WO2014186722A2 - High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath - Google Patents

High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath Download PDF

Info

Publication number
WO2014186722A2
WO2014186722A2 PCT/US2014/038425 US2014038425W WO2014186722A2 WO 2014186722 A2 WO2014186722 A2 WO 2014186722A2 US 2014038425 W US2014038425 W US 2014038425W WO 2014186722 A2 WO2014186722 A2 WO 2014186722A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steel sheet
austenite
partitioning
carbon
Prior art date
Application number
PCT/US2014/038425
Other languages
English (en)
French (fr)
Other versions
WO2014186722A3 (en
Inventor
Grant Aaron THOMAS
Luis G. GARZA-MARTINEZ
Original Assignee
Ak Steel Properties, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ak Steel Properties, Inc. filed Critical Ak Steel Properties, Inc.
Priority to KR1020157035337A priority Critical patent/KR101776241B1/ko
Priority to AU2014265214A priority patent/AU2014265214B2/en
Priority to JP2016514134A priority patent/JP2016524038A/ja
Priority to CN201480029127.4A priority patent/CN105247090A/zh
Priority to BR112015027447A priority patent/BR112015027447B1/pt
Priority to KR1020177024721A priority patent/KR20170104158A/ko
Priority to KR1020197024809A priority patent/KR20190101504A/ko
Priority to CA2908491A priority patent/CA2908491C/en
Priority to RU2015141563A priority patent/RU2632042C2/ru
Priority to MX2015015332A priority patent/MX2015015332A/es
Priority to EP14729827.7A priority patent/EP2997172B1/en
Publication of WO2014186722A2 publication Critical patent/WO2014186722A2/en
Publication of WO2014186722A3 publication Critical patent/WO2014186722A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • C21D1/785Thermocycling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to steel compositions and processing methods for production of steel using hot-dip galvanizing/galvannealing (HDG) processes such that the resulting steel exhibits high strength and cold formability.
  • HDG hot-dip galvanizing/galvannealing
  • the present steel is produced using a composition and a modified HDG process that together produces a resulting microstructure consisting of generally martensite and austenite (among other constituents).
  • the composition includes certain alloying additions and the HDG process includes certain process modification, all of which are at least partially related to driving the transformation of austenite to martensite followed by a partial stabilization of austenite at room-temperature.
  • FIGURE 1 depicts a schematic view of a HDG temperature profile with a
  • partitioning step performed after galvanizing/galvannealing.
  • FIGURE 2 depicts a schematic view of a HDG temperature profile with a
  • FIGURE 3 depicts a plot of one embodiment with Rockwell hardness plotted against cooling rate.
  • FIGURE 4 depicts a plot of another embodiment with Rockwell hardness plotted against cooling rate.
  • FIGURE 5 depicts a plot of another embodiment with Rockwell hardness plotted against cooling rate.
  • FIGURE 6 depicts six photo micrographs of the embodiment of FIG. 3 taken from samples being cooled at various cooling rates.
  • FIGURE 7 depicts six photo micrographs of the embodiment of FIG. 4 taken from samples being cooled at various cooling rates.
  • FIGURE 8 depicts six photo micrographs of the embodiment of FIG. 5 taken from samples being cooled at various cooling rates.
  • FIGURE 9 depicts a plot of tensile data as a function of austenitization
  • FIGURE 10 depicts a plot of tensile data as a function of austenitization temperature for several embodiments.
  • FIGURE 11 depicts a plot of tensile data as a function of quench temperature for several embodiments.
  • FIGURE 12 depicts a plot of tensile data as a function of quench temperature for several embodiments.
  • FIG. 1 shows a schematic representation of the thermal cycle used to achieve high strength and cold formability in a steel sheet having a certain chemical composition (described in greater detail below).
  • FIG. 1 shows a typical hot-dip galvanizing or galvannealing thermal profile (10) with process modifications shown with dashed lines.
  • the process generally involves austenitization followed by a rapid cooling to a specified quench temperature to partially transform austenite to martensite, and the holding at an elevated temperature, a partitioning temperature, to allow carbon to diffuse out of martensite and into the remaining austenite, thus, stabilizing the austenite at room temperature.
  • the thermal profile shown in FIG. 1 may be used with conventional continuous hot-dip galvanizing or galvannealing production lines, although such a production line is not required.
  • the steel sheet is first heated to a peak metal temperature
  • the peak metal temperature (12) in the illustrated example is shown as being at least above the austenite transformation temperature (A ⁇ (e.g., the dual phase, austenite + ferrite region). Thus, at the peak metal temperature (12), at least a portion of the steel will be transformed to austenite.
  • FIG. 1 shows the peak metal temperature (12) as being solely above A ls it should be understood that in some embodiments the peak metal temperature may also include temperatures above the temperature at which ferrite completely transforms to austenite (A 3 ) (e.g., the single phase, austenite region).
  • the steel sheet undergoes rapid cooling.
  • some embodiments may include a brief interruption in cooling for galvanizing or galvannealing.
  • the steel sheet may briefly maintain a constant temperature (14) due to the heat from the molten zinc galvanizing bath.
  • a galvannealing process may be used and the temperature of the steel sheet may be slightly raised to a galvannealing temperature (16) where the galvannealing process may be performed.
  • the galvanizing or galvannealing process may be omitted entirely and the steel sheet may be continuously cooled.
  • the rapid cooling of the steel sheet is shown to continue below the martensite start temperature (M s ) for the steel sheet to a predetermined quench temperature (18).
  • M s martensite start temperature
  • the cooling rate to M s may be high enough to transform at least some of the austenite formed at the peak metal temperature (12) to martensite.
  • the cooling rate may be rapid enough to transform austenite to martensite instead of other non-martensitic constituents such as ferrite, pearlite, or bainite which transform at relatively lower cooling rates.
  • the quench temperature (18) is below M s .
  • the difference between the quench temperature (18) and M s may vary depending on the individual composition of the steel sheet being used. However, in many embodiments the difference between quench temperature (18) and M s may be sufficiently great to form an adequate amount of martensite to act as a carbon source to stabilize the austenite and avoid creating excessive "fresh" martensite upon final cooling. Additionally, quench temperature (18) may be sufficiently high to avoid consuming too much austenite during the initial quench (e.g., to avoid excessive carbon enrichment of austenite greater than that required to stabilize austenite for the given embodiment).
  • quench temperature (18) may vary from about 191 °C to about 281 °C, although no such limitation is required. Additionally, quench temperature (18) may be calculated for a given steel composition. For such a calculation, quench temperature (18) corresponds to the retained austenite having an M s temperature of room temperature after partitioning. Methods for calculating quench temperature (18) are known in the art and described in J. G. Speer, A. M. Streicher, D. K. Matlock, F. Rizzo, and G. Krauss, "Quenching And Partitioning : A Fundamentally New Process to Create High Strength Trip Sheet Microstructures," Austenite Formation and Decomposition, pp. 505-522, 2003; and A. M.
  • the quench temperature (18) may be sufficiently low (with respect to M s ) to form an adequate amount of martensite to act as a carbon source to stabilize the austenite and avoid creating excessive "fresh" martensite upon the final quench.
  • the quench temperature (18) may be sufficiently high to avoid consuming too much austenite during the initial quench and creating a situation where the potential carbon enrichment of the retained austenite is greater than that required for austenite stabilization at room temperature.
  • a suitable quench temperature (18) may correspond to the retained austenite having an M s temperature of room temperature after partitioning. Speer and Streicher et al. (above) have provided calculations that provide guidelines to explore processing options that may result in desirable microstructures. Such calculations assume idealized full partitioning, and may be performed by applying the
  • the result of the calculations described by Speer et al. may indicate a quench temperature (18) which may lead to a maximum amount of retained austenite.
  • quench temperatures (18) above the temperature having a maximum amount of retained austenite significant fractions of austenite are present after the initial quench; however, there is not enough martensite to act as a carbon source to stabilize this austenite. Therefore, for the higher quench temperatures, increasing amounts of fresh martensite form during the final quench.
  • For quench temperatures below the temperature having a maximum amount of retained austenite an unsatisfactory amount of austenite may be consumed during the initial quench and there may be an excess amount of carbon that may partition from the martensite.
  • the temperature of the steel sheet is either increased relative to the quench temperature or maintained at the quench temperature for a given period of time.
  • this stage may be referred to as the partitioning stage.
  • the temperature of the steel sheet is at least maintained at the quench temperature to permit carbon diffusion from martensite formed during the rapid cooling and into any remaining austenite. Such diffusion may permit the remaining austenite to be stable (or meta-stable) at room temperature, thus improving the mechanical properties of the steel sheet.
  • the steel sheet may be heated above M s to a relatively high partitioning temperature (20) and thereafter held at the high partitioning temperature (20).
  • a variety of methods may be utilized to heat the steel sheet during this stage.
  • the steel sheet may be heated using induction heating, torch heating, and/or the like.
  • the steel sheet may be heated but to a different, lower partitioning temperature (22) which is slightly below M s .
  • the steel sheet may then be likewise held at the lower partitioning temperate (22) for a certain period of time.
  • another alternative partitioning temperature (24) may be used where the steel sheet is merely maintained at the quench temperature.
  • any other suitable partitioning temperature may be used as will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 2 shows an alternative embodiment of the thermal cycle described above with respect to FIG. 1 (with a typical galvanizing/galvannealing thermal cycle shown with a solid line (40) and departures from typical shown with a dashed line).
  • the steel sheet is first heated to a peak metal temperature (42).
  • the peak metal temperature (42) in the illustrated embodiment is shown as being at least above Ai.
  • the present embodiment may also include a peak metal temperature in excess of A3.
  • the steel sheet may be rapidly quenched (44). It should be understood that the quench (44) may be rapid enough to initiate transformation of some of the austenite formed at the peak metal temperature (42) into martensite, thus avoiding excessive transformation to non-martensitic constituents such as ferrite, pearlite, banite, and/or the like.
  • the quench (44) may be then ceased at a quench temperature (46).
  • a quench temperature 46.
  • quench temperature (46) is below M s .
  • the amount below Ms may vary depending upon the material used.
  • the difference between quench temperature (46) and M s may be sufficiently great to form an adequate amount of martensite yet be sufficiently low to avoid consuming too much austenite.
  • the steel sheet is then subsequently reheated (48) to a partitioning temperature
  • the partitioning temperature (50, 52) in the present embodiment may be characterized by the galvanizing or galvannealing zinc bath temperature (if galvanizing or galvannealing is so used).
  • the steel sheet may be re-heated to the galvanizing bath temperature (50) and subsequently held there for the duration of the galvanizing process.
  • partitioning may occur similar to the partitioning described above.
  • the galvanizing bath temperature (50) may also function as the partitioning temperature (50).
  • the process may be substantially the same with the exception of a higher bath/partitioning temperature (52).
  • the steel sheet is permitted to cool (54) to room temperature where at least some austenite may be stable (or meta-stable) from the partitioning step described above.
  • the steel sheet may include certain alloying additions to improve the propensity of the steel sheet to form a primarily austenitic and martensitic microstructure and/or to improve the mechanical properties of the steel sheet.
  • Suitable compositions of the steel sheet may include one or more of the following, by weight percent: 0.15-0.4% carbon, 1.5-4% manganese, 0-2% silicon or aluminum or some combination thereof, 0-0.5% molybdenum, 0-0.05% niobium, other incidental elements, and the balance being iron.
  • suitable compositions of the steel sheet may include one or more of the following, by weight percent: 0.15-0.5%) carbon, 1-3% manganese, 0-2% silicon or aluminum or some combination thereof, 0-0.5% molybdenum, 0-0.05%) niobium, other incidental elements, and the balance being iron.
  • other embodiments may include additions of vanadium and/or titanium in addition to, or in lieu of niobium, although such additions are entirely optional.
  • carbon may be used to stabilize austenite. For instance, increasing carbon may lower the Ms temperature, lower transformation temperatures for other non-martensitic constituents (e.g., bainite, ferrite, pearlite), and increase the time required for non-martensitic products to form. Additionally, carbon additions may improve the hardenability of the material thus retaining formation of non-martensitic constituents near the core of the material where cooling rates may be locally depressed. However, it should be understood that carbon additions may be limited as significant carbon additions may lead to detrimental effects on weldability. [0037] In some embodiments manganese may provide additional stabilization of austenite by lowering transformation temperatures of other non-martensitic constituents, as described above. Manganese may further improve the propensity of the steel sheet to form a primarily austenitic and martensitic microstructure by increasing hardenability.
  • non-martensitic constituents e.g., bainite, ferrite, pearlite
  • molybdenum may be used to increase hardenability.
  • silicon and/or aluminum may be provided to reduce the formation of carbides. It should be understood that a reduction in carbide formation may be desirable in some embodiments because the presence of carbides may decrease the levels of carbon available for diffusion into austenite. Thus, silicon and/or aluminum additions may be used to further stabilize austenite at room temperature.
  • nickel, copper, and chromium may be used to stabilize austenite. For instance, such elements may lead to a reduction in the M s temperature. Additionally, nickel, copper, and chromium may further increase the hardenability of the steel sheet.
  • niobium or other micro-alloying elements, such as
  • titanium, vanadium, and/or the like may be used to increase the mechanical properties of the steel sheet.
  • niobium may increase the strength of the steel sheet through grain boundary pinning resulting from carbide formation.
  • Example 1 The results of these tests are shown in FIGS. 6-8.
  • the compositions V4037, V4038, and V4039 correspond to FIGS. 6, 7, and 8, respectively.
  • FIGS. 6-8 each contain six micrographs for each composition with each micrograph representing a sample subjected to a different cooling rate.
  • a critical cooling rate for each of the compositions of Example 1 was estimated using the data of Examples 2 and 3 in accordance with the procedure described herein.
  • the critical cooling rate herein refers to the cooling rate required to form martensite and avoid the formation of non-martensitic transformation products. The results of these tests are as follows:
  • V4037 70 °C/s
  • Embodiments of the steel sheet were made with the compositions set forth in
  • the materials were processed by melting, hot rolling, and cold rolling.
  • the materials were processed by melting, hot rolling, and cold rolling.
  • Example 5 The compositions of Example 5 were subjected to Gleeble dilatomety. Gleeble dilatomety.
  • dilatomety was performed in vacuum using a 101.6x25.4x1 mm samples with a c- strain gauge measuring dilation in the 25.4 mm direction. Plots were generated of the resulting dilation vs. temperature. Line segments were fit to the dilatometric data and the point at which the dilatometric data deviated from linear behavior was taken as the transformation temperature of interest (e.g., A l5 A 3 , M s ). The resulting transformation temperatures are tabulated in Table 5.
  • Gleeble methods were also used to measure a critical cooling rate for each of the compositions of Example 5.
  • the first method utilized Gleeble dilatomety, as described above.
  • the second method utilized measurements of Rockwell hardness.
  • Rockwell hardness measurements were taken.
  • Rockwell hardness measurements were taken for each material composition with a measurement of hardness for a range of cooling rates.
  • a comparison was then made between the Rockwell hardness measurements of a given composition at each cooling rate.
  • Example 5 The compositions of Example 5 were used to calculate quench temperature and a theoretical maximum of retained austenite. The calculations were performed using the methods of Speer et al. , described above. The results of the calculations are tabulated below in Table 6 for some of the compositions listed in Example 5.
  • EXAMPLE 9 The samples of the compositions of Example 5 were subjected to the thermal profiles shown in FIGS. 1 and 2 with peak metal temperature and quench temperature varied between samples of a given composition. As described above, only composition V4039 was subjected to the thermal profile shown in FIG. 1, while all other compositions were subjected to the thermal cycle shown in FIG. 2. For each sample, tensile strength measurements were taken. The resulting tensile measurements are plotted in FIGS. 9-12. In particular, FIGS. 9-10 show tensile strength data plotted against austenitization temperature and FIGS. 11-12 show tensile strength data plotted against quench temperature. Additionally, where the thermal cycles were performed using Gleeble methods, such data points are denoted with "Gleeble.” Similarly, where thermal cycles were performed using a salt bath, such data points are denoted with "salt.”
  • V4078-2 850 300 466 15 689 859 20 17,525

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
PCT/US2014/038425 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath WO2014186722A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020157035337A KR101776241B1 (ko) 2013-05-17 2014-05-16 양호한 연성을 나타내는 고강도 스틸 그리고 ??칭 및 아연 욕에 의한 분리 처리를 통한 생산 방법
AU2014265214A AU2014265214B2 (en) 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
JP2016514134A JP2016524038A (ja) 2013-05-17 2014-05-16 良好な耐久性を示す高強度鋼、および焼入れと亜鉛浴による分配処理とによる製造方法
CN201480029127.4A CN105247090A (zh) 2013-05-17 2014-05-16 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
BR112015027447A BR112015027447B1 (pt) 2013-05-17 2014-05-16 método para processamento de uma chapa de aço
KR1020177024721A KR20170104158A (ko) 2013-05-17 2014-05-16 양호한 연성을 나타내는 고강도 스틸 그리고 ??칭 및 아연 욕에 의한 분리 처리를 통한 생산 방법
KR1020197024809A KR20190101504A (ko) 2013-05-17 2014-05-16 양호한 연성을 나타내는 고강도 스틸 그리고 ?칭 및 아연 욕에 의한 분리 처리를 통한 생산 방법
CA2908491A CA2908491C (en) 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
RU2015141563A RU2632042C2 (ru) 2013-05-17 2014-05-16 Высокопрочная сталь, обладающая хорошей пластичностью, и способ получения посредством обработки методом закалки с распределением с помощью ванны для цинкования
MX2015015332A MX2015015332A (es) 2013-05-17 2014-05-16 Acero de alta resistencia que exhibe buena ductilidad y metodo de produccion via temple y tratamiento de particion mediante baño de zinc.
EP14729827.7A EP2997172B1 (en) 2013-05-17 2014-05-16 Method of producton of a high strength steel exhibiting good ductility via quenching and partitioning treatment by zinc bath

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361824643P 2013-05-17 2013-05-17
US201361824699P 2013-05-17 2013-05-17
US61/824,643 2013-05-17
US61/824,699 2013-05-17

Publications (2)

Publication Number Publication Date
WO2014186722A2 true WO2014186722A2 (en) 2014-11-20
WO2014186722A3 WO2014186722A3 (en) 2015-01-08

Family

ID=50933550

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/038425 WO2014186722A2 (en) 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
PCT/US2014/038364 WO2014186689A2 (en) 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2014/038364 WO2014186689A2 (en) 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath

Country Status (12)

Country Link
US (2) US20140338798A1 (es)
EP (2) EP2997172B1 (es)
JP (3) JP2016524038A (es)
KR (5) KR20170104159A (es)
CN (3) CN113151735A (es)
AU (2) AU2014265214B2 (es)
BR (2) BR112015027447B1 (es)
CA (2) CA2908491C (es)
MX (2) MX2015015332A (es)
RU (3) RU2632042C2 (es)
TW (4) TWI616538B (es)
WO (2) WO2014186722A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3177749B1 (en) 2014-08-07 2018-10-17 Arcelormittal S.A. Method for producing a steel sheet having improved strength, ductility and formability

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151735A (zh) * 2013-05-17 2021-07-23 克利夫兰-克利夫斯钢铁资产公司 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
CN104532126B (zh) * 2014-12-19 2017-06-06 宝山钢铁股份有限公司 一种低屈强比超高强度热轧q&p钢及其制造方法
EP3245310A2 (en) * 2015-01-14 2017-11-22 Ak Steel Properties, Inc. Dual phase steel with improved properties
US11491581B2 (en) 2017-11-02 2022-11-08 Cleveland-Cliffs Steel Properties Inc. Press hardened steel with tailored properties
CA3093397C (en) * 2018-03-30 2024-01-30 Ak Steel Properties, Inc. Low alloy third generation advanced high strength steel and process for making
CN109554622B (zh) * 2018-12-03 2020-12-04 东北大学 淬火至贝氏体区获得Q&P组织的热轧Fe-Mn-Al-C钢及制造方法
CN109554621B (zh) * 2018-12-03 2020-11-27 东北大学 一种低密度Fe-Mn-Al-C热轧Q&P钢及其制造方法
CN110055465B (zh) * 2019-05-16 2020-10-02 北京科技大学 一种中锰超高强度钢及其制备方法
CN112327970B (zh) * 2020-09-04 2022-04-12 凌云工业股份有限公司 一种热成型变强度工件过渡区强度的控制方法
CN114774652A (zh) * 2022-04-29 2022-07-22 重庆长征重工有限责任公司 一种17CrNiMo6材料预备热处理方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370054C (zh) * 2001-06-15 2008-02-20 新日本制铁株式会社 镀有铝合金体系的高强度钢板以及具有优异的耐热性和喷漆后耐腐蚀性的高强度汽车零件
AU2003270334A1 (en) * 2002-09-04 2004-03-29 Colorado School Of Mines Method for producing steel with retained austenite
CA2521710C (en) * 2003-04-10 2009-09-29 Nippon Steel Corporation High strength molten zinc plated steel sheet and process of production of same
US20050247382A1 (en) * 2004-05-06 2005-11-10 Sippola Pertti J Process for producing a new high-strength dual-phase steel product from lightly alloyed steel
CA2482100A1 (en) * 2003-09-19 2005-03-19 Pertti J. Sippola Process for producing a new high-strength dual-phase steel product from lightly alloyed steel
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CA2699146A1 (en) * 2007-09-10 2009-03-19 Pertti J. Sippola Method and apparatus for improved formability of galvanized steel having high tensile strength
CN101121955A (zh) * 2007-09-13 2008-02-13 上海交通大学 采用碳分配和回火提高淬火钢件机械性能的热处理方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4712882B2 (ja) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 耐水素脆化特性および加工性に優れた高強度冷延鋼板
JP5418047B2 (ja) * 2008-09-10 2014-02-19 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP5315956B2 (ja) * 2008-11-28 2013-10-16 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5493986B2 (ja) * 2009-04-27 2014-05-14 Jfeスチール株式会社 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP5412182B2 (ja) * 2009-05-29 2014-02-12 株式会社神戸製鋼所 耐水素脆化特性に優れた高強度鋼板
JP5333298B2 (ja) * 2010-03-09 2013-11-06 Jfeスチール株式会社 高強度鋼板の製造方法
CN102002558B (zh) * 2010-11-26 2012-07-25 清华大学 含抑制碳化物形成元素钢的分级淬火-分配热处理工艺
ES2535420T3 (es) * 2011-03-07 2015-05-11 Tata Steel Nederland Technology B.V. Proceso para producir acero conformable de alta resistencia y acero conformable de alta resistencia producido con el mismo
CN102758142A (zh) * 2011-04-25 2012-10-31 宝山钢铁股份有限公司 一种抗拉强度大于980MPa的热镀锌钢板及其制造方法
JP5821260B2 (ja) * 2011-04-26 2015-11-24 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
EP2524970A1 (de) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
US8876987B2 (en) * 2011-10-04 2014-11-04 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
CN103045950B (zh) * 2012-12-28 2015-04-22 中北大学 一种低合金高强韧性复相钢及其热处理方法
AU2014249192B2 (en) * 2013-03-11 2017-12-21 The Regents Of The University Of Michigan BET bromodomain inhibitors and therapeutic methods using the same
CN113151735A (zh) * 2013-05-17 2021-07-23 克利夫兰-克利夫斯钢铁资产公司 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. M. STREICHER; J. G. J. SPEER; D. K. MATLOCK; B. C. DE COOMAN: "Quenching and Partitioning Response of a Si-Added TRIP Sheet Steel", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED HIGH STRENGTH SHEET STEELS FOR AUTOMOTIVE APPLICATIONS, 2004
J. G. SPEER; A. M. STREICHER; D. K. MATLOCK; F. RIZZO; G. KRAUSS: "Quenching And Partitioning: A Fundamentally New Process to Create High Strength Trip Sheet Microstructures", AUSTENITE FORMATION AND DECOMPOSITION, 2003, pages 505 - 522

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3177749B1 (en) 2014-08-07 2018-10-17 Arcelormittal S.A. Method for producing a steel sheet having improved strength, ductility and formability

Also Published As

Publication number Publication date
AU2014265214A1 (en) 2015-11-05
KR20160007647A (ko) 2016-01-20
JP2016524038A (ja) 2016-08-12
RU2015145865A (ru) 2017-06-22
US20140338797A1 (en) 2014-11-20
KR20160007646A (ko) 2016-01-20
KR101776242B1 (ko) 2017-09-07
TW201446974A (zh) 2014-12-16
RU2018133682A (ru) 2020-03-25
BR112015027901A2 (pt) 2017-07-25
JP2018178262A (ja) 2018-11-15
WO2014186689A2 (en) 2014-11-20
TW201708562A (zh) 2017-03-01
RU2015145865A3 (es) 2018-03-29
RU2669654C2 (ru) 2018-10-12
CN105247090A (zh) 2016-01-13
CA2910012A1 (en) 2014-11-20
RU2015141563A (ru) 2017-06-22
CA2910012C (en) 2020-02-18
MX2015015332A (es) 2016-07-15
US20140338798A1 (en) 2014-11-20
EP2997168B1 (en) 2021-03-03
CA2908491A1 (en) 2014-11-20
CA2908491C (en) 2019-07-30
EP2997172A2 (en) 2016-03-23
TW201502284A (zh) 2015-01-16
CN113151735A (zh) 2021-07-23
TWI627288B (zh) 2018-06-21
TWI564402B (zh) 2017-01-01
KR20170104159A (ko) 2017-09-14
KR101776241B1 (ko) 2017-09-07
JP6843612B2 (ja) 2021-03-17
BR112015027447A2 (pt) 2017-07-25
RU2018133682A3 (es) 2020-03-25
WO2014186689A3 (en) 2015-01-22
KR20170104158A (ko) 2017-09-14
WO2014186722A3 (en) 2015-01-08
MX2015015333A (es) 2016-06-23
RU2632042C2 (ru) 2017-10-02
CN105392906A (zh) 2016-03-09
AU2014265262B2 (en) 2016-12-15
EP2997168A2 (en) 2016-03-23
BR112015027901B1 (pt) 2020-04-22
EP2997172B1 (en) 2020-08-26
TW201702397A (zh) 2017-01-16
TWI560279B (en) 2016-12-01
KR20190101504A (ko) 2019-08-30
TWI616538B (zh) 2018-03-01
AU2014265262A1 (en) 2015-11-12
AU2014265214B2 (en) 2016-12-22
BR112015027447B1 (pt) 2020-04-22
JP2016526096A (ja) 2016-09-01

Similar Documents

Publication Publication Date Title
AU2014265214B2 (en) High strength steel exhibiting good ductility and method of production via quenching and partitioning treatment by zinc bath
KR102455942B1 (ko) 향상된 강도, 연성 및 성형성을 갖는 고강도 피복 강 시트의 제조 방법
US10378077B2 (en) Method for producing an ultra high strength coated or not coated steel sheet and obtained sheet
EP3704276B1 (en) Press hardened steel with tailored properties after novel thermal treatment
US10907232B2 (en) Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
BR112017000026B1 (pt) método para fabricar uma chapa de aço e chapa de aço
US11035020B2 (en) Galvannealed steel sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2908491

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2014729827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/015332

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014265214

Country of ref document: AU

Date of ref document: 20140516

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016514134

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14729827

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015027447

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157035337

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015141563

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015027447

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151029