JP2018178262A - Methods for processing steel sheet - Google Patents

Methods for processing steel sheet Download PDF

Info

Publication number
JP2018178262A
JP2018178262A JP2018090692A JP2018090692A JP2018178262A JP 2018178262 A JP2018178262 A JP 2018178262A JP 2018090692 A JP2018090692 A JP 2018090692A JP 2018090692 A JP2018090692 A JP 2018090692A JP 2018178262 A JP2018178262 A JP 2018178262A
Authority
JP
Japan
Prior art keywords
temperature
austenite
steel sheet
carbon
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018090692A
Other languages
Japanese (ja)
Inventor
トマス、グラント・アーロン
Aaron Thomas Grant
ガルサ−マルティネス、ルイス・ジー
G Garza-Martinez Luis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleveland Cliffs Steel Properties Inc
Original Assignee
AK Steel Properties Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AK Steel Properties Inc filed Critical AK Steel Properties Inc
Publication of JP2018178262A publication Critical patent/JP2018178262A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • C21D1/785Thermocycling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel with high strength and good formability, and processing methods for producing the same.SOLUTION: Carbon, manganese, molybdenum, nickel, copper and chromium promotes the formation of room temperature stable (or meta-stable) austenite by mechanisms such as lowering transformation temperatures for non-martensitic constituents, and/or increasing the hardenability of steel. Thermal cycles utilizing a rapid cooling to below a martensite start temperature followed by reheating promote formation of room temperature stable austenite by permitting diffusion of carbon into austenite from martensite.SELECTED DRAWING: None

Description

本出願は、2013年5月17日に出願され“High−Strength Steel Exhibiting Good Ductility and Method of Production via In−Line Partitioning Treatment by Zinc Bath”と題される米国仮特許出願第61/824,643号明細書;および2013年5月17日に出願され“High−Strength Steel Exhibiting Good Ductility and Method of Production via In−Line Partitioning Treatment Downstream of Molten zinc Bath”と題される米国仮特許出願第61/824,699号明細書の優先権を主張する。米国特許出願第61/824,643号明細書、および米国特許出願第64/824,699号明細書の開示は参照により本明細書に援用される。   This application is related to US Provisional Patent Application No. 61 / 824,643, filed on May 17, 2013, entitled "High-Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Partitioning Treatment by Zinc Bath". And US Provisional Patent Application No. 61/824, filed May 17, 2013, entitled “High-Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Partitioning Treatment Downstream of Molten zinc Bath”. Claim priority to the '699 specification. The disclosures of U.S. Patent Application No. 61 / 824,643 and U.S. Patent Application No. 64 / 824,699 are incorporated herein by reference.

高強度および良好な成形特性を有する鋼が製造されることが望まれている。しかし、このような特性を示す鋼の商業生産は、比較的少ない合金添加が望ましいこと、および工業生産ラインの熱処理能力が制限されることなどの要因のために困難となっている。本発明は、得られる鋼が高強度および冷間成形性を示すように、溶融亜鉛めっき/ガルバニーリング(HDG)プロセスを用いて鋼を製造するための鋼組成および処理方法に関する。   It is desirable that steels having high strength and good forming properties be produced. However, commercial production of steels exhibiting such properties is made difficult by factors such as the desire for relatively low alloying additions and the limited heat treatment capability of industrial production lines. The present invention relates to a steel composition and processing method for producing steel using a hot dip galvanizing / galvanic ring (HDG) process so that the resulting steel exhibits high strength and cold formability.

本発明の鋼は、組成と修正されたHDGプロセスとを使用して製造され、一般にマルテンサイトおよびオーステナイト(特に構成要素として)からなる微細組織が結果として得られる。このような微細組織を実現するために、その組成には、ある種の合金添加が含まれ、そのHDGプロセスには、ある種のプロセスの修正が含まれ、これらすべてが、オーステナイトからマルテンサイトへの変態、およびそれに続く室温におけるオーステナイトの部分安定化の推進に少なくとも部分的に関連する。   The steel according to the invention is manufactured using a composition and a modified HDG process, which results in a microstructure generally consisting of martensite and austenite (especially as constituents). In order to achieve such a microstructure, the composition includes some alloying additions, the HDG process includes some process modifications, all from austenite to martensite It is at least partly related to the promotion of the austenite transformation and the subsequent partial stabilization of austenite at room temperature.

本明細書に組み込まれ本明細書の一部を構成する添付の図面は、実施形態を示すものであり、上記の概要および以下に示す実施形態の詳細な説明とともに、本開示の原理を説明する役割を果たす。   BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments and together with the summary described above and the detailed description of the embodiments set forth below, explain the principles of the present disclosure Play a role.

亜鉛めっき/ガルバニーリングの後に分配工程が行われる場合のHDG温度プロファイルの概略図を示している。FIG. 6 shows a schematic of the HDG temperature profile when a dispensing step is performed after galvanization / galvanization. 亜鉛めっき/ガルバニーリング中に分配工程が行われる場合のHDG温度プロファイルの概略図を示している。FIG. 7 shows a schematic of the HDG temperature profile when the dispensing step is performed during galvanization / galvanization. 冷却速度に対してプロットしたロックウェル硬さを有する一実施形態のプロットを示している。Fig. 6 shows a plot of an embodiment having Rockwell hardness plotted against cooling rate. 冷却速度に対してプロットしたロックウェル硬さを有する別の一実施形態のプロットを示している。Fig. 6 shows a plot of another embodiment having Rockwell hardness plotted against cooling rate. 冷却速度に対してプロットしたロックウェル硬さを有する別の一実施形態のプロットを示している。Fig. 6 shows a plot of another embodiment having Rockwell hardness plotted against cooling rate. 種々の冷却速度で冷却される試料から得た図3の実施形態の6つの顕微鏡写真を示している。FIG. 7 shows six photomicrographs of the embodiment of FIG. 3 obtained from samples cooled at different cooling rates. 種々の冷却速度で冷却される試料から得た図4の実施形態の6つの顕微鏡写真を示している。Fig. 5 shows six photomicrographs of the embodiment of Fig. 4 obtained from samples cooled at different cooling rates. 種々の冷却速度で冷却される試料から得た図5の実施形態の6つの顕微鏡写真を示している。FIG. 7 shows six photomicrographs of the embodiment of FIG. 5 obtained from samples cooled at different cooling rates. いくつかの実施形態のオーステナイト化温度の関数としての引張データのプロットを示している。Fig. 6 shows a plot of tensile data as a function of austenitizing temperature of some embodiments. いくつかの実施形態のオーステナイト化温度の関数としての引張データのプロットを示している。Fig. 6 shows a plot of tensile data as a function of austenitizing temperature of some embodiments. いくつかの実施形態の焼入れ温度の関数としての引張データのプロットを示している。Fig. 6 shows a plot of tensile data as a function of quench temperature for some embodiments. いくつかの実施形態の焼入れ温度の関数としての引張データのプロットを示している。Fig. 6 shows a plot of tensile data as a function of quench temperature for some embodiments.

図1は、ある化学組成(以下により詳細に記載する)を有する鋼板において高強度および冷間成形性を実現するために使用される熱サイクルの概略図を示している。特に、図1は、破線で示されるプロセスの修正が行われた典型的な溶融亜鉛めっきまたはガルバニーリングの熱プロファイル(10)を示している。一実施形態において、プロセスは一般に、オーステナイト化を含み、その後、指定焼入れ温度への急冷によって、オーステナイトからマルテンサイトに部分的に変態し、高温の分配温度で保持することで、炭素はマルテンサイトから残留オーステナイトの中に拡散することができ、それによって室温でオーステナイトが安定化される。ある実施形態において、図1に示される熱プロファイルは、従来の連続溶融亜鉛めっきまたはガルバニーリング生産ラインとともに使用できるが、このような生産ラインは必要なものではない。   FIG. 1 shows a schematic of the thermal cycle used to achieve high strength and cold formability in a steel plate having a certain chemical composition (described in more detail below). In particular, FIG. 1 shows a typical hot dip galvanizing or galvanic ring thermal profile (10) with the process modifications indicated by the dashed line. In one embodiment, the process generally comprises austenitizing, and then partially transforming from austenite to martensite by quenching to a specified quench temperature, and holding at a high distribution temperature, carbon from martensite It can diffuse into retained austenite, thereby stabilizing the austenite at room temperature. In one embodiment, the thermal profile shown in FIG. 1 can be used with a conventional continuous galvanizing or galvanizing production line, although such a production line is not required.

図1から分かるように、鋼板は最初にピーク金属温度(12)まで加熱される。図示される例におけるピーク金属温度(12)は、オーステナイト変態温度(A)より少なくとも高温(たとえば、オーステナイト+フェライト領域の二相)として示されている。したがって、ピーク金属温度(12)において、鋼の少なくとも一部はオーステナイトに変態する。図1ではピーク金属温度(12)が単にAよりも高温であるとして示されているが、ある実施形態においてはピーク金属温度は、フェライトがオーステナイトに完全に変態する温度(A)よりも高い温度(たとえば、オーステナイト領域の単相)をも含むことができることを理解すべきである。 As can be seen from FIG. 1, the steel sheet is first heated to the peak metal temperature (12). The peak metal temperature (12) in the illustrated example is shown as at least higher than the austenite transformation temperature (A 1 ) (eg, two phases of austenite + ferrite region). Thus, at peak metal temperatures (12), at least a portion of the steel transforms to austenite. Although the peak metal temperature (12) is shown in FIG. 1 as merely being higher than A 1 , in one embodiment the peak metal temperature is greater than the temperature (A 3 ) at which the ferrite completely transforms to austenite It should be understood that high temperatures (eg, single phase in the austenite region) can also be included.

次に、鋼板は急冷される。鋼板が冷却されるとき、ある実施形態は、亜鉛めっきまたはガルバニーリングを行うために短時間の冷却の中断を含むことができる。亜鉛めっきが使用される実施形態においては、鋼板は、溶融亜鉛の亜鉛めっき浴の熱のために、一定温度(14)で短時間保持されてもよい。さらに別の実施形態において、ガルバニーリングプロセスを使用することができ、鋼板の温度は、ガルバニーリングプロセスを行うことができるガルバニーリング温度(16)までわずかに上昇させることができる。しかし、別の実施形態においては、亜鉛めっきまたはガルバニーリングプロセスを完全に省略することができ、鋼板を連続的に冷却することができる。   The steel plate is then quenched. When the steel sheet is cooled, certain embodiments can include a brief cooling interruption to perform galvanization or galvanic ringing. In embodiments where galvanization is used, the steel sheet may be held at a constant temperature (14) for a short time, due to the heat of the galvanizing bath of the molten zinc. In yet another embodiment, a galvanic ring process can be used, and the temperature of the steel plate can be raised slightly to the galvanic ring temperature (16) where the galvanic ring process can be performed. However, in another embodiment, the galvanizing or galvanic process can be completely omitted and the steel sheet can be cooled continuously.

鋼板の急冷は、鋼板のマルテンサイト開始温度(M)から下がって、あらかじめ決定された焼入れ温度(18)まで続くことが示されている。Mまでの冷却速度は、ピーク金属温度(12)において形成された少なくとも一部のオーステナイトがマルテンサイトに変態するのに十分速い速度であってよいことを理解すべきである。言い換えると、冷却速度は、オーステナイトが、比較的より遅い冷却速度で変態するフェライト、パーライトまたはベイナイトなどの他の非マルテンサイト成分ではなく、マルテンサイトに変態するのに十分な速さであってよい。 Quenching of the steel sheet has been shown to be down from the martensite start temperature (M S ) of the steel sheet and to continue to a pre-determined quench temperature (18). It should be understood that the cooling rate to M 2 S may be fast enough to transform at least some of the austenite formed at peak metal temperature (12) to martensite. In other words, the cooling rate may be fast enough to transform austenite to martensite rather than other non-martensitic components such as ferrite, pearlite or bainite which transform at a relatively slower cooling rate .

図1に示されるように、焼入れ温度(18)はMよりも低い。焼入れ温度(18)とMとの間の差は、使用される鋼板の個別の組成に依存して変動してもよい。しかし、多くの実施形態において、オーステナイトを安定化させる炭素源として機能する十分な量のマルテンサイトを形成し、最終的な冷却で過剰の「新しい」マルテンサイトが形成されるのを回避するために、焼入れ温度(18)とMとの間の差は十分に大きくてよい。さらに、初期焼入れ中のオーステナイトの消費が多くなりすぎるのを回避するため(たとえば、特定の実施形態の場合、オーステナイトの安定化に必要な量を超える、オーステナイトの過度の炭素濃縮を回避するため)に、焼入れ温度(18)は十分に高くてよい。 As shown in FIG. 1, the quenching temperature (18) is lower than M S. The difference between the quench temperature (18) and the M 2 S may vary depending on the particular composition of the steel sheet used. However, in many embodiments, to form a sufficient amount of martensite to act as a carbon source to stabilize austenite and to avoid the formation of excess "new" martensite on final cooling. , the difference between the quenching temperature (18) and M S may sufficiently large. Furthermore, to avoid excessive consumption of austenite during initial hardening (for example, in certain embodiments, to avoid excessive carbon enrichment of austenite in excess of the amount required to stabilize austenite) The quenching temperature (18) may be high enough.

多くの実施形態において、焼入れ温度(18)は約191℃〜約281℃で変動することができるが、そのような制限は不要である。さらに、特定の鋼組成に関する焼入れ温度(18)を計算することができる。このような計算の場合、焼入れ温度(18)は、分配後に室温のM温度を有する残留オーステナイトに対応する。焼入れ温度(18)の計算方法は、当技術分野において周知であり、J.G.Speer,A.M.Streicher,D.K.Matlock,F.Rizzo,and G.Krauss,“Quenching And Partitioning:A Fundamentally New Process to Create High Strength Trip Sheet Microstructures,”Austenite Formation and Decomposition,pp.505−522,2003;およびA.M.Streicher,J.G.J.Speer,D.K.Matlock,and B.C.De Cooman,“Quenching and Partitioning Response of a Si−Added TRIP Sheet Steel,” Proceedings of the International Conference on Advanced High Strength Sheet Steels for Automotive Applications,2004に記載されており、その主題は参照により本明細書に援用される。 In many embodiments, the quench temperature (18) can vary from about 191 ° C to about 281 ° C, but such limitation is not necessary. Additionally, the quench temperature (18) for a particular steel composition can be calculated. For such calculations, the quenching temperature (18) corresponds to the residual austenite with M S temperature of room temperature after dispensing. Methods of calculating quench temperature (18) are well known in the art, see J. G. Speer, A., et al. M. Streicher, D. K. Matlock, F. et al. Rizzo, and G. Krauss, “Quenching And Partitioning: A Fundamentally New Process to Create High Strength Trip Sheet Microstructures,” Austenite Formation and Decomposition, pp. 505-522, 2003; M. Streicher, J.J. G. J. Speer, D.S. K. Matlock, and B. C. De Cooman, “Quenching and Partitioning Response of a Si-Added TRIP Steel,” Proceedings of the International Conference on High Strength Sheet Steels for Automotive Applications, 2004, the subject matter of which is incorporated herein by reference Be done.

オーステナイトを安定化させる炭素源として機能する十分な量のマルテンサイトを形成し、最終の焼入れで過剰の「新しい」マルテンサイトが形成されるのを回避するために、焼入れ温度(18)は(Mに対して)十分低くてよい。または、初期焼入れ中に消費されるオーステナイトが多くなり過ぎるのを回避し、残留オーステナイトで起こり得る炭素濃縮が、室温におけるオーステナイト安定化に必要な程度よりも多くなる状況が発生するのを回避するために、焼入れ温度(18)は十分高くてよい。ある実施形態において、好適な焼入れ温度(18)は、分配後に室温のM温度を有する残留オーステナイトに対応させることができる。SpeerおよびStreicherら(前出)は、所望の微細組織を得ることができる処理の選択肢を調査するための基準が得られる計算を提供している。このような計算は、理想的な完全分配を仮定しており、Koistinen−Marburger(KM)の関係式 The quenching temperature (18) is (M) to form a sufficient amount of martensite to function as a carbon source to stabilize austenite and to avoid the formation of excess "new" martensite in the final quenching. May be sufficiently low). Or, to avoid that too much austenite is consumed during initial hardening, and to avoid the situation where carbon enrichment that may occur with retained austenite is more than necessary for austenite stabilization at room temperature The quenching temperature (18) may be high enough. In certain embodiments, a suitable quenching temperature (18) can be made to correspond to the residual austenite with M S temperature of room temperature after dispensing. Speer and Streicher et al., Supra, provide calculations that provide a basis for exploring processing options that can achieve the desired microstructure. Such calculations assume an ideal perfect distribution, and the Koistinen-Marburger (KM) relation

Figure 2018178262
Figure 2018178262

を、初期焼入れから焼入れ温度(18)と、次の室温における最終焼入れ(以下にさらに説明する)との2回使用することで行うことができる。KMの式におけるM温度は、オーステナイトの化学的性質に基づく実験式(Andrewの一次式など):
(℃)=539−423C−30.4Mn−7.5Si+30Al
を用いて評価することができる。
Can be performed twice from the initial hardening to the hardening temperature (18) and the final hardening at the next room temperature (described further below). The M 2 S temperature in the KM equation is an empirical equation based on the austenite chemistry (such as Andrew's linear equation):
M S (° C.) = 539-423C-30.4Mn-7.5Si + 30Al
Can be evaluated using

Speerらによって示された計算結果は、最大量の残留オーステナイトを得ることができる焼入れ温度(18)を示している。最大量の残留オーステナイトを有する温度より高い焼入れ温度(18)の場合、かなりの割合のオーステナイトが初期焼入れ後に存在するが、このオーステナイトを安定化させる炭素源として機能するのに十分なマルテンサイトは存在しない。したがって、より高い焼入れ温度の場合、最終焼入れ中に形成される新しいマルテンサイトの量が増加する。最大量の残留オーステナイトを有する温度よりも低い焼入れ温度の場合、望ましくない量のオーステナイトが初期焼入れ中に消費されることがあり、マルテンサイトから分配され得る過剰量の炭素が存在してもよい。   The calculated results presented by Speer et al. Show a quench temperature (18) at which the largest amount of retained austenite can be obtained. At quench temperatures (18) above the temperature with the highest amount of retained austenite, a significant proportion of austenite is present after initial quench, but sufficient martensite is present to act as a carbon source to stabilize this austenite do not do. Thus, at higher quench temperatures, the amount of new martensite formed during the final quench is increased. If the quenching temperature is lower than the temperature having the largest amount of retained austenite, an undesirable amount of austenite may be consumed during the initial quenching, and there may be an excess amount of carbon that can be distributed from martensite.

焼入れ温度(18)に到達した後、鋼板の温度は、焼入れ温度よりも上昇させるか、所定の時間、焼入れ温度で保持されるかのいずれかである。特に、この段階を分配段階と呼ぶことができる。このような段階において、急冷中に形成されたマルテンサイトから残留オーステナイト中への炭素拡散が可能となるように、鋼板の温度は焼入れ温度で少なくとも保持される。この拡散によって、残留オーステナイトが室温において安定(または準安定)となることができ、したがって鋼板の機械的性質が改善される。   After reaching the quench temperature (18), the temperature of the steel plate is either raised above the quench temperature or held at the quench temperature for a predetermined time. In particular, this stage can be called the distribution stage. At such a stage, the temperature of the steel sheet is at least maintained at the quenching temperature so as to allow carbon diffusion from martensite formed during quenching into retained austenite. This diffusion allows the retained austenite to be stable (or metastable) at room temperature, thus improving the mechanical properties of the steel sheet.

ある実施形態において、鋼板は、Mを超えて比較的高い分配温度(20)まで加熱することができ、その後その高い分配温度(20)で保持することができる。この段階中に鋼板を加熱するために種々の方法を使用することができる。単なる例として、鋼板は、誘導加熱、トーチ加熱、および/または同様のものを使用して加熱することができる。または、別の実施形態において、鋼板は、加熱することができるが、Mよりもわずかに低くて、異なるより低い分配温度(22)に加熱することができる。次に同様に、鋼板は、そのより低い分配温度(22)で、ある時間保持することができる。さらに第3の別の実施形態においては、別の分配温度(24)を使用することができ、この場合、鋼板は単に焼入れ温度で保持される。当然ながら、本明細書の教示を考慮すれば当業者には明らかなように、あらゆる別の好適な分配温度を使用することができる。 In certain embodiments, the steel sheet may be heated to a relatively high partition temperatures exceed M S (20), then it can be held in its high distribution temperature (20). Various methods can be used to heat the steel sheet during this stage. Merely by way of example, the steel sheet can be heated using induction heating, torch heating, and / or the like. Or, in another embodiment, the steel sheet may be heated, slightly lower than M S, can be heated to a lower than different distribution temperature (22). Then likewise, the steel sheet can be held for some time at its lower distribution temperature (22). In yet a third alternative embodiment, another distribution temperature (24) can be used, in which case the steel plate is simply held at the quench temperature. Of course, any other suitable dispensing temperature can be used as would be apparent to one of ordinary skill in the art in view of the teachings herein.

鋼板が所望の分配温度(20、22、24)に到達した後、マルテンサイトからオーステナイトへの炭素の分配が可能となるのに十分な時間、鋼板は所望の分配温度(20、22、24)で保持される。次に鋼板は室温まで冷却することができる。   After the steel sheet has reached the desired distribution temperature (20, 22, 24), the steel sheet has the desired distribution temperature (20, 22, 24) for a sufficient time to allow distribution of carbon from martensite to austenite Is held by. The steel sheet can then be cooled to room temperature.

図2は、図1に関して前述した熱サイクルの別の一実施形態を示している(実線(40)で示される典型的な亜鉛めっき/ガルバニーリング熱サイクル、および破線で示される典型例からの逸脱が示されている)。特に、図1のプロセスと同様に、鋼板は最初にピーク金属温度(42)まで加熱される。図示される実施形態におけるピーク金属温度(42)は、少なくともAよりも高いものとして示されている。したがって、ピーク金属温度(42)において、鋼板の少なくとも一部はオーステナイトに変態する。当然ながら、図1のプロセスと同様に、この実施形態も、Aよりも高いピーク金属温度を含むことができる。 FIG. 2 shows another embodiment of the thermal cycle described above with reference to FIG. 1 (typical galvanizing / galvanic ring thermal cycling shown by solid line (40) and deviation from the typical example shown by dashed line It is shown). In particular, similar to the process of FIG. 1, the steel sheet is first heated to the peak metal temperature (42). Peak metal temperature in the illustrated embodiment (42) is shown as higher than at least A 1. Thus, at peak metal temperature (42), at least a portion of the steel plate transforms to austenite. Of course, as with the process of FIG. 1, this embodiment may also include a high peak metal temperatures than A 3.

次に、鋼板は急速に焼入れ(44)を行うことができる。焼入れ(44)は、ピーク金属温度(42)において形成されたオーステナイトの一部のマルテンサイトへの変態を開始するのに十分速くてよく、それによってフェライト、パーライト、ベイナイト、および/または同様のものなどの非マルテンサイト成分への過度の変態を回避できることを理解すべきである。   The steel plate can then be rapidly quenched (44). Quenching (44) may be fast enough to initiate transformation of austenite formed to a portion of martensite at peak metal temperature (42), whereby ferrite, pearlite, bainite, and / or the like It should be understood that excessive transformation to non-martensitic components, such as, can be avoided.

焼入れ(44)は焼入れ温度(46)において終了することができる。図1のプロセスと同様に、焼入れ温度(46)はMよりも低い。当然ながら、Mを下回る程度は、使用される材料により変動してもよい。しかし、前述のように、多くの実施形態においては、焼入れ温度(46)とMとの間の差は、十分な量のマルテンサイトを形成するのに十分大きく、オーステナイトの消費が多くなり過ぎるのを回避するのに十分小さくてよい。 Quenching (44) may end at the quench temperature (46). Similar to the process of FIG. 1, the quenching temperature (46) is lower than M S. Of course, the degree below M S may vary depending on the material used. However, as mentioned above, in many embodiments, the difference between the quenching temperature (46) and M S are to form a sufficient amount of martensite sufficiently large, too becomes large consumption of austenite It may be small enough to avoid

続いて鋼板は、分配温度(50、52)までの再加熱(48)が行われる。図1のプロセスとは異なり、この実施形態における分配温度(50、52)は、亜鉛めっきまたはガルバニーリングの亜鉛浴温度によって特徴付けることができる(亜鉛めっきまたはガルバニーリングがそのように使用される場合)。たとえば、亜鉛めっきが使用される実施形態においては、鋼板を亜鉛めっき浴温度(50)まで再加熱し、次に亜鉛めっきプロセスの間、その温度で保持することができる。亜鉛めっきプロセス中、分配は前述の分配と同様に行うことができる。したがって、亜鉛めっき浴温度(50)は、分配温度(50)としても機能してよい。同様に、ガルバニーリングが使用される実施形態においてはプロセスは、より高い浴/分配温度(52)を除けば実質的に同じであってよい。   The steel sheet is subsequently reheated (48) to the distribution temperature (50, 52). Unlike the process of FIG. 1, the distribution temperature (50, 52) in this embodiment can be characterized by the zinc bath temperature of the galvanizing or galvanic ring (if galvanizing or galvanic ring is used as such) . For example, in embodiments where galvanization is used, the steel sheet can be reheated to a galvanization bath temperature (50) and then held at that temperature during the galvanization process. During the galvanization process, the distribution can be performed in the same manner as the distribution described above. Thus, the galvanization bath temperature (50) may also function as the distribution temperature (50). Similarly, in embodiments where galvanic rings are used, the process may be substantially the same except for the higher bath / distribution temperature (52).

最後に、鋼板は、室温までの冷却(54)を行うことができ、その場合、少なくとも一部のオーステナイトは前述の分配工程から安定(または準安定)となり得る。   Finally, the steel sheet can be cooled (54) to room temperature, in which case at least a portion of the austenite can be stable (or metastable) from the distribution process described above.

ある実施形態において、鋼板の性質を改善して主としてオーステナイトおよびマルテンサイトの微細組織を形成するため、および/または鋼板の機械的性質を改善するために、鋼板は、ある種の合金添加を含むことができる。鋼板の好適な組成は、0.15〜0.4重量%の炭素、1.5〜4重量%のマンガン、0〜2重量%の、ケイ素またはアルミニウムまたはそれらの組合せ、0〜0.5重量%のモリブデン、0〜0.05重量%のニオブ、別の付随的元素を含むことができ、残部は鉄である。   In one embodiment, the steel sheet includes certain alloying additions to improve the properties of the steel sheet to form mainly austenite and martensite microstructures and / or to improve the mechanical properties of the steel sheet. Can. The preferred composition of the steel sheet is 0.15 to 0.4% by weight carbon, 1.5 to 4% by weight manganese, 0 to 2% by weight, silicon or aluminum or a combination thereof, 0 to 0.5% % Molybdenum, 0 to 0.05% by weight niobium, other additional elements may be included, the balance being iron.

さらに、別の実施形態において、鋼板の好適な組成は、0.15〜0.5重量%の炭素、1〜3重量%のマンガン、0〜2重量%の、ケイ素またはアルミニウムまたはそれらの組合せ、0〜0.5重量%のモリブデン、0〜0.05重量%のニオブ、別の付随的元素を含むことができ、残部は鉄である。さらに、別の実施形態は、ニオブに加えてまたはニオブの代わりにバナジウムおよび/またはチタンの添加を含むことができるが、このような添加は完全に任意選択的である。   Furthermore, in another embodiment, the preferred composition of the steel sheet is 0.15 to 0.5 wt% carbon, 1 to 3 wt% manganese, 0 to 2 wt% silicon or aluminum or combinations thereof. It can contain 0-0.5 wt% molybdenum, 0-0.05 wt% niobium, other additional elements, the balance being iron. Furthermore, alternative embodiments may include the addition of vanadium and / or titanium in addition to or in place of niobium, such additions being completely optional.

ある実施形態においては、オーステナイトを安定化させるために炭素を使用することができる。たとえば、炭素を増加させると、M温度を下げることができ、他の非マルテンサイト成分(たとえば、ベイナイト、フェライト、パーライト)の変態温度を下げることができ、非マルテンサイト生成物の形成に必要な時間を増加させることができる。さらに、炭素添加は、材料焼入性を改善することができ、したがって、冷却速度が局所的に低下し得る材料の中心付近での非マルテンサイト成分の形成を維持することができる。しかし、著しい炭素添加は溶接性に悪影響が生じるかもしれないので、炭素添加が制限され得ることを理解すべきである。 In one embodiment, carbon can be used to stabilize austenite. For example, increasing carbon can lower the M 2 S temperature, lower the transformation temperature of other non-martensitic components (eg, bainite, ferrite, pearlite) and is required for the formation of non-martensitic products Time can be increased. In addition, carbon addition can improve material hardenability, thus maintaining the formation of non-martensitic components near the center of the material where the cooling rate can be locally reduced. However, it should be understood that carbon addition may be limited as significant carbon addition may adversely affect weldability.

ある実施形態において、マンガンは、前述のように別の非マルテンサイト成分の変態温度を下げることによって、オーステナイトをさらに安定化させることができる。マンガンは、焼入性を増加させることによって、主としてオーステナイトおよびマルテンサイトの微細組織を形成する鋼板の性質をさらに改善することができる。   In one embodiment, manganese can further stabilize austenite by lowering the transformation temperature of another non-martensitic component as described above. Manganese can further improve the properties of the steel sheet that form mainly austenite and martensite microstructures by increasing hardenability.

別の実施形態においては、焼入性を増加させるためにモリブデンを使用することができる。   In another embodiment, molybdenum can be used to increase hardenability.

別の実施形態においては、ケイ素および/またはアルミニウムによって、炭化物の形成を減少させることができる。炭化物が存在することで、オーステナイト中に拡散できる炭素量が減少するかもしれないので、ある実施形態においては炭化物形成の減少が望ましい場合があることを理解すべきである。したがって、室温においてオーステナイトをさらに安定化させるために、ケイ素および/またはアルミニウムの添加を利用することができる。   In another embodiment, silicon and / or aluminum can reduce carbide formation. It should be understood that, in certain embodiments, it may be desirable to reduce carbide formation, as the presence of carbides may reduce the amount of carbon that can diffuse into austenite. Thus, the addition of silicon and / or aluminum can be used to further stabilize the austenite at room temperature.

ある実施形態においては、オーステナイトを安定化させるためにニッケル、銅、およびクロムを使用することができる。たとえば、このような元素によってM温度が低下し得る。さらに、ニッケル、銅およびクロムによって、鋼板の焼入性をさらに増加させることができる。 In one embodiment, nickel, copper and chromium can be used to stabilize austenite. For example, such elements can lower the Ms temperature. Furthermore, nickel, copper and chromium can further increase the hardenability of the steel sheet.

ある実施形態においては、鋼板の機械的性質を向上させるためにニオブ(またはチタン、バナジウム、および/または同様のものなどの別の微量合金元素)を使用することができる。たとえば、ニオブは、炭化物形成によって得られる粒界ピン止めによって鋼板の強度を増加させることができる。   In certain embodiments, niobium (or another minor alloying element such as titanium, vanadium, and / or the like) can be used to improve the mechanical properties of the steel sheet. For example, niobium can increase the strength of the steel sheet by grain boundary pinning obtained by carbide formation.

別の実施形態においては、元素濃度および選択される特定の元素のばらつきが生じてもよい。当然ながら、このようなばらつきが生じる場合、このようなばらつきによって、それぞれの特定の合金添加に関する前述の性質による鋼板の微細組織および/または機械的性質に対して望ましいまたは望ましくない影響が生じるかもしれないことを理解すべきである。   In another embodiment, variations in elemental concentration and the particular element selected may occur. Of course, if such variations occur, such variations may have a desirable or undesirable effect on the microstructure and / or mechanical properties of the steel sheet due to the aforementioned properties of each particular alloy addition. It should be understood that there is no.

例1
以下の表1に記載の組成を用いて鋼板の実施形態を作製した。
Example 1
An embodiment of a steel plate was made using the compositions set forth in Table 1 below.

材料は、以下のパラメータにより実験装置上で処理した。各試料に対して、銅製冷却くさび形グリップ(copper cooled wedge grip)およびポケットジョー固定具(pocket jaw fixture)を用いてGleeble 1500処理を行った。試料は1100℃でオーステナイト化させ、次に1〜100℃/sの間の種々の冷却速度で室温まで冷却した。   The material was processed on the experimental apparatus with the following parameters: Each sample was subjected to Gleeble 1500 processing using a copper cooled wedge grip and a pocket jaw fixture. The samples were austenitized at 1100 ° C. and then cooled to room temperature at various cooling rates between 1-100 ° C./s.

Figure 2018178262
Figure 2018178262

例2
前述の例1および表1に記載の各鋼組成のロックウェル硬さを各試料の表面上で求めた。試験結果を図3〜5にプロットしており、冷却速度の関数としてロックウェル硬さをプロットしている。各データ点で、少なくとも7回の測定の平均が示されている。組成V4037、V4038およびV4039は、図3、4および5にそれぞれ対応している。
Example 2
The Rockwell hardness of each steel composition described in Example 1 and Table 1 above was determined on the surface of each sample. The test results are plotted in FIGS. 3-5, where Rockwell hardness is plotted as a function of cooling rate. At each data point, an average of at least 7 measurements is shown. Compositions V4037, V4038 and V4039 correspond to FIGS. 3, 4 and 5, respectively.

例3
例1の組成のそれぞれの各試料の中央付近の厚さ方向を通過する長手方向で光学顕微鏡写真を撮影した。これらの試験の結果を図6〜8に示している。組成V4037、V4038およびV4039は、図6、7および8にそれぞれ対応している。さらに、図6〜8のそれぞれは、各組成の6つの顕微鏡写真を含んでおり、各顕微鏡写真は、異なる冷却速度にさらされた試料を表している。
Example 3
Optical micrographs were taken longitudinally through the thickness direction near the center of each sample of each of the compositions of Example 1. The results of these tests are shown in FIGS. Compositions V4037, V4038 and V4039 correspond to FIGS. 6, 7 and 8 respectively. Further, each of FIGS. 6-8 includes six photomicrographs of each composition, each photomicrograph representing a sample exposed to a different cooling rate.

例4
本明細書に記載の手順により例2および3のデータを用いて、例1の組成のそれぞれの臨界冷却速度の評価を行った。この場合の臨界冷却速度は、マルテンサイトを形成し、非マルテンサイト変態生成物の形成を回避するのに必要な冷却速度を意味する。これらの試験の結果は以下の通りである:
V4037:70℃/s
V4038:75℃/s
V4039:7℃/s
Example 4
Evaluation of the critical cooling rates of each of the compositions of Example 1 was performed using the data of Examples 2 and 3 according to the procedures described herein. The critical cooling rate in this case means the cooling rate required to form martensite and avoid the formation of non-martensitic transformation products. The results of these tests are as follows:
V4037: 70 ° C / s
V4038: 75 ° C / s
V4039: 7 ° C / s

例5
以下の表2に記載の組成を用いて鋼板の実施形態を作製した。
Example 5
An embodiment of a steel plate was made using the compositions set forth in Table 2 below.

材料は、溶融、熱間圧延、および冷間圧延によって加工した。次にこれらの材料に対して、以下に例6〜7でより詳細に説明する試験を行った。図1に関して前述したプロセスの使用を意図したV4039を除けば、表2に記載のすべての組成は、図2に関して前述したプロセスの使用を意図したものであった。溶解金属V4039は、図1に関して前述した熱プロファイルに要求されるような、より高い焼入性が得られることを意図した組成を有した。このため、V4039には、熱間圧延の後であるが冷間圧延の前に100%H2雰囲気中に600℃で2時間の焼きなましを行った。すべての材料は、冷間圧延中に約75%から1mmまで減少した。熱間圧延および冷間圧延の後の表2に記載の材料組成の一部の結果をそれぞれ表3および4に示している。   The material was processed by melting, hot rolling and cold rolling. These materials were then subjected to the tests described in more detail below in Examples 6-7. With the exception of V4039, which intended the use of the process described above with respect to FIG. 1, all compositions described in Table 2 were intended for the use of the process described above with respect to FIG. The molten metal V4039 had a composition intended to provide higher hardenability as required for the thermal profile described above with reference to FIG. For this reason, V4039 was annealed at 600 ° C. for 2 hours in a 100% H 2 atmosphere after hot rolling but before cold rolling. All materials decreased from about 75% to 1 mm during cold rolling. The results of some of the material compositions described in Table 2 after hot and cold rolling are shown in Tables 3 and 4, respectively.

Figure 2018178262
Figure 2018178262

Figure 2018178262
Figure 2018178262

Figure 2018178262
Figure 2018178262

例7
例5の組成のGleeble膨張率測定を行った。Gleeble膨張率測定は、真空下で101.6×25.4×1mmの試料を用いて行い、25.4mm方向においてc−ひずみゲージで膨張を測定した。得られた膨張対温度のプロットを作成した。線分を膨張率データにフィットさせ、膨張率データが線形挙動からずれる点を、対象となる変態温度(たとえば、A、A、M)とした。得られた変態温度を表5に示す。
Example 7
Gleeble expansion measurement of the composition of Example 5 was performed. Gleeble expansion measurement was performed using a 101.6 × 25.4 × 1 mm sample under vacuum and the expansion was measured with a c-strain gauge in the 25.4 mm direction. A plot of the resulting expansion versus temperature was made. A line segment was fitted to the expansion coefficient data, and the point at which the expansion coefficient data deviates from the linear behavior was taken as the transformation temperature (for example, A 1 , A 3 , M S ) of interest. The transformation temperatures obtained are shown in Table 5.

例5の組成のそれぞれの臨界冷却速度の測定にもGleeble方法を使用した。第1の方法では前述のようなGleeble膨張率測定を使用した。第2の方法ではロックウェル硬さ測定を使用した。特に、ある範囲の冷却速度で試料のGleeble試験を行った後、ロックウェル硬さ測定を行った。したがって、ロックウェル硬さ測定は各材料組成で行い、ある範囲の冷却速度で硬さを測定した。次に、各冷却速度における特定の組成のロックウェル硬さ測定値の間で比較を行った。2ポイントのHRAのロックウェル硬さのずれは、有意であると見なした。非マルテンサイト変態生成物を回避するための臨界冷却速度は、硬さが最大硬さよりも2ポイント小さいHRAである場合に最高冷却速度であるとした。結果として得られた臨界冷却速度も、例5に記載の組成の一部について表5に示している。   The Gleeble method was also used to determine the critical cooling rate of each of the compositions of Example 5. The first method used the Gleeble dilatometry as described above. The second method used Rockwell hardness measurement. In particular, after Gleeble testing of the samples at a range of cooling rates, Rockwell hardness measurements were performed. Therefore, Rockwell hardness measurement was performed for each material composition, and hardness was measured at a range of cooling rates. Next, comparisons were made between Rockwell hardness measurements of specific compositions at each cooling rate. Deviations in Rockwell hardness of the 2 point HRA were considered significant. The critical cooling rate to avoid non-martensitic transformation products was considered to be the maximum cooling rate when the hardness is HRA 2 points smaller than the maximum hardness. The resulting critical cooling rates are also shown in Table 5 for some of the compositions described in Example 5.

Figure 2018178262
Figure 2018178262

例8
例5の組成を用いて、焼入れ温度と残留オーステナイトの理論的最大値とを計算した。計算は前述のSpeerらの方法を用いて行った。例5に記載の組成の一部の計算結果を以下の表6に示している。
Example 8
The composition of Example 5 was used to calculate the quench temperature and the theoretical maximum of retained austenite. The calculation was performed using the method of Speer et al. Described above. The calculated results of some of the compositions described in Example 5 are shown in Table 6 below.

Figure 2018178262
Figure 2018178262

例9
特定の組成の試料の間でピーク金属温度および焼入れ温度を変動させて、例5の組成の試料を図1および2に示す熱プロファイルにさらした。前述のように、組成V4039のみを図1に示す熱プロファイルにさらし、他のすべての組成は図2に示す熱サイクルにさらした。各試料で、引張強度測定を行った。結果の引張測定値を図9〜12にプロットしている。特に、図9〜10は、オーステナイト化温度に対してプロットした引張強度データを示しており、図11〜12は、焼入れ温度に対してプロットした引張強度データを示している。さらに、Gleeble方法を用いて熱サイクルを行った場合、そのようなデータ点は「Gleeble」を添えて記載される。同様に、塩浴を用いて熱サイクルを行った場合、そのようなデータ点は「塩」を添えて記載される。
Example 9
The samples of the composition of Example 5 were exposed to the thermal profiles shown in FIGS. 1 and 2 with varying peak metal temperatures and quench temperatures between samples of a particular composition. As mentioned above, only composition V4039 was exposed to the thermal profile shown in FIG. 1 and all other compositions were subjected to the thermal cycle shown in FIG. Tensile strength measurements were made on each sample. The resulting tensile measurements are plotted in FIGS. In particular, FIGS. 9-10 show tensile strength data plotted against austenitizing temperature, and FIGS. 11-12 show tensile strength data plotted against quench temperature. Furthermore, if thermal cycling was performed using the Gleeble method, such data points are described with "Gleeble". Similarly, if thermal cycling was performed using a salt bath, such data points are listed with "salt".

さらに、例5に記載の各組成(利用可能な場合)のそれぞれの同様の引張測定を以下に示す表7に記載している。分配時間および温度は、単に例として示しており、別の実施形態において、最終材料特性にも寄与し得る先に述べた分配温度へのまたは分配温度からの非等温加熱および冷却の間に機構(炭素分配および/または相変態など)が発生する。   Additionally, similar tensile measurements of each of the compositions described in Example 5 (if available) are described in Table 7 below. Dispensing time and temperature are shown as examples only, and in another embodiment, a mechanism during non-isothermal heating and cooling to and from the dispensing temperature mentioned above which may also contribute to the final material properties Carbon distribution and / or phase transformation etc. occur.

Figure 2018178262
Figure 2018178262

Figure 2018178262
Figure 2018178262

本発明の主旨および範囲から逸脱することなく本発明の種々の修正が可能であることは理解されよう。したがって、本発明の範囲は添付の特許請求の範囲により決定されるべきである。   It will be understood that various modifications of the invention can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the present invention should be determined by the appended claims.

本出願は、2013年5月17日に出願され“High−Strength Steel Exhibiting Good Ductility and Method of Production via In−Line Partitioning Treatment by Zinc Bath”と題される米国仮特許出願第61/824,643号明細書;および2013年5月17日に出願され“High−Strength Steel Exhibiting Good Ductility and Method of Production via In−Line Partitioning Treatment Downstream of Molten zinc Bath”と題される米国仮特許出願第61/824,699号明細書の優先権を主張する。米国特許出願第61/824,643号明細書、および米国特許出願第6/824,699号明細書の開示は参照により本明細書に援用される。 This application is related to US Provisional Patent Application No. 61 / 824,643, filed on May 17, 2013, entitled "High-Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Partitioning Treatment by Zinc Bath". And US Provisional Patent Application No. 61/824, filed May 17, 2013, entitled “High-Strength Steel Exhibiting Good Ductility and Method of Production via In-Line Partitioning Treatment Downstream of Molten zinc Bath”. Priority of 699 specification Claims. U.S. Patent Application No. 61 / 824,643, and U.S. Patent Application No. 61 / 824,699 Pat disclosure of which is incorporated herein by reference.

Figure 2018178262
Figure 2018178262

Figure 2018178262
Figure 2018178262

Claims (6)

0.15〜0.5重量%の炭素と、
1〜3重量%のマンガンと、
2重量%以下の、ケイ素、アルミニウムまたはそれらの組合せ、
0.5重量%以下のモリブデンと、
0.05重量%以下のニオブとの元素を含み、
残部が鉄および他の付随的不純物である、鋼板。
0.15 to 0.5% by weight of carbon,
1 to 3% by weight of manganese,
2% by weight or less of silicon, aluminum or a combination thereof
Less than 0.5% by weight of molybdenum,
Containing elements with 0.05 wt% or less of niobium,
Steel plate, the balance being iron and other incidental impurities.
鋼板の処理方法であって、
(a)前記鋼板を第1の温度(T1)まで加熱する工程であって、T1が、前記鋼板がオーステナイトおよびフェライトに変態する温度よりも少なくとも高い温度である工程と、
(b)ある冷却速度で冷却することによって前記鋼板を第2の温度(T2)まで冷却する工程であって、T2がマルテンサイト開始温度(M)よりも低く、前記冷却速度が、オーステナイトからマルテンサイトに変態するのに十分な速さである工程と、
(c)前記鋼板を分配温度まで再加熱する工程であって、前記分配温度が、前記鋼板の組織中の炭素の拡散を可能にするのに十分である工程と、
(d)ある保持時間、前記分配温度で前記鋼板を保持することによってオーステナイトを安定化させる工程であって、前記保持時間が、マルテンサイトからオーステナイトへの炭素の拡散を可能にするのに十分な時間である工程と、
(e)前記鋼板を室温まで冷却する工程と、
を含む方法。
It is the processing method of the steel plate,
(A) heating the steel plate to a first temperature (T1), wherein T1 is a temperature at least higher than a temperature at which the steel plate transforms into austenite and ferrite;
(B) is the steel sheet by cooling at a cooling rate a step of cooling to a second temperature (T2), T2 is the martensite start temperature (M S) lower than the cooling rate is, the austenite A process that is fast enough to transform to martensite,
(C) reheating the steel sheet to a distribution temperature, wherein the distribution temperature is sufficient to allow diffusion of carbon in the steel sheet structure;
(D) stabilizing the austenite by holding the steel plate at the distribution temperature for a holding time, the holding time being sufficient to allow the diffusion of carbon from martensite to austenite A process that is time,
(E) cooling the steel plate to room temperature;
Method including.
溶融亜鉛めっきまたはガルバニーリングを行いながらオーステナイトを安定化させる工程をさらに含む、請求項2に記載の方法。   The method according to claim 2, further comprising the step of stabilizing austenite while hot dip galvanizing or galvanizing. 前記溶融亜鉛めっきまたはガルバニーリングがMよりも高温で行われる、請求項3に記載の方法。 The hot-dip galvanized or galvannealed is performed at a temperature higher than M S, The method of claim 3. 前記分配温度がMよりも高い、請求項2に記載の方法。 It said dispensing temperature is greater than M S, The method of claim 2. 前記鋼板が、
0.15〜0.4重量%の炭素と、
1.5〜4重量%のマンガンと、
2重量%以下の、ケイ素、アルミニウム、またはそれらの組合せと、
0.5重量%以下のモリブデンと、
0.05重量%以下のニオブとの元素を含み、
残部が鉄および他の付随的不純物である、請求項2に記載の方法。
The steel plate is
0.15 to 0.4% by weight of carbon,
1.5 to 4% by weight of manganese,
2% by weight or less of silicon, aluminum, or a combination thereof
Less than 0.5% by weight of molybdenum,
Containing elements with 0.05 wt% or less of niobium,
The method according to claim 2, wherein the balance is iron and other incidental impurities.
JP2018090692A 2013-05-17 2018-05-09 Methods for processing steel sheet Pending JP2018178262A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361824643P 2013-05-17 2013-05-17
US201361824699P 2013-05-17 2013-05-17
US61/824,643 2013-05-17
US61/824,699 2013-05-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016514134A Division JP2016524038A (en) 2013-05-17 2014-05-16 High-strength steel showing good durability, and manufacturing method by quenching and distribution treatment with zinc bath

Publications (1)

Publication Number Publication Date
JP2018178262A true JP2018178262A (en) 2018-11-15

Family

ID=50933550

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016514134A Pending JP2016524038A (en) 2013-05-17 2014-05-16 High-strength steel showing good durability, and manufacturing method by quenching and distribution treatment with zinc bath
JP2016514120A Active JP6843612B2 (en) 2013-05-17 2014-05-16 Manufacturing method using high-strength steel showing good ductility and hot-dip galvanized bath downstream of in-line heat treatment
JP2018090692A Pending JP2018178262A (en) 2013-05-17 2018-05-09 Methods for processing steel sheet

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016514134A Pending JP2016524038A (en) 2013-05-17 2014-05-16 High-strength steel showing good durability, and manufacturing method by quenching and distribution treatment with zinc bath
JP2016514120A Active JP6843612B2 (en) 2013-05-17 2014-05-16 Manufacturing method using high-strength steel showing good ductility and hot-dip galvanized bath downstream of in-line heat treatment

Country Status (12)

Country Link
US (2) US20140338798A1 (en)
EP (2) EP2997172B1 (en)
JP (3) JP2016524038A (en)
KR (5) KR20170104159A (en)
CN (3) CN113151735A (en)
AU (2) AU2014265214B2 (en)
BR (2) BR112015027447B1 (en)
CA (2) CA2908491C (en)
MX (2) MX2015015332A (en)
RU (3) RU2632042C2 (en)
TW (4) TWI616538B (en)
WO (2) WO2014186722A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151735A (en) * 2013-05-17 2021-07-23 克利夫兰-克利夫斯钢铁资产公司 High strength steel exhibiting good ductility and method for manufacturing the same by quenching and distribution treatment through a galvanizing bath
WO2016020714A1 (en) 2014-08-07 2016-02-11 Arcelormittal Method for producing a coated steel sheet having improved strength, ductility and formability
CN104532126B (en) * 2014-12-19 2017-06-06 宝山钢铁股份有限公司 A kind of super high strength hot rolled Q&P steel of low yield strength ratio and its manufacture method
EP3245310A2 (en) * 2015-01-14 2017-11-22 Ak Steel Properties, Inc. Dual phase steel with improved properties
US11491581B2 (en) 2017-11-02 2022-11-08 Cleveland-Cliffs Steel Properties Inc. Press hardened steel with tailored properties
CA3093397C (en) * 2018-03-30 2024-01-30 Ak Steel Properties, Inc. Low alloy third generation advanced high strength steel and process for making
CN109554622B (en) * 2018-12-03 2020-12-04 东北大学 Hot-rolled Fe-Mn-Al-C steel quenched to bainite region to obtain Q & P structure and manufacturing method thereof
CN109554621B (en) * 2018-12-03 2020-11-27 东北大学 Low-density Fe-Mn-Al-C hot-rolled Q & P steel and manufacturing method thereof
CN110055465B (en) * 2019-05-16 2020-10-02 北京科技大学 Medium-manganese ultrahigh-strength steel and preparation method thereof
CN112327970B (en) * 2020-09-04 2022-04-12 凌云工业股份有限公司 Control method for transition region strength of hot-forming variable-strength workpiece
CN114774652A (en) * 2022-04-29 2022-07-22 重庆长征重工有限责任公司 17CrNiMo6 material preliminary heat treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203548A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent workability and process for producing the same
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2010275627A (en) * 2009-04-27 2010-12-09 Jfe Steel Corp High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP2011184757A (en) * 2010-03-09 2011-09-22 Jfe Steel Corp Method for manufacturing high-strength steel sheet
EP2524970A1 (en) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
WO2013051238A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP2016514134A (en) * 2013-03-11 2016-05-19 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン BET bromodomain inhibitor and therapeutic method using the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370054C (en) * 2001-06-15 2008-02-20 新日本制铁株式会社 High-strength alloyed aluminum-system plated steel sheet and high-strength automotive part excellent in heat resistance and after-painting corrosion resistance
AU2003270334A1 (en) * 2002-09-04 2004-03-29 Colorado School Of Mines Method for producing steel with retained austenite
CA2521710C (en) * 2003-04-10 2009-09-29 Nippon Steel Corporation High strength molten zinc plated steel sheet and process of production of same
US20050247382A1 (en) * 2004-05-06 2005-11-10 Sippola Pertti J Process for producing a new high-strength dual-phase steel product from lightly alloyed steel
CA2482100A1 (en) * 2003-09-19 2005-03-19 Pertti J. Sippola Process for producing a new high-strength dual-phase steel product from lightly alloyed steel
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
CA2699146A1 (en) * 2007-09-10 2009-03-19 Pertti J. Sippola Method and apparatus for improved formability of galvanized steel having high tensile strength
CN101121955A (en) * 2007-09-13 2008-02-13 上海交通大学 Heat treatment method for increasing quenched steel component mechanical property by using carbon distribution and tempering
JP4712882B2 (en) * 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP5315956B2 (en) * 2008-11-28 2013-10-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5412182B2 (en) * 2009-05-29 2014-02-12 株式会社神戸製鋼所 High strength steel plate with excellent hydrogen embrittlement resistance
CN102002558B (en) * 2010-11-26 2012-07-25 清华大学 Step quenching-distribution heat treatment technology of steels containing carbide formation inhibiting elements
ES2535420T3 (en) * 2011-03-07 2015-05-11 Tata Steel Nederland Technology B.V. Process to produce high strength conformable steel and high strength conformable steel produced with it
CN102758142A (en) * 2011-04-25 2012-10-31 宝山钢铁股份有限公司 Hot-dip galvanized steel sheet with tensile strength higher than 980MPa, and manufacturing method thereof
JP5821260B2 (en) * 2011-04-26 2015-11-24 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
CN103045950B (en) * 2012-12-28 2015-04-22 中北大学 Low-alloy, high-strength and high-toughness composite phase steel and heat treatment method thereof
CN113151735A (en) * 2013-05-17 2021-07-23 克利夫兰-克利夫斯钢铁资产公司 High strength steel exhibiting good ductility and method for manufacturing the same by quenching and distribution treatment through a galvanizing bath

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203548A (en) * 2008-01-31 2009-09-10 Jfe Steel Corp High-strength hot-dip galvanized steel sheet with excellent workability and process for producing the same
JP2010090475A (en) * 2008-09-10 2010-04-22 Jfe Steel Corp High-strength steel plate and manufacturing method thereof
JP2010275627A (en) * 2009-04-27 2010-12-09 Jfe Steel Corp High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP2011184757A (en) * 2010-03-09 2011-09-22 Jfe Steel Corp Method for manufacturing high-strength steel sheet
EP2524970A1 (en) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
WO2013051238A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP2016514134A (en) * 2013-03-11 2016-05-19 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン BET bromodomain inhibitor and therapeutic method using the same

Also Published As

Publication number Publication date
AU2014265214A1 (en) 2015-11-05
KR20160007647A (en) 2016-01-20
JP2016524038A (en) 2016-08-12
RU2015145865A (en) 2017-06-22
US20140338797A1 (en) 2014-11-20
KR20160007646A (en) 2016-01-20
KR101776242B1 (en) 2017-09-07
TW201446974A (en) 2014-12-16
RU2018133682A (en) 2020-03-25
BR112015027901A2 (en) 2017-07-25
WO2014186689A2 (en) 2014-11-20
TW201708562A (en) 2017-03-01
RU2015145865A3 (en) 2018-03-29
RU2669654C2 (en) 2018-10-12
CN105247090A (en) 2016-01-13
CA2910012A1 (en) 2014-11-20
RU2015141563A (en) 2017-06-22
CA2910012C (en) 2020-02-18
MX2015015332A (en) 2016-07-15
US20140338798A1 (en) 2014-11-20
EP2997168B1 (en) 2021-03-03
CA2908491A1 (en) 2014-11-20
CA2908491C (en) 2019-07-30
EP2997172A2 (en) 2016-03-23
TW201502284A (en) 2015-01-16
CN113151735A (en) 2021-07-23
TWI627288B (en) 2018-06-21
TWI564402B (en) 2017-01-01
KR20170104159A (en) 2017-09-14
KR101776241B1 (en) 2017-09-07
JP6843612B2 (en) 2021-03-17
BR112015027447A2 (en) 2017-07-25
RU2018133682A3 (en) 2020-03-25
WO2014186689A3 (en) 2015-01-22
KR20170104158A (en) 2017-09-14
WO2014186722A3 (en) 2015-01-08
MX2015015333A (en) 2016-06-23
RU2632042C2 (en) 2017-10-02
CN105392906A (en) 2016-03-09
AU2014265262B2 (en) 2016-12-15
EP2997168A2 (en) 2016-03-23
BR112015027901B1 (en) 2020-04-22
EP2997172B1 (en) 2020-08-26
TW201702397A (en) 2017-01-16
TWI560279B (en) 2016-12-01
WO2014186722A2 (en) 2014-11-20
KR20190101504A (en) 2019-08-30
TWI616538B (en) 2018-03-01
AU2014265262A1 (en) 2015-11-12
AU2014265214B2 (en) 2016-12-22
BR112015027447B1 (en) 2020-04-22
JP2016526096A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP2018178262A (en) Methods for processing steel sheet
RU2749413C2 (en) High-strength steel products and their manufacturing methods
RU2669667C2 (en) Method for producing ultra high strength coated or non-coated steel sheet and obtained sheet
JP5867278B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability in normal and medium temperature ranges and its manufacturing method
CN106133173A (en) The high strength cold rolled steel plate of uniform in material excellence and manufacture method thereof
JP2016537502A (en) Hot forming steel
JP2017524824A (en) Method for producing high-strength steel plate and steel plate obtained by this method
KR20240000646A (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
EP3164519A2 (en) Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
JP5338873B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method
JP2013036071A (en) High strength hot dip galvanized steel sheet excellent in workability with tensile strength of at least 440 mpa and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331