp モータ及びその製造方法
JP2011524735A (ja) * 2008-06-16 2011-09-01 モトゥール・ルロワ−ソメ 永久磁石回転子及びそのような回転子を含む回転機
EP2538528A2 (fr) * 2011-06-24 2012-12-26 Faurecia Bloc Avant Rotor de moteur électrique
JP2013021776A (ja) * 2011-07-08 2013-01-31 Yaskawa Electric Corp 回転電機
JP2013034344A (ja) * 2011-08-03 2013-02-14 Yaskawa Electric Corp 回転電機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336649A (en) * 1978-12-26 1982-06-29 The Garrett Corporation Method of making rotor assembly having anchor with undulating sides
US4242610A (en) * 1978-12-26 1980-12-30 The Garrett Corporation Wedge-shaped permanent magnet rotor assembly
US4296544A (en) 1978-12-26 1981-10-27 The Garrett Corporation Method of making rotor assembly with magnet cushions
JPS60219947A (ja) * 1984-04-13 1985-11-02 Yaskawa Electric Mfg Co Ltd 永久磁石形同期電動機
US5063318A (en) * 1989-08-25 1991-11-05 Sundstrand Corporation Preloaded permanent magnet rotor assembly
KR100688206B1 (ko) * 2005-03-08 2007-03-02 엘지전자 주식회사 모터
JP2010183684A (ja) 2009-02-04 2010-08-19 Mitsubishi Electric Corp 回転機用永久磁石型回転子
CN102377257B (zh) * 2010-08-10 2016-03-30 德昌电机(深圳)有限公司 无刷电机
JP5609689B2 (ja) 2011-02-08 2014-10-22 株式会社安川電機 回転電機
US8748824B2 (en) * 2011-06-30 2014-06-10 Saint-Gobain Ceramics & Plastics, Inc. Optical fiber having scintillation quencher, a radiation sensor and a radiation detection apparatus including the optical fiber and a method of making and using the same
JP5240592B2 (ja) 2011-07-08 2013-07-17 株式会社安川電機 回転電機
US20130038162A1 (en) * 2011-08-11 2013-02-14 Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd Motor
WO2013135256A2 (de) * 2012-03-13 2013-09-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektrische maschine
JP6281147B2 (ja) * 2012-08-07 2018-02-21 日本電産株式会社 ロータおよびモータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100050A (en) * 1978-12-26 1980-07-30 Garrett Corp Rotor unit
US6459185B1 (en) * 1998-08-24 2002-10-01 Magnet-Motor Gesellschaft Fur Magnetmotorische Technik Mbh Electrical machine with permanent magnets
JP2009268204A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp Ipmモータ用ロータとipmモータ
JP2011524735A (ja) * 2008-06-16 2011-09-01 モトゥール・ルロワ−ソメ 永久磁石回転子及びそのような回転子を含む回転機
JP2010063285A (ja) * 2008-09-04 2010-03-18 Nidec Shibaura Corp モータ及びその製造方法
EP2538528A2 (fr) * 2011-06-24 2012-12-26 Faurecia Bloc Avant Rotor de moteur électrique
JP2013021776A (ja) * 2011-07-08 2013-01-31 Yaskawa Electric Corp 回転電機
JP2013034344A (ja) * 2011-08-03 2013-02-14 Yaskawa Electric Corp 回転電機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117233672A (zh) * 2023-11-10 2023-12-15 上海芬能自动化技术股份有限公司 一种新能源电机转子表磁检测设备
CN117233672B (zh) * 2023-11-10 2024-02-09 上海芬能自动化技术股份有限公司 一种新能源电机转子表磁检测设备

Also Published As

Publication number Publication date
CN104756368B (zh) 2017-10-24
DE112013007101T5 (de) 2016-02-04
JP6083523B2 (ja) 2017-02-22
CN104756368A (zh) 2015-07-01
US10063115B2 (en) 2018-08-28
JP2014230348A (ja) 2014-12-08
US20160013689A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
WO2014188628A1 (ja) ロータおよびモータ
US9966809B2 (en) Motor
US8922083B2 (en) Rotor
JP5935615B2 (ja) 回転電機のロータ
US9923436B2 (en) Rotor for a rotary electric machine
JP6055725B2 (ja) 回転子および回転子を用いたアキシャル型回転電機
JP2013123365A (ja) モータ
US10312755B2 (en) Motor
US9490669B2 (en) Rotor and motor
US9356479B2 (en) Hybrid excitation rotating electrical machine
JP2007330025A (ja) モータ
US20110163618A1 (en) Rotating Electrical Machine
CN103516081A (zh) 转子、具有转子的发电-电动机及转子制造方法
US20230253838A1 (en) Electric motor
JP2011172359A (ja) 分割型回転子及び電動機
US20210288533A1 (en) Rotating electric machine
JP5852418B2 (ja) ロータ及びモータ
JP5884463B2 (ja) 回転電機
JPWO2019008930A1 (ja) ステータおよびモータ
CN107294239B (zh) 风扇、转子及其永久磁性元件
JP2007104887A (ja) 多極式永久磁石発電機
TW201737596A (zh) 軸流間隙型旋轉電機
US20230318375A1 (en) Rotary electric machine
US20170063185A1 (en) Rotor
US20140292129A1 (en) Thin motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766806

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007101

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885178

Country of ref document: EP

Kind code of ref document: A1