WO2014185462A1 - 基板と基板装置及び基板接続方法 - Google Patents

基板と基板装置及び基板接続方法 Download PDF

Info

Publication number
WO2014185462A1
WO2014185462A1 PCT/JP2014/062870 JP2014062870W WO2014185462A1 WO 2014185462 A1 WO2014185462 A1 WO 2014185462A1 JP 2014062870 W JP2014062870 W JP 2014062870W WO 2014185462 A1 WO2014185462 A1 WO 2014185462A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
terminal
connection
terminals
semiconductor device
Prior art date
Application number
PCT/JP2014/062870
Other languages
English (en)
French (fr)
Inventor
宣幸 板橋
高橋 真吾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/891,408 priority Critical patent/US9619000B2/en
Priority to JP2015517115A priority patent/JP6299756B2/ja
Publication of WO2014185462A1 publication Critical patent/WO2014185462A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3212Monitoring battery levels, e.g. power saving mode being initiated when battery voltage goes below a certain level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5382Adaptable interconnections, e.g. for engineering changes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0442Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply asymmetric encryption, i.e. different keys for encryption and decryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3093Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving Lattices or polynomial equations, e.g. NTRU scheme
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/24Key scheduling, i.e. generating round keys or sub-keys for block encryption
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/029Programmable, customizable or modifiable circuits having a programmable lay-out, i.e. adapted for choosing between a few possibilities
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10037Printed or non-printed battery
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10212Programmable component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention is based on the priority claim of Japanese Patent Application No. 2013-105356 (filed on May 17, 2013), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a substrate, a substrate apparatus, and a substrate connection method, and more particularly to a substrate structure suitable for a substrate on which a stackable semiconductor device is mounted, a substrate apparatus including a plurality of the substrates, and a substrate connection method.
  • IC Integrated Circuit
  • a battery monitoring IC that can measure multiple battery cells (multi-cell) connected in series with a single IC and monitor each battery cell Have been commercialized.
  • This type of IC has a function of stacking a plurality of ICs in series corresponding to the number of battery cells in series (see Non-Patent Document 1).
  • the IC stack function corresponds to, for example, a daisy chain connection function for sequentially transferring commands / data to adjacent ICs.
  • FIG. 10 schematically illustrates an example of a battery stack monitor IC corresponding to a multi-cell of related technology (see Non-Patent Document 1).
  • the IC 10 is connected to a plurality of battery cells (in particular, 12 cells in the example of FIG. 10) that are connected in series.
  • Another 12 cells can be connected to the upper side and / or the lower side of the 12 cells.
  • a multiplexer (MUX) 11 selects a terminal pair (positive electrode, negative electrode) of one cell, and the voltage of the selected cell is converted into a digital signal by an analog-to-digital converter (ADC) 12. Convert. A digital signal output from the ADC 12 is transferred to a microprocessor (microcomputer) (not shown) or the like via a data bus (DATA) under the control of a register control circuit (REGISTERS AND CONTROL) 13. The command / data transferred from the previous stage IC via the data bus (DATA) is transferred to the subsequent stage IC via the register control circuit 13.
  • DATA data bus
  • REGISTERS AND CONTROL register control circuit
  • a discharge switch (MOSFET (Metal Oxide Semiconductor Field Effect Transistor)) 14 is provided between the positive and negative terminals of the battery cell.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the chip selection input pin (CSBI) of the IC 10 is set to an active state (for example, a low potential) during the period of command data transfer under the control of a microcomputer (not shown). In this transfer period, the command or data is transferred from the previous stage to the next stage in synchronization with the clock signal.
  • the IC 10 buffers the chip selection signal input from the chip selection input pin (CSBI) in the IC 10 and outputs the buffered signal from the chip selection output pin (CSBO). Further, the IC 10 buffers the clock signal input from the clock input pin (CKI) in the IC 10 and outputs it from the clock output pin (CKO) to drive the IC at the next stage.
  • the positive power supply (V + ) of the IC 10 is connected to, for example, the highest positive potential of the stacked cells (the positive potential of the stacked 12-cell top cell), and the negative power supply (V ⁇ ) is stacked, for example. It is connected to the lowest negative potential of the cell (the negative potential of the bottom cell of 12 cells).
  • IC10 of the positive power source (V +) the negative power of the next stage IC - is connected to the negative power of IC10 (V) (V -) is connected to a positive power source of the preceding IC (V +).
  • TOS is a setting pin at the top of the stack (for example, the top device (IC) has a high potential and the other devices (IC) in the stack have a low potential).
  • the IC 10 can be daisy chain-connected between ICs operating at different power supply potentials by, for example, a configuration in which data is differentially input / output with respect to the data bus (DATA).
  • a stackable IC data such as the acquired cell voltage is transmitted to a microcomputer or the like, so the function setting of each stacked IC is required.
  • IC function settings for example, there are many ICs that use hardware settings using, for example, IC peripheral circuits.
  • the function setting pin of the IC is pulled up to the power supply voltage (VDD) or pulled down to the GND potential (Ground: ground).
  • FIG. 7 is a diagram illustrating an example of related technology relating to IC function setting.
  • FIG. 7 shows an example in which a plurality of stackable ICs 1 1 to IC 1 3 and a microcomputer 2 are mounted on a substrate (circuit substrate) 3.
  • IC1 1 to IC1 3 have the same configuration and are electrically connected (stacked) in series.
  • the microcomputer 2 and IC1 3 , IC1 3 and IC1 2 , IC1 2 and IC1 1 are connected by signal line groups 5 3 , 5 2 , and 5 1 , respectively.
  • IC1 1 to IC1 3 may be, for example, a battery stack monitor IC similar to that shown in FIG.
  • the signal line groups 5 1 , 5 2 , 5 3 receive signals such as the clock, chip selection signal, and data described with reference to FIG. Including.
  • IC1 3 master IC to be connected to the microcomputer 2, and the other IC1 1, IC1 2 is a slave IC.
  • IC1 3 functioning as the master, IC1 3 setting pins and the power supply voltage to set the functions and (VDD) is connected by a circuit (wiring) 4 3.
  • GND and setting pins are connected by circuits (wirings) 4 1 and 4 2 , respectively.
  • VDD is a positive power source V + (positive potential of 12 cells stacked)
  • GND is a negative power source V ⁇ (stacked) The negative potential of the bottom cell of 12 cells).
  • FIG. 7 instead of mounting a plurality of IC1 1 to IC1 3 that can be stacked on one substrate 3, there is a configuration in which stackable ICs are mounted and connected to a plurality of substrates one by one. .
  • a plurality of substrates 3 1, 3 2, 3 3, by IC1 1, IC1 2, IC1 3 were respectively mounted, switch 6 1, 6 2, 6 3, IC1 1, IC1 2. Switch the connection of setting pins of IC1 3 .
  • FIG. 9 the design of the substrates 3A, 3B, and 3C is changed for each function.
  • Patent Document 1 as a cell voltage measurement device that enables accurate measurement of a cell voltage when a plurality of cells are stacked, the voltage of each cell is measured at a cell connection portion of the plurality of stacked cells.
  • a cell-side terminal is provided, and the cell-side terminal is connected to a terminal of a ground connection changeover switch in the cell voltage measuring device provided corresponding to the connection portion of the cell. Has been.
  • Patent Document 2 discloses a common bus line of each substrate unit with respect to a plurality of substrate units that are attached to a mother board having a common bus line and signal-wired by the common bus line.
  • a configuration is disclosed in which a connector is provided at a terminal of the biasing board, a bias board connecting between connectors of two adjacent board units, and a terminal resistor attached to the connector of a single board unit are disclosed.
  • the number of cells connected to the IC is limited. If there is a need to reduce the number of cells or add cells, the design of the substrate must be changed.
  • the circuit design differs depending on the function of each board, such as the boards 3A to 3C. For this reason, design man-hours and costs increase.
  • the present invention has been made in view of the above-described problems, and its purpose is to facilitate the functional setting of a semiconductor device mounted on the substrate, and to reduce setting mistakes and design man-hours. And a substrate connecting method and a substrate connecting method.
  • a first terminal for inputting a signal for setting a function of the semiconductor device, a second terminal for supplying a first value, and a second terminal
  • a substrate including at least a third terminal for supplying the value of A first connection portion connected to the first to third terminals of the semiconductor device;
  • a second connection portion connected to the first connection portion provided on another substrate;
  • at least two terminals of the second connection portion are connected to each other via a first connection circuit, and the first connection portion of the substrate is further provided on the second substrate.
  • a substrate connected to the connection is provided.
  • the semiconductor device of the first substrate includes at least first and second substrates made of the substrate of the viewpoint1.
  • Two terminals including a terminal and the second or third terminal include the first connection portion of the first substrate, the second connection portion of the second substrate, and the second connection portion.
  • the function of the semiconductor device of the first substrate corresponds to the first value or the second value supplied by the second terminal or the third terminal to which the first terminal is connected.
  • a substrate device (electronic device) set to the first function or the second function is provided.
  • a first terminal for inputting a signal for setting a function of the semiconductor device, a second terminal for supplying a first value, and a second terminal
  • Each of the first to third substrates including at least a third terminal that supplies the value of A first connection portion connected to the first to third terminals of the semiconductor device;
  • Embodiment 1 of the present invention It is a figure which shows the example of a connection of Embodiment 1 of this invention. It is a figure which illustrates Embodiment 2 of the present invention. It is a figure which shows the example of a connection of Embodiment 2 of this invention. It is a figure which illustrates Embodiment 3 of this invention. It is a figure which shows the example of a connection of Embodiment 3 of this invention. It is a figure explaining the related technique 1. FIG. It is a figure explaining the related technique 2. FIG. It is a figure explaining the related technique 2. FIG. It is a figure explaining a multicell battery stack monitor IC.
  • a first terminal for example, the pin 104 of FIG. 1 or the figure for inputting a signal for setting the function of the semiconductor device (for example, the IC 101 of FIG. 1 or the IC 201 of FIG. 3).
  • 3 pin 204 a second terminal for supplying a first value (for example, pin 103 in FIG. 1 or pin 203 in FIG. 3), and a third terminal for supplying a second value (for example, FIG. 1).
  • Board 105 or pin 205 in FIG. 3
  • a substrate for example, 100 in FIG. 1 or 200 in FIG. 3) having a semiconductor device (IC) that can be connected in series (stacked) is the semiconductor.
  • a first connection portion for example, 106 in FIG.
  • first connecting portion (106 in FIG. 1 or 207 in FIG. 3) of the substrate (100 in FIG.
  • the second connecting portion (107 in FIG. 1 or 200 in FIG. 3) is connected to the second connecting portion (107 in FIG. 1). Or 107 4 in FIG. 2 or 206 in FIG. 3 and the other connection circuit having the same configuration as the first connection circuit (108 in FIG. 1 or 208 in FIG. 3). It is connected to the second connecting portion (107 in FIG. 1, 107 4 in FIG. 2, or 206 in FIG. 3) provided on the substrate.
  • the second connecting portion (107 in FIG. 1 or 206 in FIG. 3) of the substrate is connected to another substrate provided with the first connecting portion having the same configuration as the substrate. It is connected to the first connecting portion (106 in FIG. 1 or 207 in FIG. 3).
  • the semiconductor device for example, 301 in FIG. 5 is added to the first to third terminals (for example, the pins 306, 305, and 304 in FIG. 5), A fourth terminal (for example, pin 303 in FIG. 5) for inputting a signal for setting the function of the semiconductor device is further included.
  • the first connecting portion (for example, 307 in FIG. 5) of the substrate (300 in FIG. 5) is connected to first to third terminals (for example, 306 and 305 in FIG. 5) of the semiconductor device (for example, 301 in FIG. 5). 304).
  • the first connection portion for example, 307 in FIG. 5) further includes at least two terminals (for example, 307D and 307F in FIG. 5).
  • the at least two terminals (for example, 307D and 307F in FIG. 5) of the first connection part (for example, 307 in FIG. 5) are respectively connected to at least two terminals in the second connection part of another substrate. .
  • the substrate (300 in FIG. 5) has a second connection circuit (for example, FIG. 5) that connects the at least two terminals (for example, 307D and 307F in FIG. 5) of the first connection portion (307 in FIG. 5) to each other. 311) may be adopted.
  • the second connection portion (for example, 308 in FIG. 5) of the substrate (300 in FIG. 5) is connected to two terminals (for example, FIG. 5) connected to each other by a first connection circuit (for example, 312 in FIG. 5).
  • 308A and 308B (for example, 308D, 308E, and 308F in FIG. 5) and second to fourth terminals (301 in FIG. 5) of the semiconductor device (300 in FIG. 5).
  • it may be configured to be connected to 305, 304, and 303) in FIG.
  • the apparatus includes at least first and second substrates (for example, 100 1 and 100 2 in FIG. 2 or 200 2 and 200 1 in FIG. 4) made of the substrate,
  • the first terminal (104 in FIG. 2 or 104 in FIG. 2 ) of the semiconductor device (101 1 in FIG. 2 or 201 2 in FIG. 4) on one substrate (for example, 100 1 in FIG. 2 or 200 2 in FIG. 4). 4) and the second or third terminal (103 or 105 in FIG. 2, 203 or 205 in FIG. 3) are connected to the first substrate (100 1 in FIG. 2). or 106 1 of FIG said first connecting portion 201 2) 4 (FIG. 2 or 207 2 of FIG. 4), the said second substrate (100 2 in FIG.
  • the functions of the semiconductor device (101 1 in FIG. 2 or 201 2 in FIG. 4) of the first substrate (100 1 in FIG. 2 or 200 2 in FIG. 4) are connected to each other via the first substrate.
  • the control device controls the semiconductor devices of the first and second substrates, wherein the semiconductor devices of the first and second substrates are connected in series.
  • a control board (111 in FIG. 2) provided with (for example, the microcomputer 2 in FIG. 2) is provided.
  • the control board (111 in FIG. 2) is the first connection portion (for example, 100 3 in FIG. 2) of the first and second boards adjacent to the control board (111 in FIG. 2).
  • a second connecting portion (107 4 in FIG. 2) connected to 106 3 ) in FIG. 2 is provided.
  • the second connecting portion (107 4 in FIG. 2) of the control board (111 in FIG. 2) is adjacent to the first connecting portion of the board adjacent to the control board (111 in FIG. 2).
  • Two terminals comprising the first terminal (104 in FIG. 2) of the semiconductor device on the substrate (100 3 in FIG. 2) and the second or third terminal (103 or 105 in FIG. 2)
  • the control board (111 in FIG. 2) is connected, and a connection circuit (third connection circuit) for connecting the two terminals to which the second connection portion (107 4 in FIG. 2) is connected (FIG. 2) 2 108 4 ) may be further provided.
  • the semiconductor devices of the first and second substrates are connected in series, and the substrate (at the end of the first and second substrates)
  • the configuration may include a third connection portion (212 in FIG. 4) connected to the first connection portion (207 2 in FIG. 4) of 200 1 ) in FIG.
  • the third connection portion (212 in FIG. 4) is the first terminal (for example, FIG. 4) of the semiconductor device (for example, 201 1 in FIG. 4) on the substrate (for example, 200 1 in FIG. 4) located at the end portion. 4 of 204) and the second or third terminal (for example, 203 or 205 of FIG. 4), and the two terminals are connected to the third connecting portion (212 of FIG. 4).
  • At least first to third substrates are provided (the second and third substrates are the first and second substrates). 1 on both sides of the substrate).
  • the first terminal (306 in FIG. 6) of the semiconductor device (301 2 in FIG. 6) of the first substrate (for example, 300 2 in FIG. 6) and the second or third terminal (in FIG. 6) 305 or 304) are connected to the first connecting portion (307 2 in FIG. 6) of the first substrate (300 2 in FIG. 6) and the second substrate (300 3 in FIG. 6).
  • the fourth terminal (303 in FIG. 6) of the semiconductor device (301 2 in FIG. 6) of the first substrate (300 2 in FIG. 6) and the second or third terminal (FIG. 6). 305 or 304) are connected to the second connection portion (308 2 in FIG. 6) of the first substrate (300 2 in FIG. 6) and the third substrate (in FIG. 6). 300 1 ) and the second connection circuit (311 1 in FIG. 6) of the third substrate (300 1 in FIG. 6), and the first connection portion (307 1 in FIG. 6). It is good also as a structure made.
  • the function of the semiconductor device (301 2 in FIG. 6) of the first substrate (300 2 in FIG. 6) is the same as the function of the first terminal (306 in FIG.
  • the first or second value supplied from the second or third terminal to be connected (305 or 304 in FIG. 6) to the first terminal (306 in FIG. 6) and the fourth terminal
  • the semiconductor devices (301 2 and 301 3 in FIG. 6) of the first and second substrates are connected in series.
  • Control provided with a control device (2 in FIG. 6) connected and controlling the semiconductor devices (301 2 and 301 3 in FIG. 6) of the first and second substrates (300 2 and 300 3 in FIG. 6) It is good also as a structure provided with the board
  • Said control board (313 in FIG. 6) is 300 3 of the substrate (FIG. 6 adjacent to the control board (313 in FIG. 6) of the first and second substrate (300 2, 300 3 in FIG. 6) ) Of the second connection portion (308 4 in FIG.
  • the second connecting portion (308 4 in FIG. 6) of the control board (313 in FIG. 6) is the first connection of the board (300 3 in FIG. 6) adjacent to the control board (313 in FIG. 6).
  • the control board (313 in FIG. 6) connects the two terminals to which the second connection portion (308 4 in FIG. 6) of the control board (313 in FIG. 6) is connected to the control board (313 in FIG. 6).
  • the semiconductor devices for example, 301 2 , 301 3, FIG. 6) of the first to third substrates (for example, 300 2 , 300 3, 300 1 of FIG. 6) are provided.
  • 301 1 are connected in series, and the second of the substrates (for example, 300 1 in FIG. 6) located at the end of the first to third substrates (300 2 , 300 3 , 300 1 in FIG. 6).
  • the third connection portion (315 in FIG. 6) is connected to the fourth terminal (303 in FIG. 6) of the semiconductor device (301 1 in FIG.
  • connection circuit (6th connection circuit) (316 of FIG. 6) connected.
  • the function of the IC on the board in relation to the board to be connected without changing the peripheral circuit depending on the function of each IC to be stacked. For this reason, the circuit can be shared. As a result, design man-hours and manufacturing costs can be reduced. Further, according to the present invention, the function of the IC can be automatically defined simply by connecting the substrate on which the IC is mounted. This eliminates the need for additional work after connecting the board, reducing the possibility of malfunction due to incorrect settings. Furthermore, according to the present invention, increase / decrease in the number of IC stacks is facilitated. Hereinafter, a description will be given according to some embodiments.
  • FIG. 1 is a diagram illustrating the configuration of a substrate according to Embodiment 1 of the present invention.
  • FIG. 1 illustrates a substrate (circuit board) in the first embodiment.
  • a stackable IC 101 is mounted on a substrate 100.
  • a connector 106 (first connection portion) and a connector 107 (second connection portion) are respectively disposed at opposing positions on two opposite sides of the substrate 100.
  • the IC 101 includes a master / slave setting pin 104, a VDD (power supply voltage) pin 103, and a GND (Ground) pin 105.
  • VDD power supply voltage
  • GND Ground
  • the GND pin 105, the master / slave setting pin 104, and the VDD pin 103 of the IC 101 are connected to terminals 106A, 106B, and 106C of the connector 106 by wirings 102A, 102B, and 102C on the substrate 100, respectively.
  • the terminals 107A and 107B in the connector 107 correspond to the positions of the terminals 106A and 106B of the collector 106 facing each other.
  • the terminals 107A and 107B in the connector 107 are connected to each other via a circuit (connection circuit) 108 (wiring) in the substrate 100.
  • Reference numeral 107C of the connector 107 indicates a position corresponding to the position of the terminal 106C of the collector 106.
  • a terminal such as a pin is provided at the position of 107C in the connector 107, it is not connected (open) to a circuit in the substrate 100, and therefore a terminal such as a pin is not required at the position of 107C (however, it is provided. Also good).
  • a receptacle terminal that accommodates a pin connected to the connector 107 may be provided at the position of 107C.
  • FIG. 2 is a diagram illustrating an example (substrate device) in which a plurality of the substrates 100 illustrated in FIG. 1 are provided and connected to the control substrate 111.
  • substrates 100 1 to 101 3 have the same configuration as the substrate 100 shown in FIG. FIG. 2 discloses a configuration including three control boards 111 and 100, but it goes without saying that the number of boards 100 is not limited to three (see FIG. 4 described later). The same applies to FIG. 6).
  • the connector 106 when the stack IC 101 1 and IC 101 2 Connect the substrate 100 1 and the substrate 100 2, the connector 106 first substrate 100 1, the corresponding terminals of the substrate 100 second connector 107 2, connected by a cable 109 1.
  • three terminals of the substrate 100 1 of connector 106 1 (106A ⁇ 106C in FIG. 1), in three cables 109 1, three terminals (Fig substrate 100 second connector 107 2 1 107A to 107C).
  • one terminal of the connector 107 2 (107C in FIG. 1), may be disconnected from the corresponding one of the terminals of the connector 106 1 (106C in FIG. 1).
  • IC 101 1 of the functions of the substrate 100 1 is set to be a slave.
  • IC 101 2 function of the substrate 100 2 is set to be a slave.
  • Control board 111 is provided with IC 101 1 ⁇ IC 101 3 on the substrate 100 1-101 3 communicates via a line 110 1-110 3, transmission of the command, the microcomputer 2 to control the collection of data .
  • the control board 111, the side facing the adjacent substrates 100 3, corresponding to the connector 106 3 of the substrate 100 3, connector 107 4 are provided. Two terminals of the connector 107 4 is connected through the circuit in the control board 111 (connected circuit) 108 4 (wiring).
  • Connector 107 4 terminal connection of the control board 111 includes a IC 101 3 of the master slave setting pin 104 of the substrate 100 3, VDD pin 103, the substrate 100 3 of the connector 106 3, the cable 109 3, connector 107 4 of the control board 111 , via a circuit 108 4 in the control board 111, and is configured to connect to each other.
  • the connector 107 4 provided on the control board 111, the terminal position 107C of the connector 107 in FIG. 1, 107B and terminal, and corresponds to the structure connected by the circuit 108 (108 4).
  • the control board 111 on which the microcomputer 2 for controlling the ICs 101 1 to IC 101 3 is mounted has a different configuration from the boards 100 1 to 100 3 , but the connector 107 4 and the circuit 108 4 are connected to the connector 107 of the board 100 in FIG. This corresponds to the circuit 108.
  • a connector 106 3 of the substrate 100 3 by connecting the connector 107 4 of the control board 111, the function of 3 IC 101 disposed on the substrate 100 3 is set to the master (ability to connect directly to the microcomputer 2).
  • the connector of the mating terminals of the adjacent connectors 107 1 which is located opposite the side to the side opposite the substrate 100 2 is connected does not exist, both of which are open.
  • the connection between the boards is not limited to the cable 109. You may use the card edge connector etc. which connect between board
  • the connector 106 may be provided with a through pin, and the through pin may be fitted to the receptacle of the connector 107.
  • the receptacles 107A to 107C of the connector 107 are provided corresponding to the pins of the connectors 106A to 106C of the connector 106 of the other board to be connected.
  • the connection form between the boards is not limited to the connection using the connector, and is not limited to the presence or absence of the connector.
  • the function setting of the IC 101 (setting of the master function and the slave function) is automatically performed according to the connection of the board. For this reason, according to the embodiment, it is not necessary to change the circuit according to the function of the IC, change the switch, or the like, and the design man-hours and costs can be reduced.
  • the number of IC stacks can be changed by simply increasing or decreasing the number of substrates to be connected.
  • the IC is a battery monitor IC
  • the number of cells (batteries) connected in series to be monitored can be varied (can be made scalable).
  • FIG. 3 is a diagram illustrating a substrate (circuit board) 200 according to the second embodiment.
  • a stackable IC 201 is mounted on a substrate 200, and a connector 206 and a connector 207 are respectively connected to opposing positions on two opposite sides of the substrate 200.
  • the IC 201 includes a top setting pin 204, a VDD pin 203, and a GND pin 205.
  • the top setting pin 204 is connected to the VDD pin 203
  • the function of the IC 201 is set to the top.
  • the top setting pin 204 is connected to the GND pin 205
  • the function of the IC 201 is set to non-top.
  • the top is a function set to an IC farthest from the microcomputer side (for example, when a multi-cell battery monitor IC is connected in three stages, it corresponds to an IC that monitors the multi-cell with the highest potential). Since it is the last stage and there is no subsequent IC, there is no need to transfer the data transferred from the microcomputer side to the subsequent stage.
  • the VDD pin 203, the top setting pin 204, and the GND pin 205 of the IC 201 are connected to the terminals 207A, 207B, and 207C of the connector 207 via the wirings 202A, 202B, and 202C of the substrate 200, respectively.
  • the terminals 206B and 206C of the connector 206 at positions opposite to the terminals 207B and 207C of the connector 207 are connected via a circuit (connection circuit) 208 in the substrate 200. Even if a terminal is provided at the position of 206A of the connector 206, it is not connected to the circuit in the board 200, so that the connector terminal is unnecessary.
  • a receptacle that accommodates a pin to be connected may be provided at the position of 206A.
  • FIG. 4 is a diagram illustrating an example (a board device) of a connection configuration of a plurality of boards 200 1 to 200 3 (same as the board 200 of FIG. 3), the termination connector 212, and the control board 211.
  • the substrates 200 1 to 200 3 are the same as the substrate 200 shown in FIG.
  • the substrate 200 1 and the substrate 200 2 by connecting the substrate 200 1 and the substrate 200 2, to stack the IC 201 1 and IC 201 2, corresponding to terminals of the substrate 200 1 of connector 206 1 and the substrate 200 second connector 207 2, for example, connected by a cable 209 1.
  • the top set pin 204 and the GND pin 205 of IC 201 2 is, the wiring 202 2, the connector 207 2, cable 209 1, the connector 206 first substrate 200 1, through the circuit 208 1 of the substrate 200 1 Is done.
  • IC 201 2 function of the substrate 200 2 is set to non-top.
  • three terminals of the substrate 200 1 of connector 206 1 (206A ⁇ 206C in FIG. 3) is, in three cables 209 1, the three substrates 200 second connector 207 two terminals (in FIG. 3 207A to 207C).
  • one terminal of the connector 206 1 (206A in FIG. 3) and the connector 207 2 of a corresponding one of terminals (207A in FIG. 3) may be disconnected.
  • top set pin 204 and the GND pin 205 of the substrate 200 3 of IC 201 3 is the wiring 202 3 and the connector 207 3, cable 209 2, the connector 206 and second substrate 200 2 are connected via a circuit 208 the second substrate 200 in 2. Therefore, IC 201 3 function of the substrate 200 3 is set to non-top.
  • the connector 2071 of the substrate 200 1, when connecting end connector 212, top set pin 204 and the VDD pin 203 of IC 201 1 is, wiring 202 1, the connector 207 1, termination connector 212, circuit 213 (wiring) Connected through.
  • IC 201 1 of the functions of the substrate 200 1 is set to the top.
  • the connection between the boards is not limited to the cable 209. Further, the connection between the substrates is not limited to the connection using the connector.
  • the top function of the IC mounted on the board is automatically set according to the board to be connected and the terminal connector.
  • the number of IC stacks can be changed simply by increasing or decreasing the number of substrates to be connected.
  • the IC is a battery monitor IC
  • the number of cells (batteries) connected in series to be monitored can be varied (can be made scalable).
  • FIG. 5 is a diagram illustrating a substrate (circuit board) 300 according to the third embodiment.
  • the IC 301 is mounted on the substrate 300, and the connector 307 and the connector 308 are connected to the opposing positions on the two sides facing the substrate 300, respectively.
  • the IC 301 includes a master / slave setting pin 306, a top setting pin 303, a VDD pin 304, and a GND pin 305.
  • the master / slave setting pin 306 is connected to the VDD pin 304, the function of the IC 301 is set to the master, and when it is connected to the GND pin 305, it is set to the slave.
  • the connectors 307 and 308 have five terminals. In the connectors 307 and 308, even if terminals such as pins are provided at the positions of 307E and 308C, they are not connected. Therefore, terminals such as connector pins are not required at these positions. However, when either of the connectors 307 and 308 is provided with a receptacle, a receptacle that accommodates a pin to be connected may be provided at a position of 307E or 308C.
  • the master / slave setting pin 306, the GND pin 305, and the VDD pin 304 of the IC 301 are connected to terminals 307A, 307B, and 307C of the connector 307 through wirings 310A, 310B, and 310C, respectively.
  • Terminals 307D and 307F of the connector 307 are connected via a circuit (connection circuit) 311 (wiring) in the substrate 300.
  • the top setting pin 303, the VDD pin 304, and the GND pin 305 of the IC 301 are connected to the pins 308D, 308E, and 308F of the connector 308 through wirings 309D, 309E, and 309F, respectively.
  • the pins 308A and 308B of the connector 308 are connected via a circuit 312 (wiring) in the substrate 300.
  • FIG. 6 illustrates an example of a connection configuration (substrate device) of a plurality of substrates 300 1 to 300 3 (same as the substrate 300 of FIG. 5), the control substrate 313, and the termination connector 315.
  • the stacking IC 301 1 and IC 301 2 Connect the substrate 300 1 and the substrate 300 2 connects the opposing connector 307 1 and the connector 308 2 cable. Connection in this case, the master slave setting pin 306 and the GND pin 305 of IC 301 1 on the substrate 3001, a wiring 310 1, the connector 307 1, the connector 308 2, circuit 312 2 (wiring) of the substrate 300 in 2 over the Is done.
  • IC 301 1 of the functions of the substrate 300 1 is set to be a slave.
  • six terminals of the substrate 300 1 of connector 307 1 (307A-306F of FIG. 5) is, at six cables, 308A of the substrate 300 second connector 308 2 six terminals (FIGS. 5 to 308F).
  • one terminal of the connector 307 1 (307C in FIG. 5) and the connector 308 2 of a corresponding one of terminals (308C in FIG. 5) may be disconnected.
  • IC 301 1 of the functions of the substrate 300 1 is set to the top.
  • IC 301 2 function of the substrate 300 2 is set to non-top.
  • IC 301 3 function of the substrate 300 3 is set to the master.
  • IC 301 3 function of the substrate 300 3 is set to non-top.
  • cables are connected between the connectors on the boards, but it is needless to say that the connections between the boards are not limited to cable connections. Further, the connection between the substrates is not limited to the connection using the connector.
  • the master slave function and the top function of the IC mounted on the board are automatically set simultaneously according to the board to be connected and the termination connector.
  • the number of IC stacks can be changed simply by increasing or decreasing the number of substrates to be connected. For example, when the IC is a battery monitor IC, the number of cells (batteries) connected in series to be monitored can be varied (can be made scalable).
  • the IC described in each of the above embodiments is suitable for application to a multi-cell compatible battery stack monitor IC, and can also be applied to function setting of any IC that can be connected in a stack.
  • (Appendix 1) At least a first terminal that inputs a signal for setting a function of the semiconductor device, a second terminal that supplies a first value, and a third terminal that supplies a second value, and supports serial connection
  • a substrate provided with a semiconductor device A first connection portion connected to the first to third terminals of the semiconductor device;
  • a second connection portion connected to the first connection portion provided on another substrate;
  • At least two terminals of the second connection portion are connected to each other via a first connection circuit;
  • the substrate, wherein the first connection portion of the substrate is connected to the second connection portion provided on another substrate.
  • the semiconductor device further includes a fourth terminal for inputting a signal for setting a function of the semiconductor device;
  • the first connection portion of the substrate is connected to the first to third terminals of the semiconductor device, and is further connected to at least two terminals of the second connection portion of another substrate, respectively.
  • Has two terminals, The at least two terminals of the first connection portion are connected to each other via a second connection circuit;
  • the second connection portion of the substrate is a terminal different from the at least two terminals connected to each other, and is connected to the second to fourth terminals of the semiconductor device of the substrate. Board.
  • Appendix 3 Comprising at least first and second substrates made of the substrate according to appendix 1.
  • Two terminals consisting of the first terminal of the semiconductor device on the first substrate and one of the second terminal or the third terminal are connected to the first connection of the first substrate.
  • Part, and the second connection part and the first connection circuit of the second substrate are connected to each other,
  • the function of the semiconductor device of the first substrate is supplied from the second terminal or the third terminal connected to the first terminal with respect to the first terminal of the semiconductor device.
  • the semiconductor devices of the first and second substrates are connected in series;
  • a control board comprising a control device for controlling the semiconductor devices of the first and second substrates;
  • the control board is Of the first and second substrates, a second connection portion connected to the first connection portion of the substrate adjacent to the control substrate,
  • the board device according to appendix 3 wherein at least two terminals of the second connection portion are connected to each other via a third connection circuit on the control board.
  • the semiconductor devices of the first and second substrates are connected in series; A third connecting portion connected to the first connecting portion of the substrate located at an end of the first and second substrates; The third connection portion is configured to connect two terminals including the first terminal of the semiconductor device of the substrate located at the end portion and one of the second terminal and the third terminal to each other.
  • Appendix 6 Comprising at least first to third substrates made of the substrate according to appendix 2, Two terminals comprising the first terminal of the semiconductor device on the first substrate and one of the second terminal or the third terminal are connected to the first connection of the second substrate. Connected to each other via the second connection portion of the second substrate and the first connection circuit of the second substrate, Two terminals of the fourth terminal of the semiconductor device of the first substrate and one of the second terminal or the third terminal are the second connection portion of the third substrate.
  • the function of the semiconductor device of the first substrate is The first value or the second value supplied from the second terminal or the third terminal connected to the first terminal with respect to the first terminal of the semiconductor device; The first value or the second value supplied from the second terminal or the third terminal connected to the fourth terminal with respect to the fourth terminal of the semiconductor device; Substrate device set to a function corresponding to the combination of
  • the semiconductor devices of the first and second substrates are connected in series;
  • a control board comprising a control device for controlling the semiconductor devices of the first and second substrates;
  • the control board is A second connection portion connected to the first connection portion of the substrate on the adjacent control substrate of the first and second substrates;
  • the second connection part of the control board is connected to the first connection part of a board adjacent to the control board;
  • the semiconductor devices of the first to third substrates are connected in series; A third connecting portion connected to the first connecting portion of the substrate located at an end of the first to third substrates; The third connecting portion is A sixth connection circuit configured to connect two terminals including the fourth terminal of the semiconductor device on the substrate located at the end portion and one of the second terminal and the third terminal to each other;
  • the substrate apparatus according to appendix 6 or 7.
  • a first connection portion connected to the first to third terminals of the semiconductor device Providing a second connecting portion connected to the first connecting portion of another substrate, connecting at least two terminals of the second connecting portion to each other on the substrate side; Connecting the first connection portion of the first substrate to the second connection portion of the second substrate; A substrate connection method, wherein the second connection portion of the first substrate is connected to the first connection portion of the third substrate.
  • the semiconductor device further includes a fourth terminal for inputting a signal for setting a function of the semiconductor device;
  • the first connection portion of the substrate is connected to the first to third terminals of the semiconductor device, and is further connected to at least two terminals of the second connection portion of another substrate, respectively.
  • Has two terminals, The at least two terminals of the first connection portion are connected to each other via a second connection circuit; Item 11.
  • the second connection portion of the substrate is a terminal different from the at least two terminals connected to each other, and is connected to the second to fourth terminals of the semiconductor device of the substrate. Board connection method.
  • the semiconductor devices of the first and second substrates are connected in series;
  • a control board comprising a control device for controlling the semiconductor devices of the first and second substrates;
  • the control board is Of the first and second substrates, a second connection portion connected to the first connection portion of the substrate adjacent to the control substrate,
  • the board connection method according to appendix 12 wherein at least two terminals of the second connection portion are connected to each other via a third connection circuit on the control board.
  • the semiconductor devices of the first and second substrates are connected in series; A third connecting portion connected to the first connecting portion of the substrate located at an end of the first and second substrates; The third connection portion is configured to connect two terminals including the first terminal of the semiconductor device of the substrate located at the end portion and one of the second terminal and the third terminal to each other.
  • Two terminals comprising the first terminal of the semiconductor device on the first substrate and one of the second terminal or the third terminal are connected to the first connection of the second substrate. Connected to each other via the second connection portion of the second substrate and the first connection circuit of the second substrate, Two terminals of the fourth terminal of the semiconductor device of the first substrate and one of the second terminal or the third terminal are the second connection portion of the third substrate.
  • the function of the semiconductor device of the first substrate is The first value or the second value supplied from the second terminal or the third terminal connected to the first terminal with respect to the first terminal of the semiconductor device; The first value or the second value supplied from the second terminal or the third terminal connected to the fourth terminal with respect to the fourth terminal of the semiconductor device;
  • the semiconductor devices of the first and second substrates are connected in series;
  • a control board comprising a control device for controlling the semiconductor devices of the first and second substrates;
  • the control board is A second connection portion connected to the first connection portion of the substrate on the adjacent control substrate of the first and second substrates;
  • the second connection part of the control board is connected to the first connection part of a board adjacent to the control board;
  • the semiconductor devices of the first to third substrates are connected in series; A third connecting portion connected to the first connecting portion of the substrate located at an end of the first to third substrates; The third connecting portion is A sixth connection circuit configured to connect two terminals including the fourth terminal of the semiconductor device on the substrate located at the end portion and one of the second terminal and the third terminal to each other; Furthermore, the board

Abstract

 本発明は、基板に実装される半導体装置の機能設定を容易化し、設定ミスや設計工数の削減を可能とする基板とその接続方法を提供する。半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた基板であって、前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、他の基板に設けられた前記第1の接続部に接続される第2の接続部と、を備え、 前記第2の接続部の少なくとも二つの端子は第1の接続回路を介して互いに接続され、前記基板の前記第1の接続部は、さらに別の基板に設けられた前記第2の接続部と接続される。

Description

基板と基板装置及び基板接続方法
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2013-105356号(2013年05月17日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、基板及び基板装置と基板接続方法に関し、特に、スタック可能な半導体デバイスを搭載した基板に好適な基板構造と、該基板を複数備えた基板装置と、基板の接続方法に関する。
 近年、二次電池を利用した蓄電システムやモビリティ用バッテリ等は大容量化のために高電圧が進んでいる。高電圧を確保するために、例えばバッテリセルを複数直列に接続した構成が用いられている。バッテリセルの電圧をモニタする半導体デバイス(IC:Integrated Circuit)として、直列接続された複数のバッテリセル(マルチセル)を1個のICで測定し、個々のバッテリセルをモニタ可能としたバッテリモニタ用ICが各種製品化されている。この種のICは、バッテリセルの直列数に対応して、ICを複数直列にスタックできる機能を備えている(非特許文献1参照)。なお、ICのスタック機能は、例えばコマンド/データを、隣接ICに順次転送するデイジーチェーン接続機能に対応している。
 図10に、関連技術のマルチセル対応のバッテリ・スタックモニタICの一例を模式的に例示する(非特許文献1参照)。このIC10は、直列に接続された複数のバッテリセル(特に制限されないが、図10の例では12セル)に接続される。12セルの上側及び/又は下側には、別の12セルが接続可能とされる。例えば12セルの下側と上側にそれぞれ12セルを接続した場合、スタック接続される3個のICで、12セル×3=36セルの電圧をセル単位でモニタすることができる。図10を参照すると、IC10において、マルチプレクサ(MUX)11で1つのセルの端子対(正電極、負電極)を選択し、選択したセルの電圧をアナログデジタル変換器(ADC)12でデジタル信号に変換する。ADC12から出力されるデジタル信号はレジスタ制御回路(REGISTERS AND CONTROL)13の制御のもと、データバス(DATA)を介して不図示のマイクロプロセッサ(マイコン)等に転送される。また前段ICからデータバス(DATA)を介して転送されたコマンド/データは、レジスタ制御回路13を介して後段のICへ転送される。なお、特に制限されないが、図10の例では、バッテリセルの正極と負極の端子間に放電スイッチ(MOSFET(Metal Oxide Semiconductor Field Effect Transistor))14を備えている。マイコン等からのコマンド設定によりセル電圧を測定するときは、当該セルの端子間に接続する放電スイッチ14をオフする(また当該セルの上側のセルと下側のセルの放電スイッチもオフする)。
 例えばIC10のチップ選択入力ピン(CSBI)は、不図示のマイコン等からの制御により、コマンド・データを転送する期間、アクティブ状態(例えばLow電位)に設定される。この転送期間において、クロック信号に同期してコマンド又はデータは前段から次の段に転送される。なお、図10に示す例では、IC10は、チップ選択入力ピン(CSBI)から入力されたチップ選択信号をIC10内部でバッファしてチップ選択出力ピン(CSBO)から出力する。また、IC10は、クロック入力ピン(CKI)から入力されたクロック信号をIC10内部でバッファしてクロック出力ピン(CKO)から出力し、次段のICを駆動する。IC10の正電源(V)は、例えば、スタックされたセルの最も高い正電位(スタックされた12セルのトップセルの正電位)に接続され、負電源(V)は、例えばスタックされたセルの最も低い負電位(12セルのボトムセルの負電位)に接続される。IC10の正電源(V)は、次段のICの負電源(V)に接続され、IC10の負電源(V)は、前段のICの正電源(V)に接続される。TOSはスタックのトップの設定ピンである(例えばトップ・デバイス(IC)はHigh電位、スタック内の他のデバイス(IC)はLow電位)。また、IC10は、例えばデータバス(DATA)に対してデータを差動で入出力する構成とすることで、異なった電源電位で動作するIC間でデイジーチェーン接続することが可能である。
 スタック可能なICでは、取得したセル電圧等のデータをマイコン等に送信するため、スタックされた各ICの機能設定が必要となる。
 ICの機能設定として、例えばIC周辺回路を用いたハードウェアよる設定を用いるICが多い。具体的には、例えばICの機能設定ピンを電源電圧(VDD)にプルアップするか、GND電位(Ground:グラウンド)にプルダウンする。
 図7は、ICの機能設定に関する関連技術の一例を示す図である。図7には、基板(回路基板)3上に、スタック可能な複数のIC1~IC1と、マイコン2を実装した例が示されている。IC1~IC1は同一構成とされ、電気的に直列に接続(スタック)されている。マイコン2とIC1、IC1とIC1、IC1とIC1は、信号線群5、5、5でそれぞれ接続されている。特に制限されないが、IC1~IC1は、例えば図10と同様のバッテリ・スタックモニタICであってもよい。IC1~IC1が、図10のバッテリ・スタックモニタICの場合、信号線群5、5、5は、図10を参照して説明したクロック、チップ選択信号、データ等の信号を含む。
 マイコン2と接続するIC1がマスタIC、それ以外のIC1、IC1がスレーブICである。マスタとして機能するIC1では、IC1の機能を設定する設定ピンと電源電圧(VDD)とが回路(配線)4で接続される。一方、スレーブICのIC1、IC1では、GNDと設定ピンとが回路(配線)4、4でそれぞれ接続されている。なお、IC1~IC1が図10のバッテリ・スタックモニタICからなる場合、VDDは正電源V(スタックされた12セルのトップセルの正電位)、GNDは負電源V(スタックされた12セルのボトムセルの負電位)である。
 図7に例示したように、1つの基板3にスタック可能な複数のIC1~IC1を実装するかわりに、複数の基板に、スタック可能なICを1つずつ実装して接続する構成もある。例えば、図8に示す例では、複数の基板3、3、3に、IC1、IC1、IC1をそれぞれ実装し、スイッチ6、6、6により、IC1、IC1、IC1の設定ピンの接続を切り替える。あるいは、図9に例示するように、各機能向けにそれぞれ基板3A、3B、3Cの設計を変更する。
 図8では、IC1の設定ピンとGND間のスイッチSW1をオープンし、設定ピンとVDD間のスイッチSW2をクローズし、設定ピンをVDD電位としている。IC1、IC12の設定ピンとVDD間のスイッチSW2をオープンし、設定ピンとGND間のスイッチSW1をクローズし、設定ピンをGND電位としている。
 なお、特許文献1には、複数のセルを積層した場合にセル電圧を正確に測定可能とするセル電圧測定装置として、スタックされた複数のセルのセル接続部に、個々のセルの電圧を測定するためのセル側端子が設けられており、セル側端子は、セルの接続部に対応して設けられた、セル電圧測定装置内のグランド接続切替スイッチの端子にそれぞれ接続されている構成が開示されている。
 複数の基板の基板間の接続について、例えば特許文献2には、共通バスラインを有するマザーボードに取り付けられ、前記共通バスラインにより信号配線されてなる複数の基板ユニットに関して、各基板ユニットの共通バスラインの終端にコネクタを備え、隣接する二つの基板ユニットのコネクタ間を接続するバイアス基板および単一の基板ユニットのコネクタに取り付ける終端抵抗を備えた構成が開示されている、
特開2012-242357号公報 特開昭62-202598号公報
LINEAR TECHNOLOGY、"マルチセル・バッテリ・スタック・モニタ" LTC6803 データシート、インターネット(平成25年4月2日検索)(URL:http://cds.linear.com/docs/jp/datasheet/j680313fa.pdf)
 以下に関連技術の分析を与える。
 上記のようなICの設定ピンの設定では、設定ミスや設計工数等の点で問題がある。
 例えば図7の構成では、バッテリモニタに用いる場合、ICに接続されるセル数が限定される。セルの削減や、セルの追加の必要が生じた場合には、基板の設計から変更しなければならない。
 図8の構成では、ICを接続した後、スイッチSW1、SW2を、基板毎、個別に設定する作業が必要となる。スイッチSW1、SW2のオン、オフの誤設定は、回路の誤動作を招く。さらに、スイッチを配置する分、基板の面積が増大する。
 図9の構成では、基板3A~3C等、基板毎、機能によって、回路設計が異なる。このため、設計工数、コストの上昇を招く。
 したがって、本発明は、上記問題点に鑑みて創案されたものであって、その目的は、基板に実装される半導体装置の機能設定を容易化し、設定ミスや設計工数の削減を可能とする基板と基板装置及び基板接続方法を提供することにある。
 本発明のいくつかの側面の1つによれば(視点1)、半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた基板であって、
 前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、
 他の基板に設けられた前記第1の接続部に接続される第2の接続部と、
 を備え、前記第2の接続部の少なくとも二つの端子は第1の接続回路を介して互いに接続され、前記基板の前記第1の接続部は、さらに別の基板に設けられた前記第2の接続部と接続される基板が提供される。
 本発明のいくつかの側面の1つによれば(視点2)、前記視点1の基板からなる第1、第2の基板を少なくとも備え、前記第1の基板の前記半導体装置の前記第1の端子と、前記第2又は第3の端子と、からなる二つの端子が、前記第1の基板の前記第1の接続部、前記第2の基板の前記第2の接続部、さらに前記第2の基板内の前記接続回路を介して互いに接続され、
 前記第1の基板の前記半導体装置の機能が、前記第1の端子が接続する前記第2の端子又は前記第3の端子が供給する前記第1の値又は前記第2の値に対応する第1の機能又は第2の機能に設定される、基板装置(電子装置)が提供される。
 本発明のいくつかの側面の1つによれば(視点3)、半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた第1乃至第3の基板の各々に、
 前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、
 他の基板の前記第1の接続部に接続される第2の接続部を設け、前記第2の接続部の少なくとも二つの端子を前記基板側で互いに接続し、
 前記第1の基板の前記第1の接続部を、前記第2の基板の前記第2の接続部と接続し、
 前記第1の基板の前記第2の接続部を、前記第3の基板の前記第1の接続部と接続する基板接続方法が提供される。
 本発明によれば、基板に実装される半導体装置の機能設定を容易化し、設定ミスや設計工数の削減を可能としている。
本発明の実施形態1を例示する図である。 本発明の実施形態1の接続例を示す図である。 本発明の実施形態2を例示する図である。 本発明の実施形態2の接続例を示す図である。 本発明の実施形態3を例示する図である。 本発明の実施形態3の接続例を示す図である。 関連技術1を説明する図である。 関連技術2を説明する図である。 関連技術2を説明する図である。 マルチセルバッテリスタックモニタICを説明する図である。
 本発明のいくつかの好ましい形態によれば、半導体装置(例えば図1のIC101、あるいは図3のIC201)の機能を設定する信号を入力する第1の端子(例えば図1のピン104、あるいは図3のピン204)と、第1の値を供給する第2の端子(例えば図1のピン103、あるいは図3のピン203)と、第2の値を供給する第3の端子(例えば図1のピン105、あるいは図3のピン205)とを含み、直列接続可能な(スタック可能な)半導体装置(IC)を備えた基板(例えば図1の100、あるいは図3の200)が、前記半導体装置(例えば図1のIC101、あるいは図3のIC201)の前記第1乃至第3の端子に接続される第1の接続部(例えば図1の106、あるいは図3の207)と、他の基板に設けられた前記第1の接続部に接続される第2の接続部(例えば図1の107、あるいは図3の206)と、前記第2の接続部(例えば図1の107、あるいは図3の206)の少なくとも二つの端子(例えば図1の107Aと107B、あるいは図3の206Bと206C)を接続する接続回路(第1の接続回路)(例えば図1の108、あるいは図3の208)を備えている。前記基板(図1の100、あるいは図3の200)の前記第1の接続部(図1の106、あるいは図3の207)は、前記基板の前記第2の接続部(図1の107、又は図2の107、あるいは図3の206)と前記第1の接続回路(図1の108、あるいは図3の208)と同一の構成を備えた他の基板との接続時に、前記他の基板に設けられた前記第2の接続部(図1の107、又は図2の107、あるいは、図3の206)と接続される。前記基板の前記第2の接続部(図1の107、あるいは図3の206)は、前記基板と同一構成の第1の接続部を備えた別の基板との接続時に、前記別の基板の前記第1の接続部(図1の106、あるいは図3の207)と接続される。
 本発明の別の好ましい形態の一つによれば、前記半導体装置(例えば図5の301)が、前記第1乃至第3の端子(例えば図5のピン306、305、304)に加えて、半導体装置の機能を設定する信号を入力する第4の端子(例えば図5のピン303)をさらに含む。前記基板(図5の300)の前記第1の接続部(例えば図5の307)は、前記半導体装置(例えば図5の301)の第1乃至第3の端子(例えば図5の306、305、304)に接続される。前記第1の接続部(例えば図5の307)は、さらに、少なくとも二つの端子(例えば図5の307D、307F)を有する。前記第1の接続部(例えば図5の307)の前記少なくとも二つの端子(例えば図5の307D、307F)は、他の基板の前記第2の接続部の少なくとも二つの端子にそれぞれ接続される。前記基板(図5の300)は、前記第1の接続部(図5の307)の前記少なくとも二つの端子(例えば図5の307D、307F)を互いに接続する第2の接続回路(例えば図5の311)を備えた構成としてもよい。さらに、前記基板(図5の300)の前記第2の接続部(例えば図5の308)は、第1の接続回路(例えば図5の312)で互いに接続される二つの端子(例えば図5の308A、308B)とは別の端子(例えば図5の308D、308E、308F)で、前記基板(図5の300)の前記半導体装置(図5の301)の第2乃至第4の端子(例えば図5の305、304、303)に接続される構成としてもよい。
 本発明のいくつかの好ましい形態によれば、前記基板からなる第1、第2の基板(例えば図2の100、100、あるいは図4の200、200)を少なくとも備え、前記第1の基板(例えば図2の100、あるいは図4の200)の前記半導体装置(図2の101、あるいは図4の201)の前記第1の端子(図2の104、あるいは図4の204)と、前記第2又は第3の端子(図2の103又は105、図3の203又は205)と、からなる二つの端子が、前記第1の基板(図2の100、あるいは図4の201)の前記第1接続部(図2の106、あるいは図4の207)、前記第2の基板(図2の100、あるいは図4の200)の前記第2の接続部(図2の107、あるいは図4の206)、さらに前記第2の基板(図2の1002、あるいは図4の200)の前記第1の接続回路(図2の1082、あるいは図4の208)を介して互いに接続され、前記第1の基板(図2の100、あるいは図4の200)の前記半導体装置(図2の101、あるいは図4の201)の機能が、前記第1の端子(図2の104、あるいは図4の204)が接続する前記第2又は第3の端子(図2の103又は105、あるいは図4の203又は205)から、前記第1の端子に供給される前記第1又は第2の値に対応する機能に設定される構成としてもよい。
 本発明のいくつかの好ましい形態の一つによれば、前記第1及び第2の基板の前記半導体装置が直列に接続され、前記第1及び第2の基板の前記半導体装置を制御する制御装置(例えば図2のマイコン2)を備えた制御基板(図2の111)を備えている。前記制御基板(図2の111)は、前記第1及び第2の基板のうち前記制御基板(図2の111)に隣接する基板(例えば図2の100)の前記第1の接続部(図2の106)に接続する第2の接続部(図2の107)を備えている。制御基板(図2の111)の前記第2の接続部(図2の107)は、前記制御基板(図2の111)に隣接する基板の前記第1の接続部が接続する前記隣接する基板(図2の100)の前記半導体装置の前記第1の端子(図2の104)と、前記第2又は第3の端子(図2の103又は105)と、からなる二つの端子に接続され、前記制御基板(図2の111)は、前記第2の接続部(図2の107)が接続する前記二つの端子を互いに接続される接続回路(第3の接続回路)(図2の108)をさらに備えた構成としてもよい。
 本発明のいくつかの好ましい形態の一つによれば、前記第1及び第2の基板の前記半導体装置が直列に接続され、前記第1及び第2の基板のうち端部に位置する基板(例えば図4の200)の前記第1の接続部(図4の207)に対して接続される第3の接続部(図4の212)を備えた構成としてもよい。前記第3の接続部(図4の212)は、前記端部に位置する基板(例えば図4の200)の前記半導体装置(例えば図4の201)の前記第1の端子(例えば図4の204)と、前記第2又は第3の端子(例えば図4の203又は205)と、からなる二つの端子に接続され、前記二つの端子を前記第3の接続部(図4の212)内で互いに接続される接続回路(第4の接続回路)(図4の213)をさらに備えた構成としてもよい。
 本発明の別の好ましい形態の一つによれば、第1乃至第3の基板(例えば図6の300、3003、300)を少なくとも備えている(第2、第3の基板は第1の基板の両側に配置される)。前記第1の基板(例えば図6の300)の前記半導体装置(図6の301)の前記第1の端子(図6の306)と、前記第2又は第3の端子(図6の305又は304)と、からなる二つの端子が、前記第1の基板(図6の300)の前記第1接続部(図6の307)、前記第2の基板(図6の300)の前記第2の接続部(図6の308)、さらに前記第2の基板(図6の300)の前記第1の接続回路(図6の312)を介して互いに接続される構成としてもよい。また、前記第1の基板(図6の300)の前記半導体装置(図6の301)の前記第4の端子(図6の303)と、前記第2又は第3の端子(図6の305又は304)と、からなる二つの端子が、前記第1の基板(図6の300)の前記第2の接続部(図6の308)、前記第3の基板(図6の300)の前記第1の接続部(図6の307)、さらに前記第3の基板(図6の300)の前記第2の接続回路(図6の311)を介して互いに接続される構成としてもよい。前記第1の基板(図6の300)の前記半導体装置(図6の301)の機能が、前記半導体装置(図6の301)の前記第1の端子(図6の306)が接続する前記第2又は第3の端子(図6の305又は304)から、前記第1の端子(図6の306)に供給される前記第1又は第2の値と、前記第4の端子(図6の303)が接続する前記第2又は第3の端子(図6の305、304)から、前記第4の端子(図6の303)に供給される前記第1又は第2の値の組み合せに対応する機能に設定される構成としてもよい。
 本発明の別の好ましい形態の一つによれば、前記第1及び第2の基板(例えば図6の300、300)の前記半導体装置(図6の301、301)が直列に接続され、前記第1及び第2の基板(図6の300、300)の前記半導体装置(図6の301、301)を制御する制御装置(図6の2)を備えた制御基板(図6の313)を備えた構成としてもよい。前記制御基板(図6の313)は、前記第1及び第2の基板(図6の300、300)のうち前記制御基板(図6の313)に隣接する基板(図6の300)の前記第1の接続部(図6の307)に接続する第2の接続部(図6の308)を備えた構成としてもよい。前記制御基板(図6の313)の前記第2の接続部(図6の308)は、前記制御基板(図6の313)に隣接する基板(図6の300)の前記第1の接続部(図6の307)が接続する前記隣接する基板(図6の300)の前記半導体装置(図6の301)の前記第1の端子(図6の306)と、前記第2又は第3の端子(図6の305又は304)と、からなる二つの端子に接続される。前記制御基板(図6の313)は、前記制御基板(図6の313)の前記第2の接続部(図6の308)が接続する前記二つの端子を前記制御基板(図6の313)内で互いに接続される接続回路(第5の接続回路)(図6の312)をさらに備えた構成としてもよい。
 本発明の別の好ましい形態の一つによれば、第1乃至第3の基板(例えば図6の300、3003、300)の前記半導体装置(例えば図6の301、3013、301)が直列に接続され、前記第1乃至第3の基板(図6の300、300、300)のうち端部に位置する基板(例えば図6の300)の前記第2の接続部(図6の308)に接続される第3の接続部(図6の終端用コネクタ315)を備えた構成としてもよい。前記第3の接続部(図6の315)は、前記端部に位置する基板(図6の300)の前記半導体装置(図6の301)の前記第4の端子(図6の303)と、前記第2又は第3の端子(図6の305、304)と、からなる二つの端子に接続され、前記二つの端子を前記第3の接続部(図6の315)内で互いに接続される接続回路(第6の接続回路)(図6の316)をさらに備えた構成としてもよい。
 本発明によれば、スタックされる各ICの機能によって周辺回路を変更することなく、接続する基板との関係で基板上のICの機能設定が可能となる。このため、回路の共通化を可能としている。その結果、設計工数、製造コストの削減が実現できる。また、本発明によれば、ICを搭載した基板を接続するだけで、当該ICの機能が自動的に規定することができる。このため、基板接続後の付加的な作業が不要となり、誤設定による誤動作の可能性を低減する。さらに、本発明によれば、ICのスタック数の増減を容易化している。以下、いくつかの実施形態に即して説明する。
<実施形態1>
 図1は、本発明の実施形態1の基板の構成を例示する図である。図1には、実施形態1における基板(回路基板)が例示されている。図1を参照すると、基板100上にスタック可能なIC101が実装されている。基板100の対向する2辺の相対する位置に、コネクタ106(第1の接続部)と、コネクタ107(第2の接続部)がそれぞれ配設されている。IC101は、マスタスレーブ設定ピン104、VDD(電源電圧)ピン103、GND(Ground)ピン105を有する。マスタスレーブ設定ピン104をVDDピン103に接続した場合、IC101の機能は、マスタに設定される。一方、マスタスレーブ設定ピン104をGNDピン105に接続した場合、IC101の機能はスレーブに設定される。
 基板100において、IC101のGNDピン105、マスタスレーブ設定ピン104、VDDピン103は、基板100上の配線102A、102B、102Cでそれぞれコネクタ106の端子106A、106B、106Cに接続されている。コネクタ107内の端子107A、107Bは、対向するコレクタ106の端子106A、106Bの位置に対応している。コネクタ107内の端子107A、107B同士は、基板100内の回路(接続回路)108(配線)を介して接続されている。なお、コネクタ107の符号107Cは、コレクタ106の端子106Cの位置に対応した位置を示している。コネクタ107において、107Cの位置にピン等の端子を設けても、基板100内の回路とは非接続(オープン)であるため、107Cの位置にピン等の端子は不要である(ただし、設けてもよい)。ただし、コネクタ107がレセプタクルを備えたものである場合、コネクタ107に接続するピンを収容するレセプタクル(端子)を107Cの位置に備えてもよい。
 図2は、図1に示した基板100を複数備え、制御基板111に接続した例(基板装置)を示す図である。図2において、基板100~101は、図1に示した基板100と同一の構成である。なお、図2には、制御基板111と基板100を3枚備えた構成が開示されているが、基板100の数は3枚に制限されるものでないことは勿論である(後述される図4、図6についても同様である)。
 図2を参照すると、基板100と基板100を接続してIC101とIC101をスタックする場合、基板100のコネクタ106と、基板100のコネクタ107の対応する端子同士を、ケーブル109で接続する。なお、図2の例では、基板100のコネクタ106の3つの端子(図1の106A~106C)が、3本のケーブル109で、基板100のコネクタ107の3つの端子(図1の107A~107C)に接続されている。なお、コネクタ107の1つの端子(図1の107C)と、コネクタ106の対応する1つの端子(図1の106C)とは非接続としてもよい。
 基板100のIC101のマスタスレーブ設定ピン104とGNDピン105が、基板100のコネクタ106、ケーブル109と、基板100のコネクタ107、基板100内の回路(接続回路)108を介して接続される。このように、基板100のコネクタ106と基板100のコネクタ107を接続することで、基板100のIC101の機能はスレーブに設定される。
 さらに、基板100のコネクタ106と基板100のコネクタ107を接続することで、基板100のIC101のマスタスレーブ設定ピン104とGNDピン105が、基板100のコネクタ106、ケーブル109と、基板100のコネクタ107、基板100内の回路108を介して接続される。このため、基板100のIC101の機能はスレーブに設定される。
 制御基板111は、基板100~101上のIC101~IC101と、配線110~110を介して通信して、コマンドの送信、データの収集等を制御するマイコン2を備えている。制御基板111には、隣接する基板100に対向する辺に、基板100のコネクタ106に対応して、コネクタ107が設けられている。コネクタ107内の2本の端子は、制御基板111内の回路(接続回路)108(配線)を介して接続されている。
 基板100と、制御基板111を接続する場合、基板100のコネクタ106と、制御基板111のコネクタ107をケーブル109で接続する。制御基板111のコネクタ107の端子接続は、基板100のIC101のマスタスレーブ設定ピン104と、VDDピン103が、基板100のコネクタ106、ケーブル109、制御基板111のコネクタ107、制御基板111内の回路108を介して、互いに接続されるように設定されている。なお、制御基板111に設けられたコネクタ107は、図1のコネクタ107の107Cの位置の端子を、107Bの端子と、回路108(108)で接続した構成に対応している。IC101~IC101をコントロールするマイコン2を実装した制御基板111は、基板100~100とは異なる構成であるが、コネクタ107と回路108は、図1の基板100のコネクタ107と回路108に対応している。
 基板100のコネクタ106と、制御基板111のコネクタ107を接続することで、基板100に配設されたIC101の機能はマスタ(マイコン2と直接接続する機能)に設定される。
 端部の基板100では、隣接する基板100に対向する辺と反対側の辺に位置するコネクタ107の端子が接続する相手のコネクタは存在せず、いずれもオープンとされている。
 なお、上記実施形態では、隣接する基板の対向するコネクタ106、107間をケーブル109で接続する例を説明したが、基板間の接続は、ケーブル109に限定されるものでないことは勿論である。基板間を接続するカードエッジコネクタ等を用いてもよい。あるいは、コネクタ106にスルーピンを備え、該スルーピンをコネクタ107のレセプタクルと嵌合させる構成としてもよい。この場合、図1において、コネクタ107の107A~107Cのレセプタクルが、接続する他の基板のコネクタ106の106A~106Cのピンに対応して設けられることになる。また、例えば基板内の回路構成が同一であり、基板間の接続が可能であれば、基板間の接続形態は、コネクタを用いた接続に限定されるものでなく、コネクタの有無に制限されない。
 実施形態1では、基板の接続に応じて、IC101の機能設定(マスタ機能、スレーブ機能の設定)が自動で行われる。このため、実施形態によれば、ICの機能に応じた回路変更やスイッチの切り替え等を不要とし、設計工数、コストの削減を可能としている。
 また実施形態1によれば、接続する基板を増減させるだけで、ICのスタック数を変更することができる。例えばICをバッテリモニタICとした場合、モニタされる直列接続されるセル(バッテリ)の個数を可変自在(スケーラブル化可能)としている。
<実施形態2>
 次に、本発明の実施形態2について説明する。図3は、実施形態2の基板(回路基板)200を例示する図である。図3を参照すると、基板200上に、スタック可能なIC201が実装され、基板200の対向する2辺の相対する位置に、コネクタ206、コネクタ207がそれぞれ接続されている。IC201は、トップ設定ピン204、VDDピン203、GNDピン205を備えている。トップ設定ピン204をVDDピン203に接続すると、IC201の機能はトップに設定される。トップ設定ピン204をGNDピン205に接続すると、IC201の機能は、非トップに設定される。なお、トップは、マイコン側から最も遠い位置のIC(例えばマルチセルバッテリモニタICを3段接続した場合、最も高電位のマルチセルをモニタするICに対応)に設定される機能であり、デイジーチェーン接続の最後段であり、後段のICがないため、マイコン側から転送されたデータの後段への転送は行わなくてよい。
 IC201のVDDピン203、トップ設定ピン204、GNDピン205は、基板200の配線202A、202B、202Cを介してそれぞれコネクタ207の端子207A、207B、207Cに接続されている。コネクタ207の端子207B、207Cと相対する位置のコネクタ206の端子206B、206C同士は、基板200内の回路(接続回路)208を介して接続されている。コネクタ206の206Aの位置に端子を設けても、基板200内の回路とは非接続であるため、コネクタ端子は不用である。ただし、コネクタ206がレセプタクルを備えたものである場合、接続するピンを収容するレセプタクル(コネクタ端子)を206Aの位置に備えてもよい。
 図4は、複数の基板200~200(図3の基板200と同一)、終端用コネクタ212、制御基板211の接続構成の例(基板装置)を例示する図である。基板200~200は、図3に示した基板200と同一である。
 図4を参照すると、基板200と基板200を接続して、IC201とIC201をスタックする場合、基板200のコネクタ206と基板200のコネクタ207の対応する端子同士を、例えばケーブル209で接続する。この場合、IC201のトップ設定ピン204とGNDピン205とが、配線202と、コネクタ207、ケーブル209、基板200のコネクタ206、基板200内の回路208を介して接続される。このように、基板200のコネクタ207を基板200のコネクタ206に接続することで、基板200のIC201の機能は、非トップに設定される。
 図4の例では、基板200のコネクタ206の3つの端子(図3の206A~206C)が、3本のケーブル209で、基板200のコネクタ207の3つの端子(図3の207A~207C)に接続されている。なお、コネクタ206とコネクタ207の接続において、コネクタ206の1つの端子(図3の206A)とコネクタ207の対応する1つの端子(図3の207A)は非接続としてもよい。
 さらに、基板200のコネクタ206に基板200のコネクタ206を接続することで、基板200のIC201のトップ設定ピン204とGNDピン205が、配線202とコネクタ207、ケーブル209、基板200のコネクタ206、基板200内の回路208を介して接続される。このため、基板200のIC201の機能は、非トップに設定される。
 基板200に接続された終端用コネクタ212は、コネクタ207の2つの端子(図3のコネクタ207の端子207A、207B)同士を、回路(接続回路)213(配線)で接続したものである。
 基板200のコネクタ207に、終端用コネクタ212を接続した場合、IC201のトップ設定ピン204とVDDピン203が、配線202、コネクタ207、終端用コネクタ212、回路213(配線)を介して接続される。
 このように、端部の基板200のコネクタ207に終端用コネクタ212を接続することで、基板200のIC201の機能はトップに設定される。なお、実施形態1と同様、実施形態2においても、基板間の接続はケーブル209に限定されるものでないことは勿論である。また、基板間の接続はコネクタを用いた接続に限定されるものでない。
 実施形態2によれば、接続する基板と終端用コネクタに応じて、基板に実装されているICのトップ機能が自動設定される。その結果、ICの機能に応じた回路変更やスイッチ切り替えを不要としており、設計工数、コストの削減を可能としている。また、接続する基板を増減させるだけで、ICのスタック数を変更することができる。例えばICをバッテリモニタICとした場合、モニタされる直列接続されるセル(バッテリ)の個数を可変自在(スケーラブル化可能)としている。
<実施形態3>
 次に、本発明の実施形態3について説明する。図5は、実施形態3の基板(回路基板)300を例示する図である。図5を参照すると、基板300上にIC301が実装され、基板300に対向する2辺の相対する位置に、それぞれコネクタ307、コネクタ308が接続されている。IC301は、マスタスレーブ設定ピン306、トップ設定ピン303、VDDピン304、GNDピン305を備えている。マスタスレーブ設定ピン306をVDDピン304に接続した場合、IC301の機能はマスタに設定され、GNDピン305に接続された場合、スレーブに設定される。IC301のトップ設定ピン303をVDDピン304に接続した場合、IC301の機能はトップに設定され、トップ設定ピン303をGNDピン305に接続した場合、非トップに設定される。コネクタ307、308は5つの端子を備えている。コネクタ307、308において、307E、308Cの位置にピン等の端子を設けても、非接続であるため、この位置にコネクタピン等の端子は不要である。ただし、コネクタ307、308のいずれかがレセプタクルを備えたものである場合、接続するピンを収容するレセプタクルを、307E又は308Cの位置に備えてもよい。
 IC301のマスタスレーブ設定ピン306、GNDピン305、VDDピン304は配線310A、310B、310Cを介してコネクタ307の端子307A、307B、307Cにそれぞれ接続されている。コネクタ307の端子307D、307Fは基板300内の回路(接続回路)311(配線)を介して接続されている。IC301のトップ設定ピン303、VDDピン304、GNDピン305は、配線309D、309E、309Fを介してコネクタ308のピン308D、308E、308Fにそれぞれ接続されている。コネクタ308のピン308A、308Bは基板300内の回路312(配線)を介して接続されている。
 図6は、複数の基板300~300(図5の基板300と同一)と、制御基板313および終端用コネクタ315の接続構成の例(基板装置)が例示されている。図6を参照すると、基板300と基板300を接続してIC301とIC301をスタックする場合は、対向するコネクタ307とコネクタ308をケーブルで接続する。この場合、基板300上のIC301のマスタスレーブ設定ピン306とGNDピン305は、配線310と、コネクタ307、コネクタ308、基板300内の回路312(配線)を介して接続される。このように、基板300のコネクタ307に基板300のコネクタ308を接続することで、基板300のIC301の機能はスレーブに設定される。
 図6の例では、基板300のコネクタ307の6つの端子(図5の307A~306F)が、6本のケーブルで、基板300のコネクタ308の6つの端子(図5の308A~308F)に接続されている。なお、コネクタ307とコネクタ308の接続において、コネクタ307の1つの端子(図5の307C)とコネクタ308の対応する1つの端子(図5の308C)は非接続としてもよい。
 基板300上のIC301のトップ設定ピン303とVDDピン304とは、基板300上の配線309と、基板300のコネクタ308、終端用コネクタ315、回路316(配線)を介して接続される。このように、基板300のコネクタ308に終端用コネクタ315を接続することで、基板300のIC301の機能はトップに設定される。
 基板300上のIC301のマスタスレーブ設定ピン306とGNDピン305は、基板300上の配線310と、基板300のコネクタ307、コネクタ308、基板300内の回路312(配線)を介して接続される。このように、基板300のコネクタ307に基板300のコネクタ308を接続することで、基板300のIC301の機能はスレーブに設定される。
 基板300上のIC301のトップ設定ピン303とGNDピン305とは、基板300上の配線309と、基板300のコネクタ308、基板300のコネクタ307、基板300内の回路311(配線)を介して接続される。このように、基板300のコネクタ308に基板300のコネクタ307を接続することで、基板300のIC301の機能は非トップに設定される。
 基板300上のIC301のマスタスレーブ設定ピン306とVDDピン304とは、基板300上の配線310と、基板300のコネクタ307、制御基板313のコネクタ308、制御基板313内の回路312(配線)を介して接続される。このように、基板300のコネクタ307に制御基板313のコネクタ308を接続することで、基板300のIC301の機能がマスタに設定される。
 基板300上のIC301のトップ設定ピン303とGNDピン305とは、基板300上の配線309と、基板300のコネクタ308、基板300のコネクタ307、基板300内の回路311(配線)を介して接続される。このように、基板300のコネクタ308と基板300のコネクタ307を接続することで、基板300のIC301の機能は非トップに設定される。なお、実施形態3では、基板のコネクタ間をケーブル接続しているが、基板間の接続は、ケーブル接続に限定されるものでないことは勿論である。また基板間の接続はコネクタを用いた接続に限定されるものでない。
 実施形態3によれば、接続される基板および終端用コネクタに応じて基板に実装されるICのマスタスレーブ機能およびトップ機能が同時に自動で設定される。接続する基板を増減させるだけで、ICのスタック数を変更することができる。例えばICをバッテリモニタICとした場合、モニタされる直列接続されるセル(バッテリ)の個数を可変自在(スケーラブル化可能)としている。
 なお、上記各実施形態で説明したICは、マルチセル対応のバッテリ・スタックモニタICに適用して好適とされるほか、スタック接続可能な任意のICの機能設定に適用可能である。
 なお、上記の特許文献、非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
 特に制限されないが、上記した実施形態は以下のように付記される。
(付記1)
 半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた基板であって、
 前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、
 他の基板に設けられた前記第1の接続部に接続される第2の接続部と、
 を備え、
 前記第2の接続部の少なくとも二つの端子は第1の接続回路を介して互いに接続され、
 前記基板の前記第1の接続部は、さらに別の基板に設けられた前記第2の接続部と接続される、基板。
(付記2)
 前記半導体装置が、前記半導体装置の機能を設定する信号を入力する第4の端子をさらに含み、
 前記基板の前記第1の接続部は、前記半導体装置の前記第1乃至第3の端子に接続され、さらに、他の基板の前記第2の接続部の少なくとも二つの端子にそれぞれ接続される少なくとも二つの端子を有し、
 前記第1の接続部の前記少なくとも二つの端子は第2の接続回路を介して互いに接続され、
 前記基板の前記第2の接続部は、互いに接続される前記少なくとも二つの端子とは別の端子で、前記基板の前記半導体装置の前記第2乃至第4の端子に接続される、付記1記載の基板。
(付記3)
 付記1記載の基板からなる第1及び第2の基板を少なくとも備え、
 前記第1の基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子が、前記第1の基板の前記第1の接続部と、前記第2の基板の前記第2の接続部及び前記第1の接続回路と、を介して、互いに接続され、
 前記第1の基板の前記半導体装置の機能が、前記半導体装置の前記第1の端子に対して、前記第1の端子が接続する前記第2の端子又は前記第3の端子から供給される前記第1の値又は前記第2の値に対応する機能に設定される、基板装置。
(付記4)
 前記第1及び第2の基板の前記半導体装置が直列に接続され、
 前記第1及び第2の基板の前記半導体装置を制御する制御装置を備えた制御基板を備え、
 前記制御基板は、
 前記第1及び第2の基板のうち、前記制御基板に隣接する基板の前記第1の接続部に接続する第2の接続部を備え、 
 前記第2の接続部の少なくとも二つの端子は、前記制御基板上の第3の接続回路を介して互いに接続される、付記3記載の基板装置。
(付記5)
 前記第1及び第2の基板の前記半導体装置が直列に接続され、
 前記第1及び第2の基板のうち端部に位置する基板の前記第1の接続部に対して接続される第3の接続部を備え、
 前記第3の接続部は、前記端部に位置する前記基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子を互いに接続する第4の接続回路を備えた、付記3記載の基板装置。
(付記6)
 付記2記載の基板からなる第1乃至第3の基板を少なくとも備え、
 前記第1の基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子が、前記第2の基板の前記第1の接続部、前記第2の基板の前記第2の接続部、さらに前記第2の基板の前記第1の接続回路を介して互いに接続され、
 前記第1の基板の前記半導体装置の前記第4の端子と、前記第2の端子又は前記第3の端子の一方と、の二つの端子が、前記第3の基板の前記第2の接続部、前記第3の基板の前記第1の接続部、さらに前記第3の基板の前記第2の接続回路を介して互いに接続され、
 前記第1の基板の前記半導体装置の機能が、
 前記半導体装置の前記第1の端子に対して、前記第1の端子が接続する前記第2の端子又は前記第3の端子から、供給される前記第1の値又は前記第2の値と、
 前記半導体装置の前記第4の端子に対して、前記第4の端子が接続する前記第2の端子又は前記第3の端子から、供給される前記第1の値又は前記第2の値と、
 の組み合せに対応する機能に設定される、基板装置。
(付記7)
 前記第1及び第2の基板の前記半導体装置が直列に接続され、
 前記第1及び第2の基板の前記半導体装置を制御する制御装置を備えた制御基板を備え、
 前記制御基板は、
 前記第1及び第2の基板のうち隣接する前記制御基板に基板の前記第1の接続部に接続する第2の接続部を備え、
 前記制御基板の前記第2の接続部は、前記制御基板に隣接する基板の前記第1の接続部に接続され、 
 前記制御基板の前記第2の接続部の少なくとも二つの端子は前記制御基板の第5の接続回路を介して互いに接続される、付記6記載の基板装置。
(付記8)
 前記第1乃至第3の基板の前記半導体装置が直列に接続され、
 前記第1乃至第3の基板のうち端部に位置する基板の前記第1の接続部に対して接続される第3の接続部を備え、
 前記第3の接続部は、
 前記端部に位置する基板の前記半導体装置の前記第4の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子を互いに接続する第6の接続回路を備えた、付記6又は7記載の基板装置。
(付記9)
 前記各基板の前記第1及び第2の接続部が、前記基板の相対する二つの辺にそれぞれ設けられている、付記3乃至8のいずれか1に記載の基板装置。
(付記10)
 半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた第1乃至第3の基板の各々に、
 前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、
 他の基板の前記第1の接続部に接続される第2の接続部を設け、前記第2の接続部の少なくとも二つの端子を前記基板側で互いに接続し、
 前記第1の基板の前記第1の接続部を、前記第2の基板の前記第2の接続部と接続し、
 前記第1の基板の前記第2の接続部を、前記第3の基板の前記第1の接続部と接続する、基板接続方法。
(付記11)
 前記半導体装置が、前記半導体装置の機能を設定する信号を入力する第4の端子をさらに含み、
 前記基板の前記第1の接続部は、前記半導体装置の前記第1乃至第3の端子に接続され、さらに、他の基板の前記第2の接続部の少なくとも二つの端子にそれぞれ接続される少なくとも二つの端子を有し、
 前記第1の接続部の前記少なくとも二つの端子は第2の接続回路を介して互いに接続され、
 前記基板の前記第2の接続部は、互いに接続される前記少なくとも二つの端子とは別の端子で、前記基板の前記半導体装置の前記第2乃至第4の端子に接続される、付記10記載の基板接続方法。
(付記12)
 前記第1の基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子が、前記第1の基板の前記第1の接続部と、前記第2の基板の前記第2の接続部及び前記第1の接続回路と、を介して、互いに接続され、
 前記第1の基板の前記半導体装置の機能が、前記半導体装置の前記第1の端子に対して、前記第1の端子が接続する前記第2の端子又は前記第3の端子から供給される前記第1の値又は前記第2の値に対応する機能に設定される、付記10記載の基板接続方法。
(付記13)
 前記第1及び第2の基板の前記半導体装置が直列に接続され、
 前記第1及び第2の基板の前記半導体装置を制御する制御装置を備えた制御基板を備え、
 前記制御基板は、
 前記第1及び第2の基板のうち、前記制御基板に隣接する基板の前記第1の接続部に接続する第2の接続部を備え、 
 前記第2の接続部の少なくとも二つの端子は、前記制御基板上の第3の接続回路を介して互いに接続される、付記12記載の基板接続方法。
(付記14)
 前記第1及び第2の基板の前記半導体装置が直列に接続され、
 前記第1及び第2の基板のうち端部に位置する基板の前記第1の接続部に対して接続される第3の接続部を備え、
 前記第3の接続部は、前記端部に位置する前記基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子を互いに接続する第4の接続回路を備えた、付記12記載の基板接続方法。
(付記15)
 前記第1の基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子が、前記第2の基板の前記第1の接続部、前記第2の基板の前記第2の接続部、さらに前記第2の基板の前記第1の接続回路を介して互いに接続され、
 前記第1の基板の前記半導体装置の前記第4の端子と、前記第2の端子又は前記第3の端子の一方と、の二つの端子が、前記第3の基板の前記第2の接続部、前記第3の基板の前記第1の接続部、さらに前記第3の基板の前記第2の接続回路を介して互いに接続され、
 前記第1の基板の前記半導体装置の機能が、
 前記半導体装置の前記第1の端子に対して、前記第1の端子が接続する前記第2の端子又は前記第3の端子から、供給される前記第1の値又は前記第2の値と、
 前記半導体装置の前記第4の端子に対して、前記第4の端子が接続する前記第2の端子又は前記第3の端子から、供給される前記第1の値又は前記第2の値と、
 の組み合せに対応する機能に設定される、付記11記載の基板接続方法。
(付記16)
 前記第1及び第2の基板の前記半導体装置が直列に接続され、
 前記第1及び第2の基板の前記半導体装置を制御する制御装置を備えた制御基板を備え、
 前記制御基板は、
 前記第1及び第2の基板のうち隣接する前記制御基板に基板の前記第1の接続部に接続する第2の接続部を備え、
 前記制御基板の前記第2の接続部は、前記制御基板に隣接する基板の前記第1の接続部に接続され、 
 前記制御基板の前記第2の接続部の少なくとも二つの端子は前記制御基板の第5の接続回路を介して互いに接続される、付記15記載の基板接続方法。
(付記17)
 前記第1乃至第3の基板の前記半導体装置が直列に接続され、
 前記第1乃至第3の基板のうち端部に位置する基板の前記第1の接続部に対して接続される第3の接続部を備え、
 前記第3の接続部は、
 前記端部に位置する基板の前記半導体装置の前記第4の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子を互いに接続する第6の接続回路を備えた、付記15又は16記載の基板接続方法。
(付記18)
 前記各基板の前記第1及び第2の接続部が、前記基板の相対する二つの辺にそれぞれ設けられている、付記12乃至17のいずれか1に記載の基板接続方法。
1、1~1、10、101、101~101、201、201~201、301、301~301 IC
2 マイコン
3、3~3、3A~3C 基板
~4 配線
~5 信号線(バス)
~6 スイッチ
11 マルチプレクサ(MUX)
12 アナログデジタル変換器(ADC)
13 レジスタ制御回路
14 放電スイッチ(MOSFET)
100、100~100、200、200~200、300、300~300 基板
102~102、102A、102B、102C、202~202、202A、202B、202C、309~309、309D、309E、309F、310~310、310A、310B、310C 配線
103、203、304 VDDピン
104、306 マスタスレーブ設定ピン
105、205、305 GNDピン
106、106~106、107、107~107、206、206~206 、207、207~207、307、307~307、308、308~308 コネクタ
106A~106C、107A~107C、206A~206C、207A~207C、307A~307F、308A~308F  コネクタ端子
108、108~108、208、208~208、311、311~311、312、312~312 回路(配線)
109~109、209~209 ケーブル
110~110、210~210、314~314 信号線
111、211、313 制御基板
204、303 トップ設定ピン
212、315 終端用コネクタ
213、316 回路(接続回路)

Claims (10)

  1.  半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた基板であって、
     前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、
     他の基板に設けられた前記第1の接続部に接続される第2の接続部と、
     を備え、
     前記第2の接続部の少なくとも二つの端子は第1の接続回路を介して互いに接続され、
     前記基板の前記第1の接続部は、さらに別の基板に設けられた前記第2の接続部と接続される、基板。
  2.  前記半導体装置が、前記半導体装置の機能を設定する信号を入力する第4の端子をさらに含み、
     前記基板の前記第1の接続部は、前記半導体装置の前記第1乃至第3の端子に接続され、さらに、他の基板の前記第2の接続部の少なくとも二つの端子にそれぞれ接続される少なくとも二つの端子を有し、
     前記第1の接続部の前記少なくとも二つの端子は第2の接続回路を介して互いに接続され、
     前記基板の前記第2の接続部は、互いに接続される前記少なくとも二つの端子とは別の端子で、前記基板の前記半導体装置の前記第2乃至第4の端子に接続される、請求項1記載の基板。
  3.  請求項1記載の基板からなる第1及び第2の基板を少なくとも備え、
     前記第1の基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子が、前記第1の基板の前記第1の接続部と、前記第2の基板の前記第2の接続部及び前記第1の接続回路と、を介して、互いに接続され、
     前記第1の基板の前記半導体装置の機能が、前記半導体装置の前記第1の端子に対して、前記第1の端子が接続する前記第2の端子又は前記第3の端子から供給される前記第1の値又は前記第2の値に対応する機能に設定される、基板装置。
  4.  前記第1及び第2の基板の前記半導体装置が直列に接続され、
     前記第1及び第2の基板の前記半導体装置を制御する制御装置を備えた制御基板を備え、
     前記制御基板は、
     前記第1及び第2の基板のうち、前記制御基板に隣接する基板の前記第1の接続部に接続する第2の接続部を備え、 
     前記第2の接続部の少なくとも二つの端子は、前記制御基板上の第3の接続回路を介して互いに接続される、請求項3記載の基板装置。
  5.  前記第1及び第2の基板の前記半導体装置が直列に接続され、
     前記第1及び第2の基板のうち端部に位置する基板の前記第1の接続部に対して接続される第3の接続部を備え、
     前記第3の接続部は、前記端部に位置する前記基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子を互いに接続する第4の接続回路を備えた、請求項3記載の基板装置。
  6.  請求項2記載の基板からなる第1乃至第3の基板を少なくとも備え、
     前記第1の基板の前記半導体装置の前記第1の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子が、前記第2の基板の前記第1の接続部、前記第2の基板の前記第2の接続部、さらに前記第2の基板の前記第1の接続回路を介して互いに接続され、
     前記第1の基板の前記半導体装置の前記第4の端子と、前記第2の端子又は前記第3の端子の一方と、の二つの端子が、前記第3の基板の前記第2の接続部、前記第3の基板の前記第1の接続部、さらに前記第3の基板の前記第2の接続回路を介して互いに接続され、
     前記第1の基板の前記半導体装置の機能が、
     前記半導体装置の前記第1の端子に対して、前記第1の端子が接続する前記第2の端子又は前記第3の端子から、供給される前記第1の値又は前記第2の値と、
     前記半導体装置の前記第4の端子に対して、前記第4の端子が接続する前記第2の端子又は前記第3の端子から、供給される前記第1の値又は前記第2の値と、
     の組み合せに対応する機能に設定される、基板装置。
  7.  前記第1及び第2の基板の前記半導体装置が直列に接続され、
     前記第1及び第2の基板の前記半導体装置を制御する制御装置を備えた制御基板を備え、
     前記制御基板は、
     前記第1及び第2の基板のうち隣接する前記制御基板に基板の前記第1の接続部に接続する第2の接続部を備え、
     前記制御基板の前記第2の接続部は、前記制御基板に隣接する基板の前記第1の接続部に接続され、 
     前記制御基板の前記第2の接続部の少なくとも二つの端子は前記制御基板の第5の接続回路を介して互いに接続される、請求項6記載の基板装置。
  8.  前記第1乃至第3の基板の前記半導体装置が直列に接続され、
     前記第1乃至第3の基板のうち端部に位置する基板の前記第1の接続部に対して接続される第3の接続部を備え、
     前記第3の接続部は、
     前記端部に位置する基板の前記半導体装置の前記第4の端子と、前記第2の端子又は前記第3の端子の一方と、からなる二つの端子を互いに接続する第6の接続回路を備えた、請求項6又は7記載の基板装置。
  9.  前記各基板の前記第1及び第2の接続部が、前記基板の相対する二つの辺にそれぞれ設けられている、請求項3乃至8のいずれか1項に記載の基板装置。
  10.  半導体装置の機能を設定する信号を入力する第1の端子と、第1の値を供給する第2の端子と、第2の値を供給する第3の端子とを少なくとも含み、直列接続に対応した半導体装置を備えた第1乃至第3の基板の各々に、
     前記半導体装置の前記第1乃至第3の端子に接続される第1の接続部と、
     他の基板の前記第1の接続部に接続される第2の接続部を設け、前記第2の接続部の少なくとも二つの端子を前記基板側で互いに接続し、
     前記第1の基板の前記第1の接続部を、前記第2の基板の前記第2の接続部と接続し、
     前記第1の基板の前記第2の接続部を、前記第3の基板の前記第1の接続部と接続する、基板接続方法。
PCT/JP2014/062870 2013-05-17 2014-05-14 基板と基板装置及び基板接続方法 WO2014185462A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/891,408 US9619000B2 (en) 2013-05-17 2014-05-14 Board, board apparatus and method for interconnection of boards
JP2015517115A JP6299756B2 (ja) 2013-05-17 2014-05-14 基板と基板装置及び基板接続方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-105356 2013-05-17
JP2013105356 2013-05-17

Publications (1)

Publication Number Publication Date
WO2014185462A1 true WO2014185462A1 (ja) 2014-11-20

Family

ID=51898438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062870 WO2014185462A1 (ja) 2013-05-17 2014-05-14 基板と基板装置及び基板接続方法

Country Status (3)

Country Link
US (2) US9910478B2 (ja)
JP (1) JP6299756B2 (ja)
WO (1) WO2014185462A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10303893B2 (en) 2015-12-14 2019-05-28 Panasonic Intellectual Property Corporation Of America Search method, search device, search system, and program
WO2017126001A1 (ja) 2016-01-18 2017-07-27 三菱電機株式会社 暗号化装置、暗号文変換装置、暗号化プログラム、暗号文変換プログラム、暗号化方法及び暗号文変換方法
US9992853B2 (en) * 2016-08-03 2018-06-05 Samsung Electronics Co., Ltd. Mobile X-ray apparatus including a battery management system
US10649919B2 (en) 2017-01-16 2020-05-12 Panasonic Intellectual Property Corporation Of America Information processing method and information processing system
JP6977882B2 (ja) * 2018-05-25 2021-12-08 日本電信電話株式会社 秘密一括近似システム、秘密計算装置、秘密一括近似方法、およびプログラム
US10957999B1 (en) * 2019-10-31 2021-03-23 Hewlett Packard Enterprise Development Lp Stacking cabled input/output slots
JP2022012403A (ja) * 2020-07-01 2022-01-17 キヤノン株式会社 プログラム、情報処理装置及び制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228765A (ja) * 1996-10-31 1998-08-25 Sony Corp 半導体記憶装置
JPH1140913A (ja) * 1997-07-18 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> 階層構造を有するプリント基板
JP2003070161A (ja) * 2001-08-22 2003-03-07 Osaka Gas Co Ltd 電源装置
JP2006276719A (ja) * 2005-03-30 2006-10-12 Seiko Epson Corp 非接触タグ
JP2007148540A (ja) * 2005-11-24 2007-06-14 Shindengen Electric Mfg Co Ltd システム電源及び電力供給システム
JP2007295774A (ja) * 2006-04-27 2007-11-08 Shindengen Electric Mfg Co Ltd 電力供給システム及びシステム電源
JP2008108833A (ja) * 2006-10-24 2008-05-08 Sharp Corp 基板および基板組み付け方法
JP2009009967A (ja) * 2007-06-26 2009-01-15 Sony Corp 基板実装部品及び基板実装部品の実装方法

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051605A (en) * 1976-09-07 1977-10-04 National Semiconductor Corporation Competitive educational calculator
JPH0680877B2 (ja) * 1984-05-31 1994-10-12 富士通株式会社 高密度実装構造
JPS61140980U (ja) * 1985-02-23 1986-09-01
JPS62202598A (ja) 1986-02-28 1987-09-07 シャープ株式会社 電子機器の回路基板装置
JPH0644136Y2 (ja) * 1989-02-17 1994-11-14 ミクロン機器株式会社 ユニット拡張装置
JPH0755012Y2 (ja) * 1990-03-27 1995-12-18 日本電気株式会社 アドレス設定構造
US5130894A (en) * 1990-11-26 1992-07-14 At&T Bell Laboratories Three-dimensional circuit modules
ATE145292T1 (de) * 1992-03-17 1996-11-15 Massachusetts Inst Technology Geringbenachbarte dreidimensionale verbindung.
JPH07142834A (ja) * 1993-11-19 1995-06-02 Nippon Telegr & Teleph Corp <Ntt> 電子装置の実装構造
US5440181A (en) * 1994-01-31 1995-08-08 Motorola, Inc. Configuration circuit for configuring a multi-board system automatically
JPH09146895A (ja) * 1995-11-28 1997-06-06 Hitachi Ltd トーラス結合型並列計算機
JPH09258848A (ja) * 1996-03-27 1997-10-03 Kofu Nippon Denki Kk Pos装置
US5793998A (en) * 1996-04-17 1998-08-11 Digital Equipment Corporation Method and apparatus for interconnection of multiple modules
US6091666A (en) 1996-10-04 2000-07-18 Sony Corporation Nonvolatile flash memory with fast data programming operation
JP3895407B2 (ja) * 1996-10-14 2007-03-22 三菱電機マイコン機器ソフトウエア株式会社 回路基板装置
JPH113309A (ja) * 1997-06-12 1999-01-06 Meidensha Corp 拡張ボード構成変更方式
US6075704A (en) * 1997-06-30 2000-06-13 Digital Equipment Corporation Input/output bus system in a tower building block system
JP2000277944A (ja) * 1999-03-24 2000-10-06 Ando Electric Co Ltd 増設用の基板および基板の増設方法
JP3808690B2 (ja) * 2000-05-26 2006-08-16 富士通アクセス株式会社 複数電源接続装置
JP3807301B2 (ja) * 2001-12-20 2006-08-09 松下電器産業株式会社 モータ駆動装置
JP2004094343A (ja) * 2002-08-29 2004-03-25 Sharp Corp 電子機器の拡張モジュール
WO2004092864A2 (en) * 2003-04-14 2004-10-28 Matsushita Electric Industrial Co., Ltd. Client-server authentication using the challenge-response principle
US7209987B1 (en) * 2003-12-30 2007-04-24 Eridon Corporation Embedded system design through simplified add-on card configuration
US7346051B2 (en) * 2004-06-25 2008-03-18 Matsushita Electric Industrial Co., Ltd. Slave device, master device and stacked device
WO2006054208A1 (en) 2004-11-16 2006-05-26 Koninklijke Philips Electronics N.V. Securely computing a similarity measure
JP4564348B2 (ja) 2004-12-10 2010-10-20 株式会社日立製作所 生体情報の特徴量変換方法および生体認証システム
US9218623B2 (en) * 2005-12-28 2015-12-22 Palo Alto Research Center Incorporated System and method for providing private stable matchings
JP4466587B2 (ja) * 2006-02-28 2010-05-26 株式会社日立製作所 電池電圧検出装置および電池電圧検出装置を用いた電池システム
SG139580A1 (en) 2006-07-20 2008-02-29 Privylink Pte Ltd Method for generating cryptographic key from biometric data
US7636796B2 (en) * 2006-09-15 2009-12-22 Microsoft Corporation Smart interconnect for modular multi-component embedded devices
GB0624858D0 (en) * 2006-12-13 2007-01-24 Ami Semiconductor Belgium Bvba Battery Monitoring
US7748992B1 (en) * 2007-01-30 2010-07-06 Micro/Sys, Inc. Methods and systems stackable circuit boards
US7859223B2 (en) * 2007-01-31 2010-12-28 Analog Devices, Inc. Battery montoring apparatus and daisy chain interface suitable for use in a battery monitoring apparatus
US7698470B2 (en) * 2007-08-06 2010-04-13 Qimonda Ag Integrated circuit, chip stack and data processing system
JP5315517B2 (ja) * 2008-07-15 2013-10-16 国立大学法人東京農工大学 情報処理装置および仮想回路書き込み方法
JP2010039890A (ja) * 2008-08-07 2010-02-18 Hitachi Ltd 認証端末、認証サーバ、認証システム、認証方法および認証プログラム
US8713329B2 (en) * 2009-02-26 2014-04-29 Red Hat, Inc. Authenticated secret sharing
WO2010127257A1 (en) * 2009-05-01 2010-11-04 Analog Devices, Inc. An addressable integrated circuit and method thereof
WO2010138480A2 (en) * 2009-05-26 2010-12-02 Rambus Inc. Stacked semiconductor device assembly
US8010724B2 (en) * 2009-10-06 2011-08-30 Maxim Integrated Products, Inc. 12C/SMBus ladders and ladder enabled ICs
US8958552B2 (en) 2009-10-29 2015-02-17 Mitsubishi Electric Corporation Data processing device
US8918897B2 (en) * 2009-11-24 2014-12-23 Cleversafe, Inc. Dispersed storage network data slice integrity verification
CN103155479B (zh) 2010-10-29 2016-05-04 株式会社日立制作所 信息认证方法和信息认证系统
JP2012113571A (ja) * 2010-11-25 2012-06-14 Brother Ind Ltd 情報収集システム
JP2012169908A (ja) 2011-02-15 2012-09-06 Kddi Corp 認証システム、認証方法およびプログラム
CN103380591B (zh) * 2011-02-22 2016-03-30 三菱电机株式会社 类似度计算系统、类似度计算装置以及类似度计算方法
US8433892B2 (en) * 2011-03-30 2013-04-30 Mitsubishi Electric Research Laboratories, Inc. Privacy-preserving probabilistic inference based on hidden Markov models
JP5850045B2 (ja) * 2011-03-30 2016-02-03 吉成 河 拡張モジュールおよびベースボードと拡張モジュールの結合構造
JP2012242357A (ja) 2011-05-24 2012-12-10 Fujitsu Ten Ltd セル電圧測定装置
US8612733B2 (en) * 2011-07-15 2013-12-17 O2Micro, Inc. Battery management systems with enumerating circuits
WO2014134471A1 (en) * 2013-02-28 2014-09-04 E3 Embedded Systems, Llc Method and apparatus for the processor independent embedded platform
TWI627812B (zh) * 2013-04-05 2018-06-21 美商線性科技股份有限公司 電壓補償主動電池平衡的裝置、系統及方法
JP2014217146A (ja) * 2013-04-24 2014-11-17 トヨタ自動車株式会社 電池監視装置、及び、電池ユニット
US9559389B2 (en) * 2013-07-10 2017-01-31 Datang Nxp Semiconductors Co., Ltd. Daisy chain communication bus and protocol
US10826136B2 (en) * 2014-07-24 2020-11-03 The Boeing Company Battery pack including stacked battery-board assemblies

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228765A (ja) * 1996-10-31 1998-08-25 Sony Corp 半導体記憶装置
JPH1140913A (ja) * 1997-07-18 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> 階層構造を有するプリント基板
JP2003070161A (ja) * 2001-08-22 2003-03-07 Osaka Gas Co Ltd 電源装置
JP2006276719A (ja) * 2005-03-30 2006-10-12 Seiko Epson Corp 非接触タグ
JP2007148540A (ja) * 2005-11-24 2007-06-14 Shindengen Electric Mfg Co Ltd システム電源及び電力供給システム
JP2007295774A (ja) * 2006-04-27 2007-11-08 Shindengen Electric Mfg Co Ltd 電力供給システム及びシステム電源
JP2008108833A (ja) * 2006-10-24 2008-05-08 Sharp Corp 基板および基板組み付け方法
JP2009009967A (ja) * 2007-06-26 2009-01-15 Sony Corp 基板実装部品及び基板実装部品の実装方法

Also Published As

Publication number Publication date
JP6299756B2 (ja) 2018-03-28
US20160282923A1 (en) 2016-09-29
US9910478B2 (en) 2018-03-06
US9619000B2 (en) 2017-04-11
US20160080333A1 (en) 2016-03-17
JPWO2014185462A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6299756B2 (ja) 基板と基板装置及び基板接続方法
US20220147472A1 (en) Asymmetric-channel memory system
US7610498B2 (en) Very low voltage power distribution for mobile devices
US6600220B2 (en) Power distribution in multi-chip modules
US9727188B2 (en) Touch display panel and electronic equipment
CN101931321B (zh) 电源转换电路
TWI719329B (zh) 具有充電功能之電子機器
CN106664067A (zh) 可选择可编程的增益或运算放大器
CN101872228A (zh) 电源转换电路
US20180024197A1 (en) Bus-Based Information Collection System With Micro Power Consumption For Battery Packages
CN213068951U (zh) 射频芯片控制板和射频芯片测试系统
US20170093102A1 (en) Universal connection adapter
TW201928386A (zh) 快捷外設互聯標準插槽的檢測系統及其方法
US20110304352A1 (en) Control Board For Connection Between FPGA Boards And Test Device Thereof
CN103472405A (zh) 电源供应器测试电路
US20130171841A1 (en) Test device for testing usb sockets
WO2023004932A1 (zh) 显示面板
CN200993765Y (zh) 一种刀片服务器的电压调节电路
WO2016023444A1 (zh) 接口转接线以及标准模块
US20060200592A1 (en) Configured printed circuit boards
US20040252451A1 (en) Internal peripheral connection interface
EP3560748B1 (en) Voltage detection integrated circuit and battery management system including same
CN111122961A (zh) 电流采样电路和风机驱动系统
CN113131784B (zh) 压电陶瓷驱动装置
CN105138077B (zh) 计算机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517115

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14891408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798403

Country of ref document: EP

Kind code of ref document: A1