EP2997168A2 - High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath - Google Patents

High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath

Info

Publication number
EP2997168A2
EP2997168A2 EP14734592.0A EP14734592A EP2997168A2 EP 2997168 A2 EP2997168 A2 EP 2997168A2 EP 14734592 A EP14734592 A EP 14734592A EP 2997168 A2 EP2997168 A2 EP 2997168A2
Authority
EP
European Patent Office
Prior art keywords
temperature
steel sheet
austenite
partitioning
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14734592.0A
Other languages
German (de)
French (fr)
Other versions
EP2997168B1 (en
Inventor
Grant Aaron THOMAS
Jose Mauro B. LOSZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleveland Cliffs Steel Properties Inc
Original Assignee
AK Steel Properties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AK Steel Properties Inc filed Critical AK Steel Properties Inc
Publication of EP2997168A2 publication Critical patent/EP2997168A2/en
Application granted granted Critical
Publication of EP2997168B1 publication Critical patent/EP2997168B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • C21D1/785Thermocycling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to steel compositions and processing methods for production of steel using hot-dip galvanizing/galvannealing (HDG) processes such that the resulting steel exhibits high strength and cold formability.
  • HDG hot-dip galvanizing/galvannealing
  • the present steel is produced using a composition and a modified HDG process that together produces a resulting microstructure consisting of generally martensite and austenite (among other constituents).
  • the composition includes certain alloying additions and the HDG process includes certain process modification, all of which are at least partially related to driving the transformation of austenite to martensite followed by a partial stabilization of austenite at room-temperature.
  • FIGURE 1 depicts a schematic view of a HDG temperature profile with a
  • partitioning step performed after galvanizing/galvannealing.
  • FIGURE 2 depicts a schematic view of a HDG temperature profile with a
  • FIGURE 3 depicts a plot of one embodiment with Rockwell hardness plotted against cooling rate.
  • FIGURE 4 depicts a plot of another embodiment with Rockwell hardness plotted against cooling rate.
  • FIGURE 5 depicts a plot of another embodiment with Rockwell hardness plotted against cooling rate.
  • FIGURE 6 depicts six photo micrographs of the embodiment of FIG. 3 taken from samples being cooled at various cooling rates.
  • FIGURE 7 depicts six photo micrographs of the embodiment of FIG. 4 taken from samples being cooled at various cooling rates.
  • FIGURE 8 depicts six photo micrographs of the embodiment of FIG. 5 taken from samples being cooled at various cooling rates.
  • FIGURE 9 depicts a plot of tensile data as a function of austenitization
  • FIGURE 10 depicts a plot of tensile data as a function of austenitization temperature for several embodiments.
  • FIGURE 11 depicts a plot of tensile data as a function of quench temperature for several embodiments.
  • FIGURE 12 depicts a plot of tensile data as a function of quench temperature for several embodiments.
  • FIG. 1 shows a schematic representation of the thermal cycle used to achieve high strength and cold formability in a steel sheet having a certain chemical composition (described in greater detail below).
  • FIG. 1 shows a typical hot-dip galvanizing or galvannealing thermal profile (10) with process modifications shown with dashed lines.
  • the process generally involves austenitization followed by a rapid cooling to a specified quench temperature to partially transform austenite to martensite, and the holding at an elevated temperature, a partitioning temperature, to allow carbon to diffuse out of martensite and into the remaining austenite, thus, stabilizing the austenite at room temperature.
  • the thermal profile shown in FIG. 1 may be used with conventional continuous hot-dip galvanizing or galvannealing production lines, although such a production line is not required.
  • the steel sheet is first heated to a peak metal temperature
  • the peak metal temperature (12) in the illustrated example is shown as being at least above the austenite transformation temperature (Ay) (e.g., the dual phase, austenite + ferrite region). Thus, at the peak metal temperature (12), at least a portion of the steel will be transformed to austenite.
  • FIG. 1 shows the peak metal temperature (12) as being solely above Aj, it should be understood that in some embodiments the peak metal temperature may also include temperatures above the temperature at which ferrite completely transforms to austenite (A 3 ) (e.g., the single phase, austenite region).
  • the steel sheet undergoes rapid cooling.
  • some embodiments may include a brief interruption in cooling for galvanizing or galvannealing.
  • the steel sheet may briefly maintain a constant temperature (14) due to the heat from the molten zinc galvanizing bath.
  • a galvannealing process may be used and the temperature of the steel sheet may be slightly raised to a galvannealing temperature (16) where the galvannealing process may be performed.
  • the galvanizing or galvannealing process may be omitted entirely and the steel sheet may be continuously cooled.
  • the rapid cooling of the steel sheet is shown to continue below the martensite start temperature (M s ) for the steel sheet to a predetermined quench temperature (18).
  • M s martensite start temperature
  • the cooling rate to M s may be high enough to transform at least some of the austenite formed at the peak metal temperature (12) to martensite.
  • the cooling rate may be rapid enough to transform austenite to martensite instead of other non-martensitic constituents such as ferrite, pearlite, or bainite which transform at relatively lower cooling rates.
  • the quench temperature (18) is below M s .
  • the difference between the quench temperature (18) and M s may vary depending on the individual composition of the steel sheet being used. However, in many embodiments the difference between quench temperature (18) and M s may be sufficiently great to form an adequate amount of martensite to act as a carbon source to stabilize the austenite and avoid creating excessive "fresh" martensite upon final cooling. Additionally, quench temperature (18) may be sufficiently high to avoid consuming too much austenite during the initial quench (e.g., to avoid excessive carbon enrichment of austenite greater than that required to stabilize austenite for the given embodiment).
  • quench temperature (18) may vary from about 191 °C to about 281 °C, although no such limitation is required. Additionally, quench temperature (18) may be calculated for a given steel composition. For such a calculation, quench temperature (18) corresponds to the retained austenite having an M s temperature of room temperature after partitioning. Methods for calculating quench temperature (18) are known in the art and described in J. G. Speer, A. M. Streicher, D. K. Matlock, F. Rizzo, and G. Krauss, "Quenching And Partitioning : A Fundamentally New Process to Create High Strength Trip Sheet Microstructures," Austenite Formation and Decomposition, pp. 505-522, 2003; and A. M.
  • the quench temperature (18) may be sufficiently low (with respect to M s ) to form an adequate amount of martensite to act as a carbon source to stabilize the austenite and avoid creating excessive "fresh" martensite upon the final quench.
  • the quench temperature (18) may be sufficiently high to avoid consuming too much austenite during the initial quench and creating a situation where the potential carbon enrichment of the retained austenite is greater than that required for austenite stabilization at room temperature.
  • a suitable quench temperature (18) may correspond to the retained austenite having an M s temperature of room temperature after partitioning. Speer and Streicher et al. (above) have provided calculations that provide guidelines to explore processing options that may result in desirable microstructures. Such calculations assume idealized full partitioning, and may be performed by applying the
  • the result of the calculations described by Speer et al. may indicate a quench temperature (18) which may lead to a maximum amount of retained austenite.
  • quench temperatures (18) above the temperature having a maximum amount of retained austenite significant fractions of austenite are present after the initial quench; however, there is not enough martensite to act as a carbon source to stabilize this austenite. Therefore, for the higher quench temperatures, increasing amounts of fresh martensite form during the final quench.
  • For quench temperatures below the temperature having a maximum amount of retained austenite an unsatisfactory amount of austenite may be consumed during the initial quench and there may be an excess amount of carbon that may partition from the martensite.
  • the temperature of the steel sheet is either increased relative to the quench temperature or maintained at the quench temperature for a given period of time.
  • this stage may be referred to as the partitioning stage.
  • the temperature of the steel sheet is at least maintained at the quench temperature to permit carbon diffusion from martensite formed during the rapid cooling and into any remaining austenite. Such diffusion may permit the remaining austenite to be stable (or meta-stable) at room temperature, thus improving the mechanical properties of the steel sheet.
  • the steel sheet may be heated above M s to a relatively high partitioning temperature (20) and thereafter held at the high partitioning temperature (20).
  • a variety of methods may be utilized to heat the steel sheet during this stage.
  • the steel sheet may be heated using induction heating, torch heating, and/or the like.
  • the steel sheet may be heated but to a different, lower partitioning temperature (22) which is slightly below M s .
  • the steel sheet may then be likewise held at the lower partitioning temperate (22) for a certain period of time.
  • another alternative partitioning temperature (24) may be used where the steel sheet is merely maintained at the quench temperature.
  • any other suitable partitioning temperature may be used as will be apparent to those of ordinary skill in the art in view of the teachings herein.
  • FIG. 2 shows an alternative embodiment of the thermal cycle described above with respect to FIG. 1 (with a typical galvanizing/galvannealing thermal cycle shown with a solid line (40) and departures from typical shown with a dashed line).
  • the steel sheet is first heated to a peak metal temperature (42).
  • the peak metal temperature (42) in the illustrated embodiment is shown as being at least above A ⁇ .
  • the present embodiment may also include a peak metal temperature in excess of A 3 .
  • the steel sheet may be rapidly quenched (44). It should be understood that the quench (44) may be rapid enough to initiate transformation of some of the austenite formed at the peak metal temperature (42) into martensite, thus avoiding excessive transformation to non-martensitic constituents such as ferrite, pearlite, banite, and/or the like.
  • the quench (44) may be then ceased at a quench temperature (46).
  • a quench temperature 46.
  • quench temperature (46) is below M s .
  • the amount below Ms may vary depending upon the material used.
  • the difference between quench temperature (46) and M s may be sufficiently great to form an adequate amount of martensite yet be sufficiently low to avoid consuming too much austenite.
  • the steel sheet is then subsequently reheated (48) to a partitioning temperature
  • the partitioning temperature (50, 52) in the present embodiment may be characterized by the galvanizing or galvannealing zinc bath temperature (if galvanizing or galvannealing is so used).
  • the steel sheet may be re-heated to the galvanizing bath temperature (50) and subsequently held there for the duration of the galvanizing process.
  • partitioning may occur similar to the partitioning described above.
  • the galvanizing bath temperature (50) may also function as the partitioning temperature (50).
  • the process may be substantially the same with the exception of a higher bath/partitioning temperature (52).
  • the steel sheet is permitted to cool (54) to room temperature where at least some austenite may be stable (or meta-stable) from the partitioning step described above.
  • the steel sheet may include certain alloying additions to improve the propensity of the steel sheet to form a primarily austenitic and martensitic microstructure and/or to improve the mechanical properties of the steel sheet.
  • Suitable compositions of the steel sheet may include one or more of the following, by weight percent: 0.15-0.4% carbon, 1.5-4% manganese, 0-2% silicon or aluminum or some combination thereof, 0-0.5% molybdenum, 0-0.05%) niobium, other incidental elements, and the balance being iron.
  • suitable compositions of the steel sheet may include one or more of the following, by weight percent: 0.15-0.5%) carbon, 1-3% manganese, 0-2%> silicon or aluminum or some combination thereof, 0-0.5% molybdenum, 0-0.05% niobium, other incidental elements, and the balance being iron.
  • other embodiments may include additions of vanadium and/or titanium in addition to, or in lieu of niobium, although such additions are entirely optional.
  • carbon may be used to stabilize austenite. For instance, increasing carbon may lower the Ms temperature, lower transformation temperatures for other non-martensitic constituents (e.g., bainite, ferrite, pearlite), and increase the time required for non-martensitic products to form. Additionally, carbon additions may improve the hardenability of the material thus retaining formation of non-martensitic constituents near the core of the material where cooling rates may be locally depressed. However, it should be understood that carbon additions may be limited as significant carbon additions may lead to detrimental effects on weldability. [0037] In some embodiments manganese may provide additional stabilization of austenite by lowering transformation temperatures of other non-martensitic constituents, as described above. Manganese may further improve the propensity of the steel sheet to form a primarily austenitic and martensitic microstructure by increasing hardenability.
  • non-martensitic constituents e.g., bainite, ferrite, pearlite
  • molybdenum may be used to increase hardenability.
  • silicon and/or aluminum may be provided to reduce the formation of carbides. It should be understood that a reduction in carbide formation may be desirable in some embodiments because the presence of carbides may decrease the levels of carbon available for diffusion into austenite. Thus, silicon and/or aluminum additions may be used to further stabilize austenite at room temperature.
  • nickel, copper, and chromium may be used to stabilize austenite. For instance, such elements may lead to a reduction in the M s temperature. Additionally, nickel, copper, and chromium may further increase the hardenability of the steel sheet.
  • niobium or other micro-alloying elements, such as
  • titanium, vanadium, and/or the like may be used to increase the mechanical properties of the steel sheet.
  • niobium may increase the strength of the steel sheet through grain boundary pinning resulting from carbide formation.
  • EXAMPLE 2 The Rockwell hardness of each of the steel compositions described in Example 1 and Table 1 above was taken on the surface of each sample. The results of the tests are plotted in FIGS. 3-5 with Rockwell hardness plotted as a function of cooling rate. The average of at least seven measurements is shown for each data point.
  • the compositions V4037, V4038 and V4039 correspond to FIGS. 3, 4, and 5, respectively.
  • Example 1 The results of these tests are shown in FIGS. 6-8.
  • the compositions V4037, V4038, and V4039 correspond to FIGS. 6, 7, and 8, respectively.
  • FIGS. 6-8 each contain six micrographs for each composition with each micrograph representing a sample subjected to a different cooling rate.
  • a critical cooling rate for each of the compositions of Example 1 was estimated using the data of Examples 2 and 3 in accordance with the procedure described herein.
  • the critical cooling rate herein refers to the cooling rate required to form martensite and minimize the formation of non-martensitic transformation products. The results of these tests are as follows:
  • Embodiments of the steel sheet were made with the compositions set forth in
  • the materials were processed by melting, hot rolling, and cold rolling.
  • the materials were processed by melting, hot rolling, and cold rolling.
  • Example 5 The compositions of Example 5 were subjected to Gleeble dilatomety. Gleeble dilatomety.
  • dilatomety was performed in vacuum using a 101.6x25.4x1 mm samples with a c- strain gauge measuring dilation in the 25.4 mm direction. Plots were generated of the resulting dilation vs. temperature. Line segments were fit to the dilatometric data and the point at which the dilatometric data deviated from linear behavior was taken as the transformation temperature of interest (e.g., Aj, A 3 , M s ). The resulting transformation temperatures are tabulated in Table 5.
  • Gleeble methods were also used to measure a critical cooling rate for each of the compositions of Example 5.
  • the first method utilized Gleeble dilatomety, as described above.
  • the second method utilized measurements of Rockwell hardness.
  • Rockwell hardness measurements were taken.
  • Rockwell hardness measurements were taken for each material composition with a measurement of hardness for a range of cooling rates.
  • a comparison was then made between the Rockwell hardness measurements of a given composition at each cooling rate.
  • Example 5 The compositions of Example 5 were used to calculate quench temperature and a theoretical maximum of retained austenite. The calculations were performed using the methods of Speer et al. , described above. The results of the calculations are tabulated below in Table 6 for some of the compositions listed in Example 5.
  • EXAMPLE 9 The samples of the compositions of Example 5 were subjected to the thermal profiles shown in FIGS. 1 and 2 with peak metal temperature and quench temperature varied between samples of a given composition. As described above, only composition V4039 was subjected to the thermal profile shown in FIG. 1, while all other compositions were subjected to the thermal cycle shown in FIG. 2. For each sample, tensile strength measurements were taken. The resulting tensile measurements are plotted in FIGS. 9-12. In particular, FIGS. 9-10 show tensile strength data plotted against austenitization temperature and FIGS. 11-12 show tensile strength data plotted against quench temperature. Additionally, where the thermal cycles were performed using Gleeble methods, such data points are denoted with "Gleeble.” Similarly, where thermal cycles were performed using a salt bath, such data points are denoted with "salt.”

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

Steel with high strength and good formability is produced with compositions and methods for forming austenitic and martensitic microstructure in the steel. Carbon, manganese, molybdenum, nickel copper and chromium may promote the formation of room temperature stable (or meta- stable) austenite by mechanisms such as lowering transformation temperatures for non-martensitic constituents, and/or increasing the hardenability of steel. Thermal cycles utilizing a rapid cooling below a martensite start temperature followed by reheating may promote formation of room temperature stable austenite by permitting diffusion of carbon into austenite from martensite.

Description

High Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Heat
Treatment Downstream of Molten Zinc Bath
Grant A. Thomas
Jose Mauro B. Losz
[0001] The present application claims priority from provisional patent application serial no. 61/824,699, entitled "High-Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Partitioning Treatment Downstream of Molten zinc Bath," filed on May 17, 2013; and provisional patent application serial no. 61/824,643, entitled "High- Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Partitioning Treatment by Zinc Bath," filed on May 17, 2013. The disclosures of application serial nos. 61/824,699, and 61/824,643 are incorporated herein by reference.
BACKGROUND
[0002] It is desirable to produce steels with high strength and good formability
characteristics. However, commercial production of steels exhibiting such characteristics has been difficult due to factors such as the desirability of relatively low alloying additions and limitations on thermal processing capabilities of industrial production lines. The present invention relates to steel compositions and processing methods for production of steel using hot-dip galvanizing/galvannealing (HDG) processes such that the resulting steel exhibits high strength and cold formability.
SUMMARY
[0003] The present steel is produced using a composition and a modified HDG process that together produces a resulting microstructure consisting of generally martensite and austenite (among other constituents). To achieve such a microstructure, the composition includes certain alloying additions and the HDG process includes certain process modification, all of which are at least partially related to driving the transformation of austenite to martensite followed by a partial stabilization of austenite at room-temperature.
BRIEF DESCRIPTION OF THE FIGURES
[0004] The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate embodiments, and together with the general description given above, and the detailed description of the embodiments given below, serve to explain the principles of the present disclosure.
[0005] FIGURE 1 depicts a schematic view of a HDG temperature profile with a
partitioning step performed after galvanizing/galvannealing.
[0006] FIGURE 2 depicts a schematic view of a HDG temperature profile with a
partitioning step performed during galvanizing/galvannealing.
[0007] FIGURE 3 depicts a plot of one embodiment with Rockwell hardness plotted against cooling rate.
[0008] FIGURE 4 depicts a plot of another embodiment with Rockwell hardness plotted against cooling rate.
[0009] FIGURE 5 depicts a plot of another embodiment with Rockwell hardness plotted against cooling rate.
[0010] FIGURE 6 depicts six photo micrographs of the embodiment of FIG. 3 taken from samples being cooled at various cooling rates.
[0011] FIGURE 7 depicts six photo micrographs of the embodiment of FIG. 4 taken from samples being cooled at various cooling rates.
[0012] FIGURE 8 depicts six photo micrographs of the embodiment of FIG. 5 taken from samples being cooled at various cooling rates.
[0013] FIGURE 9 depicts a plot of tensile data as a function of austenitization
temperature for several embodiments. [0014] FIGURE 10 depicts a plot of tensile data as a function of austenitization temperature for several embodiments.
[0015] FIGURE 11 depicts a plot of tensile data as a function of quench temperature for several embodiments.
[0016] FIGURE 12 depicts a plot of tensile data as a function of quench temperature for several embodiments.
DETAILED DESCRIPTION
[0017] FIG. 1 shows a schematic representation of the thermal cycle used to achieve high strength and cold formability in a steel sheet having a certain chemical composition (described in greater detail below). In particular, FIG. 1 shows a typical hot-dip galvanizing or galvannealing thermal profile (10) with process modifications shown with dashed lines. In one embodiment the process generally involves austenitization followed by a rapid cooling to a specified quench temperature to partially transform austenite to martensite, and the holding at an elevated temperature, a partitioning temperature, to allow carbon to diffuse out of martensite and into the remaining austenite, thus, stabilizing the austenite at room temperature. In some embodiments, the thermal profile shown in FIG. 1 may be used with conventional continuous hot-dip galvanizing or galvannealing production lines, although such a production line is not required.
[0018] As can be seen in FIG. 1, the steel sheet is first heated to a peak metal temperature
(12). The peak metal temperature (12) in the illustrated example is shown as being at least above the austenite transformation temperature (Ay) (e.g., the dual phase, austenite + ferrite region). Thus, at the peak metal temperature (12), at least a portion of the steel will be transformed to austenite. Although FIG. 1 shows the peak metal temperature (12) as being solely above Aj, it should be understood that in some embodiments the peak metal temperature may also include temperatures above the temperature at which ferrite completely transforms to austenite (A3) (e.g., the single phase, austenite region).
[0019] Next the steel sheet undergoes rapid cooling. As the steel sheet is cooling, some embodiments may include a brief interruption in cooling for galvanizing or galvannealing. In embodiments where galvanizing is used, the steel sheet may briefly maintain a constant temperature (14) due to the heat from the molten zinc galvanizing bath. Yet in other embodiments, a galvannealing process may be used and the temperature of the steel sheet may be slightly raised to a galvannealing temperature (16) where the galvannealing process may be performed. Although, in other embodiments, the galvanizing or galvannealing process may be omitted entirely and the steel sheet may be continuously cooled.
[0020] The rapid cooling of the steel sheet is shown to continue below the martensite start temperature (Ms) for the steel sheet to a predetermined quench temperature (18). It should be understood that the cooling rate to Ms may be high enough to transform at least some of the austenite formed at the peak metal temperature (12) to martensite. In other words the cooling rate may be rapid enough to transform austenite to martensite instead of other non-martensitic constituents such as ferrite, pearlite, or bainite which transform at relatively lower cooling rates.
[0021] As is shown in FIG. 1 , the quench temperature (18) is below Ms. The difference between the quench temperature (18) and Ms may vary depending on the individual composition of the steel sheet being used. However, in many embodiments the difference between quench temperature (18) and Ms may be sufficiently great to form an adequate amount of martensite to act as a carbon source to stabilize the austenite and avoid creating excessive "fresh" martensite upon final cooling. Additionally, quench temperature (18) may be sufficiently high to avoid consuming too much austenite during the initial quench (e.g., to avoid excessive carbon enrichment of austenite greater than that required to stabilize austenite for the given embodiment).
[0022] In many embodiments, quench temperature (18) may vary from about 191 °C to about 281 °C, although no such limitation is required. Additionally, quench temperature (18) may be calculated for a given steel composition. For such a calculation, quench temperature (18) corresponds to the retained austenite having an Ms temperature of room temperature after partitioning. Methods for calculating quench temperature (18) are known in the art and described in J. G. Speer, A. M. Streicher, D. K. Matlock, F. Rizzo, and G. Krauss, "Quenching And Partitioning : A Fundamentally New Process to Create High Strength Trip Sheet Microstructures," Austenite Formation and Decomposition, pp. 505-522, 2003; and A. M. Streicher, J. G. J. Speer, D. K. Matlock, and B. C. De Cooman, "Quenching and Partitioning Response of a Di-Added TRIP Sheet Steel," in Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications, 2004, the subject matter of which is incorporated by reference herein.
[0023] The quench temperature (18) may be sufficiently low (with respect to Ms) to form an adequate amount of martensite to act as a carbon source to stabilize the austenite and avoid creating excessive "fresh" martensite upon the final quench. Alternatively, the quench temperature (18) may be sufficiently high to avoid consuming too much austenite during the initial quench and creating a situation where the potential carbon enrichment of the retained austenite is greater than that required for austenite stabilization at room temperature. In some embodiments, a suitable quench temperature (18) may correspond to the retained austenite having an Ms temperature of room temperature after partitioning. Speer and Streicher et al. (above) have provided calculations that provide guidelines to explore processing options that may result in desirable microstructures. Such calculations assume idealized full partitioning, and may be performed by applying the
Koistinen-Marburger (KM) relationship twice (fm = 1 - e ~ xl° ^) - first to the initial quench to quench temperature (18) and then to the final quench at room temperature (as further described below). The Ms temperature in the KM expression can be estimated using empirical formulae based on austenite chemistry (such as that of the well known in the art Andrew's linear expression):
[0024] Ms(°Q = 539 - 423C - 30AMn - 7.5Si + 30 Al
[0025] The result of the calculations described by Speer et al. may indicate a quench temperature (18) which may lead to a maximum amount of retained austenite. For quench temperatures (18) above the temperature having a maximum amount of retained austenite, significant fractions of austenite are present after the initial quench; however, there is not enough martensite to act as a carbon source to stabilize this austenite. Therefore, for the higher quench temperatures, increasing amounts of fresh martensite form during the final quench. For quench temperatures below the temperature having a maximum amount of retained austenite, an unsatisfactory amount of austenite may be consumed during the initial quench and there may be an excess amount of carbon that may partition from the martensite.
[0026] Once the quench temperature (18) is reached, the temperature of the steel sheet is either increased relative to the quench temperature or maintained at the quench temperature for a given period of time. In particular, this stage may be referred to as the partitioning stage. In such a stage, the temperature of the steel sheet is at least maintained at the quench temperature to permit carbon diffusion from martensite formed during the rapid cooling and into any remaining austenite. Such diffusion may permit the remaining austenite to be stable (or meta-stable) at room temperature, thus improving the mechanical properties of the steel sheet.
[0027] In some embodiments, the steel sheet may be heated above Ms to a relatively high partitioning temperature (20) and thereafter held at the high partitioning temperature (20). A variety of methods may be utilized to heat the steel sheet during this stage. By way of example only, the steel sheet may be heated using induction heating, torch heating, and/or the like. Alternatively, in other embodiments, the steel sheet may be heated but to a different, lower partitioning temperature (22) which is slightly below Ms. The steel sheet may then be likewise held at the lower partitioning temperate (22) for a certain period of time. In still a third alternative embodiment, another alternative partitioning temperature (24) may be used where the steel sheet is merely maintained at the quench temperature. Of course, any other suitable partitioning temperature may be used as will be apparent to those of ordinary skill in the art in view of the teachings herein.
[0028] After the steel sheet has reached the desired partitioning temperature (20, 22, 24), the steel sheet is maintained at the desired partitioning temperature (20, 22, 24) for a sufficient time to permit partitioning of carbon from martensite to austenite. The steel sheet may then be cooled to room temperature. [0029] FIG. 2 shows an alternative embodiment of the thermal cycle described above with respect to FIG. 1 (with a typical galvanizing/galvannealing thermal cycle shown with a solid line (40) and departures from typical shown with a dashed line). In particular, like with the process of FIG. 1, the steel sheet is first heated to a peak metal temperature (42). The peak metal temperature (42) in the illustrated embodiment is shown as being at least above A\. Thus, at the peak metal temperature (42), at least a portion of the steel sheet will be transformed to austenite. Of course, like the process of FIG. 1, the present embodiment may also include a peak metal temperature in excess of A3.
[0030] Next, the steel sheet may be rapidly quenched (44). It should be understood that the quench (44) may be rapid enough to initiate transformation of some of the austenite formed at the peak metal temperature (42) into martensite, thus avoiding excessive transformation to non-martensitic constituents such as ferrite, pearlite, banite, and/or the like.
[0031] The quench (44) may be then ceased at a quench temperature (46). Like the
process of FIG. 1, quench temperature (46) is below Ms. Of course, the amount below Ms may vary depending upon the material used. However, as described above, in many embodiments the difference between quench temperature (46) and Ms may be sufficiently great to form an adequate amount of martensite yet be sufficiently low to avoid consuming too much austenite.
[0032] The steel sheet is then subsequently reheated (48) to a partitioning temperature
(50, 52). Unlike the process of FIG. 1, the partitioning temperature (50, 52) in the present embodiment may be characterized by the galvanizing or galvannealing zinc bath temperature (if galvanizing or galvannealing is so used). For instance, in embodiments where galvanizing is used, the steel sheet may be re-heated to the galvanizing bath temperature (50) and subsequently held there for the duration of the galvanizing process. During the galvanizing process, partitioning may occur similar to the partitioning described above. Thus, the galvanizing bath temperature (50) may also function as the partitioning temperature (50). Likewise, in embodiments where galvannealing is used, the process may be substantially the same with the exception of a higher bath/partitioning temperature (52).
[0033] Finally, the steel sheet is permitted to cool (54) to room temperature where at least some austenite may be stable (or meta-stable) from the partitioning step described above.
[0034] In some embodiments the steel sheet may include certain alloying additions to improve the propensity of the steel sheet to form a primarily austenitic and martensitic microstructure and/or to improve the mechanical properties of the steel sheet. Suitable compositions of the steel sheet may include one or more of the following, by weight percent: 0.15-0.4% carbon, 1.5-4% manganese, 0-2% silicon or aluminum or some combination thereof, 0-0.5% molybdenum, 0-0.05%) niobium, other incidental elements, and the balance being iron.
[0035] In addition, in other embodiments suitable compositions of the steel sheet may include one or more of the following, by weight percent: 0.15-0.5%) carbon, 1-3% manganese, 0-2%> silicon or aluminum or some combination thereof, 0-0.5% molybdenum, 0-0.05% niobium, other incidental elements, and the balance being iron. Additionally, other embodiments may include additions of vanadium and/or titanium in addition to, or in lieu of niobium, although such additions are entirely optional.
[0036] In some embodiments carbon may be used to stabilize austenite. For instance, increasing carbon may lower the Ms temperature, lower transformation temperatures for other non-martensitic constituents (e.g., bainite, ferrite, pearlite), and increase the time required for non-martensitic products to form. Additionally, carbon additions may improve the hardenability of the material thus retaining formation of non-martensitic constituents near the core of the material where cooling rates may be locally depressed. However, it should be understood that carbon additions may be limited as significant carbon additions may lead to detrimental effects on weldability. [0037] In some embodiments manganese may provide additional stabilization of austenite by lowering transformation temperatures of other non-martensitic constituents, as described above. Manganese may further improve the propensity of the steel sheet to form a primarily austenitic and martensitic microstructure by increasing hardenability.
[0038] In other embodiments molybdenum may be used to increase hardenability.
[0039] In other embodiments silicon and/or aluminum may be provided to reduce the formation of carbides. It should be understood that a reduction in carbide formation may be desirable in some embodiments because the presence of carbides may decrease the levels of carbon available for diffusion into austenite. Thus, silicon and/or aluminum additions may be used to further stabilize austenite at room temperature.
[0040] In some embodiments, nickel, copper, and chromium may be used to stabilize austenite. For instance, such elements may lead to a reduction in the Ms temperature. Additionally, nickel, copper, and chromium may further increase the hardenability of the steel sheet.
[0041] In some embodiments niobium (or other micro-alloying elements, such as
titanium, vanadium, and/or the like) may be used to increase the mechanical properties of the steel sheet. For instance, niobium may increase the strength of the steel sheet through grain boundary pinning resulting from carbide formation.
[0042] In other embodiments, variations in the concentrations of elements and the
particular elements selected may be made. Of course, where such variations are made, it should be understood that such variations may have a desirable or undesirable effect on the steel sheet microstructure and/or mechanical properties in accordance with the properties described above for each given alloying addition. EXAMPLE 1
[0043] Embodiments of the steel sheet were made with the compositions set forth in
Table 1 below.
[0044] The materials were processed on laboratory equipment according to the following parameters. Each sample was subjected to Gleeble 1500 treatments using copper cooled wedge grips and the pocket jaw fixture. Samples were austenitized at 1100 °C and then cooled to room temperature at various cooling rates between 1- 100 °C/s.
Table 1 Chemical compositions in weight %.
EXAMPLE 2 The Rockwell hardness of each of the steel compositions described in Example 1 and Table 1 above was taken on the surface of each sample. The results of the tests are plotted in FIGS. 3-5 with Rockwell hardness plotted as a function of cooling rate. The average of at least seven measurements is shown for each data point. The compositions V4037, V4038 and V4039 correspond to FIGS. 3, 4, and 5, respectively.
EXAMPLE 3
Light optical micrographs were taken in the longitudinal through thickness direction near the center of each sample for each of the compositions of
Example 1. The results of these tests are shown in FIGS. 6-8. The compositions V4037, V4038, and V4039 correspond to FIGS. 6, 7, and 8, respectively.
Additionally, FIGS. 6-8 each contain six micrographs for each composition with each micrograph representing a sample subjected to a different cooling rate.
EXAMPLE 4
A critical cooling rate for each of the compositions of Example 1 was estimated using the data of Examples 2 and 3 in accordance with the procedure described herein. The critical cooling rate herein refers to the cooling rate required to form martensite and minimize the formation of non-martensitic transformation products. The results of these tests are as follows:
V4037: 70 °C/s
V4038: 75 °C/s
V4039: 7 °C/s EXAMPLE 5
[0051] Embodiments of the steel sheet were made with the compositions set forth in
Table 2 below.
[0052] The materials were processed by melting, hot rolling, and cold rolling. The
materials were then subjected to testing described in greater detail below in Examples 6-7. All of the compositions listed in Table 2 were intended for use with the process described above with respect to FIG. 2 with the exception of V4039 which was intended for use with the process described above with respect to FIG. 1. Heat V4039 had a composition intended to provide higher hardenability as required by the thermal profile described above with respect to FIG. 1. As a result V4039 was subjected to annealing at 600 °C for 2 hours in 100% H2 atmosphere after hot rolling, but prior to cold rolling. All materials were reduced during cold rolling about 75% to 1mm. Results for some of the material compositions set forth in Table 2 after hot rolling and cold rolling are shown in Tables 3 and 4, respectively.
Table 2 Chemical compositions in weight %.
Table 3 - Tensile Data, Post Hot Rolling
Tensile test performed in transverse direction for V4039
Table 4 - Tensile Data, Post Cold Rolling
EXAMPLE 7
[0053] The compositions of Example 5 were subjected to Gleeble dilatomety. Gleeble
dilatomety was performed in vacuum using a 101.6x25.4x1 mm samples with a c- strain gauge measuring dilation in the 25.4 mm direction. Plots were generated of the resulting dilation vs. temperature. Line segments were fit to the dilatometric data and the point at which the dilatometric data deviated from linear behavior was taken as the transformation temperature of interest (e.g., Aj, A3, Ms). The resulting transformation temperatures are tabulated in Table 5.
[0054] Gleeble methods were also used to measure a critical cooling rate for each of the compositions of Example 5. The first method utilized Gleeble dilatomety, as described above. The second method utilized measurements of Rockwell hardness. In particular, after samples were subjected to Gleeble testing at range of cooling rates, Rockwell hardness measurements were taken. Thus, Rockwell hardness measurements were taken for each material composition with a measurement of hardness for a range of cooling rates. A comparison was then made between the Rockwell hardness measurements of a given composition at each cooling rate.
Rockwell hardness deviations of 2 points HRA were considered significant. The critical cooling rate to avoid non-martensitic transfonnation product was taken as the highest cooling rate for which the hardness was lower than 2 point HRA than the maximum hardness. The resulting critical cooling rates are also tabulated in Table 5 for some of the compositions listed in Example 5.
Tabic 5 - Transformation Temperatures and Critical Cooling Rate from Gleeble Dilatomety V4062 700 975 375 30 -
V4078-1 750 925 450 40 55
V4078-2 790 980 425 40 -
V4079-1 800 1000 430 40 -
V4079-2 750 990 425 40 -
EXAMPLE 8
The compositions of Example 5 were used to calculate quench temperature and a theoretical maximum of retained austenite. The calculations were performed using the methods of Speer et al. , described above. The results of the calculations are tabulated below in Table 6 for some of the compositions listed in Example 5.
Table 6 - Quench Temperature and Theoretical Maximum of Retained Austenite
EXAMPLE 9 The samples of the compositions of Example 5 were subjected to the thermal profiles shown in FIGS. 1 and 2 with peak metal temperature and quench temperature varied between samples of a given composition. As described above, only composition V4039 was subjected to the thermal profile shown in FIG. 1, while all other compositions were subjected to the thermal cycle shown in FIG. 2. For each sample, tensile strength measurements were taken. The resulting tensile measurements are plotted in FIGS. 9-12. In particular, FIGS. 9-10 show tensile strength data plotted against austenitization temperature and FIGS. 11-12 show tensile strength data plotted against quench temperature. Additionally, where the thermal cycles were performed using Gleeble methods, such data points are denoted with "Gleeble." Similarly, where thermal cycles were performed using a salt bath, such data points are denoted with "salt."
Additionally, similar tensile measurements for each composition listed in Example 5 (where available) are tabulated in Table 7, shown below. Partitioning times and temperatures are shown for example only, in other embodiments the mechanisms (such as carbon partitioning and/or phase transformations) occur during non- isothermal heating and cooling to or from the stated partitioning temperature which may also contribute to final material properties.
Table 7 - Tensile Data, Post Partitioning
It will be understood various modifications may be made to this invention without departing from the spirit and scope of it. Therefore, the limits of this invention should be determined from the appended claims.

Claims

What is claimed is:
1. A steel sheet comprising the following elements by weight percent:
0.15-0.4% carbon;
1.5-4% manganese;
2% or less silicon, aluminum, or some combination thereof;
0.5% or less molybdenum;
0.05% or less niobium; and
the balance being iron and other incidental impurities.
2. A method for processing a steel sheet, the method comprising:
(a) heating the steel sheet to a first temperature (Tl), wherein Tl is at least above the temperature at which the steel sheet transforms to austenite and ferrite;
(b) cooling the steel sheet to a second temperature (T2) by cooling at a cooling rate, wherein T2 is below the martensite start temperature (Ms), wherein the cooling rate is sufficiently rapid to transform austenite to martensite;
(c) re-heating the steel sheet to a partitioning temperature, wherein the partitioning
temperature is sufficient to permit diffusion of carbon within the structure of the steel sheet;
(d) stabilizing austenite by holding the steel sheet at the partitioning temperature for a holding time, wherein the holding time is of a period of time sufficient to permit diffusion of carbon from martensite to austenite; and
(e) cooling the steel sheet to room temperature.
3. The method of claim 2, further comprising hot dip galvanizing or galvannealing the steel sheet while the steel sheet is being cooled to T2.
4. The method of claim 3, wherein the hot dip galvanizing or galvannealing occurs above Ms.
5. The method of claim 2, wherein the partitioning temperature is above Ms.
6. The method of claim 2, wherein the partitioning temperature is below Ms.
7. The method of claim 2, wherein the steel sheet comprises the following elements by weight percent:
0.15-0.4% carbon;
1.5-4% manganese;
2% or less silicon, aluminum, or some combination thereof;
0.5% or less molybdenum;
0.05% or less niobium; and
the balance being iron and other incidental impurities.
EP14734592.0A 2013-05-17 2014-05-16 Method for producing a hot dip galvanized and or galvannealed steel sheet by quenching and partitioning Active EP2997168B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361824699P 2013-05-17 2013-05-17
US201361824643P 2013-05-17 2013-05-17
PCT/US2014/038364 WO2014186689A2 (en) 2013-05-17 2014-05-16 High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath

Publications (2)

Publication Number Publication Date
EP2997168A2 true EP2997168A2 (en) 2016-03-23
EP2997168B1 EP2997168B1 (en) 2021-03-03

Family

ID=50933550

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14734592.0A Active EP2997168B1 (en) 2013-05-17 2014-05-16 Method for producing a hot dip galvanized and or galvannealed steel sheet by quenching and partitioning
EP14729827.7A Active EP2997172B1 (en) 2013-05-17 2014-05-16 Method of producton of a high strength steel exhibiting good ductility via quenching and partitioning treatment by zinc bath

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14729827.7A Active EP2997172B1 (en) 2013-05-17 2014-05-16 Method of producton of a high strength steel exhibiting good ductility via quenching and partitioning treatment by zinc bath

Country Status (12)

Country Link
US (2) US20140338798A1 (en)
EP (2) EP2997168B1 (en)
JP (3) JP6843612B2 (en)
KR (5) KR20170104159A (en)
CN (3) CN105247090A (en)
AU (2) AU2014265214B2 (en)
BR (2) BR112015027447B1 (en)
CA (2) CA2910012C (en)
MX (2) MX2015015332A (en)
RU (3) RU2632042C2 (en)
TW (4) TWI616538B (en)
WO (2) WO2014186689A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140338798A1 (en) * 2013-05-17 2014-11-20 Ak Steel Properties, Inc. High Strength Steel Exhibiting Good Ductility and Method of Production via Quenching and Partitioning Treatment by Zinc Bath
WO2016020714A1 (en) 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
CN104532126B (en) * 2014-12-19 2017-06-06 宝山钢铁股份有限公司 A kind of super high strength hot rolled Q&P steel of low yield strength ratio and its manufacture method
CN110218942A (en) * 2015-01-14 2019-09-10 Ak钢铁产权公司 With the dual phase steel for improving property
US11491581B2 (en) 2017-11-02 2022-11-08 Cleveland-Cliffs Steel Properties Inc. Press hardened steel with tailored properties
JP7333786B2 (en) * 2018-03-30 2023-08-25 クリーブランド-クリフス スティール プロパティーズ、インク. Low-alloy 3rd generation advanced high-strength steel and manufacturing process
CN109554622B (en) * 2018-12-03 2020-12-04 东北大学 Hot-rolled Fe-Mn-Al-C steel quenched to bainite region to obtain Q & P structure and manufacturing method thereof
CN109554621B (en) * 2018-12-03 2020-11-27 东北大学 Low-density Fe-Mn-Al-C hot-rolled Q & P steel and manufacturing method thereof
CN110055465B (en) * 2019-05-16 2020-10-02 北京科技大学 Medium-manganese ultrahigh-strength steel and preparation method thereof
CN112327970B (en) * 2020-09-04 2022-04-12 凌云工业股份有限公司 Control method for transition region strength of hot-forming variable-strength workpiece
CN114774652B (en) * 2022-04-29 2024-07-23 重庆长征重工有限责任公司 17CrNiMo6 material preliminary heat treatment method

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070119096A (en) * 2001-06-15 2007-12-18 신닛뽄세이테쯔 카부시키카이샤 High-strength alloyed aluminum-system palted steel sheet
US20060011274A1 (en) * 2002-09-04 2006-01-19 Colorado School Of Mines Method for producing steel with retained austenite
EP1612288B9 (en) * 2003-04-10 2010-10-27 Nippon Steel Corporation A method for producing a hot-dip zinc coated steel sheet having high strength
CA2482100A1 (en) * 2003-09-19 2005-03-19 Pertti J. Sippola Process for producing a new high-strength dual-phase steel product from lightly alloyed steel
US20050247382A1 (en) * 2004-05-06 2005-11-10 Sippola Pertti J Process for producing a new high-strength dual-phase steel product from lightly alloyed steel
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
MX2010002581A (en) * 2007-09-10 2010-04-30 Pertti J Sippola Method and apparatus for improved formability of galvanized steel having high tensile strength.
CN101121955A (en) * 2007-09-13 2008-02-13 上海交通大学 Heat treatment method for increasing quenched steel component mechanical property by using carbon distribution and tempering
JP5369663B2 (en) * 2008-01-31 2013-12-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4712882B2 (en) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5315956B2 (en) * 2008-11-28 2013-10-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5493986B2 (en) * 2009-04-27 2014-05-14 Jfeスチール株式会社 High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5412182B2 (en) * 2009-05-29 2014-02-12 株式会社神戸製鋼所 High strength steel plate with excellent hydrogen embrittlement resistance
JP5333298B2 (en) * 2010-03-09 2013-11-06 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
CN102002558B (en) * 2010-11-26 2012-07-25 清华大学 Step quenching-distribution heat treatment technology of steels containing carbide formation inhibiting elements
EP2683839B1 (en) * 2011-03-07 2015-04-01 Tata Steel Nederland Technology B.V. Process for producing high strength formable steel and high strength formable steel produced therewith
CN102758142A (en) * 2011-04-25 2012-10-31 宝山钢铁股份有限公司 Hot-dip galvanized steel sheet with tensile strength higher than 980MPa, and manufacturing method thereof
JP5821260B2 (en) * 2011-04-26 2015-11-24 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
EP2524970A1 (en) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
CN103857819B (en) * 2011-10-04 2016-01-13 杰富意钢铁株式会社 High tensile steel plate and manufacture method thereof
CN103045950B (en) * 2012-12-28 2015-04-22 中北大学 Low-alloy, high-strength and high-toughness composite phase steel and heat treatment method thereof
JP6401773B2 (en) * 2013-03-11 2018-10-10 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン BET bromodomain inhibitor and therapeutic method using the same
US20140338798A1 (en) * 2013-05-17 2014-11-20 Ak Steel Properties, Inc. High Strength Steel Exhibiting Good Ductility and Method of Production via Quenching and Partitioning Treatment by Zinc Bath

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014186689A2 *

Also Published As

Publication number Publication date
AU2014265214B2 (en) 2016-12-22
WO2014186689A3 (en) 2015-01-22
WO2014186722A2 (en) 2014-11-20
WO2014186722A3 (en) 2015-01-08
EP2997172B1 (en) 2020-08-26
CN105247090A (en) 2016-01-13
RU2632042C2 (en) 2017-10-02
KR101776242B1 (en) 2017-09-07
KR20190101504A (en) 2019-08-30
KR20160007647A (en) 2016-01-20
TW201502284A (en) 2015-01-16
KR20160007646A (en) 2016-01-20
CA2908491A1 (en) 2014-11-20
TWI616538B (en) 2018-03-01
AU2014265262B2 (en) 2016-12-15
BR112015027447A2 (en) 2017-07-25
CA2910012A1 (en) 2014-11-20
JP2018178262A (en) 2018-11-15
TW201446974A (en) 2014-12-16
KR20170104158A (en) 2017-09-14
RU2015141563A (en) 2017-06-22
RU2669654C2 (en) 2018-10-12
RU2018133682A3 (en) 2020-03-25
EP2997172A2 (en) 2016-03-23
JP2016524038A (en) 2016-08-12
CA2908491C (en) 2019-07-30
CN105392906A (en) 2016-03-09
KR20170104159A (en) 2017-09-14
TW201702397A (en) 2017-01-16
RU2018133682A (en) 2020-03-25
EP2997168B1 (en) 2021-03-03
CN113151735A (en) 2021-07-23
MX2015015332A (en) 2016-07-15
BR112015027901A2 (en) 2017-07-25
JP2016526096A (en) 2016-09-01
AU2014265214A1 (en) 2015-11-05
RU2015145865A (en) 2017-06-22
JP6843612B2 (en) 2021-03-17
TWI627288B (en) 2018-06-21
MX2015015333A (en) 2016-06-23
TW201708562A (en) 2017-03-01
BR112015027447B1 (en) 2020-04-22
US20140338797A1 (en) 2014-11-20
KR101776241B1 (en) 2017-09-07
CA2910012C (en) 2020-02-18
BR112015027901B1 (en) 2020-04-22
US20140338798A1 (en) 2014-11-20
AU2014265262A1 (en) 2015-11-12
TWI560279B (en) 2016-12-01
WO2014186689A2 (en) 2014-11-20
RU2015145865A3 (en) 2018-03-29
TWI564402B (en) 2017-01-01

Similar Documents

Publication Publication Date Title
AU2014265262B2 (en) High strength steel exhibiting good ductility and method of production via in-line heat treatment downstream of molten zinc bath
KR102455942B1 (en) Method for producing a high strength coated steel sheet having improved strength, ductility and formability
ES2777835T3 (en) Procedure to produce an uncoated ultra high strength steel sheet and a obtained sheet
EP3704276B1 (en) Press hardened steel with tailored properties after novel thermal treatment
JP5958667B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
BR112017000027B1 (en) method for manufacturing high strength steel sheet and high strength steel sheet
US10907232B2 (en) Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
BR112017000026B1 (en) method for fabricating a steel plate and steel plate
BR112018013051B1 (en) method for producing an annealed steel sheet after galvanizing and an annealed steel sheet after galvanizing
KR20190134842A (en) Post annealed high tensile strength coated steel sheet having improved yield strength and hole expansion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151022

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170329

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/18 20060101ALI20200618BHEP

Ipc: C22C 38/32 20060101ALI20200618BHEP

Ipc: C23C 2/40 20060101ALI20200618BHEP

Ipc: C23C 2/06 20060101ALI20200618BHEP

Ipc: C22C 38/34 20060101ALI20200618BHEP

Ipc: C22C 38/06 20060101ALI20200618BHEP

Ipc: C21D 8/02 20060101AFI20200618BHEP

Ipc: C21D 1/78 20060101ALI20200618BHEP

Ipc: C22C 38/12 20060101ALI20200618BHEP

Ipc: C22C 38/00 20060101ALI20200618BHEP

Ipc: C21D 6/00 20060101ALI20200618BHEP

Ipc: C22C 38/18 20060101ALI20200618BHEP

Ipc: C22C 38/04 20060101ALI20200618BHEP

Ipc: C22C 38/02 20060101ALI20200618BHEP

Ipc: C23C 2/02 20060101ALI20200618BHEP

Ipc: C22C 38/38 20060101ALI20200618BHEP

Ipc: C22C 38/22 20060101ALI20200618BHEP

Ipc: C21D 9/46 20060101ALI20200618BHEP

Ipc: C22C 38/26 20060101ALI20200618BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1367263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014075349

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1367263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014075349

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240526

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240530

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240527

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240521

Year of fee payment: 11