WO2014185290A1 - 燃料噴射装置用ノズルプレート - Google Patents

燃料噴射装置用ノズルプレート Download PDF

Info

Publication number
WO2014185290A1
WO2014185290A1 PCT/JP2014/062148 JP2014062148W WO2014185290A1 WO 2014185290 A1 WO2014185290 A1 WO 2014185290A1 JP 2014062148 W JP2014062148 W JP 2014062148W WO 2014185290 A1 WO2014185290 A1 WO 2014185290A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle plate
fuel
nozzle
orifice
modification
Prior art date
Application number
PCT/JP2014/062148
Other languages
English (en)
French (fr)
Inventor
幸二 野口
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to EP14798280.5A priority Critical patent/EP2998567B1/en
Priority to CN201480026502.XA priority patent/CN105190020B/zh
Priority to US14/890,734 priority patent/US10352285B2/en
Publication of WO2014185290A1 publication Critical patent/WO2014185290A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1826Discharge orifices having different sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections

Definitions

  • the present invention relates to a nozzle plate for a fuel injection device that is attached to a fuel injection port of a fuel injection device and that atomizes and injects fuel that has flowed out of the fuel injection port.
  • An internal combustion engine such as an automobile (hereinafter abbreviated as “engine”) mixes fuel injected from a fuel injection device and air introduced through an intake pipe to form a combustible air-fuel mixture. Qi is burned in the cylinder.
  • engine an internal combustion engine such as an automobile
  • Qi is burned in the cylinder.
  • the mixed state of the fuel and air injected from the fuel injection device has a great influence on the performance of the engine, and in particular, the atomization of the fuel injected from the fuel injection device is reduced. It is known to be an important factor that affects engine performance.
  • FIG. 54 shows a nozzle plate 1002 attached to the fuel injection port 1001 of the fuel injection device 1000.
  • the nozzle plate 1002 is formed so that the nozzle hole 1003 having a square shape in plan view increases from one end side in the plate thickness direction toward the other end side, and one end side in the plate thickness direction is the fuel injection of the fuel injection device 1000. It is attached to the fuel injection port 1001 of the fuel injection device 1000 so as to be positioned on the side of the port 1001. Further, the nozzle plate 1002 has an interference body 1005 formed at the nozzle hole opening edge 1004 on the other end side in the plate thickness direction, and the interference body 1005 partially blocks the nozzle hole 1003.
  • the fuel injection device 1000 including the nozzle plate 1002 collides with the interference body 1005 and interferes with the fuel F1 flowing along the inner wall surface 1006 of the nozzle hole 1003.
  • the nozzle plate 1002 shown in FIG. 54 has an inlet side nozzle hole portion 1003a located on the fuel injection port 1001 side of the fuel injection device 1000, and a downstream side in the fuel injection direction with respect to the inlet side nozzle hole portion 1003a.
  • the outlet side nozzle hole 1003b located in the region is processed by etching, and roundness is formed in each corner part 1007 of the outlet side nozzle hole 1003b.
  • the fuel injected from the nozzle hole 1003 of the nozzle plate 1002 hardly forms a sharp liquid film, and atomization due to friction with air is insufficient.
  • an object of the present invention is to provide a nozzle plate for a fuel injection device that can sufficiently atomize and inject fuel flowing out from a fuel injection port of the fuel injection device.
  • the present invention is a fuel injection device provided with a nozzle hole 7 attached to a fuel injection port 4 of a fuel injection device 1 and through which fuel injected from the fuel injection port 4 passes.
  • This relates to the nozzle plate 3 for use.
  • the nozzle hole 7 has an exit side opening 15 which is an opening on the fuel outflow side and is partially formed by interference bodies 16, 16 ′, 16 ′′, 16 a, 51, 65, 76.
  • the orifice 8 for restricting the flow of fuel is formed by the outlet side opening 15 and the interference bodies 16, 16 ′, 16 ′′, 16 a, 51, 65, 76.
  • the interference bodies 16, 16 ′, 16 ′′, 16 a, 51, 65, 76 are outer edge portions (21, 33, 33 ′, 34, 54, 66, 77) that form part of the opening edge of the orifice 8. 86), and a part of the fuel that passes through the nozzle hole 7 is collided to atomize a part of the fuel that passes through the nozzle hole 7 and the fuel that passes through the nozzle hole 7 A part of the flow is bent sharply to collide with the fuel that is going to pass straight through the nozzle hole 7 and the orifice 8, and the fuel flow so that the fuel that has passed through the orifice 8 is easily atomized in the air.
  • a part of the fuel injected from the fuel injection port of the fuel injection device collides with the interference body and is atomized, and the flow is sharply bent to go straight through the nozzle hole and the orifice. It collides with the fuel that is going to pass through, and the flow of the fuel that goes straight through the nozzle hole and the orifice is made turbulent.
  • both end portions of the orifice are sharp corner portions having no roundness, and the liquid film of fuel injected from the corner portion of the orifice is thin and sharply sharpened. The fuel injected from the corner portion is easily atomized by friction with the air near the orifice. Therefore, the nozzle plate according to the present invention can further improve the degree of fuel atomization as compared with the conventional nozzle plate.
  • FIG. 2A is a longitudinal sectional view (a sectional view cut along the line B1-B1 in FIG. 2) of the fuel injection device.
  • FIG. 2B is a bottom view of the front end side of the fuel injection device (a view showing the front end surface of the fuel injection device viewed from the A1 direction in FIG. 2A).
  • FIG.3 (a) is the C section enlarged view (partial top view of the nozzle plate for fuel injection apparatuses) of FIG.2 (b).
  • FIG. 3B is a cross-sectional view taken along line B2-B2 of FIG. It is a structural diagram of an injection mold used for injection molding a nozzle plate for a fuel injection device. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 1st modification of 1st Embodiment, and is a figure corresponding to FIG. Fig.5 (a) is a partial top view of the nozzle plate for fuel injection apparatuses.
  • FIG. 5B is a cross-sectional view taken along line B3-B3 of FIG.
  • FIG. 6A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 6B is a cross-sectional view taken along the line B4-B4 of FIG.
  • FIG. Fig.7 (a) is a partial top view of the nozzle plate for fuel injection apparatuses.
  • FIG. 7B is a cross-sectional view taken along line B5-B5 of FIG.
  • FIG. 8A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 8B is a cross-sectional view taken along line B6-B6 of FIG.
  • FIG. 9A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 9B is a cross-sectional view taken along line B7-B7 in FIG. 9A.
  • FIG. 10A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 10B is a cross-sectional view taken along line B8-B8 in FIG.
  • FIG. Fig.11 (a) is a partial top view of the nozzle plate for fuel injection apparatuses.
  • FIG. 11B is a cross-sectional view taken along line B9-B9 in FIG.
  • FIG. 12A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG.12 (b) is a partial side view of the nozzle plate for fuel injection apparatuses of Fig.12 (a).
  • FIG. Fig.13 (a) is a partial top view of the nozzle plate for fuel injection apparatuses.
  • FIG. 13B is a cross-sectional view taken along line B10-B10 in FIG.
  • FIG. 15A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 15B is a cross-sectional view taken along line B12-B12 of FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 12th modification of 1st Embodiment, and is a figure which shows the similar example of a 6th modification (refer FIG. 10).
  • FIG. 16A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 16B is a cross-sectional view taken along line B13-B13 in FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 13th modification of 1st Embodiment, and is a figure which shows the similar example of a 12th modification (refer FIG. 16).
  • FIG. 16 is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 16B is a cross-sectional view taken along line B13-B13 in FIG. It is a figure which shows the principal part of the
  • FIG. 17A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 17B is a cross-sectional view taken along line B14-B14 of FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 14th modification of 1st Embodiment, and is a figure which shows the similar example of a 13th modification (refer FIG. 17).
  • FIG. 18A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 18B is a cross-sectional view taken along line B15-B15 in FIG.
  • FIG. 19A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 19B is a cross-sectional view taken along line B16-B16 in FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 16th modification of 1st Embodiment, and is a figure which shows the similar example of an 8th modification (refer FIG. 12).
  • FIG. 20A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 20B is a cross-sectional view taken along line B17-B17 in FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 17th modification of 1st Embodiment, and is a figure which shows the similar example of a 9th modification (refer FIG. 13).
  • FIG. 21A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 21B is a cross-sectional view taken along line B18-B18 of FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 18th modification of 1st Embodiment.
  • FIG. 22A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 22B is a cross-sectional view taken along line B19-B19 in FIG.
  • FIG. 22C is a plan view of the center side of the nozzle plate for a fuel injection device according to this modification. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 19th modification of 1st Embodiment.
  • FIG. 23A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 23B is a cross-sectional view taken along line B20-B20 in FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on the 20th modification of 1st Embodiment, and is a figure which shows the similar example of a 19th modification (refer FIG.
  • FIG. 24A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 24B is a cross-sectional view taken along line B21-B21 in FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatuses which concerns on 2nd Embodiment of this invention, and is a figure corresponding to FIG.
  • FIG. 25A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 25B is a cross-sectional view taken along line B22-B22 in FIG. It is a figure which shows the principal part of the 1st nozzle plate which comprises the nozzle plate for fuel injection apparatuses which concerns on 2nd Embodiment of this invention.
  • FIG. 24A is a partial plan view of a nozzle plate for a fuel injection device.
  • FIG. 24B is a cross-sectional view taken along line B21-B21 in FIG. It is a figure which shows the principal part of the nozzle plate for fuel injection apparatus
  • FIG. 26A is a partial plan view of the first nozzle plate.
  • FIG. 26B is a cross-sectional view taken along line B23-B23 in FIG. It is a figure which shows the principal part of the 2nd nozzle plate which comprises the nozzle plate for fuel injection apparatuses which concerns on 2nd Embodiment of this invention.
  • FIG. 27A is a partial plan view of the second nozzle plate.
  • FIG. 27B is a cross-sectional view taken along line B24-B24 of FIG. It is a figure which shows the nozzle plate for fuel injection apparatuses which concerns on 3rd Embodiment of this invention.
  • FIG. 28A is a front view of the nozzle plate.
  • FIG. 28A is a front view of the nozzle plate.
  • FIG. 28B is a sectional view of the nozzle plate cut along the line B25-B25 in FIG.
  • FIG. 28C is a rear view of the nozzle plate.
  • 29A is an enlarged view of the central portion of the nozzle plate shown in FIG. 28A
  • FIG. 29B is a cross-sectional view taken along line B26-B26 of FIG. 29A. It is. It is a figure which shows the nozzle plate which concerns on 4th Embodiment of this invention.
  • FIG. 30A is a front view of the nozzle plate.
  • FIG. 30B is a cross-sectional view of the nozzle plate cut along the line B27-B27 in FIG.
  • FIG. 30C is a rear view of the nozzle plate.
  • FIG. 31 (a) is an enlarged view of the central portion (nozzle portion) of the nozzle plate shown in FIG. 30 (a), and FIG. 31 (b) is cut along the line B28-B28 in FIG. 31 (a).
  • FIG. It is a figure which shows the nozzle plate which concerns on 5th Embodiment of this invention.
  • FIG. 32A is a front view of the nozzle plate.
  • FIG. 32B is an enlarged view of the central portion of the nozzle plate shown in FIG.
  • FIG. 32C is a partial cross-sectional view of the nozzle plate shown cut along line B29-B29 in FIG. It is a figure which shows the nozzle plate which concerns on 6th Embodiment of this invention.
  • 46B is a sectional view of the nozzle plate cut along line B41-B41 in FIG. 46A.
  • 46C is a sectional view of the nozzle plate cut along the line B42-B42 in FIG. 46A
  • FIG. 46D is a rear view of the nozzle plate according to the seventh embodiment. is there. It is a figure which shows the nozzle plate which concerns on 7th Embodiment of this invention.
  • 47 (a) is an enlarged view of a part (center portion) of the nozzle plate of FIG. 46 (a)
  • FIG. 47 (b) is a partially enlarged view of the nozzle plate showing the nozzle hole and its vicinity enlarged.
  • FIG. 47 (c) is an enlarged cross-sectional view taken along line B43-B43 of FIG. 47 (b).
  • FIG. 52A is a diagram corresponding to FIG. 48A
  • FIG. 52B is a diagram corresponding to FIG. 48B.
  • FIG. 53 (a) is a plan view of the central portion of the nozzle plate
  • FIG. 53 (b) is a cross-sectional view taken along line B45-B45 of FIG. 53 (a).
  • FIG. 54 (a) is a cross-sectional side view of the tip of a fuel injection device to which a conventional nozzle plate is attached.
  • FIG. 54B is a plan view of a conventional nozzle plate.
  • FIG. 54 (c) is an enlarged view of part D of FIG. 54 (b) (a partial plan view of the nozzle plate).
  • FIG. 54 (d) is a cross-sectional view taken along line B46-B46 of FIG. 54 (c).
  • FIG. 1 is a diagram schematically showing a use state of a fuel injection device 1 to which a nozzle plate for a fuel injection device according to the present embodiment is attached.
  • a port injection type fuel injection device 1 is installed in the middle of an intake pipe 2 of an engine, injects fuel into the intake pipe 2, and introduces air and fuel introduced into the intake pipe 2. To form a combustible mixture.
  • FIG. 2 is a view showing a front end side of the fuel injection device 1 to which a fuel injection device nozzle plate 3 (hereinafter referred to as a nozzle plate) is attached.
  • 2A is a longitudinal cross-sectional view of the front end side of the fuel injection device 1 (a cross-sectional view taken along line B1-B1 in FIG. 2B).
  • FIG. 2B is a bottom view of the front end side of the fuel injection device 1 (a view showing the front end surface of the fuel injection device 1 viewed from the A1 direction in FIG. 2A).
  • Fig.3 (a) is the C section enlarged view (partial top view of the nozzle plate 3) of FIG.2 (b).
  • FIG. 3B is a sectional view of the nozzle plate 3 cut along the line B2-B2 in FIG.
  • the fuel injection device 1 has a nozzle plate 3 attached to the tip end side of a valve body 5 in which a fuel injection port 4 is formed.
  • the needle valve 6 is opened and closed by a solenoid (not shown).
  • a solenoid not shown
  • fuel in the valve body 5 is injected from the fuel injection port 4.
  • the fuel injected from the port 4 passes through the nozzle hole 7 and the orifice 8 of the nozzle plate 3 and is injected outside.
  • the nozzle plate 3 includes a synthetic resin material (for example, PPS) including a cylindrical wall portion 10 and a bottom wall portion 11 integrally formed on one end side of the cylindrical wall portion 10. , PEEK, POM, PA, PES, PEI, LCP).
  • the nozzle plate 3 has a cylindrical wall portion 10 fitted to the outer periphery on the front end side of the valve body 5 without a gap, and an inner surface 12 of the bottom wall portion 11 is in contact with a front end surface 13 of the valve body 5. It is fixed to the valve body 5.
  • a plurality (a pair) of nozzle holes 7 are formed in the bottom wall portion 11 of the nozzle plate 3 to communicate the fuel injection ports 4 of the valve body 5 with the outside.
  • the nozzle hole 7 of the nozzle plate 3 is a straight round hole orthogonal to the inner surface 12 of the bottom wall portion 11, and the inlet side opening facing the fuel injection port 4 for the fuel injected from the fuel injection port 4 of the valve body 5.
  • the fuel introduced from the portion 14 is injected from the outlet side opening 15 side (opening side from which the fuel flows out) facing the outside.
  • the shape of the outlet side opening 15 of the nozzle hole 7 is circular.
  • the nozzle hole 7 is formed in the thin wall portion 11 a of the bottom wall portion 11 that is countersunk.
  • the interference body 16 has a truncated cone shape, and the outer diameter is gradually reduced from the outlet side opening 15 of the nozzle hole 7 toward the + Z axis direction in FIG. 3B, and the side surface 17 is tapered. It has become.
  • the side surface 17 of the interference body 16 intersects the fuel collision surface 18 where a part of the fuel passing through the nozzle hole 7 collides at an acute angle.
  • the fuel collision surface 18 of the interference body 16 is formed so as to be on the same plane as the outer surface 20 of the bottom wall portion 11 (the surface located on the opposite side to the inner surface 12).
  • the interference body 16 closes a part of the outlet side opening 15 of the nozzle hole 7, thereby forming an orifice 8 that rapidly narrows the fuel flowing in the nozzle hole 7 in the outlet side opening 15 of the nozzle hole 7. is doing.
  • the opening edge of the orifice 8 is formed into a crescent shape by the circular outlet side opening 15 of the nozzle hole 7 and a part (arc-shaped outer edge) of the circular outer edge (outer edge) 21 of the interference body 16. Both ends are sharp and sharp corner portions 22 without roundness.
  • the nozzle plate 3 has a hole diameter (a diameter of the outlet side opening 15) d1 and a diameter d2 of the circular outer edge 21 of the interference body 16 and a ratio thereof (d1: d2). ),
  • the maximum gap dimension ⁇ 1 of the orifice 8 (the maximum gap dimension ⁇ 1 of the orifice 8 on the extension line 23 of the line connecting the center o1 of the nozzle hole 7 and the center o2 of the interference body 16), and the inclination of the side surface 17 of the interference body 16
  • An extension line 23 of the line connecting the angle ⁇ (the angle ⁇ formed between the side surface 17 of the interference body 16 and the direction along the + Z axis), the center o2 (o2 ′) of the interference body 16 and the center o1 of the nozzle hole 7 is X
  • An angle ⁇ ⁇ formed with an axis an X axis positioned on a line connecting the centers o1 of the pair of nozzle holes 7 and 7
  • FIG. 4 shows a structural diagram of an injection mold 24 used for injection molding of the nozzle plate 3.
  • a cavity 27 is formed between the first mold 25 and the second mold 26, and a nozzle hole forming pin 28 for forming the nozzle holes 7, 7. , 28 project into the cavity 27.
  • the nozzle hole forming pins 28, 28 are abutted against the cavity inner surface 30 of the first mold 25. Then, in the vicinity of the location where the nozzle hole forming pins 28, 28 of the first mold 25 are abutted, recesses 31, 31 for forming the interference bodies 16, 16 are formed.
  • the nozzle plate 3 having the interference bodies 16 and 16 integrally formed is formed (FIGS. 2 and 3).
  • the nozzle plate 3 injection-molded using such an injection mold 24 is such that the fuel collision surface 18 of the interference body 16 and the outer surface 20 of the bottom wall portion 11 are located on the same plane.
  • the both ends of the crescent-shaped orifice 8 are formed into sharp corner portions 22 and 22 having no roundness. Since the injection-molded nozzle plate 3 has higher production efficiency than a nozzle plate formed by etching or electric discharge machining, the product unit price can be reduced.
  • the nozzle plate 3 according to the present embodiment as described above, a part of the fuel injected from the fuel injection port 4 of the fuel injection device 1 collides with the fuel collision surface 18 of the interference body 16 and is atomized. At the same time, the flow is sharply bent by the fuel collision surface 18 and collides with the fuel which is going to pass straight through the nozzle hole 7 and the orifice 8 and tries to pass straight through the nozzle hole 7 and the orifice 8. Make the fuel flow turbulent. Furthermore, the nozzle plate 3 according to the present embodiment has sharp corner portions 22 and 22 where both ends of the orifice 8 are not rounded.
  • the liquid film of the fuel injected from both corner portions 22 and 22 of the orifice 8 of the fuel injected from the orifice 8 and the vicinity thereof is thin and sharp. It becomes a pointed state, and the fuel injected from the corner portions 22 and 22 of the orifice 8 and its vicinity is easily atomized by friction with the air in the vicinity of the orifice 8.
  • the nozzle plate 3 according to the present embodiment has a crescent shape in which the opening edge of the orifice 8 converges from the center toward both the corner portions 22 and 22, and the opening edge of the orifice 8 is the corner portion 22. , 22 is narrowed as it heads. Therefore, the fuel discharged from the orifice 8 has a thin film shape (curtain shape) with the maximum thickness ⁇ 1 following the shape of the opening edge of the orifice 8, which is more effective for atomization.
  • the nozzle plate 3 according to the present embodiment can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • the side surface 17 of the interference body 16 is formed so as to intersect the fuel collision surface 18 of the interference body 16 at an acute angle, and the fuel that has passed through the orifice 8 and the side surface of the interference body 16. Since the air layer is formed between the fuel and the fuel gas having passed through the orifice 8, the fuel that has passed through the orifice 8 is easy to entrain air, and the atomization of the fuel that passes through the orifice 8 is promoted and atomized in the intake pipe 2. It becomes easy to disperse the fuel uniformly (see FIG. 1).
  • both end portions of the orifice 8 are sharp corner portions 22 and 22 having no roundness
  • the orifice width at the center portion of the opening edge of the orifice 8 is widest
  • the orifice 8 is injected from the orifice 8 as compared with the case where the orifice 8 is formed with a uniform width.
  • Directivity can be imparted to the fuel injected from the orifice 8 so that the density of the fuel becomes the highest in a specific direction.
  • the dimension of the hole diameter (the diameter of the outlet side opening 15) d1 of the nozzle hole 7 and the diameter d2 of the circular outer edge 21 of the interference body 16 and the ratio thereof (d1) D2), the maximum clearance dimension ⁇ 1 of the orifice 8 (the maximum clearance dimension ⁇ 1 of the orifice 8 on the extension line 23 of the line connecting the center o1 of the nozzle hole 7 and the center o2 of the interference body 16), and the side surface 17 of the interference body 16 Is a line connecting the center o2 (o2 ′) of the interference body 16 and the center o1 of the nozzle hole 7 with the X axis (the angle ⁇ between the side surface 17 of the interference body 16 and the direction along the + Z axis).
  • the angle ⁇ ⁇ between the center o1 of the pair of nozzle holes 7 and 7 and the X axis positioned on the connecting line), the plate thickness t1 of the thin portion 11a of the bottom wall portion 11 (the length of the nozzle hole 7), and the interference body 16 By appropriately changing one or more of the plate thicknesses t2, The morphism angle can be easily changed.
  • FIG. 5 is a diagram (corresponding to FIG. 3) illustrating a main part of the nozzle plate 3 according to a first modification of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the nozzle plate 3 according to this modification is different from the nozzle plate 3 of the first embodiment in that the nozzle hole 7 is a triangular hole and the shape of the outlet side opening 15 of the nozzle hole 7 is a triangular shape.
  • the corner portions 22 and 22 of the opening edge of the orifice 8 formed by the outlet side opening 15 of the nozzle hole 7 and the circular outer edge portion 21 of the interference body 16 have a sharp shape without roundness. Therefore, the end of the liquid film of fuel passing through the orifice 8 can be formed into a sharp pointed shape that is easily atomized by friction with air.
  • the nozzle plate 3 according to the present modification can further improve the degree of fuel atomization as compared with the conventional nozzle plate, similarly to the nozzle plate 3 according to the first embodiment.
  • FIG. 6 is a diagram (corresponding to FIG. 3) illustrating a main part of the nozzle plate 3 according to a second modification of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the nozzle plate 3 according to this modification is the first embodiment in that the round nozzle hole 7 is formed obliquely with respect to the fuel collision surface 18 and the shape of the outlet side opening 15 of the nozzle hole 7 is an elliptical shape. This is different from the form of the nozzle plate 3.
  • the corner portions 22 and 22 of the opening edge of the orifice 8 formed by the outlet side opening 15 of the nozzle hole 7 and the circular outer edge portion 21 of the interference body 16 have a sharp shape without roundness. Therefore, the end of the liquid film of fuel passing through the orifice 8 can be formed into a sharp pointed shape that is easily atomized by friction with air.
  • the nozzle plate 3 according to the present modification can further improve the degree of fuel atomization as compared with the conventional nozzle plate.
  • the nozzle hole 7 is inclined with respect to the fuel collision surface 18, the direction perpendicular to the fuel collision surface 18 (the direction along the + Z axis) and the nozzle hole 7.
  • the fuel injection direction is determined according to the angle (inclination angle of the nozzle hole 7) ⁇ formed with the center line 32, and the fuel can be accurately injected in the target direction.
  • FIG. 7 is a diagram (corresponding to FIG. 3) showing a main part of the nozzle plate 3 according to a third modification of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the nozzle plate 3 according to this modification is different from the interference body 16 of the nozzle plate 3 of the first embodiment in the shape of the interference body 16 '.
  • the interference body 16 ′ of the nozzle plate 3 has a rectangular shape (a shape viewed from the direction A ⁇ b> 2 in FIG. 7) having a rectangular shape at both ends in the longitudinal direction.
  • the interference body 16 ' is formed so that the longitudinal direction thereof extends along an extension line 23 (X-axis direction) of a line connecting the centers of the pair of nozzle holes 7 and 7, and a semicircular outer edge on one end side thereof.
  • the orifice 8 is formed by the portion (arc-shaped outer edge portion, outer edge portion) 33 and the circular outlet side opening 15 of the nozzle hole 7.
  • the corner portions 22 and 22 of the opening edge of the orifice 8 formed by the outlet side opening 15 of the nozzle hole 7 and the semicircular outer edge 33 of the interference body 16 ′ have a sharp shape without roundness.
  • the end of the liquid film of fuel passing through the orifice 8 has a sharp pointed shape that is easily atomized by friction with air.
  • the interference body 16 ′ is formed such that the side surface 17 ′ intersects the fuel collision surface 18 at an acute angle, like the truncated cone-shaped interference body 16 in the above embodiment. .
  • the nozzle plate 3 according to the present modification can further improve the degree of fuel atomization as compared with the conventional nozzle plate.
  • FIG. 8 is a view (corresponding to FIG. 3) showing a main part of the nozzle plate 3 according to the fourth modification of the first embodiment, and a part of the nozzle plate 3 according to the third modification is changed. Is. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the third modification, and the nozzle plate of the first embodiment and the third modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate according to this modification includes an interference body 16 ′ similar to the interference body 16 ′ of the nozzle plate 3 according to the third modification, but the amount by which the interference body 16 ′ blocks the nozzle hole 7 is as described above.
  • the semicircular outer edge portion 33 on one end side of the interference body 16 ′ and the linear outer edge portions (outer edge portions) 34 and 34 connected to the semicircular outer edge portion 33 and the circular shape of the nozzle hole 7 are larger than those of the third modification.
  • An orifice 8 is formed with the outlet side opening 15 of the first side.
  • the corner portions 22 and 22 of the opening edge of the orifice 8 formed by the outlet side opening 15 of the nozzle hole 7 and the linear outer edge portions 34 and 34 of the interference body 16 ′ have a sharp shape without roundness.
  • the end portion of the liquid film of fuel passing through the corner portion 22 of the orifice 8 and the vicinity thereof has a sharp pointed shape that is easily atomized by friction with air.
  • the nozzle plate 3 according to the present modification has corner portions 22 and 22 of the opening edge of the orifice 8 which are narrower and sharper than the nozzle plate 3 of the third modification, so that the liquid film of the fuel passing through the orifice 8 The end portion is more easily atomized by friction with air.
  • the nozzle plate 3 according to the present modification can further improve the degree of fuel atomization as compared with the conventional nozzle plate.
  • FIG. 9 is a diagram (corresponding to FIG. 3) illustrating a main part of the nozzle plate 3 according to a fifth modification of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the nozzle plate 3 forms a pair of frustoconical interference bodies 16 and is formed by the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edges 21 and 21 of the interference bodies 16 and 16.
  • the corner portions 22, 22, 22, 22 of the opening edge of the orifice 8 are increased twice as much as the nozzle plate 3 (see FIG. 3) according to the above embodiment.
  • each corner part (four corner parts) 22 of the opening edge of the orifice 8 formed by the circular outlet side opening part 15 of the nozzle hole 7 and the circular outer edge parts 21 and 21 of the interference bodies 16 and 16 is: It has a sharp and sharp shape without roundness, and the liquid film passing through the corner portion 22 of the orifice 8 and its vicinity can be thinned, and the end of the liquid film of the fuel passing through the orifice 8 is defined as air. It is easy to atomize by friction.
  • center of the pair of interference bodies 16 and 16 and the center of the nozzle hole 7 are located on the line B7-B7 (on the line along the X-axis direction).
  • the distance from the center of the nozzle hole 7 to each of the circular outer edge portions 21 and 21 is ( ⁇ 2 / 2).
  • the nozzle plate 3 according to this modification has an effect of atomizing the fuel by the sharp and sharp corner portion 22 that is not rounded than the nozzle plate 3 according to the first embodiment. Fuel can be injected over a wider range than the nozzle plate 3.
  • the nozzle plate 3 according to the present modification can change the directivity and the injection angle of the fuel injected from the orifice 8 to the outside by changing the distance (gap) ⁇ 2 between the pair of interference bodies 16 and 16. .
  • FIG. 10 is a diagram (corresponding to FIG. 3) illustrating a main part of the nozzle plate 3 according to the sixth modification of the first embodiment, and a diagram illustrating a modification of the nozzle plate 3 according to the fifth modification. It is.
  • the pair of interference bodies 16 and 16 are abutted to each other so that the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edge portions 21 and 21 of the interference bodies 16 and 16
  • two corner portions 22 ′, 22 ′ are formed at the abutting portion of the pair of interference bodies 16, 16. ing. Then, each corner portion 22 of the opening edge of the orifice 8 formed by the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edges 21 and 21 of the interference bodies 16 and 16, and the pair of interference bodies 16 and 16.
  • Each corner portion 22 ', 22' formed at the butting portion has a sharp pointed shape without roundness, and the liquid film passing through each corner portion 22, 22 'and its vicinity through the orifice 8 is thinned.
  • the end of the liquid film of fuel passing through the orifice 8 can be easily atomized by friction with air.
  • center of the pair of interference bodies 16 and 16 and the center of the nozzle hole 7 are positioned on the line B8-B8 (on the line along the X-axis direction). Further, the contact point between the pair of circular outer edge portions 21, 21 matches the center of the nozzle hole 7.
  • the nozzle plate 3 according to this modified example is more effective than the nozzle plate 3 according to the first embodiment and the fifth modified example in that the fuel is atomized by the sharp and sharp corner portions 22 and 22 ′. Is also big.
  • FIG. 11 is a diagram (a diagram corresponding to FIG. 3) illustrating a main part of a nozzle plate 3 according to a seventh modification of the first embodiment, and a diagram illustrating a modification of the nozzle plate 3 according to the fifth modification. It is.
  • the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the fifth modification, and the nozzle plate of the first embodiment and the fifth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is different from the nozzle plate 3 of the fifth modification in that the nozzle hole 7 is a square hole and the shape of the outlet side opening 15 of the nozzle hole 7 is a square shape.
  • each corner portion 22 of the opening edge of the orifice 8 formed by the outlet side opening portion 15 of the nozzle hole 7 and the circular outer edge portions 21, 21 of the interference bodies 16, 16 is sharp and not round.
  • the end of the liquid film of the fuel passing through the orifice 8 can be formed into a sharp pointed shape that is easily atomized by friction with air.
  • the nozzle plate 3 according to the modified example has the effect of atomizing the fuel by each corner portion 22 having a sharp pointed shape without roundness. It is larger than the nozzle plate 3 which concerns on this, and can inject a fuel more widely than the nozzle plate 3 which concerns on the said 1st Embodiment.
  • FIG. 12 is a diagram (corresponding to FIG. 3) illustrating a main part of the nozzle plate 3 according to the eighth modification of the first embodiment, and a diagram illustrating a modification of the nozzle plate 3 according to the sixth modification. It is.
  • the same reference numerals are given to the same components as those of the nozzle plate 3 of the first embodiment and the sixth modification, and the nozzle plate of the first embodiment and the sixth modification. The description overlapping with the description of 3 is omitted.
  • the contact position P1 of the pair of interference bodies 16 and 16 is the center line (center line along the Y-axis direction) 35 of the nozzle hole 7 and the outlet side opening 15 of the nozzle hole 7. Is different from the nozzle plate 3 according to the sixth modification in which the contact position of the pair of interference bodies 16 and 16 is located at the center of the nozzle hole 7.
  • the nozzle plate 3 has two openings on the opening edge of the orifice 8 formed by the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edges 21 and 21 of the pair of interference bodies 16 and 16.
  • one corner portion 22 ′ is formed at the abutting portion of the pair of interference bodies 16 and 16.
  • each corner part 22 of the opening edge of the orifice 8 formed by the circular exit side opening part 15 of the nozzle hole 7 and the circular outer edge parts 21 and 21 of a pair of interference bodies 16.16, and a pair of interference bodies 16 , 16 is formed in a sharp pointed shape with no roundness, the end of the liquid film passing through the orifice 8 can be thinned, and passes through the orifice 8.
  • the end portion of the liquid film of the fuel is easily atomized by friction with air.
  • the nozzle plate 3 according to this modification has a larger effect of atomizing fuel by the corner portions 22 and 22 'having sharp and sharp shapes without rounding than the nozzle plate 3 according to the first embodiment.
  • FIG. 13 is a diagram (corresponding to FIG. 3) illustrating a main part of the nozzle plate 3 according to the ninth modification of the first embodiment, and a diagram illustrating a modification of the nozzle plate 3 according to the fourth modification. It is. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the fourth modification, and the nozzle plate of the first embodiment and the fourth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is formed in a state where three interference bodies 16 ′ similar to the interference bodies 16 ′ of the nozzle plate 3 according to the fourth modification are brought into close contact with each other, and the interference located at the center.
  • the center line 36 in the longitudinal direction of the body 16 ′ is arranged so as to coincide with the center line 37 (center line extending along the X axis) 37 of the nozzle hole 7.
  • an orifice 8 is formed by the semicircular outer edge portion 33 on one end side of the three interference bodies 16 ′ and the circular outlet side opening portion 15 of the nozzle hole 7. Yes.
  • the corner portion 22 of the opening edge of the orifice 8 formed by the outlet side opening 15 of the nozzle hole 7 and the semicircular outer edge portion 33 of the interference body 16 ′ has a sharp shape with no roundness.
  • the end of the liquid film of the fuel passing through the nozzle has a sharp pointed shape that is easily atomized by friction with air.
  • the corner portion 22 ′ formed at the contact portion of the semicircular outer edge portions 33, 33 of the adjacent interference bodies 16 ′, 16 ′ has a sharp shape without roundness.
  • the end portion of the liquid film of the fuel passing through the orifice 8 has a sharp pointed shape that is easily atomized by friction with air. That is, the nozzle plate 3 according to this modification has four corner portions 22 and 22 ′ having sharp shapes without roundness.
  • the nozzle plate 3 according to the present modification has a larger effect of atomizing fuel by the sharp and sharp corner portions 22 and 22 'having no roundness than the nozzle plate 3 according to the first embodiment.
  • FIG. 14 is a view (corresponding to FIG. 3) showing a main part of the nozzle plate 3 according to a tenth modification of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the fuel collision surface 18 of the interference body 16 is separated from the outer surface 20 of the bottom wall portion 11 by + h in the + Z axis direction, and the circular outer edge portion 21 of the interference body 16 and the nozzle hole 7 are separated.
  • the outlet side opening 15 is separated in the + Z-axis direction by a gap of 38 minutes.
  • the interference body 16 when the interference body 16 is viewed in the ⁇ Z-axis direction (when viewed in plan), the circular outer edge portion 21 of the interference body 16 and the circular outlet side opening portion 15 of the nozzle hole 7.
  • a crescent-shaped orifice 8 is formed, and sharp and sharp corner portions 22, 22 are formed at both ends of the crescent-shaped orifice 8.
  • the provision of the gap 38 between the fuel collision surface 18 of the interference body 16 and the outer surface 20 of the bottom wall portion 11 is applicable to the first to ninth modifications. it can.
  • FIG. 15 is a diagram illustrating a main part of the nozzle plate 3 according to the eleventh modification of the first embodiment, and is a diagram illustrating a similar example of the fifth modification (see FIG. 9).
  • the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the fifth modification, and the nozzle plate of the first embodiment and the fifth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is obtained by shifting the pair of interference bodies 16 and 16 in the fifth modification from the center CL of the nozzle hole 7 by ⁇ 3 in the + X direction.
  • the nozzle plate 3 according to this modification is similar to the nozzle plate 3 according to the fifth modification, in which the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edge portions 21 of the pair of interference bodies 16 and 16 are provided.
  • Each corner portion (four corner portions) 22 of the opening edge of the orifice 8 formed with 21 has a sharp pointed shape without roundness, and the liquid that passes through the corner portion 22 of the orifice 8 and the vicinity thereof.
  • the film can be made thin, and the end of the liquid film of fuel passing through the orifice 8 is easily atomized by friction with air.
  • the area that blocks the nozzle hole 7 is different between one and the other of the pair of interference bodies 16 and 16, and the interference body 16 on one side (the ⁇ X direction side in FIG. 15)
  • the area blocking the hole 7 is larger than the area blocking the other hole (+ X direction side in FIG. 15) of the nozzle hole 7, and flows to the other interference body 16 side after colliding with one interference body 16.
  • the amount of the fuel whose direction is changed is larger than the fuel whose direction of flow is changed to the one of the interference bodies 16 after colliding with the other interference body 16.
  • the orifice 8 is positioned so as to be shifted toward the + X direction with respect to the center of the nozzle hole 7.
  • the nozzle plate 3 according to this modification can shift the fuel injection direction from the orifice 8 in the + X direction with respect to the center CL of the nozzle hole 7.
  • the nozzle plate 3 which concerns on this modification showed the example which shifted a pair of interference bodies 16 and 16 to + X direction with respect to the center CL of the nozzle hole 7, it is not restricted to this, A fuel is supplied to the orifice 8
  • the direction in which the pair of interference bodies 16 and 16 are shifted with respect to the center CL of the nozzle hole 7 is determined depending on in which direction the jetting is desired to be performed with respect to the center CL.
  • FIG. 16 is a diagram illustrating a main part of a nozzle plate 3 according to a twelfth modification of the first embodiment, and is a diagram illustrating a similar example of the sixth modification (see FIG. 10).
  • the same reference numerals are given to the same components as those of the nozzle plate 3 of the first embodiment and the sixth modification, and the nozzle plate of the first embodiment and the sixth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is obtained by shifting the pair of interference bodies 16 and 16 in the sixth modification from the center CL of the nozzle hole 7 by ⁇ 3 in the + X direction.
  • the nozzle plate 3 according to this modification is similar to the nozzle plate 3 according to the sixth modification, in which the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edges 21 of the pair of interference bodies 16 and 16 are provided.
  • two corner portions 22 ′ and 22 ′ are formed at the abutting portions of the pair of interference bodies 16 and 16. Yes.
  • corner portions 22 and 22 ' have a sharp pointed shape without roundness, and the liquid film passing through the corner portions 22 and 22' of the orifice 8 and the vicinity thereof can be thinned.
  • the end of the liquid film of the passing fuel is easily atomized by friction with air.
  • the area that blocks the nozzle hole 7 is different between one and the other of the pair of interference bodies 16 and 16, and the interference body 16 on one side (the ⁇ X direction side in FIG. 15)
  • the area blocking the hole 7 is larger than the area blocking the other hole (+ X direction side in FIG. 15) of the nozzle hole 7, and flows to the other interference body 16 side after colliding with one interference body 16.
  • the amount of the fuel whose direction is changed is larger than the fuel whose direction of flow is changed to the one of the interference bodies 16 after colliding with the other interference body 16. Furthermore, the orifice 8 is positioned so as to be shifted toward the + X direction with respect to the center CL of the nozzle hole 7. As a result, the nozzle plate 3 according to this modification can shift the fuel injection direction from the orifice 8 in the + X direction with respect to the center CL of the nozzle hole 7.
  • the nozzle plate 3 which concerns on this modification showed the example which shifted a pair of interference bodies 16 and 16 to + X direction with respect to the center CL of the nozzle hole 7, it is not restricted to this, A fuel is supplied to the orifice 8
  • the direction in which the pair of interference bodies 16 and 16 are shifted with respect to the center CL of the nozzle hole 7 is determined depending on in which direction the jetting is desired to be performed with respect to the center CL.
  • FIG. 17 is a diagram illustrating a main part of a nozzle plate 3 according to a thirteenth modification of the first embodiment, and is a diagram illustrating a similar example of the twelfth modification (see FIG. 16). Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the twelfth modification, and the nozzle plate of the first embodiment and the twelfth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is formed so that one of the pair of interference bodies 16 and 16 (right side: + X side interference body 16) is smaller than the other side (left side: ⁇ X side interference body 16).
  • the nozzle plate 3 according to the present modification has the same amount ( ⁇ 3) that the orifice 8 is displaced toward the + X direction with respect to the center CL of the nozzle hole 7. Even if it exists, while the difference of the area which one and the other of a pair of interference bodies 16 and 16 block the nozzle hole 7 becomes large, the opening area of the orifice 8 becomes large, and it differs from the nozzle plate 3 which concerns on a 12th modification.
  • the nozzle plate 3 according to this modification is similar to the nozzle plate 3 according to the twelfth modification, in which the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edges 21 of the pair of interference bodies 16 and 16 are provided.
  • the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edges 21 of the pair of interference bodies 16 and 16 are provided.
  • two corner portions 22 ′ and 22 ′ are formed at the abutting portions of the pair of interference bodies 16 and 16. Yes.
  • FIG. 18 is a diagram illustrating a main part of a nozzle plate 3 according to a fourteenth modification of the first embodiment, and is a diagram illustrating a similar example of the thirteenth modification (see FIG. 17). Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the thirteenth modification, and the nozzle plate of the first embodiment and the thirteenth modification. The description overlapping with the description of 3 is omitted.
  • one of the pair of interference bodies 16 and 16 (right side: + X-side interference body 16) of the nozzle plate 3 according to the thirteenth modification is used as the interference body 16 ′ shown in FIG. Instead, the other interference body 16 (left side: -X side interference body 16) and one interference body 16 'are struck so as to be crushed (contacted with a predetermined width in the ⁇ Y direction). ing.
  • the nozzle plate 3 according to this modification example has a smaller opening area of the orifice 8, and the one interference body 16 ′ and the other interference body 16 are arranged in the nozzle holes.
  • the difference in the area covering 7 is also different.
  • the nozzle plate 3 according to this modification has a sharp corner portion 22 formed by the circular outlet side opening 15 of the nozzle hole 7 and the circular outer edge portion 21 of the interference body 16, and the circular shape of the nozzle hole 7.
  • the sharp corner portion 22 formed by the outlet side opening 15 and the linear outer edge portion 34 of the interference body 16 ′ is narrower and sharper than the corner portion 22 of the nozzle plate 3 according to the thirteenth modification. ing.
  • the corner portions 22 ′ and 22 ′ formed in the one interference body 16 ′ according to this modification and the butting portion 42 of the other interference body 16 are the corner portions 22 ′ and 22 ′ of the nozzle plate 3 according to the thirteenth modification. No sharper than 22 '.
  • the nozzle plate 3 according to the present modification can obtain different fuel injection characteristics from the nozzle plate 3 according to the thirteenth modification.
  • the abutting portion 42 of the interference body 16 and the interference body 16 ′ is located at a distance of ⁇ 3 in the + X direction from the center CL of the nozzle hole 7.
  • FIG. 19 is a diagram illustrating a main part of a nozzle plate 3 according to a fifteenth modified example of the first embodiment, and is a diagram illustrating a similar example of the fourteenth modified example (see FIG. 18).
  • the same reference numerals are given to the same components as those of the nozzle plate 3 according to the first embodiment and the fourteenth modification, and the nozzle plate according to the first embodiment and the fourteenth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is a fourteenth modification in that the nozzle hole 7 of the nozzle plate 3 according to the fourteenth modification is a square hole, and the shape of the outlet side opening 15 of the nozzle hole 7 is a quadrangle. This is different from the nozzle plate 3 according to FIG.
  • the abutting portion 42 of one interference body 16 ′ and the other interference body 16 is positioned with a deviation of ⁇ 3 in the + X direction with respect to the center CL of the nozzle hole 7. .
  • two corner portions 22 formed by the outlet side opening 15 of the nozzle hole 7 and the linear outer edge portion 34 of the interference body 16 ′, and the outlet side of the nozzle hole 7 Two corner portions 22 formed by the opening 15 and the circular outer edge portion 21 of the interference body 16 and two corner portions 22 ′ formed by the butting portion 42 of the interference body 16 ′ and the interference body 16 are rounded. Therefore, the end of the liquid film of the fuel passing through the orifice 8 can be formed into a sharp pointed shape that is easily atomized by friction with air.
  • FIG. 20 is a diagram illustrating a main part of the nozzle plate 3 according to a sixteenth modification of the first embodiment, and a diagram illustrating a similar example of the eighth modification (see FIG. 12).
  • the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the eighth modification, and the nozzle plate of the first embodiment and the eighth modification. The description overlapping with the description of 3 is omitted.
  • the pair of interference bodies 16 and 16 are larger than the nozzle hole 7, and the butted portion 42 of the pair of interference bodies 16 and 16 is the center line of the nozzle hole 7 (in the Y-axis direction).
  • the center of the nozzle hole 7 is positioned in the vicinity of the center CL of the nozzle hole 7, and the pair of interferers 16. 16, the other end of the butting portion 42 is located outside the nozzle hole 7.
  • the nozzle hole 7 is partially blocked by the pair of interference bodies 16 and 16, whereby the outlet side opening 15 of the nozzle hole 7 and the pair of interference bodies 16 and 16.
  • a substantially fan-shaped orifice 8 is formed by the circular outer edge portions 21 and 21.
  • the corner portions 22 and 22 ′ of these orifices 8 have a sharp shape without roundness, the end of the liquid film that passes through the orifice 8 can be thinned, and the liquid film of fuel that passes through the orifice 8. The end portion of the glass is easily atomized by friction with air.
  • the nozzle plate 3 according to the present modification has a smaller opening area of the orifice 8 than the nozzle plate 3 according to the eighth modification, and the orifice 8 is on the + Y direction side with respect to the center CL of the nozzle hole 7. It is different in that it is biased. As a result, the nozzle plate 3 according to this modification example. A fuel injection characteristic different from that of the nozzle plate 3 according to the eighth modification can be exhibited.
  • FIG. 21 is a diagram illustrating a main part of a nozzle plate 3 according to a seventeenth modification of the first embodiment, and is a diagram illustrating a similar example of the ninth modification (see FIG. 13). Note that, in the nozzle plate 3 according to the present modification, the same reference numerals are given to the same components as the nozzle plate 3 of the first embodiment and the ninth modification, and the nozzle plate of the first embodiment and the ninth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to this modification is the same as the nozzle plate 3 according to the ninth modification, in which the interference body 16 ′ located at the center is shifted in the ⁇ X direction and is located adjacent to the + Y axis direction. Interfering body 16 'positioned adjacent to 16' and in the -Y-axis direction is changed to frustoconical interfering bodies 16 and 16, respectively.
  • the nozzle plate 3 according to the present modification narrows the orifice 8 toward the X axis, and can emit more fuel toward the + X axis. ing.
  • the pair of interference bodies 16 and 16 have a line-symmetric shape with the X axis as the center, and the center position is shifted from the Y axis by the predetermined dimension ⁇ 4 in the ⁇ X axis direction.
  • corner portions 22 and 22 formed by the circular outer edge portions 21 and 21 of the pair of interference bodies 16 and 16 and the outlet side opening portion 15 of the nozzle hole 7, and a pair of Corner portions 22 ′, 22 ′ formed in the abutting portions 42, 42 of the interference bodies 16, 16 and the interference body 16 ′ have a sharp shape without roundness, and the liquid film of the fuel passing through the orifice 8 is formed.
  • the end can be formed into a sharp pointed shape that is easily atomized by friction with air.
  • FIG. 22 is a diagram illustrating a main part of the nozzle plate 3 according to an eighteenth modified example of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the nozzle plate 3 according to this modification is formed so that the nozzle hole 7 is a rectangular hole and the shape of the outlet side opening 15 of the nozzle hole 7 is rectangular.
  • a first interference body 16 is formed on one end in the longitudinal direction of the rectangular outlet side opening 15, and a second interference body 16 is formed on a corner portion 15 c on the other end in the longitudinal direction of the rectangular outlet side opening 15. Is formed.
  • the first interference body 16 protrudes toward the nozzle hole 7 so as to cover both corner portions 15 a and 15 b on one end side in the longitudinal direction of the outlet side opening 15, and partially closes the outlet side opening 15. .
  • the second interference body 16 is formed larger than the first interference body 16 and covers one of the corner portions 15c and 15d (15c) located on the other end side in the longitudinal direction of the outlet side opening 15; It protrudes toward the nozzle hole 7 so as to straddle the long side and the short side that form one corner portion 15 c, and partially closes the outlet side opening 15. Further, in the present modification, the area where the second interference body 16 partially blocks the outlet side opening 15 is larger than the area where the first interference body 16 partially blocks the outlet side opening 15.
  • the opening edge of the orifice 8 is formed by the arc-shaped outer edges 21 and 21 of the first and second interference bodies 16 and 16 and the outlet side opening 15 of the nozzle hole 7.
  • the nozzle plate 3 has four corner portions 22 formed by the circular outer edge portions 21 and 21 of the first and second interference bodies 16 and 16 and the outlet side opening portion 15 of the nozzle hole 7.
  • the four corner portions 22 have a sharp shape without roundness, and the end of the liquid film of the fuel that passes through the orifice 8 has a sharp pointed shape that is easily atomized by friction with air. Can do.
  • an opening portion 15 ′ narrower than the other portion of the outlet side opening 15 is formed between the arcuate outer edge portion 21 of the second interference body 16 and the opening edge of the outlet side opening 15.
  • the narrow opening portion 15 ′ can partially thin the fuel flow passing through the nozzle hole 7.
  • a part of the fuel passing through the nozzle hole 7 collides with the fuel collision surface 18 of the first interference body 16 and collides with the fuel collision surface 18.
  • the flow direction of the fuel is suddenly changed in the + X direction, and a part of the fuel passing through the nozzle hole 7 collides with the fuel collision surface 18 of the second interference body 16, and the fuel colliding with the fuel collision surface 18
  • the flow direction is suddenly changed substantially in the ⁇ Y direction (see FIG. 22A).
  • the fuel flow that collides and passes through the nozzle hole 7 and the orifice 8 becomes turbulent. Then, the fuel injected from the orifice 8 mainly flows obliquely with respect to the + Z direction (inclined in the middle direction between the + X axis and the ⁇ Y axis in FIG. 22A). Further, the nozzle plate 3 according to this modification is formed by the arc-shaped outer edges 21 and 21 of the first and second interference bodies 16 and 16 and the outlet side opening 15 of the nozzle hole 7 as described above. The four corner portions 22 have a sharp pointed shape without roundness, and the end portions of the liquid film of fuel passing through the orifice 8 are easily atomized by friction with air. Therefore, the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 22 (c) is a plan view of the center side of the nozzle plate 3 for a fuel injection device according to this modification.
  • the nozzle hole 7 and the first and second interference bodies 16 and 16 are equidistant around the nozzle plate center 3c. In four places.
  • the fuel injected from each nozzle hole 7 (orifice 8) generates a spiral flow centered on the nozzle plate center 3c.
  • FIG. 22C shows an example in which a plurality of nozzle holes 7 and the first and second interference bodies 16 and 16 are arranged around the nozzle plate center 3c, and this modification is limited. It is not a thing.
  • the nozzle hole 7 and the first and second interference bodies 16 and 16 are arranged in the periphery of the nozzle plate center 3c in accordance with the use conditions and the like.
  • FIG. 23 is a diagram illustrating a main part of the nozzle plate 3 according to a nineteenth modification of the first embodiment. Note that, in the nozzle plate 3 according to this modification, the same reference numerals are given to the components common to the nozzle plate 3 of the first embodiment, and the description overlapping the description of the nozzle plate 3 of the first embodiment is omitted. .
  • the nozzle plate 3 according to this modification three interference bodies 16, 16, 16 are arranged at equal intervals around the circular outlet side opening 15 of the nozzle hole 7, and the adjacent interference bodies 16, 16 are arranged. A gap 43 is formed between them.
  • the orifice 8 is formed by the outlet side opening 15 of the nozzle hole 7 and the three interference bodies 16, 16, 16.
  • corner portions 22 are formed by the circular outer edge portion 21 of the three interference bodies 16 and the outlet side opening portion 15 of the nozzle hole 7. Since the corner portion 22 has a sharp shape without roundness, the end portion of the liquid film of fuel passing through the orifice 8 can be formed into a sharp pointed shape that is easily atomized by friction with air.
  • the nozzle plate 3 has the same area where the three interference members 16 block the nozzle hole 7, and the orifice 8 extends from the center CL of the nozzle hole 7 to the opening edge (exit side opening portion) of the nozzle hole 7. 15) Since the flow path area gradually decreases toward the 15), it is easy to collect the fuel flow closer to the center of the nozzle hole 7, and toward the direction along the center line direction (+ Z axis direction) of the nozzle hole 7. Fuel can be injected.
  • the gap 43 between the adjacent interference bodies 16 and 16 is narrow in the vicinity of the corner portions 22 and 22, so that the vicinity of the corner portions 22 and 22 of the orifice 8 is reduced.
  • the flow of fuel passing therethrough can be made thin, and the flow of fuel passing near the corner portions 22 and 22 of the orifice 8 is easily atomized by friction with air.
  • FIG. 24 is a diagram illustrating a main part of a nozzle plate 3 according to a twentieth modification of the first embodiment, and is a diagram illustrating a similar example of the nineteenth modification (see FIG. 23).
  • the same reference numerals are given to the same components as those of the nozzle plate 3 according to the first embodiment and the nineteenth modification, and the nozzle plate according to the first embodiment and the nineteenth modification. The description overlapping with the description of 3 is omitted.
  • the nozzle plate 3 according to the present modification is the same as the nozzle plate 3 according to the nineteenth modification in that the three interference bodies 16 are arranged around the nozzle hole 7 at equal intervals. This is different from the nozzle plate 3 according to the 19th modification.
  • the interference body 16 positioned in the + Y direction with respect to the center CL of the nozzle hole 7 is made smaller than the other two interference bodies 16, 16, and the small interference body 16.
  • the area for closing the nozzle hole 7 is smaller than the area for closing the nozzle hole 7 of the other interference body 16, and the centroid position of the orifice 8 in FIG. 24A is in the + Y direction from the center CL of the nozzle hole 7. The position is shifted.
  • the nozzle plate 3 according to this modification can shift the fuel injection direction from the orifice 8 in the + Y direction with respect to the center CL of the nozzle hole 7.
  • the nozzle plate 3 according to the present modified example is similar to the nozzle plate 3 according to the nineteenth modified example in that a corner is formed by the circular outer edge portion 21 of the three interference bodies 16 and the outlet side opening portion 15 of the nozzle hole 7. Since the six portions 22 are formed, and the six corner portions 22 have a sharp shape without roundness, the edge of the liquid film of the fuel passing through the orifice 8 is easily atomized by friction with air. It can be a sharp pointed shape.
  • the interference body 16 located in the + Y direction among the three interference bodies 16 of the nozzle plate 3 according to the nineteenth modification is smaller than the other interference bodies 16 and 16.
  • the present invention is not limited to this, and any one of the three interference bodies 16 is determined depending on how the fuel injection direction from the orifice 8 is shifted with respect to the center CL of the nozzle hole 7. Make one smaller than the other two.
  • any two of the three interference bodies 16 of the nozzle plate 3 according to the nineteenth modification may be made smaller than the other one.
  • the nozzle plate 3 made of a synthetic resin material is exemplified.
  • the present invention is not limited to this, and a nozzle plate made of sintered metal formed using a metal injection molding method. Applicable to.
  • the pair of nozzle holes 7 and 7 and the pair of orifices 8 are formed in the nozzle plate 3.
  • the present invention is not limited to this.
  • a plurality of nozzle holes 7 and three or more nozzle holes 7 and the same number of orifices 8 as the nozzle holes 7 or more orifices 8 than the nozzle holes 7 may be formed. It may be formed on the nozzle plate 3.
  • nozzle plate 3 may be configured by appropriately combining those of the first embodiment and the first to twentieth modifications.
  • FIG. 25A is a plan view of the nozzle plate 3 (corresponding to FIG. 3A), and FIG. 25B is cut along line B22-B22 in FIG. 25A. It is sectional drawing of the nozzle plate 3 shown.
  • FIG. 26A is a plan view of the first nozzle plate 3a
  • FIG. 26B is a cross-sectional view of the first nozzle plate 3a cut along line B23-B23 of FIG. It is.
  • FIG. 27A is a plan view of the second nozzle plate 3b
  • FIG. 27B is a cross-sectional view of the second nozzle plate 3b cut along line B24-B24 of FIG. 27A. It is.
  • the nozzle plate 3 is configured by stacking a first nozzle plate 3a and a second nozzle plate 3b formed by press-molding a metal plate (for example, a stainless steel plate). Yes.
  • the second nozzle plate 3b has a nozzle hole 7 which is a round hole.
  • the first nozzle plate 3a has a fuel escape hole 40 and an interference member 16 ′′ that partially closes the circular outlet side opening 15 of the nozzle hole 7.
  • the interfering body 16 ′′ is a tongue-like body in which one side of the fuel escape hole 40 having a substantially rectangular shape in plan view is projected to the other side opposite to each other, and the tip side is rounded into a semicircle.
  • a crescent-shaped orifice 8 is formed by the semicircular outer edge portion (arc-shaped outer edge portion, outer edge portion) 33 ′ on the front end side and the circular outlet side opening portion 22 of the nozzle hole 7.
  • the corner portions 22 and 22 of the opening edge of the orifice 8 formed by the outlet side opening 15 of the nozzle hole 7 and the semicircular outer edge portion 33 ′ of the interference body 16 ′′ have a sharp shape without roundness.
  • the end portion of the liquid film of fuel passing through the orifice 8 has a sharp pointed shape that is easily atomized by friction with air.
  • the fuel escape hole 40 of the first nozzle plate 3a is provided with the fuel excluding the interference body 16 ′′ so that the side surface 41 of the fuel escape hole 40 excluding the interference body 16 ′′ does not disturb the spray injected from the orifice 8.
  • the side surface 41 of the escape hole 40 is formed so as to be located far away from the outlet side opening 15 of the nozzle hole 7.
  • the first nozzle plate 3a has four corners of the fuel escape hole 40 rounded for convenience of punching the fuel escape hole 40 with a press.
  • the first nozzle plate 3a and the second nozzle plate 3b are positioned by uneven engagement between a positioning projection (not shown) and a positioning hole so that the interference body 16 ′′ is accurately positioned with respect to the nozzle hole 7. Overlapped in state.
  • the same effect as the nozzle plate 3 of the first embodiment can be obtained.
  • FIG. 28A is a front view of the nozzle plate 3
  • FIG. 28B is a sectional view of the nozzle plate 3 cut along the line B25-B25 in FIG. 28A.
  • 28 (c) is a rear view of the nozzle plate 3.
  • 29A is an enlarged view of the central portion of the nozzle plate 3 shown in FIG. 28A
  • FIG. 29B is a nozzle cut along the line B26-B26 of FIG. 29A.
  • 4 is a cross-sectional view of the center portion of the plate 3.
  • the nozzle plate 3 includes a cylindrical wall portion 10 and a bottom wall portion 11 formed so as to close one end of the cylindrical wall portion 10. It is the bottomed cylindrical body shape
  • the bottom wall portion 11 has a nozzle hole plate portion 50 in which the nozzle holes 7 are opened, and an interference body plate portion 52 in which the interference body 51 is formed.
  • the interference plate portion 52 is formed so as to go around the central axis 53 of the bottom wall portion 11.
  • the nozzle hole plate portion 50 is shaped such that a portion surrounding the central axis 53 of the interference plate portion 52 is formed by being partially countersunk in a ring shape.
  • the bottom wall portion 11 has six nozzle holes 7 formed at equal intervals around the central axis 53 so that a part of the nozzle holes 7 penetrates the front and back of the nozzle hole plate portion 50 (on the front and back sides). To be open).
  • the bottom wall portion 11 is formed with a plurality of interference body plates 52 a (52) in which the interference bodies 51 that block a part of each nozzle hole 7 are surrounded by the nozzle hole plate section 50.
  • the number of the interference bodies 51 is the same as the number of the nozzle holes 7.
  • the interference body 51 corresponds to the interference bodies 16 and 16 ′ of the nozzle plate 3 according to the first embodiment, and partially closes the nozzle hole 7 to form an orifice 8.
  • An arcuate outer edge portion (outer edge portion) 54 that forms the portion is included.
  • the corner portion 22 of the opening edge of the orifice 8 formed by the arc-shaped outer edge portion 54 of the interference body 51 and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp shape without roundness.
  • the end portion of the liquid film of the fuel passing through 8 is formed into a sharp shape that is easily atomized by friction with air.
  • the liquid film of the fuel injected from both the corner portions 22 and 22 of the orifice 8 of the fuel injected from the orifice 8 and the vicinity thereof is thin and sharp. It becomes a pointed state, and the fuel injected from the corner portions 22 and 22 of the orifice 8 and its vicinity is easily atomized by friction with the air in the vicinity of the orifice 8.
  • the interference body 51 has a fuel collision surface 55 where a part of the fuel passing through the nozzle hole 7 collides, and a side surface (inclined surface) 56 that intersects the fuel collision surface 55 at an acute angle (for example, 75 °). is doing.
  • the fuel collision surface 55 of the interference body 51 causes a part of the fuel passing through the nozzle hole 7 to collide with a part of the fuel that passes through the nozzle hole 7 and atomizes the fuel that passes through the nozzle hole 7.
  • a part of the flow is sharply bent and collided with the fuel which is going to pass straight through the nozzle hole 7 and the orifice 8, and the flow of the fuel is disturbed so that the fuel passing through the orifice 8 is easily atomized in the air. Flow.
  • an air layer is formed between the side surface 56 of the interference body 51 and the fuel that has passed through the orifice 8, and the fuel that has passed through the orifice 8 easily entrains the air.
  • the atomized fuel is easily dispersed uniformly in the intake pipe 2.
  • the bottom wall portion 11 is formed at a position where the nozzle guard projection 57 surrounds the nozzle hole plate portion 50 and on the radially outer end side of the outer surface 58.
  • the nozzle guard protrusion 57 is formed so as to protrude along the direction in which the central axis of the valve body 5 extends in a state where the nozzle plate 3 is attached to the distal end side of the valve body 5 (see FIG. 2). It is an annular body formed along the circumferential direction of the wall portion 11.
  • the nozzle guard protrusion 57 is formed so that a gap is formed between the virtual plane and the bottom wall portion 11 when the tip contacts the virtual plane.
  • the nozzle guard protrusion 57 formed on the bottom wall portion 11 prevents the tool or the like from colliding with the nozzle hole 7 and its periphery when the nozzle plate 3 is assembled to the valve body 5.
  • the engine parts and the like are prevented from being damaged. 7 and the periphery thereof, and the nozzle hole 7 of the bottom wall portion 11 and its peripheral portion are prevented from being damaged.
  • the side surface 60 that connects the outer surface of the outer interferer plate portion 52 b (52) located outside the nozzle hole plate portion 50 and the outer surface of the nozzle hole plate portion 50 is a nozzle hole. It is formed in a waveform shape that follows the outer edge of the interferer plate portion 52a (52) located inside the plate portion 50, and is located at approximately the same distance from the outer edge of the interferer plate portion 52a (52).
  • the side surface 61 connecting the surface and the side surface 62 of the nozzle guard projection 57 take into consideration the flow direction (injection direction) of the fuel injected from the orifice 8 so as not to hinder the spray injected from the orifice 8. Is formed.
  • the thickness around the nozzle hole 7 is increased over a wide range. Therefore, the strength of the peripheral portion of the nozzle hole 7 can be improved.
  • the nozzle plate 3 according to the present embodiment is injected from both corner portions 22 and 22 of the orifice 8 in the fuel injected from the orifice 8 and the vicinity thereof, similarly to the nozzle plate 3 according to the first embodiment. Therefore, the fuel injected from the corner portions 22 and 22 of the orifice 8 and the vicinity thereof is easily atomized by friction with the air in the vicinity of the orifice 8.
  • the nozzle hole 7 is exemplified as being formed at six locations around the central axis 53 of the bottom wall portion 11 at equal intervals. You may form in the multiple places of 2 or more places at equal intervals or non-uniform intervals around.
  • the interference body plate parts 52a and 52b in this embodiment differ in a planar shape by the number and arrangement
  • FIG. 30 to 31 are views showing the nozzle plate 3 according to the fourth embodiment of the present invention, and are views showing modifications of the nozzle plate 3 shown in FIG. 30A is a front view of the nozzle plate 3, and FIG. 30B is a sectional view of the nozzle plate 3 cut along the line B27-B27 of FIG. 30A.
  • 30 (c) is a rear view of the nozzle plate 3.
  • FIG. 31A is an enlarged view of the central portion of the nozzle plate 3 shown in FIG. 30A
  • FIG. 31B is a nozzle cut along line B28-B28 in FIG. 31A.
  • 4 is a cross-sectional view of the center portion of the plate 3.
  • the nozzle plate 3 includes a cylindrical wall portion 10 and a bottom wall portion 11 formed so as to close one end of the cylindrical wall portion 10. It is the bottomed cylindrical body shape
  • three nozzle holes 7 are formed around the central axis 53 at equal intervals.
  • the bottom wall portion 11 is countersunk into an inverted frustoconical shape so as to surround the nozzle hole 7, an interference body plate portion 63 is formed around the nozzle hole 7, and the interference body plate portion 63 is partially seated.
  • a nozzle hole plate portion 64 is formed so as to repeat.
  • the interference plate portion 63 is formed thicker than the nozzle hole plate portion 64, and the shape of the periphery of the nozzle hole 7 is integrated by connecting the three interference members 16 shown in FIG. It has a shape like that.
  • Three interference plate portions 63 are formed corresponding to the three nozzle holes 7.
  • the interference body 65 of the interference body plate portion 63 corresponds to the interference body 16 of the nozzle plate 3 according to the first embodiment, and is formed at three locations so as to partially close the three locations of the nozzle holes 7.
  • Each of the three interference bodies 65 corresponds to one of the three interference bodies 16 of the nozzle plate 3 shown in FIG.
  • These three interference bodies 65 partially close the nozzle hole 7 to form an orifice 8, and have an arcuate outer edge (outer edge) 66 that forms a part of the opening edge of the orifice 8. .
  • the corner portion 22 of the opening edge of the orifice 8 formed by the arc-shaped outer edge portion 66 of the interference body 65 and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp shape without roundness.
  • the end portion of the liquid film of the fuel passing through 8 is formed into a sharp shape that is easily atomized by friction with air.
  • the liquid film of the fuel injected from both the corner portions 22 and 22 of the orifice 8 of the fuel injected from the orifice 8 and the vicinity thereof is thin and sharp. It becomes a pointed state, and the fuel injected from the corner portions 22 and 22 of the orifice 8 and its vicinity is easily atomized by friction with the air in the vicinity of the orifice 8.
  • a part of the nozzle hole 7 is formed so as to penetrate the front and back of the nozzle hole plate part 64 thinner than the interference plate part 63 (open to the front and back).
  • the side surface 67 which connects the adjacent interference bodies 65 and 65 of the interference body plate part 63 considers the injection direction of the fuel injected from the exit side opening part 15 of the nozzle hole 7, and prevents spraying. There are no positions.
  • the interference body 65 has a fuel collision surface 68 where a part of the fuel passing through the nozzle hole 7 collides, and a side surface (inclined surface) 70 that intersects the fuel collision surface 68 at an acute angle (for example, 75 °). is doing.
  • the fuel collision surface 68 of the interference body 65 causes a part of the fuel passing through the nozzle hole 7 to collide with a part of the fuel that passes through the nozzle hole 7 and atomizes the fuel that passes through the nozzle hole 7.
  • a part of the flow is sharply bent and collided with the fuel which is going to pass straight through the nozzle hole 7 and the orifice 8, and the flow of the fuel is disturbed so that the fuel passing through the orifice 8 is easily atomized in the air.
  • an air layer is formed between the side surface 70 of the interference body 65 and the fuel that has passed through the orifice 8, and the fuel that has passed through the orifice 8 easily entrains the air, so that the fuel particles that pass through the orifice 8 are fine. As a result, the atomized fuel is easily dispersed uniformly in the intake pipe 2 (see FIG. 1).
  • the bottom wall portion 11 is formed with three nozzle guard projections 71 at equal intervals along the circumferential direction on the radially outer end side of the outer surface.
  • the nozzle guard protrusion 71 is formed so as to protrude along the direction in which the central axis of the valve body 5 extends in a state in which the nozzle plate 3 is attached to the distal end side of the valve body 5 (see FIG. 2). It is a block body formed so as to be positioned in the middle of the matching nozzle holes 7.
  • the nozzle guard protrusion 71 is formed so that a gap is formed between the virtual plane and the bottom wall portion 11 when the tip contacts the virtual plane.
  • the nozzle guard projections 71 formed at three locations on the bottom wall portion 11 prevent the tool or the like from colliding with the nozzle hole 7 and its periphery when the nozzle plate 3 is assembled to the valve body 5. While preventing the nozzle hole 7 of the wall part 11 and its peripheral part from being damaged, when the fuel injection device 1 in which the nozzle plate 3 is assembled to the valve body 5 is assembled to the intake pipe 2 of the engine, engine parts and the like Collision with the nozzle hole 7 and its periphery is prevented, and damage to the nozzle hole 7 and its peripheral portion of the bottom wall portion 11 is prevented.
  • the side surface 72 that connects the outer surface of the interference plate portion 63 and the outer surface of the bottom wall portion 11 and the side surface 73 of the nozzle guard projection 71 are flow of fuel injected from the orifice 8. In consideration of the direction (injection direction), the spray injected from the orifice 8 is not hindered.
  • the nozzle plate 3 according to the present embodiment as described above is compared with a case where a plurality of interference bodies 16 are independently formed around the nozzle hole 7 (see FIG. 24A), and around the nozzle hole 7.
  • the wall thickness can be increased over a wide range, and the strength of the peripheral portion of the nozzle hole 7 can be improved.
  • the nozzle plate 3 according to the present embodiment is similar to the nozzle plate 3 according to the first embodiment in that the fuel injected from the orifice 8 out of the corner portion 22 of the orifice 8 and the vicinity thereof is injected. Since the liquid film is thin and sharply pointed, the fuel injected from the corner portion 22 of the orifice 8 and its vicinity is easily atomized by friction with the air in the vicinity of the orifice 8.
  • the nozzle hole 7 is illustrated as being formed at three locations around the central axis 53 of the bottom wall portion 11 at equal intervals.
  • the present invention is not limited to this, and the nozzle hole 7 is not limited to this. At least one place is formed.
  • the interference bodies 65 in this embodiment are formed at three locations for one nozzle hole 7, but the present invention is not limited to this, and the optimum number and arrangement are determined according to the required fuel injection characteristics and the like.
  • the thickness of the interference body plate portion 63 and the nozzle hole plate portion 64 of the bottom wall portion 11 is appropriately changed according to the required fuel injection characteristics and the like.
  • FIG. 32 is a view showing the nozzle plate 3 according to the fifth embodiment of the present invention.
  • 32 (a) is a front view of the nozzle plate 3
  • FIG. 32 (b) is an enlarged view of the central portion of the nozzle plate 3 shown in FIG. 32 (a)
  • FIG. 32 (c) is a diagram.
  • FIG. 32 is a partial cross-sectional view of the nozzle plate 3 cut along line B29-B29 in FIG.
  • the nozzle plate 3 according to this embodiment is different from the nozzle plate 3 according to the fourth embodiment in the peripheral shape of the nozzle hole 7 in the bottom wall portion 11, but the other configuration is the fourth embodiment. Since it is the same as the nozzle plate 3 which concerns on a form, the description which overlaps with the description of the nozzle plate 3 which concerns on 4th Embodiment is abbreviate
  • three nozzle holes 7 are formed around the central axis 53 at equal intervals. Further, the bottom wall portion 11 is countersunk into an inverted frustoconical shape so as to surround the nozzle hole 7, an interference body plate portion 74 is formed around the nozzle hole 7, and the interference body plate portion 74 is partially seated. A nozzle hole plate portion 75 is formed so as to repeat. The interference plate portion 74 is formed to be thicker than the nozzle hole plate portion 75, and a part thereof partially blocks the nozzle hole 7 as the interference body 76.
  • the interference bodies 76 correspond to the interference bodies 16 and 16 ′ of the nozzle pre-rate 3 according to the first embodiment, and are formed at three locations so as to correspond to the nozzle holes 7.
  • the interference body 76 partially closes the nozzle hole 7 to form an orifice 8, and has an arcuate outer edge (outer edge) 77 that forms a part of the opening edge of the orifice 8.
  • the corner portion 22 of the opening edge of the orifice 8 formed by the arc-shaped outer edge portion 77 of the interference body 76 and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp shape without roundness.
  • the end portion of the liquid film of the fuel passing through 8 is formed into a sharp shape that is easily atomized by friction with air.
  • the liquid film of the fuel injected from both the corner portions 22 and 22 of the orifice 8 of the fuel injected from the orifice 8 and the vicinity thereof is thin and sharp. It becomes a pointed state, and the fuel injected from the corner portions 22 and 22 of the orifice 8 and its vicinity is easily atomized by friction with the air in the vicinity of the orifice 8.
  • a part of the nozzle hole 7 is formed so as to penetrate the front and back of the nozzle hole plate part 75 thinner than the interference plate part 74 (open to the front and back).
  • the nozzle hole plate portion 75 is formed concentrically with the nozzle hole 7 except for the interference body 76 and its vicinity.
  • the side surface 78 of the interference body plate portion 74 is formed at a position that does not prevent spraying in consideration of the injection direction of the fuel injected from the outlet side opening 15 of the nozzle hole 7.
  • the interference body 76 has a fuel collision surface 80 where a part of the fuel that passes through the nozzle hole 7 collides, and a side surface (inclined surface) 81 that intersects the fuel collision surface 80 at an acute angle (for example, 75 °). is doing.
  • the fuel collision surface 80 of the interference body 76 collides part of the fuel that passes through the nozzle hole 7, thereby atomizing part of the fuel that passes through the nozzle hole 7 and fuel that passes through the nozzle hole 7.
  • a part of the flow is sharply bent and collided with the fuel which is going to pass straight through the nozzle hole 7 and the orifice 8, and the flow of the fuel is disturbed so that the fuel passing through the orifice 8 is easily atomized in the air. Flow.
  • an air layer is formed between the side surface 81 of the interference body 76 and the fuel that has passed through the orifice 8, and the fuel that has passed through the orifice 8 easily entrains the air.
  • the atomized fuel is easily dispersed uniformly in the intake pipe 2 (see FIG. 1).
  • the bottom wall portion 11 is formed with three nozzle guard projections 82 at equal intervals along the circumferential direction on the radially outer end side of the outer surface.
  • the nozzle guard protrusion 82 is formed so as to be positioned between the adjacent nozzle holes 7. Further, the nozzle guard protrusion 82 is formed such that a gap is formed between the virtual plane and the bottom wall portion 11 when the tip contacts the virtual plane.
  • the nozzle guard projections 82 formed at three locations on the bottom wall portion 11 allow the tool or the like to collide with the nozzle hole 7 and its periphery when the nozzle plate 3 is assembled to the valve body 5 (see FIG. 2).
  • the nozzle hole 7 of the bottom wall portion 11 and its peripheral portion are prevented from being damaged.
  • the engine parts and the like are prevented from colliding with the nozzle hole 7 and its periphery, and the nozzle hole 7 of the bottom wall portion 11 and its peripheral portion are prevented from being damaged.
  • the side surface 83 that connects the outer surface of the interference plate portion 74 and the outer surface of the bottom wall portion 11 and the side surface 84 of the nozzle guard protrusion 82 flow the fuel injected from the orifice 8.
  • the spray injected from the orifice 8 is not hindered.
  • the nozzle plate 3 according to the present embodiment as described above has a wide thickness around the nozzle hole 7. The thickness can be increased, and the strength of the peripheral portion of the nozzle hole 7 can be improved.
  • the nozzle plate 3 according to the present embodiment is injected from both corner portions 22 and 22 of the orifice 8 in the fuel injected from the orifice 8 and the vicinity thereof, similarly to the nozzle plate 3 according to the first embodiment. Therefore, the fuel injected from the corner portions 22 and 22 of the orifice 8 and the vicinity thereof is easily atomized by friction with the air in the vicinity of the orifice 8.
  • the nozzle hole 7 is illustrated as being formed at three locations around the central axis 53 of the bottom wall portion 11 at equal intervals.
  • the present invention is not limited to this, and the nozzle hole 7 is not limited to this. At least one place is formed.
  • FIG. 33 is a view showing the nozzle plate 3 according to the sixth embodiment of the present invention.
  • 33 (a) is a partial plan view of the nozzle plate 3
  • FIG. 33 (b) is a partial sectional view of the nozzle plate 3 cut along the line B30-B30 in FIG. 33 (a). It is.
  • the same reference numerals as those of the nozzle plate 3 according to the first embodiment are attached to the same components as the nozzle plate 3 according to the first embodiment. Explanation which overlaps with explanation of nozzle plate 3 concerning a 1st embodiment is omitted.
  • the nozzle plate 3 according to this embodiment is characterized in that the linear outer edge portion 34 of the interference body 16 ′ constitutes a part of the orifice 8. That is, in the nozzle plate 3 according to this embodiment, the interference body 16 and the interference body 16 ′ partially block the circular outlet side opening 15 of the nozzle hole 7, and the arc-shaped outer edge portion 21 of the interference body 16.
  • the orifice 8 is formed by the linear outer edge 34 of the interference body 16 ′ and the outlet side opening 15 of the nozzle hole 7.
  • the interference body 16 has a circular shape in plan view, and the arc-shaped outer edge portion 21 partially forms the orifice 8. Further, the interference body 16 ′ has a rectangular shape in plan view, in which both ends in the longitudinal direction are semicircular.
  • the corner portion 22 formed by the arc-shaped outer edge portion 21 of the interference body 16 and the circular outlet-side opening portion 15 of the nozzle hole 7 has a sharp pointed shape with a crescent-like shape in plan view.
  • the end of the liquid film of fuel passing through the orifice 8 has a sharp pointed shape that is easily atomized by friction with air.
  • the corner portion 22 formed by the linear outer edge portion 34 of the interference body 16 ′ and the outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness, and the fuel that passes through the orifice 8.
  • the end of the liquid film has a shape that is easily atomized by friction with air.
  • the interference body 16 and the interference body 16 ′ partially block the outlet side opening 15 of the nozzle hole 7, so that a part of the fuel passing through the nozzle hole 7 can be obtained.
  • the flow of fuel that travels straight through the nozzle hole 7 collides, and the flow of fuel that passes through the nozzle hole 7 and the orifice 8 becomes turbulent.
  • the nozzle plate 3 according to the present embodiment includes the corner portion 22 formed by the arc-shaped outer edge portion 21 of the interference body 16 and the circular outlet side opening portion 15 of the nozzle hole 7, and the interference.
  • the corner portion 22 formed by the straight outer edge 34 of the body 16 ′ and the outlet side opening 15 of the nozzle hole 7 has a sharp pointed shape without roundness, and the liquid film of the fuel passing through the orifice 8.
  • the end has a shape that is easily atomized by friction with air. Therefore, the nozzle plate 3 according to the present embodiment can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate. Note that the techniques described in the third to fifth embodiments may be applied to the nozzle plate 3 according to the present embodiment and each modification described below.
  • FIG. 34 is a diagram illustrating a nozzle plate 3 according to a first modification of the sixth embodiment.
  • 34 (a) is a partial plan view of the nozzle plate 3
  • FIG. 34 (b) is a partial sectional view of the nozzle plate 3 cut along the line B31-B31 of FIG. 34 (a). It is.
  • the same reference numerals as those of the nozzle plate 3 according to the sixth embodiment are attached to the same components as the nozzle plate 3 according to the sixth embodiment. Explanation which overlaps with explanation of nozzle plate 3 concerning a 6th embodiment is omitted.
  • the nozzle plate 3 according to this modification is characterized in that the linear outer edges 34 and 34 of the first interference body 16 ′ and the second interference body 16 ′ constitute a part of the orifice 8. have. That is, in the nozzle plate 3 according to this modification, the first interference body 16 ′ and the second interference body 16 ′ partially block the outlet side opening 15 of the nozzle hole 7, and the first interference body 16 ′ An orifice is formed by the linear outer edges 34, 34 of the second interference body 16 ′, the semicircular outer edge (arc-shaped outer edge) 33 of the first interference body 16 ′, and the circular outlet side opening 15 of the nozzle hole 7. 8 is formed.
  • the first and second interference bodies 16 ' have a rectangular shape in plan view, with both ends in the longitudinal direction being semicircular.
  • the first interference body 16 ′ is disposed along a center line 37 whose longitudinal direction extends parallel to the X axis, and the tip of the semicircular outer edge portion 33 on one end side is the linear outer edge of the second interference body 16 ′. It is abutted against the part 34.
  • the second interference body 16 ' is disposed so that the longitudinal direction thereof is parallel to the Y axis, and is formed larger than the first interference body 16'.
  • a corner formed by the linear outer edge portion 34 of the first interference body 16 ′ and the circular outlet side opening portion 15 of the nozzle hole 7 is formed.
  • the portion 22 has a sharp, sharp shape with a substantially crescent shape in plan view, and the end of the liquid film of the fuel passing through the orifice 8 is easily atomized by friction with air.
  • the corner portion 22 formed by the linear outer edge portion 34 of the second interference body 16 ′ and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness, and the orifice 8.
  • the end portion of the liquid film of the fuel passing through is shaped so as to be easily atomized by friction with air.
  • corner portions 22 ′ and 22 ′ formed at the abutting portion between the semicircular outer edge portion 33 of the first interference body 16 ′ and the linear outer edge portion 34 of the second interference body 16 ′ have a shape in plan view. It is a sharp pointed shape with a substantially crescent shape without roundness, and the end portion of the liquid film of fuel passing through the orifice 8 is easily atomized by friction with air.
  • the nozzle plate 3 according to this modified example passes through the nozzle hole 7 by the first interference body 16 ′ and the second interference body 16 ′ partially blocking the outlet side opening 15 of the nozzle hole 7.
  • a part of the fuel collides with the fuel collision surfaces 18 and 18 of the first interference body 16 ′ and the second interference body 16 ′, the flow direction is suddenly changed, and a part of the fuel in which the flow direction is suddenly changed.
  • the flow of fuel traveling straight in the nozzle hole 7 collide, and the flow of fuel passing through the nozzle hole 7 and the orifice 8 becomes turbulent.
  • the corner portions 22 ′ and 22 ′ formed at the contact portion between the second interference body 16 ′ and the linear outer edge 34 of the second interference body 16 ′ have a sharp pointed shape without roundness, and a liquid film of fuel passing through the orifice 8.
  • the end has a shape that is easily atomized by friction with air. Therefore, the nozzle plate 3 according to the present embodiment can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 35 is a diagram illustrating a nozzle plate 3 according to a second modification of the sixth embodiment.
  • 35 (a) is a partial plan view of the nozzle plate 3
  • FIG. 35 (b) is a partial sectional view of the nozzle plate 3 cut along the line B32-B32 of FIG. 35 (a).
  • FIG. 35 (c) is a plan view showing the relationship between the shape of the cavity 89 of the mold 87 and the rotary machining tool 88
  • FIG. 35 (d) is along the line B32′-B32 ′ of B35 (c).
  • the nozzle plate 3 according to this modification is characterized in that the linear outer edge portions 86 and 86 of the V-shaped interference body 16a constitute a part of the orifice 8. That is, in the nozzle plate 3 according to this modification, the interference body 16 and the V-shaped interference body 16a partially block the outlet side opening 15 of the nozzle hole 7, and the arc-shaped outer edge portion 21 of the interference body 16,
  • the orifice 8 is formed by the linear outer edges (outer edges) 86 and 86 of the V-shaped interference body 16 a and the circular outlet side opening 15 of the nozzle hole 7.
  • the interference body 16 has a circular shape in plan view.
  • the V-shaped interference body 16a has a shape in which the pair of interference bodies 16 'and 16' are butted in a V shape in plan view.
  • the V-shaped interference body 16a is formed by cutting or grinding a mold 87 with a rotary processing tool (such as an end mill) 88, thereby forming a V-shape for injection molding. Are formed by injecting molten resin into the cavity 89 of the mold 87.
  • the V-shaped inner side walls 90 and 90 of the cavity 89 are side walls for forming the linear outer edge portions 86 and 86 positioned so as to close the nozzle hole 7.
  • the V-shaped inner side walls 90, 90 intersect with each other at the bottom of the V-shaped valley where the movement locus of the rotary machining tool 88 intersects, and a sharp ridgeline 91 with no roundness is formed at the intersection of the rotary machining tool 88. Therefore, the interference body 16a formed by the V-shaped cavity 89 for injection molding has a corner portion (a pair of linear outer edge portions 86, 86 that intersects the V shape). (Intersection part) 92 becomes a sharp pointed shape without roundness. Further, the side surface 17a of the V-shaped interference body 16a is formed so as to intersect the fuel collision surface 18 at an acute angle, like the side surface 17 of the frustoconical interference body 16.
  • the nozzle plate 3 according to this modification is formed so that the center of the interference body 16 is positioned on the center line 37 of the nozzle hole 7 extending in the direction along the X axis. .
  • the nozzle plate 3 according to the present modification is arranged on the center line 37 of the nozzle hole 7 in which the tips of the corner portions 92 of the pair of linear outer edge portions 86 and 86 intersecting in a V shape extend in the direction along the X axis.
  • the tip of the corner portion 92 of the pair of linear outer edge portions 86, 86 intersecting in a V shape is positioned on the opening edge of the outlet side opening portion 15.
  • the V-shaped interference body 16a is formed to have a line-symmetric shape with the center line 37 of the nozzle hole 7 extending in the direction along the X-axis as the axis of symmetry.
  • the interference body 16 and the V-shaped interference body 16a partially block the circular outlet side opening 15 of the nozzle hole 7,
  • the orifice 8 is formed by the arc-shaped outer edge portion 21 of the interference body 16, the pair of linear outer edge portions 86 and 86 of the V-shaped interference body 16 a, and the circular outlet side opening portion 15 of the nozzle hole 7.
  • the corner portion 22 formed by the arcuate outer edge portion 21 of the interference body 16 and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape having a crescent-shaped round shape in plan view.
  • the end of the liquid film of the fuel passing through the orifice 8 has a sharp pointed shape that is easily atomized by friction with air.
  • corner portion 22 formed by the linear outer edge portions 86, 86 of the V-shaped interference body 16a and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness.
  • the end of the liquid film of fuel that passes through the orifice 8 has a shape that is easily atomized by friction with air.
  • the V-shaped corner portion 92 of the V-shaped interference body 16a has a sharp pointed shape without roundness, and the end of the liquid film of fuel passing through the orifice 8 is easily atomized by friction with air. It has a shape.
  • the interference body 16 and the V-shaped interference body 16a partially block the outlet-side opening 15 of the nozzle hole 7, so that one of the fuel passing through the nozzle hole 7 is obtained.
  • the part collides with the fuel collision surfaces 18 and 18 of the interference body 16 and the V-shaped interference body 16a, and the flow direction is suddenly changed, and the flow of the fuel whose flow direction is suddenly changed and the inside of the nozzle hole 7 go straight. And the fuel flow passing through the nozzle hole 7 and the orifice 8 become turbulent.
  • the corner portion 22 formed by the arcuate outer edge portion 21 of the interference body 16 and the circular outlet side opening portion 15 of the nozzle hole 7, and V A corner portion 22 formed by the linear outer edges 86 and 86 of the letter-shaped interference body 16a and the circular outlet side opening 15 of the nozzle hole 7, and a V-shaped corner section 92 of the V-shape interference body 16a.
  • FIG. 36 is a diagram illustrating a nozzle plate 3 according to a third modification of the sixth embodiment, and is a diagram illustrating a modification of the nozzle plate 3 according to the second modification of the sixth embodiment.
  • 36 (a) is a partial plan view of the nozzle plate 3
  • FIG. 36 (b) is a partial sectional view of the nozzle plate 3 cut along the line B33-B33 in FIG. 36 (a).
  • the same reference numerals as those of the nozzle plate 3 according to the second modification are attached to the same components as those of the nozzle plate 3 according to the second modification. Explanation which overlaps with explanation of nozzle plate 3 concerning the 2nd modification is omitted.
  • the nozzle plate 3 according to this modification shown in FIG. 36 has the V-shaped interference body 16a closer to the interference body 16 and the opening area of the orifice 8 is narrower than the nozzle plate 3 according to the second modification. It has the characteristics.
  • the tip of the V-shaped corner portion 92 is located on the radially inner side of the outlet side opening 15 of the nozzle hole 7.
  • the nozzle plate 3 according to this modified example can obtain the same effect as the nozzle plate 3 according to the second modified example, and the liquid film of fuel passing through the orifice 8 is thinned as a whole. The degree of atomization of the fuel injected from the orifice 8 can be further effectively improved.
  • FIG. 37 is a diagram illustrating a nozzle plate 3 according to a fourth modification of the sixth embodiment, and is a diagram illustrating a modification of the nozzle plate 3 according to the second modification of the sixth embodiment.
  • 37 (a) is a partial plan view of the nozzle plate 3
  • FIG. 37 (b) is a partial cross-sectional view of the nozzle plate 3 cut along the line B34-B34 in FIG. 37 (a).
  • the same reference numerals as those of the nozzle plate 3 according to the second modification are assigned to the same components as those of the nozzle plate 3 according to the second modification. Explanation which overlaps with explanation of nozzle plate 3 concerning the 2nd modification is omitted.
  • the nozzle plate 3 according to this modification shown in FIG. 37 is compared with the nozzle plate 3 according to the second modification, a pair of linear outer edge portions 86, 86 intersecting the V-shape of the V-shaped interference body 16a.
  • the pair of linear outer edge portions 86 and 86 is an acute angle
  • the pair of linear outer edge portions 86 and 86 intersecting the V shape of the V-shaped interference body 16a are arc-shaped of the interference body 16. It is characterized in that it is brought into contact with the outer edge 21.
  • the corner portion 22 'formed at the contact portion between the linear outer edge portion 86 of the V-shaped interference body 16a and the arc-shaped outer edge portion 21 of the interference body 16 has a sharp shape with a substantially crescent shape in plan view.
  • the end portion of the liquid film of fuel passing through the orifice 8 has a shape that is easily atomized by friction with air.
  • the V-shaped corner portion 92 of the V-shaped interference body 16a has a sharp pointed shape without roundness, and the end of the liquid film of fuel passing through the orifice 8 is easily atomized by friction with air. It has a shape. Therefore, the nozzle plate 3 according to the present embodiment can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • the V-shaped corner portion 92 of the V-shaped interference body 16a is disposed radially outward from the outlet side opening 15 of the nozzle hole 7, and a pair of the V-shaped interference body 16a.
  • the straight outer edge portions 86 and 86 and the outlet side opening portion 15 of the nozzle hole 7 may form a sharp and sharp corner portion (not shown).
  • FIG. 38 is a diagram illustrating a nozzle plate 3 according to a fifth modification of the sixth embodiment, and is a diagram illustrating a modification of the nozzle plate 3 according to the second modification of the sixth embodiment.
  • 38 (a) is a partial plan view of the nozzle plate 3
  • FIG. 38 (b) is a side view of the nozzle plate 3 partially cut away.
  • the same reference numerals as those of the nozzle plate 3 according to the second modification are attached to the same components as the nozzle plate 3 according to the second modification. Explanation which overlaps with explanation of nozzle plate 3 concerning the 2nd modification is omitted.
  • the nozzle plate 3 according to this modification shown in FIG. 38 partially closes the outlet side opening 15 of the nozzle hole 7 with a pair of interference bodies 16 and 16 and a V-shaped interference body 16a.
  • the nozzle plate 3 includes arc-shaped outer edges 21 and 21 of the pair of interference bodies 16 and 16, a pair of linear outer edges 86 and 86 of the V-shaped interference body 16 a, and an outlet-side opening 15 of the nozzle hole 7. To form the orifice 8.
  • the pair of interference bodies 16 and 16 are in contact with each other on the center line 35 extending along the Y axis of the nozzle hole 7 and on the opening edge of the outlet side opening 15.
  • the V-shaped interference body 16 a has a pair of linear outer edge portions 86, 86 that are in contact with the arc-shaped outer edge portion 21 of the interference body 16 on the radially outer side of the nozzle hole 7, and the Y-axis of the nozzle hole 7. It is formed so as to have a line-symmetric shape with a center line 35 extending along the axis of symmetry as the axis of symmetry.
  • the V-shaped corner portion 92 of the V-shaped interference body 16 a is located on the radially inner side with respect to the opening edge of the outlet side opening 15.
  • the corner portion 22 formed by the arc-shaped outer edge portion 21 of the interference body 16 and the outlet side opening portion 15 of the nozzle hole 7 is sharp and sharp.
  • the corner portion 22 formed by the linear outer edge portion 86 of the V-shaped interference body 16a and the outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness.
  • the corner portion 22 ′ formed by the contact of the arcuate outer edges 21, 21 of the pair of interference bodies 16, 16 has a sharp pointed shape without roundness.
  • the V-shaped corner portion 92 of the V-shaped interference body 16a has a sharp pointed shape without roundness.
  • the nozzle plate 3 according to this modified example passes through the nozzle hole 7 by the pair of interference bodies 16 and 16 and the V-shaped interference body 16a partially closing the outlet side opening 15 of the nozzle hole 7.
  • a part of the fuel that collides with the fuel collision surface 18 of the pair of interference bodies 16 and 16 and the V-shaped interference body 16a the flow direction is suddenly changed, and a part of the fuel in which the flow direction is suddenly changed.
  • the flow of fuel traveling straight in the nozzle hole 7 collide, and the flow of fuel passing through the nozzle hole 7 and the orifice 8 becomes turbulent.
  • the nozzle plate 3 according to this modification has a sharp pointed shape with no roundness at the six corners (22, 22 ′, 92) of the orifice 8, so that the liquid film of fuel passing through the orifice 8 is obtained.
  • the end portion of the glass is easily atomized by friction with air. Therefore, the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 39 is a diagram illustrating a nozzle plate 3 according to a sixth modification of the sixth embodiment.
  • 39A is a partial plan view of the nozzle plate 3
  • FIG. 39B is a partial cross-sectional view of the nozzle plate 3 cut along the line B35-B35 of FIG. 39A. It is.
  • the same reference numerals as those of the nozzle plate 3 according to the first embodiment are attached to the same components as the nozzle plate 3 according to the sixth embodiment. Explanation which overlaps with explanation of nozzle plate 3 concerning a 1st embodiment is omitted.
  • the linear outer edge portion 34 of the interference body 16 ′ constitutes a part of the orifice 8, and a circle of a pair of interference bodies 16 and 16 positioned apart from each other.
  • the arc-shaped outer edge portions 21 and 21 are characterized in that they constitute a part of the orifice 8. That is, in the nozzle plate 3 according to the present embodiment, the pair of interference bodies 16, 16 and the interference body 16 ′ partially block the circular outlet side opening 15 of the nozzle hole 7, and the pair of interference bodies 16. , 16 arcuate outer edge portions 21, 21, the linear outer edge portion 34 of the interference body 16 ′, and the circular outlet side opening portion 15 of the nozzle hole 7 form an orifice 8.
  • the corner portion 22 formed by the arc-shaped outer edge portion 21 of the interference body 16 and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape with no roundness in plan view.
  • the end of the liquid film of fuel passing through the orifice 8 has a sharp shape that is easily atomized by friction with air.
  • the corner portion 22 formed by the linear outer edge portion 34 of the interference body 16 ′ and the outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness, and the fuel that passes through the orifice 8.
  • the end of the liquid film has a shape that is easily atomized by friction with air.
  • the pair of interference bodies 16 and 16 are positioned so as to be symmetrical with respect to the center line 35 extending in parallel with the Y axis as the symmetry axis. is doing. Further, the interference body 16 ′ is formed such that the center position in the longitudinal direction is located on the center line 35 extending in the direction along the Y axis of the nozzle hole 7.
  • the nozzle plate 3 according to this modified example has a fuel that passes through the nozzle hole 7 by the pair of interference bodies 16 and 16 and the interference body 16 ′ partially closing the outlet side opening 15 of the nozzle hole 7. Is collided with the fuel collision surface 18 of the pair of interference bodies 16 and 16 and the interference body 16 ′, the flow direction of the fuel colliding with the fuel collision surface 18 is rapidly changed, and this flow direction is rapidly changed. The flow of the fuel and the flow of fuel traveling straight in the nozzle hole 7 collide, and the flow of fuel passing through the nozzle hole 7 and the orifice 8 becomes a turbulent flow.
  • the nozzle plate 3 according to the present embodiment is formed by the arc-shaped outer edges 21 and 21 of the pair of interference bodies 16 and 16 and the circular outlet side opening 15 of the nozzle hole 7.
  • the corner portion 22 and the corner portion 22 formed by the linear outer edge 34 of the interference body 16 ′ and the outlet side opening 15 of the nozzle hole 7 have a sharp pointed shape without roundness and pass through the orifice 8.
  • the end portion of the liquid film of the fuel is shaped so as to be easily atomized by friction with air. Therefore, the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 40 is a diagram illustrating a nozzle plate 3 according to a seventh modification of the sixth embodiment, and is a diagram illustrating a modification of the sixth modification of the sixth embodiment.
  • 40 (a) is a partial plan view of the nozzle plate 3
  • FIG. 40 (b) is a partial sectional view of the nozzle plate 3 cut along the line B36-B36 in FIG. 40 (a). It is.
  • the same reference numerals as those of the nozzle plate 3 according to the sixth modification are attached to the same components as the nozzle plate 3 according to the sixth modification. Explanation which overlaps with explanation of nozzle plate 3 concerning the 6th modification is omitted.
  • the nozzle plate 3 has a pair of interference members 16 ′ and a pair of interference members 16 ′, abutting the linear outer edge portions 34 of the interference members 16 ′ with the arcuate outer edge portions 21, 21.
  • the circular outlet side opening 15 of the nozzle hole 7 is partially blocked by the bodies 16 and 16 and the interference body 16 ′.
  • the nozzle plate 3 has an orifice 8 formed by the arcuate outer edge portions 21 and 21 of the pair of interference bodies 16 and 16, the linear outer edge portion 34 of the interference body 16 ′, and the outlet side opening portion 15 of the nozzle hole 7. Forming.
  • the nozzle plate 3 according to this modification is a corner formed by the arc-shaped outer edge portions 21 and 21 of the pair of interference bodies 16 and 16 and the linear outer edge portion 34 of the interference body 16 ′.
  • the portion 22 ′ has a sharp pointed shape without roundness, and the end portion of the liquid film of the fuel passing through the orifice 8 is easy to be atomized by friction with air.
  • the corner portion 22 formed by the arc-shaped outer edge portions 21 and 21 of the interference bodies 16 and 16 and the outlet side opening portion 15 of the nozzle hole 7 has a sharp and sharp shape without rounding, and the orifice 8 is formed.
  • the end of the liquid film of the fuel that passes through is shaped so as to be easily atomized by friction with air.
  • the nozzle plate 3 according to this modification example partially closes the circular outlet side opening 15 of the nozzle hole 7 by the pair of interference bodies 16 and 16 and the interference body 16 ′.
  • a part of the fuel passing through the nozzle hole 7 collides with the fuel collision surface 18 of the pair of interference bodies 16 and 16 and the interference body 16 ′, and the flow direction is rapidly changed, and the flow direction is rapidly changed.
  • a part of the fuel flow collides with the flow of the fuel traveling straight in the nozzle hole 7, and the fuel flow passing through the nozzle hole 7 and the orifice 8 becomes a turbulent flow.
  • each corner portion 22, 22 ′ of the orifice 8 has a sharp pointed shape without roundness, so that the end of the liquid film of fuel passing through the orifice 8 is air and It is easy to atomize by friction. Therefore, the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 41 is a diagram illustrating a nozzle plate 3 according to an eighth modification of the sixth embodiment, and is a diagram illustrating a modification of the sixth modification of the sixth embodiment.
  • 41 (a) is a partial plan view of the nozzle plate 3
  • FIG. 41 (b) is a partial side view of the nozzle plate 3.
  • 41, the same reference numerals as those of the nozzle plate 3 according to the sixth modification are assigned to the same components as those of the nozzle plate 3 according to the sixth modification. Explanation which overlaps with explanation of nozzle plate 3 concerning the 6th modification is omitted.
  • the nozzle plate 3 has a pair of interference bodies 16 and 16 that are in contact with the arcuate outer edge portions 21 and 21, and a nozzle formed by the pair of interference bodies 16 and 16 and the interference body 16 ′.
  • the circular outlet side opening 15 of the hole 7 is partially blocked.
  • the nozzle plate 3 includes a pair of interfering bodies 16, 16 with arcuate outer edge portions 21, 21, an interference body 16 ′ linear outer edge portion 34, and a circular outlet side opening 15 of the nozzle hole 7.
  • An orifice 8 is formed.
  • the corner portion 22 ′ formed at the abutting portion of the arcuate outer edge portions 21 and 21 of the pair of interference bodies 16 and 16 is not sharp.
  • the end of the liquid film of the fuel passing through the orifice 8 is easily atomized by friction with air.
  • the corner portion 22 formed by the arc-shaped outer edge portions 21 and 21 of the pair of interference bodies 16 and 16 and the circular outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness.
  • the end of the liquid film of fuel passing through the orifice 8 has a shape that is easily atomized by friction with air.
  • corner portion 22 formed by the linear outer edge portion 34 of the interference body 16 ′ and the outlet side opening portion 15 of the nozzle hole 7 has a sharp pointed shape without roundness, and the fuel passing through the orifice 8.
  • the end of the liquid film has a shape that is easily atomized by friction with air.
  • the nozzle plate 3 partially blocks the circular outlet side opening 15 of the nozzle hole 7 by a pair of interference bodies 16 and 16 and the interference body 16 ′.
  • a part of the fuel passing through the nozzle hole 7 collides with the fuel collision surface 18 of the pair of interference bodies 16 and 16 and the interference body 16 ′, and the flow direction is rapidly changed, and the flow direction is rapidly changed.
  • a part of the fuel flow collides with the flow of the fuel traveling straight in the nozzle hole 7, and the fuel flow passing through the nozzle hole 7 and the orifice 8 becomes a turbulent flow.
  • each corner portion 22, 22 ′ of the orifice 8 has a sharp pointed shape without roundness, so that the end of the liquid film of fuel passing through the orifice 8 is air and It is easy to atomize by friction. Therefore, the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 42 is a diagram illustrating a nozzle plate 3 according to a ninth modification of the sixth embodiment.
  • 42 (a) is a partial plan view of the nozzle plate 3
  • FIG. 42 (b) is a sectional view of the nozzle plate 3 cut along the line B37-B37 of FIG. 42 (a).
  • the same reference numerals as those of the nozzle plate 3 according to the sixth embodiment are attached to the same components as the nozzle plate 3 according to the sixth embodiment. Explanation which overlaps with explanation of nozzle plate 3 concerning a 6th embodiment is omitted.
  • the interference body 16 of the nozzle plate 3 according to the sixth embodiment is omitted, and the outlet side opening 15 of the nozzle hole 7 is formed only by the interference body 16 ′. It is configured to partially close.
  • the corner portion 22 of the orifice 8 formed by the linear outer edge 34 of the interference body 16 ′ and the circular outlet side opening 15 of the nozzle hole 7 has a sharp pointed shape without roundness. The end of the liquid film of fuel passing through the orifice 8 is easily atomized by friction with air.
  • the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 43 is a diagram illustrating a nozzle plate 3 according to a tenth modification of the sixth embodiment, and is a diagram illustrating a modification of the nozzle plate 3 according to a ninth modification of the sixth embodiment.
  • 43 (a) is a partial plan view of the nozzle plate 3
  • FIG. 43 (b) is a sectional view of the nozzle plate 3 cut along the line B38-B38 in FIG. 43 (a).
  • the nozzle plate 3 according to the ninth modification of the sixth embodiment is provided in the same configuration as the nozzle plate 3 according to the ninth modification of the sixth embodiment.
  • the description which overlaps with the description of the nozzle plate 3 which concerns on the 9th modification of 6th Embodiment is attached
  • the nozzle plate 3 according to this modification has a larger area where the outlet side opening 15 of the nozzle hole 7 is blocked by the interference body 16 'than the nozzle plate 3 according to the ninth modification.
  • the opening area of the orifice 8 formed by the linear outer edge 34 of the interference body 16 ′ and the circular outlet side opening 15 of the nozzle hole 7 is determined from the opening area of the orifice 8 of the nozzle plate 3 according to the ninth modification. Is also small.
  • the nozzle plate 3 according to the present modification has a ninth modified example in which the corner portion 22 of the orifice 8 formed by the linear outer edge portion 34 of the interference body 16 ′ and the circular outlet side opening 15 of the nozzle hole 7 is the ninth modification.
  • the nozzle plate 3 has a sharper shape than the corner portion 22 of the orifice 8.
  • the nozzle plate 3 according to the present modification can obtain the same effect as the nozzle plate 3 according to the ninth modification, but has different fuel injection characteristics from the nozzle plate 3 according to the ninth modification. ing.
  • the nozzle plate 3 according to the present modification example is more inclined with respect to the central axis Co of the nozzle hole 7 than the nozzle plate 3 according to the ninth modification example.
  • FIG. 44 is a diagram illustrating a nozzle plate 3 according to an eleventh modification of the sixth embodiment, and is a diagram illustrating a modification of the nozzle plate 3 according to the fourth modification of the sixth embodiment.
  • 44 (a) is a partial plan view of the nozzle plate 3
  • FIG. 44 (b) is a sectional view of the nozzle plate 3 cut along the line B39-B39 in FIG. 44 (a).
  • the nozzle plate 3 according to the fourth modification example of the sixth embodiment is provided in the same configuration as the nozzle plate 3 according to the fourth modification example of the sixth embodiment.
  • the description which overlaps with the description of the nozzle plate 3 which concerns on the 4th modification of 6th Embodiment is attached
  • the nozzle plate 3 according to this modification has a structure in which the interference body 16 of the nozzle plate 3 according to the fourth modification of the sixth embodiment is omitted, and the outlet side of the nozzle hole 7 The opening 15 is partially blocked by the V-shaped interference body 16a.
  • the corner portion 22 formed by the pair of linear outer edge portions 86 and 86 and the circular outlet side opening 15 of the nozzle hole 7, and the pair of linear outer edge portions 86. 86, the V-shaped corner portion 92 formed at the intersecting portion has a sharp pointed shape without roundness, and the end of the liquid film of fuel passing through the orifice 8 is atomized by friction with air. Easy to shape.
  • the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 45 is a diagram illustrating a nozzle plate 3 according to a twelfth modification of the sixth embodiment, and is a diagram illustrating a modification of the nozzle plate 3 according to a ninth modification of the sixth embodiment.
  • 45 (a) is a partial plan view of the nozzle plate 3
  • FIG. 45 (b) is a cross-sectional view of the nozzle plate 3 cut along the line B40-B40 in FIG. 45 (a).
  • the same reference numerals as those of the nozzle plate 3 according to the ninth modification are assigned to the same components as those of the nozzle plate 3 according to the ninth modification. Explanation which overlaps with explanation of nozzle plate 3 concerning the 9th modification is omitted.
  • the interference body 16 ′ is formed at three locations around the outlet side opening 15 of the nozzle hole 7 at equal intervals.
  • the orifice 8 is formed by the linear outer edge portions 34 of the three interference bodies 16 ′ and the circular outlet side opening portions 15 of the nozzle holes 7.
  • the six corner portions 22 formed by the linear outer edge portions 34 of the three interference bodies 16 ′ and the circular outlet side opening portions 15 of the nozzle holes 7 are: It has a sharp and sharp shape without roundness, and the end of the liquid film of the fuel that passes through the orifice 8 is easy to atomize by friction with air.
  • the nozzle plate 3 according to this modification can further improve the degree of atomization of the fuel injected from the orifice 8 as compared with the conventional nozzle plate.
  • FIG. 46A is a front view of the nozzle plate 3 according to the present embodiment
  • FIG. 46B is a cross-sectional view of the nozzle plate 3 cut along the line B41-B41 in FIG. 46A
  • 46 (c) is a sectional view of the nozzle plate 3 cut along the line B42-B42 in FIG. 46 (a)
  • FIG. 46 (d) is the nozzle plate 3 according to the present embodiment.
  • FIG. FIG. 47A is an enlarged view of a part (center portion) of the nozzle plate 3 in FIG. 46A
  • FIG. 47B is an enlarged view of the nozzle hole 7 and its vicinity.
  • FIG. 47C is a partially enlarged view
  • FIG. 47C is an enlarged sectional view taken along line B43-B43 in FIG. 47B.
  • the nozzle plate main body 9 includes a cylindrical wall portion 10 fitted to the distal end side of the valve body 5 and one end side of the cylindrical wall portion 10. And a bottom wall portion 11 formed so as to close (see FIG. 2).
  • the bottom wall portion 11 has a nozzle hole plate portion 64 in which the nozzle holes 7 are opened, and an interference body plate portion 63 in which the interference body 65 is formed.
  • a conical protrusion 94 having a rounded tip is formed at the center of the bottom wall portion 11 (a position matching the central axis 53), and the bottom wall portion 11 around the conical protrusion 94 is circular. It is formed so as to sit on a plate.
  • the nozzle hole plate portion 64 has a shape that is formed by partially sweeping the periphery of the nozzle hole 7 in the interference body plate portion 63, and is thinner than the interference body plate portion 63. Is formed. Also, the bottom wall portion 11 has four nozzle holes 7 formed at equal intervals around the central axis 53 so that part of the nozzle holes 7 penetrates the front and back of the nozzle hole plate portion 64 (on the front and back sides). To be open). As shown in FIG.
  • each nozzle hole 7 has a center 7a of the nozzle hole 7 center lines 95, 96 (straight line 95 passing through the center axis 53 and parallel to the X axis, And a straight line 96) passing through the central axis 53 and parallel to the Y axis.
  • the interference body plate portion 63 of the bottom wall portion 11 has an interference body 65 that blocks a part of the nozzle hole 7 with respect to one nozzle hole 7. Three places are formed.
  • the three interference bodies 65 form an orifice 8 having a line symmetry with respect to a straight line 97 orthogonal to the center line 95 (96) passing through the center 7a of the nozzle hole.
  • the center direction 98 of the spray to be sprayed is inclined to the + Y direction side with respect to the center axis 7c of the nozzle hole 7, and the center direction 98 of the spray sprayed from the orifice 8 is formed along the straight line 97. Yes.
  • the central direction 98 of the spray injected from the four orifices 8 is aligned in the counterclockwise direction around the central axis 53 of the bottom wall portion 11. As a result, the spray injected from the four orifices 8 generates a swirling flow in the counterclockwise direction around the central axis 53 of the bottom wall portion 11.
  • the three interference bodies 65 formed on the interference body plate portion 63 are the same in shape as a part of the interference body 16 shown in the first embodiment.
  • the orifice 8 is formed by partially blocking the nozzle hole 7.
  • the corner portion 22 formed by the arc-shaped outer edge portion 66 of the interference body 65 and the outlet side opening portion 15 of the nozzle hole 7 has a sharp shape without roundness, and the liquid film of fuel passing through the orifice 8 The end of each can be made into a sharp pointed shape that is easily atomized by friction with air.
  • the orifice 8 of the nozzle plate 3 according to the present embodiment has the same shape as the orifice 8 shown in FIG.
  • the description of the nozzle plate 3 according to the present embodiment using FIG. 47 will be given the same reference numerals as the nozzle plate 3 shown in FIG. 31A, and the nozzle plate of FIG. The description overlapping with the description of 3 is omitted as appropriate.
  • the three interference bodies 65 formed on the interference body plate portion 63 are the same as the fuel collision surface 68 and the side surface (the same as the interference body 65 shown in FIG. 31 according to the fourth embodiment).
  • An inclined surface) 67 is provided, and the same effect as that obtained by the fuel collision surface 68 and the side surface 67 of the interference body 65 shown in the fourth embodiment can be obtained.
  • the bottom wall portion 11 is integrally formed so that the eight blades 100 having the same shape are positioned around the central axis 53 at equal intervals and on the radially outer side of the interference body plate portion 63.
  • the blade 100 has an arc shape in plan view, and is formed with a constant thickness from the radially inner end to the radially outer end. Further, the blade 100 is obliquely rounded up from the radially inner end so as not to disturb the spray injected from the orifice 8, and has a space that does not affect the spray state of the fuel injected from the orifice 8.
  • a fuel collision avoidance unit 101 is formed so as to be sufficiently secured.
  • the blade 100 is formed to have the same blade height except for the fuel collision avoidance portion 101 on the radially inner end side.
  • the pair of adjacent blades 100, 100 are narrowed as the distance from the radially outer side toward the radially inner side is narrowed, and the blade groove 102 between the blades 100 is narrowed toward the radially outer side from the radially outer side. ing.
  • the nozzle hole 7 whose center is located on the center line 95 extending in the + X-axis direction with the central axis 53 of the bottom wall portion 11 as the base point is defined as the first nozzle hole 7.
  • the nozzle holes 7 that are offset by 90 ° in the counterclockwise direction are defined as second to fourth nozzle holes 7.
  • the central axis 53 of the bottom wall 11 is the center of the XY coordinate plane of the orthogonal coordinate system
  • the radially inner end is located at a position near the + X axis in the first quadrant.
  • the blade grooves 102 are defined as first blade grooves 102, and the respective blade grooves 102 that are shifted from the first blade grooves 102 in a counterclockwise direction by 45 ° are defined as second to eighth blade grooves 102.
  • the center line 103 of the first blade groove 102 passes through the center of the second nozzle hole 7.
  • the center line 103 of the third blade groove 102 passes through the center of the third nozzle hole 7.
  • the center line 103 of the fifth blade groove 102 passes through the center of the fourth nozzle hole 7.
  • the center line 103 of the seventh blade groove 102 passes through the center of the first nozzle hole 7.
  • the center line 103 of the second blade groove 102 passes through the vicinity of the second nozzle hole 7.
  • center line 103 of the fourth blade groove 102 passes through the vicinity of the third nozzle hole 7. Further, the center line 103 of the sixth blade groove 102 passes through the vicinity of the fourth nozzle hole 7. Further, the center line 103 of the eighth blade groove 102 passes through the vicinity of the first nozzle hole 7.
  • the center lines 103 of the first to eighth blade grooves 102 are positioned so as to pass around the center axis 53 of the bottom wall portion 11.
  • the flow of air flowing out from the radially inner ends of the first to eighth blade grooves 102 is separated by a predetermined distance (at least as much as the shape of the conical protrusion 94) around the central axis 53 of the bottom wall portion 11.
  • a swirling flow in the counterclockwise direction around the central axis 53 of the bottom wall portion 11 is generated.
  • atomized droplets (fine particles of fuel) during spraying have a momentum (a velocity component in the counterclockwise direction), and entrain the surrounding air and the air swirling around it. give.
  • the air that has obtained this momentum becomes a spiral flow and carries droplets (fuel particles).
  • the nozzle plate 3 according to the present embodiment can reduce the amount of fuel adhering to the wall surface of the intake pipe 2 and improve the fuel utilization efficiency (see FIG. 1).
  • the nozzle plate 3 is integrated with the bottom wall portion 11 so that the eight blades 100 are positioned at equal intervals around the central axis 53 and on the radially outer side of the interference plate portion 63. Therefore, when the nozzle plate 3 is assembled to the valve body 5, the blade 100 can prevent the tool or the like from colliding with the nozzle hole 7 and its periphery, and the nozzle hole 7 of the bottom wall portion 11 and It is possible to prevent the peripheral portion from being damaged by the blade 100.
  • the nozzle plate 3 when the fuel injection device 1 in which the nozzle plate 3 is assembled to the valve body 5 is assembled to the intake pipe 2 of the engine, engine parts and the like collide with the nozzle hole 7 and the periphery thereof.
  • the blade 100 can prevent the blade hole 100 from being damaged, and the blade 100 can prevent the nozzle hole 7 of the bottom wall portion 11 and its peripheral portion from being damaged.
  • FIG. 48 is a view showing a first modification of the nozzle plate 3 according to the seventh embodiment of the present invention.
  • FIG. 48 (a) is a front view of the nozzle plate 3, and corresponds to FIG. 46 (a).
  • FIG. 48B is an enlarged view of the central portion of the nozzle plate 3 and corresponds to FIG. 47A.
  • the central direction 98 of the spray injected from each orifice 8 is adjacent (located on the front side along the fuel injection direction) toward the center 7a of the other nozzle hole 7,
  • Three interference bodies 65 are formed for each nozzle hole 7. That is, the nozzle plate 3 according to this modification is 45 in the counterclockwise direction with the orifice 8 of the nozzle plate 3 according to the seventh embodiment (see FIG. 46A) and the center 7a of the nozzle hole 7 as the rotation center. While rotating, the four nozzle holes 7 and orifices 8 of the nozzle plate 3 according to the seventh embodiment (see FIG. 46A) are radially outward with respect to the central axis 53 of the bottom wall portion 11. It is formed by shifting.
  • the nozzle plate 3 according to the present embodiment formed in this way is greatly influenced by the spray from the adjacent orifice 8 and is swung by the plurality of blades 100.
  • the air is given more momentum in the swirl direction from the fine fuel particles being sprayed, and a stronger spiral air flow is formed.
  • FIG. 49 is a view showing a second modification of the nozzle plate 3 according to the seventh embodiment of the present invention.
  • FIG. 49A is a front view of the nozzle plate 3 and corresponds to FIG. 46A.
  • FIG. 49 (b) is a view cut along the line B44-B44 of FIG. 49 (a).
  • FIG. 49 (c) is a rear view of the nozzle plate and corresponds to FIG. 46 (d).
  • the nozzle plate 3 according to this modification is formed so that the surface of the interference plate portion 63 is flush with the surface of the bottom wall portion 11, and the bottom wall portion 11 sits in a disk shape. This is different from the nozzle plate 3 according to the seventh embodiment in which the interference plate portion 63 is formed.
  • the nozzle plate 3 according to the present modification has the bottom wall portion 11 in order to make the thickness of the nozzle hole plate portion 64 and the thickness of the interference plate portion 63 the same as those of the nozzle plate 3 according to the seventh embodiment.
  • a round hole 104 with a bottom is formed on the back side. Four nozzle holes 7 are opened on the bottom surface of the round hole 104.
  • the side surface 104 a of the round hole 104 is positioned so as to surround the four nozzle holes 7.
  • the bottom wall portion 11 is scraped off obliquely from the position radially outward from the radially inner end of the blade 100 toward the radially outer end.
  • the hollow disk-shaped inclined surface 105 is formed.
  • the radially outer end of the hollow disk-shaped inclined surface 105 is rounded by a smooth curved surface 106.
  • the nozzle plate 3 according to the present modification is formed so that the surface of the interference plate portion 63 is flush with the surface of the bottom wall portion 11.
  • the interference plate portion 63 is formed so as to be staggered in a plate shape, the air flowing from the radially inner end of the blade groove 102 to the interference plate portion side.
  • the air velocity from the radially inner end of the blade groove 102 toward the orifice 8 is increased because of being less affected by the recess.
  • the nozzle plate 3 according to this modification having the above-described configuration has a higher air velocity from the radially inner end of the blade groove 102 toward the orifice 8. Therefore, when the air toward the orifice 8 is given momentum from the fine particles of the fuel being sprayed, a stronger spiral air flow is formed.
  • FIG. 50 is a diagram illustrating a third modification of the nozzle plate 3 according to the seventh embodiment of the present invention, and is a diagram illustrating a modification of the nozzle plate 3 according to the second modification.
  • 50A is a cross-sectional view of the nozzle plate 3 corresponding to FIG. 49B
  • FIG. 50B is a rear view of the nozzle plate 3 corresponding to FIG. 49C.
  • the nozzle plate 3 according to this modification shown in FIG. 50 changes the round hole 104 formed on the back surface side of the bottom wall portion 11 of the nozzle plate 3 according to the second modification to a ring-shaped hole 107,
  • the amount of fuel that accumulates in the hole 107 is smaller than the amount of fuel that accumulates in the round hole 104.
  • FIG. 51 is a diagram illustrating a fourth modification of the nozzle plate 3 according to the seventh embodiment of the present invention, and is a diagram illustrating a modification of the nozzle plate 3 according to the second modification.
  • 51A is a sectional view of the nozzle plate 3 corresponding to FIG. 49B
  • FIG. 51B is a rear view of the nozzle plate 3 corresponding to FIG. 49C.
  • the round hole 104 formed on the back surface side of the bottom wall portion 11 of the nozzle plate 3 according to the second modification is changed to a cross-shaped hole 108.
  • the amount of fuel stored in the hole 108 is set smaller than the amount of fuel stored in the round hole 104.
  • FIG. 52 to 53 are views showing the nozzle plate 3 according to the eighth embodiment of the present invention.
  • FIG. 52 is a view showing a structure in which the nozzle plate 3 according to the first modification of the seventh embodiment is further changed.
  • FIG. 53 is an enlarged view of the central portion of the nozzle plate 3 shown in FIG.
  • the nozzle plate 3 is formed with a central nozzle hole 110 penetrating the bottom wall portion 11 along the central axis 53 at the center of the bottom wall portion 11 (a position matching the central axis 53). ing.
  • the outlet side opening 111 on the outer surface side is partially blocked by the interference body 112.
  • the four interference bodies 112 form the central orifice 114 by the arc-shaped outer edge portion 113 projecting radially inward of the central nozzle hole 110 and partially closing the outlet side opening 111 of the central nozzle hole 110. ing.
  • the arcuate outer edge portions 113 and 113 of the adjacent interference bodies 112 and 112 are in contact with each other on the opening edge of the outlet side opening portion 111 of the central nozzle hole 110.
  • a corner portion 115 is formed at the intersection of the pair of arcuate outer edge portions 113 and 113.
  • Four corner portions 115 are formed at equal intervals on the opening edge of the central orifice 114 and have a sharp pointed shape without roundness. As a result, the corner portion 115 can have a sharp pointed shape in which the end of the liquid film of fuel passing through the central orifice 114 is easily atomized by friction with air.
  • Each interference body 112 has a fuel collision surface 116 that is a plane orthogonal to the central axis 53 of the central nozzle hole 110, and a side surface (inclined surface) 70 that is inclined up from the arcuate outer edge portion 113. .
  • the side surfaces 117 of the adjacent interference bodies 112 and 112 are smoothly connected in an arc shape at the corner portion 115.
  • the fuel is injected from the central orifice 114 in the center of the bottom wall portion 11 in the spray generated by the fuel being injected from the four orifices 8 in the bottom wall portion 11.
  • the spray is added, the surrounding spray is attracted to the central spray, and the air swirled by the plurality of blades 100 is given more momentum in the swirl direction from the fine fuel particles being sprayed, and the spiral air is stronger. A flow is formed.
  • the nozzle plate 3 according to the present embodiment can be applied to the nozzle plate 3 according to the seventh embodiment, and the same effect as the nozzle plate 3 according to the seventh embodiment can be obtained.
  • the central orifice 114 is not limited to the shape of this embodiment, The orifice shape of said other embodiment may be applied.
  • the nozzle plate 3 according to the seventh to eighth embodiments four nozzle holes 7 are formed and the blade 100 is provided twice as many as the number of the nozzle holes 7 (eight).
  • the present invention is not limited, and a plurality (two or more) of nozzle holes 7 may be formed, and the blades 100 may be provided by twice the number of nozzle holes 7.
  • the nozzle plate 33 according to the seventh to eighth embodiments is configured to form the blade grooves 102 by twice the number of the nozzle holes 7, but is not limited to this, and the same number of blades as the nozzle holes 7.
  • a groove 102 may be provided.
  • the blade groove 102 is formed by twice the number of the nozzle holes 7, but the present invention is not limited to this, and the number of the nozzle holes 7 is arbitrary. You may make it provide the blade groove
  • the nozzle plate 3 according to the seventh to eighth embodiments has the shape of the orifice 8 and the blade 100 (twist to the right) so that a counterclockwise swirling flow is generated around the central axis 53 of the bottom wall portion 11. Is determined).
  • the present invention is not limited to the nozzle plate 3 according to the seventh to eighth embodiments, and the orifice 8 and the blades are formed so that a clockwise swirling flow is generated around the central axis 53 of the bottom wall portion 11. You may form 100 shape (shape of left-handed twist).
  • the shape of the blade 100 in plan view is an arc shape.
  • the shape is not limited to this, and the shape of the blade 100 in plan view may be linear.
  • the nozzle plate 3 according to the third to eighth embodiments is not limited to the case of being manufactured by injection molding a synthetic resin material, and can be manufactured using a metal injection molding method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】燃料噴射装置の燃料噴射口から流出した燃料を十分に微粒化して噴射する。 【解決手段】本発明のノズルプレート3によれば、燃料噴射装置の燃料噴射口から流出した燃料の一部は、干渉体16に衝突して微粒化されると共に、流れを急激に曲げられて、ノズル孔7及びオリフィス8を直進して通過しようとする燃料に衝突して、ノズル孔7及びオリフィス8を直進して通過しようとする燃料の流れを乱流にする。加えて、本発明のノズルプレート3によれば、オリフィス8の両端部が丸みの無い鋭利なコーナー部分22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になるため、オリフィス8から噴射される燃料の液膜の端部が空気との摩擦で微粒化し易い。したがって、本発明に係るノズルプレート3は、燃料の微粒化の程度を従来のノズルプレートよりも向上させることができる。

Description

燃料噴射装置用ノズルプレート
 この発明は、燃料噴射装置の燃料噴射口に取り付けられ、燃料噴射口から流出した燃料を微粒化して噴射する燃料噴射装置用ノズルプレートに関するものである。
 自動車等の内燃機関(以下、「エンジン」と略称する)は、燃料噴射装置から噴射された燃料と吸気管を介して導入された空気とを混合して可燃混合気を形成し、この可燃混合気をシリンダー内で燃焼させるようになっている。このようなエンジンは、燃料噴射装置から噴射された燃料と空気との混合状態がエンジンの性能に大きな影響を及ぼすことが知られており、特に、燃料噴射装置から噴射された燃料の微粒化がエンジンの性能を左右する重要な要素となることが知られている。
 図54は、燃料噴射装置1000の燃料噴射口1001に取り付けられたノズルプレート1002を示すものである。このノズルプレート1002は、平面視した形状が四角形のノズル孔1003が板厚方向の一端側から他端側へ向かうに従って大きくなるように形成され、板厚方向の一端側が燃料噴射装置1000の燃料噴射口1001側に位置するように燃料噴射装置1000の燃料噴射口1001に取り付けられている。また、このノズルプレート1002は、板厚方向の他端側のノズル孔開口縁1004に干渉体1005が形成され、この干渉体1005がノズル孔1003を部分的に塞ぐようになっている。
 このようなノズルプレート1002を備えた燃料噴射装置1000は、燃料が燃料噴射口1001から流出すると、ノズル孔1003の内壁面1006に沿って流れる燃料F1に対して、干渉体1005に衝突して干渉体1005の表面1008に沿って流れる霧状の燃料F2が衝突し、燃料F1及びF2が微粒化してノズル孔1003から吸気管内に噴射されるようになっている(特許文献1参照)。
特開平10-122097号公報
 しかしながら、図54に示したノズルプレート1002は、燃料噴射装置1000の燃料噴射口1001側に位置する入口側ノズル孔部1003a、及び入口側ノズル孔部1003aに対して燃料噴射方向に沿った下流側に位置する出口側ノズル孔部1003bがエッチングで加工されており、出口側ノズル孔部1003bの各コーナー部1007に丸みが形成される。その結果、ノズルプレート1002のノズル孔1003から噴射された燃料が鋭利な液膜に成りにくく、空気との摩擦による微粒化が不十分になっていた。
 そこで、本発明は、燃料噴射装置の燃料噴射口から流出した燃料を十分に微粒化して噴射することができる燃料噴射装置用ノズルプレートの提供を目的とする。
 本発明は、図1乃至図52に示すように、燃料噴射装置1の燃料噴射口4に取り付けられて、前記燃料噴射口4から噴射された燃料が通過するノズル孔7を備えた燃料噴射装置用ノズルプレート3に関するものである。この燃料噴射装置用ノズルプレート3において、前記ノズル孔7は、燃料の流出側の開口部である出口側開口部15が干渉体16,16’,16”,16a,51,65,76で部分的に塞がれることにより、前記出口側開口部15と前記干渉体16,16’,16”,16a,51,65,76とによって燃料の流れを絞るオリフィス8が形作られている。また、前記干渉体16,16’,16”,16a,51,65,76は、前記オリフィス8の開口縁の一部を形作る外縁部(21,33,33’,34,54,66,77,86)を有し、前記ノズル孔7を通過する燃料の一部を衝突させることによって、前記ノズル孔7を通過する燃料の一部を微粒化すると共に、前記ノズル孔7を通過する燃料の一部の流れを急激に曲げて前記ノズル孔7及び前記オリフィス8を直進して通過しようとする燃料に衝突させ、前記オリフィス8を通過した燃料が空気中で微粒化しやすくなるように燃料の流れを乱流にする。そして、前記ノズル孔7の前記出口側開口部15と前記干渉体16,16’,16”,16a,51,65,76とで形作られる前記オリフィス8の開口縁のコーナー部分22,22’は、丸みのない鋭利な尖った形状になっており、前記オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化され易い鋭利な尖った形状にする。
 本発明によれば、燃料噴射装置の燃料噴射口から噴射された燃料の一部は、干渉体に衝突して微粒化されると共に、流れを急激に曲げられて、ノズル孔及びオリフィスを直進して通過しようとする燃料に衝突して、ノズル孔及びオリフィスを直進して通過しようとする燃料の流れを乱流にする。加えて、本発明によれば、オリフィスの両端部が丸みの無い鋭利なコーナー部分であり、オリフィスのコーナー部分から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になるため、オリフィスのコーナー部分から噴射される燃料がオリフィス近傍の空気との摩擦で微粒化し易い。したがって、本発明に係るノズルプレートは、従来のノズルプレートと比較して、燃料の微粒化の程度をより一層向上させることができる。
本発明の第1実施形態に係る燃料噴射装置用ノズルプレートが取り付けられた燃料噴射装置の使用状態を模式的に示す図である。 本発明の第1実施形態に係る燃料噴射装置用ノズルプレートが取り付けられた燃料噴射装置の先端側を示す図である。図2(a)は、燃料噴射装置の先端側縦断面図(図2のB1-B1線に沿って切断して示す断面図)である。図2(b)は、燃料噴射装置の先端側下面図(図2(a)のA1方向から見た燃料噴射装置の先端面を示す図)である。 図3(a)は、図2(b)のC部拡大図(燃料噴射装置用ノズルプレートの一部平面図)である。図3(b)は、図3(a)のB2-B2線に沿って切断して示す断面図である。 燃料噴射装置用ノズルプレートを射出成形するために使用される射出成形金型の構造図である。 第1実施形態の第1変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図5(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図5(b)は、図5(a)のB3-B3線に沿って切断して示す断面図である。 第1実施形態の第2変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図6(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図6(b)は、図6(a)のB4-B4線に沿って切断して示す断面図である。 第1実施形態の第3変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図7(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図7(b)は、図7(a)のB5-B5線に沿って切断して示す断面図である。 第1実施形態の第4変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図8(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図8(b)は、図8(a)のB6-B6線に沿って切断して示す断面図である。 第1実施形態の第5変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図9(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図9(b)は、図9(a)のB7-B7線に沿って切断して示す断面図である。 第1実施形態の第6変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図10(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図10(b)は、図10(a)のB8-B8線に沿って切断して示す断面図である。 第1実施形態の第7変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図11(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図11(b)は、図11(a)のB9-B9線に沿って切断して示す断面図である。 第1実施形態の第8変形例に係る燃料噴射装置用ノズルプレートの要部を示す図である。図12(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図12(b)は、図12(a)の燃料噴射装置用ノズルプレートの一部側面図である。 第1実施形態の第9変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図13(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図13(b)は、図13(a)のB10-B10線に沿って切断して示す断面図である。 第1実施形態の第10変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図14(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図14(b)は、図14(a)のB11-B11線に沿って切断して示す断面図である。 第1実施形態の第11変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第5変形例(図9参照)の類似例を示す図である。図15(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図15(b)は、図15(a)のB12-B12線に沿って切断して示す断面図である。 第1実施形態の第12変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第6変形例(図10参照)の類似例を示す図である。図16(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図16(b)は、図16(a)のB13-B13線に沿って切断して示す断面図である。 第1実施形態の第13変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第12変形例(図16参照)の類似例を示す図である。図17(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図17(b)は、図17(a)のB14-B14線に沿って切断して示す断面図である。 第1実施形態の第14変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第13変形例(図17参照)の類似例を示す図である。図18(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図18(b)は、図18(a)のB15-B15線に沿って切断して示す断面図である。 第1実施形態の第15変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第14変形例(図18参照)の類似例を示す図である。図19(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図19(b)は、図19(a)のB16-B16線に沿って切断して示す断面図である。 第1実施形態の第16変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第8変形例(図12参照)の類似例を示す図である。図20(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図20(b)は、図20(a)のB17-B17線に沿って切断して示す断面図である。 第1実施形態の第17変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第9変形例(図13参照)の類似例を示す図である。図21(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図21(b)は、図21(a)のB18-B18線に沿って切断して示す断面図である。 第1実施形態の第18変形例に係る燃料噴射装置用ノズルプレートの要部を示す図である。図22(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図22(b)は、図22(a)のB19-B19線に沿って切断して示す断面図である。図22(c)は、本変形例に係る燃料噴射装置用ノズルプレートの中央部側平面図である。 第1実施形態の第19変形例に係る燃料噴射装置用ノズルプレートの要部を示す図である。図23(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図23(b)は、図23(a)のB20-B20線に沿って切断して示す断面図である。 第1実施形態の第20変形例に係る燃料噴射装置用ノズルプレートの要部を示す図であり、第19変形例(図23参照)の類似例を示す図である。図24(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図24(b)は、図24(a)のB21-B21線に沿って切断して示す断面図である。 本発明の第2実施形態に係る燃料噴射装置用ノズルプレートの要部を示す図であり、図3に対応する図である。図25(a)は、燃料噴射装置用ノズルプレートの一部平面図である。図25(b)は、図25(a)のB22-B22線に沿って切断して示す断面図である。 本発明の第2実施形態に係る燃料噴射装置用ノズルプレートを構成する第1ノズルプレートの要部を示す図である。図26(a)は、第1ノズルプレートの一部平面図である。図26(b)は、図26(a)のB23-B23線に沿って切断して示す断面図である。 本発明の第2実施形態に係る燃料噴射装置用ノズルプレートを構成する第2ノズルプレートの要部を示す図である。図27(a)は、第2ノズルプレートの一部平面図である。図27(b)は、図27(a)のB24-B24線に沿って切断して示す断面図である。 本発明の第3実施形態に係る燃料噴射装置用ノズルプレートを示す図である。図28(a)は、ノズルプレートの正面図である。図28(b)は、図28(a)のB25-B25線に沿って切断して示すノズルプレートの断面図である。図28(c)は、ノズルプレートの背面図である。 図29(a)が図28(a)で示したノズルプレートの中心部の拡大図であり、図29(b)が図29(a)のB26-B26線に沿って切断して示す断面図である。 本発明の第4実施形態に係るノズルプレートを示す図である。図30(a)は、ノズルプレートの正面図である。図30(b)は、図30(a)のB27-B27線に沿って切断して示すノズルプレートの断面図である。図30(c)は、ノズルプレートの背面図である。 図31(a)が図30(a)で示したノズルプレートの中心部(ノズル部)の拡大図であり、図31(b)が図31(a)のB28-B28線に沿って切断して示す断面図である。 本発明の第5実施形態に係るノズルプレートを示す図である。図32(a)は、ノズルプレートの正面図である。図32(b)は、図32(a)で示したノズルプレートの中心部の拡大図である。図32(c)は、図32(a)のB29-B29線に沿って切断して示すノズルプレートの部分的断面図である。 本発明の第6実施形態に係るノズルプレートを示す図である。 第6実施形態の第1変形例に係るノズルプレートを示す図である。 第6実施形態の第2変形例に係るノズルプレートを示す図である。 第6実施形態の第3変形例に係るノズルプレートを示す図である。 第6実施形態の第4変形例に係るノズルプレートを示す図である。 第6実施形態の第5変形例に係るノズルプレートを示す図である。 第6実施形態の第6変形例に係るノズルプレートを示す図である。 第6実施形態の第7変形例に係るノズルプレートを示す図である。 第6実施形態の第8変形例に係るノズルプレートを示す図である。 第6実施形態の第9変形例に係るノズルプレートを示す図である。 第6実施形態の第10変形例に係るノズルプレートを示す図である。 第6実施形態の第11変形例に係るノズルプレートを示す図である。 第6実施形態の第12変形例に係るノズルプレートを示す図である。 本発明の第7実施形態に係るノズルプレートを示す図である。図46(a)が第7実施形態に係るノズルプレートの正面図であり、図46(b)が図46(a)のB41-B41線に沿って切断して示すノズルプレートの断面図であり、図46(c)が図46(a)のB42-B42線に沿って切断して示すノズルプレートの断面図であり、図46(d)が第7実施形態に係るノズルプレートの背面図である。 本発明の第7実施形態に係るノズルプレートを示す図である。図47(a)が図46(a)のノズルプレートの一部(中心部)拡大図であり、図47(b)がノズル孔及びその近傍を拡大して示すノズルプレートの部分的拡大図であり、図47(c)が図47(b)のB43-B43線に沿って切断して示す拡大断面図である。 第7実施形態の第1変形例に係るノズルプレートを示す図である。 第7実施形態の第2変形例に係るノズルプレートを示す図である。 第7実施形態の第3変形例に係るノズルプレートを示す図である。 第7実施形態の第4変形例に係るノズルプレートを示す図である。 第8実施形態に係るノズルプレートを示す図であり、第7実施形態の第1変形例に係るノズルプレートを更に変更した構造を示す図である。図52(a)が図48(a)に対応する図であり、図52(b)が図48(b)に対応する図である。 図52で示したノズルプレートの中央部分を拡大して示す図である。図53(a)がノズルプレートの中央部分の平面図であり、図53(b)が図53(a)のB45-B45線に沿って切断して示す断面図である。 燃料噴射装置の燃料噴射口に取り付けられた従来のノズルプレートを示す図である。図54(a)は、従来のノズルプレートが取り付けられた燃料噴射装置の先端側断面図である。図54(b)は、従来のノズルプレートの平面図である。図54(c)は、図54(b)のD部拡大図(ノズルプレートの一部平面図)である。図54(d)は、図54(c)のB46-B46線に沿って切断して示す断面図である。
 以下、本発明の実施形態を図面に基づき詳述する。
 [第1実施形態]
 図1は、本実施形態に係る燃料噴射装置用ノズルプレートが取り付けられた燃料噴射装置1の使用状態を模式的に示す図である。この図1に示すように、ポート噴射方式の燃料噴射装置1は、エンジンの吸気管2の途中に設置され、燃料を吸気管2内に噴射して、吸気管2に導入された空気と燃料とを混合し、可燃混合気を形成するようになっている。
 図2は、燃料噴射装置用ノズルプレート3(以下、ノズルプレートとする)が取り付けられた燃料噴射装置1の先端側を示す図である。なお、図2(a)は、燃料噴射装置1の先端側縦断面図(図2(b)のB1-B1線に沿って切断して示す断面図)である。また、図2(b)は、燃料噴射装置1の先端側下面図(図2(a)のA1方向から見た燃料噴射装置1の先端面を示す図)である。また、図3(a)は、図2(b)のC部拡大図(ノズルプレート3の一部平面図)である。また、図3(b)は、図3(a)のB2-B2線に沿って切断して示すノズルプレート3の断面図である。
 この図2に示すように、燃料噴射装置1は、燃料噴射口4が形成されたバルブボディ5の先端側にノズルプレート3が取り付けられている。この燃料噴射装置1は、図外のソレノイドによってニードルバルブ6が開閉されるようになっており、ニードルバルブ6が開かれると、バルブボディ5内の燃料が燃料噴射口4から噴射され、燃料噴射口4から噴射された燃料がノズルプレート3のノズル孔7及びオリフィス8を通過して外部に噴射されるようになっている。
 図2及び図3に示すように、ノズルプレート3は、円筒状壁部10とこの円筒状壁部10の一端側に一体に形成された底壁部11とからなる合成樹脂材料(例えば、PPS、PEEK、POM、PA、PES、PEI、LCP)製の有底筒状体である。このノズルプレート3は、円筒状壁部10がバルブボディ5の先端側外周に隙間無く嵌合され、底壁部11の内面12がバルブボディ5の先端面13に当接させられた状態で、バルブボディ5に固定されている。また、ノズルプレート3の底壁部11には、バルブボディ5の燃料噴射口4と外部とを連通するノズル孔7が複数(一対)形成されている。ノズルプレート3のノズル孔7は、底壁部11の内面12に直交するストレートな丸孔であり、バルブボディ5の燃料噴射口4から噴射された燃料を燃料噴射口4に面する入口側開口部14から導入し、この入口側開口部14から導入した燃料を外部に面する出口側開口部15側(燃料が流出する開口部側)から噴射するようになっている。そして、このノズルプレート3は、ノズル孔7の出口側開口部15の形状が円形状になっている。なお、ノズル孔7は、底壁部11のうちの座繰りされたような薄肉部分11aに形成されている。
 また、図2及び図3に示すように、ノズルプレート3は、ノズル孔7の出口側開口部15の一部が干渉体16によって塞がれている。干渉体16は、円錐台形状であり、ノズル孔7の出口側開口部15から図3(b)の+Z軸方向へ向かうに従って外径寸法を漸減するようになっており、側面17がテーパ状になっている。干渉体16の側面17は、ノズル孔7を通過する燃料の一部が衝突する燃料衝突面18に鋭角で交わるようになっている。干渉体16の燃料衝突面18は、底壁部11の外表面20(内面12に対して反対側に位置する面)と同一平面上に位置するように形成されている。そして、この干渉体16は、ノズル孔7の出口側開口部15の一部を塞ぐことにより、ノズル孔7の出口側開口部15にノズル孔7内を流れる燃料を急激に絞るオリフィス8を形成している。オリフィス8の開口縁は、ノズル孔7の円形状の出口側開口部15と干渉体16の円形状外縁部(外縁部)21の一部(円弧状外縁部)とによって三日月形状に形作られ、両端部が丸みの無い鋭利な尖ったコーナー部分22になっている。
 ここで、ノズルプレート3は、図3において、ノズル孔7の孔径(出口側開口部15の直径)d1と干渉体16の円形状外縁部21の直径d2の寸法及びそれらの比率(d1:d2)、オリフィス8の最大隙間寸法ε1(ノズル孔7の中心o1と干渉体16の中心o2とを結ぶ線の延長線23上におけるオリフィス8の最大隙間寸法ε1)、干渉体16の側面17の傾斜角θ(干渉体16の側面17と+Z軸に沿った方向とのなす角θ)、干渉体16の中心o2(o2’)とノズル孔7の中心o1とを結ぶ線の延長線23がX軸(一対のノズル孔7,7の中心o1を結ぶ線上に位置するX軸)となす角±δ、底壁部11の薄肉部分11aの板厚t1(ノズル孔7の長さ)、干渉体16の板厚t2は、要求される燃料噴射特性等に応じて最適の数値が決定される。なお、例えば、d1は0.03~1.0mmの範囲で最適な数値が決定される。
 図4は、ノズルプレート3を射出成形するために使用される射出成形金型24の構造図を示すものである。この図4に示すように、射出成形金型24は、第1金型25と第2金型26の間にキャビティ27が形成され、ノズル孔7,7を形成するためのノズル孔形成ピン28,28がキャビティ27内に突出している。このノズル孔形成ピン28,28は、先端が第1金型25のキャビティ内面30に突き当てられている。そして、第1金型25のノズル孔形成ピン28,28が突き当てられる箇所の近傍には、干渉体16,16を形成するための凹所31,31が形成されている。このような射出成形金型24は、図示しないゲートから溶融樹脂がキャビティ27内に射出されると、干渉体16,16を一体として備えたノズルプレート3が形成される(図2及び図3)。また、このような射出成形金型24を使用して射出成形されたノズルプレート3は、干渉体16の燃料衝突面18と底壁部11の外表面20とが同一平面上に位置するように形成され、三日月形状のオリフィス8の両端部が丸みの無い鋭利なコーナー部分22,22になっている。そして、このように射出成形されたノズルプレート3は、エッチングや放電加工によって形成されたノズルプレートに比較し、生産効率が高いため、製品単価を低廉化することができる。
 以上のような本実施形態に係るノズルプレート3によれば、燃料噴射装置1の燃料噴射口4から噴射された燃料の一部は、干渉体16の燃料衝突面18に衝突して微粒化されると共に、燃料衝突面18によって流れを急激に曲げられて、ノズル孔7及びオリフィス8を直進して通過しようとする燃料に衝突して、ノズル孔7及びオリフィス8を直進して通過しようとする燃料の流れを乱流にする。さらに、本実施形態に係るノズルプレート3は、オリフィス8の両端部が丸みの無い鋭利なコーナー部分22,22である。その結果、本実施形態に係るノズルプレート3によれば、オリフィス8から噴射される燃料のうちのオリフィス8の両コーナー部分22,22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になり、オリフィス8のコーナー部分22,22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。加えて、本実施の形態に係るノズルプレート3は、オリフィス8の開口縁が中央部から両コーナー部分22,22に向かって収斂するような三日月形状を呈し、オリフィス8の開口縁がコーナー部分22,22へ向かうにしたがって狭められるようになっている。そのため、オリフィス8から吐出される燃料は、オリフィス8の開口縁形状にならって最大厚みε1の薄い膜状(カーテン状)となるので、微粒化に対してさらに効果的である。
 したがって、本実施形態に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
 しかも、本実施形態に係るノズルプレート3によれば、干渉体16の側面17が干渉体16の燃料衝突面18に鋭角で交わるように形成され、オリフィス8を通過した燃料と干渉体16の側面17との間に空気層が生じるようになっているため、オリフィス8を通過した燃料が空気を巻き込みやすく、オリフィス8を通過する燃料の微粒化が促進され、吸気管2内に微粒化された燃料を均一に分散させやすくなる(図1参照)。
 また、本実施形態に係るノズルプレート3によれば、オリフィス8の両端部が丸みの無い鋭利なコーナー部分22,22であり、オリフィス8の開口縁の中央部におけるオリフィス幅が最も広く、且つ、オリフィス8の開口縁が中央部から両コーナー部分22,22に向かって収斂するように狭められているため、オリフィス8が一様の幅で形成された場合に比較し、オリフィス8から噴射された燃料の密度が特定方向で最も濃くなるように、オリフィス8から噴射される燃料に指向性を付与することができる。
 また、本実施形態に係るノズルプレート3によれば、ノズル孔7の孔径(出口側開口部15の直径)d1と干渉体16の円形状外縁部21の直径d2の寸法及びそれらの比率(d1:d2)、オリフィス8の最大隙間寸法ε1(ノズル孔7の中心o1と干渉体16の中心o2とを結ぶ線の延長線23上におけるオリフィス8の最大隙間寸法ε1)、干渉体16の側面17の傾斜角θ(干渉体16の側面17と+Z軸に沿った方向とのなす角θ)、干渉体16の中心o2(o2’)とノズル孔7の中心o1とを結ぶ線がX軸(一対のノズル孔7,7の中心o1を結び線上に位置するX軸)となす角±δ、底壁部11の薄肉部分11aの板厚t1(ノズル孔7の長さ)、干渉体16の板厚t2のいずれか又は複数を適宜変更することにより、燃料の噴射角度を容易に変えることができる。
  (第1実施形態の第1変形例)
 図5は、第1実施形態の第1変形例に係るノズルプレート3の要部を示す図(図3に対応する図)である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、ノズル孔7を三角孔とし、ノズル孔7の出口側開口部15の形状を三角形状とした点が第1実施形態のノズルプレート3と相違する。このノズルプレート3において、ノズル孔7の出口側開口部15と干渉体16の円形状外縁部21とで形作られるオリフィス8の開口縁のコーナー部分22,22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。
 また、本変形例に係るノズルプレート3は、上記第1実施形態に係るノズルプレート3と同様に、従来のノズルプレートと比較して、燃料の微粒化の程度をより一層向上させることができる。
  (第1実施形態の第2変形例)
 図6は、第1実施形態の第2変形例に係るノズルプレート3の要部を示す図(図3に対応する図)である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、丸孔のノズル孔7を燃料衝突面18に対して斜めに形成し、ノズル孔7の出口側開口部15の形状を楕円形状とした点が第1実施形態のノズルプレート3と相違する。このノズルプレート3において、ノズル孔7の出口側開口部15と干渉体16の円形状外縁部21とで形作られるオリフィス8の開口縁のコーナー部分22,22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。
 本変形例に係るノズルプレート3は、上記第1実施形態に係るノズルプレート3と同様に、従来のノズルプレートと比較して、燃料の微粒化の程度をより一層向上させることができる。
 また、本変形例に係るノズルプレート3において、ノズル孔7が燃料衝突面18に対して斜めになっているため、燃料衝突面18に直交する方向(+Z軸に沿った方向)とノズル孔7の中心線32とが成す角(ノズル孔7の傾斜角)αに応じ、燃料の噴射方向が定められ、燃料を狙った方向へ正確に噴射することが可能になる。
  (第1実施形態の第3変形例)
 図7は、第1実施形態の第3変形例に係るノズルプレート3の要部を示す図(図3に対応する図)である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、干渉体16’の形状が第1実施形態のノズルプレート3の干渉体16と相違する。すなわち、本変形例において、ノズルプレート3の干渉体16’は、平面視した形状(図7のA2方向から見た形状)が長方形の長手方向両端部を半円形にした形状になっている。そして、干渉体16’は、その長手方向が一対のノズル孔7,7の中心を結ぶ線の延長線23(X軸方向)に沿うように形成されており、その一端側の半円形状外縁部(円弧状外縁部、外縁部)33とノズル孔7の円形の出口側開口部15とでオリフィス8を形作るようになっている。このノズル孔7の出口側開口部15と干渉体16’の半円形状外縁部33とで形作られるオリフィス8の開口縁のコーナー部分22,22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い鋭利な尖った形状になっている。なお、本変形例のノズルプレート3において、干渉体16’は、上記実施形態における円錐台形状の干渉体16と同様に、側面17’が燃料衝突面18に鋭角で交わるように形成されている。
 本変形例に係るノズルプレート3は、上記第1実施形態に係るノズルプレート3と同様に、従来のノズルプレートと比較して、燃料の微粒化の程度をより一層向上させることができる。
  (第1実施形態の第4変形例)
 図8は、第1実施形態の第4変形例に係るノズルプレート3の要部を示す図(図3に対応する図)であって、第3変形例に係るノズルプレート3を一部変更したものである。なお、本変形例に係るノズルプレート3は、第1実施形態及び第3変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第3変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレートは、上記第3変形例に係るノズルプレート3の干渉体16’と同様の干渉体16’を備えているが、干渉体16’がノズル孔7を塞ぐ量が上記第3変形例よりも大きく、干渉体16’の一端側の半円形状外縁部33及びこの半円形状外縁部33に接続する直線状外縁部(外縁部)34,34とノズル孔7の円形の出口側開口部15とでオリフィス8を形作るようになっている。このノズル孔7の出口側開口部15と干渉体16’の直線状外縁部34,34とで形作られるオリフィス8の開口縁のコーナー部分22,22は、丸みのない鋭利な形状になっており、オリフィス8のコーナー分22及びその近傍を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状になっている。しかも、本変形例に係るノズルプレート3は、オリフィス8の開口縁のコーナー部分22,22が第3変形例のノズルプレート3よりも狭く尖っているため、オリフィス8を通過する燃料の液膜の端部を空気との摩擦でより一層微粒化しやすくなっている。
 本変形例に係るノズルプレート3は、上記第1実施形態に係るノズルプレート3と同様に、従来のノズルプレートと比較して、燃料の微粒化の程度をより一層向上させることができる。
  (第1実施形態の第5変形例)
 図9は、第1実施形態の第5変形例に係るノズルプレート3の要部を示す図(図3に対応する図)である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、円錐台形状の干渉体16を一対形成し、ノズル孔7の円形の出口側開口部15と干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁のコーナー部分22,22,22,22を上記実施形態に係るノズルプレート3(図3参照)よりも2倍に増加させている。そして、ノズル孔7の円形の出口側開口部15と干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分(4箇所のコーナー部分)22は、丸みのない鋭利な尖った形状になっており、オリフィス8のコーナー部分22及びその近傍を通過する液膜を薄膜化することができ、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易くなっている。
 なお、一対の干渉体16,16の中心及びノズル孔7の中心は、B7-B7線上(X軸方向に沿った線上)に位置するようになっている。また、ノズル孔7の中心から各円形状外縁部21,21までの距離は、(ε2/2)となっている。
 本変形例に係るノズルプレート3は、丸みのない鋭利な尖った形状のコーナー部分22によって燃料を微粒化する効果が上記第1実施形態に係るノズルプレート3よりも大きく、上記第1実施形態に係るノズルプレート3よりも燃料を広範囲に噴射させることができる。
 また、本変形例に係るノズルプレート3は、一対の干渉体16,16の間隔(隙間)ε2を変えることにより、オリフィス8から外部へ噴射される燃料の指向性や噴射角度を変えることができる。
  (第1実施形態の第6変形例)
 図10は、第1実施形態の第6変形例に係るノズルプレート3の要部を示す図(図3に対応する図)であり、第5変形例に係るノズルプレート3の変形例を示す図である。なお、本変形例に係るノズルプレートは、第1実施形態及び第5変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第5変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、一対の干渉体16,16を突き合わせることにより、ノズル孔7の円形の出口側開口部15と干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の4箇所のコーナー部分22,22,22,22に加え、一対の干渉体16,16の突き合わせ部に2箇所のコーナー部分22’,22’が形作られるようになっている。そして、ノズル孔7の円形の出口側開口部15と干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分22、及び一対の干渉体16,16の突き合わせ部に形作られる各コーナー部分22’、22’は、丸みのない鋭利な尖った形状になっており、オリフィス8を各コーナー部22,22’及びその近傍を通過する液膜を薄膜化することができ、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易くなっている。
 なお、一対の干渉体16,16の中心及びノズル孔7の中心は、B8-B8線上(X軸方向に沿った線上)に位置するようになっている。また、一対の円形状外縁部21,21の接触点がノズル孔7の中心に合致している。
 本変形例に係るノズルプレート3は、丸みのない鋭利な尖った形状のコーナー部分22,22’によって燃料を微粒化する効果が上記第1実施形態及び上記第5変形例に係るノズルプレート3よりも大きい。
  (第1実施形態の第7変形例)
 図11は、第1実施形態の第7変形例に係るノズルプレート3の要部を示す図(図3に対応する図)であり、第5変形例に係るノズルプレート3の変形例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第5変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第5変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、ノズル孔7を四角孔とし、ノズル孔7の出口側開口部15の形状を四角形状とした点が第5変形例のノズルプレート3と相違する。このノズルプレート3において、ノズル孔7の出口側開口部15と干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。
 本変形例に係るノズルプレート3は、上記第5変形例に係るノズルプレート3と同様に、丸みのない鋭利な尖った形状の各コーナー部分22によって燃料を微粒化する効果が上記第1実施形態に係るノズルプレート3よりも大きく、上記第1実施形態に係るノズルプレート3よりも燃料を広範囲に噴射させることができる。
  (第1実施形態の第8変形例)
 図12は、第1実施形態の第8変形例に係るノズルプレート3の要部を示す図(図3に対応する図)であり、第6変形例に係るノズルプレート3の変形例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第6変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第6変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、一対の干渉体16,16の当接位置P1がノズル孔7の中心線(Y軸方向に沿った中心線)35とノズル孔7の出口側開口部15との交点に位置しており、一対の干渉体16,16の当接位置がノズル孔7の中心に位置する第6変形例に係るノズルプレート3と異なる。
 本変形例に係るノズルプレート3は、ノズル孔7の円形の出口側開口部15と一対の干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の2箇所のコーナー部分22,22に加え、一対の干渉体16,16の突き合わせ部に1箇所のコーナー部分22’が形作られるようになっている。そして、ノズル孔7の円形の出口側開口部15と一対の干渉体16.16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分22、及び一対の干渉体16,16の突き合わせ部に形作られるコーナー部分22’は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する液膜の端部を薄膜化することができ、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易くなっている。
 本変形例に係るノズルプレート3は、丸みのない鋭利な尖った形状の各コーナー部分22,22’によって燃料を微粒化する効果が上記第1実施形態に係るノズルプレート3よりも大きい。
  (第1実施形態の第9変形例)
  図13は、第1実施形態の第9変形例に係るノズルプレート3の要部を示す図(図3に対応する図)であり、第4変形例に係るノズルプレート3の変形例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第4変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第4変形例のノズルプレート3の説明と重複する説明を省略する。
  本変形例に係るノズルプレート3は、上記第4変形例に係るノズルプレート3の干渉体16’と同様の干渉体16’が3個密接させた状態で形成されており、中央に位置する干渉体16’の長手方向の中心線36がノズル孔7の中心線(X軸に沿って延びる中心線)37に合致するように配置されている。
 この本変形例に係るノズルプレート3は、3個の干渉体16’の一端側の半円形状外縁部33とノズル孔7の円形の出口側開口部15とでオリフィス8を形作るようになっている。このノズル孔7の出口側開口部15と干渉体16’の半円形状外縁部33とで形作られるオリフィス8の開口縁のコーナー部分22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状になっている。また、本変形例に係るノズルプレート3は、隣り合う干渉体16’,16’の半円形状外縁部33,33の接触部に形作られるコーナー部分22’が丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状になっている。すなわち、本変形例に係るノズルプレート3は、丸みのない鋭利な形状のコーナー部分22,22’が4箇所形成される。
 本変形例に係るノズルプレート3は、丸みのない鋭利な尖った形状のコーナー部分22,22’によって燃料を微粒化する効果が上記第1実施形態に係るノズルプレート3よりも大きい。
  (第1実施形態の第10変形例)
 図14は、第1実施形態の第10変形例に係るノズルプレート3の要部を示す図(図3に対応する図)である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、干渉体16の燃料衝突面18が底壁部11の外表面20から+Z軸方向にhだけ離間し、干渉体16の円形状外縁部21とノズル孔7の出口側開口部15とが隙間38分だけ+Z軸方向に離れている。そして、このノズルプレート3において、干渉体16を-Z軸方向へ向かって見た場合(平面視した場合)、干渉体16の円形状外縁部21とノズル孔7の円形の出口側開口部15とによって三日月形状のオリフィス8が形作られ、この三日月形状のオリフィス8の両端部に丸みのない鋭利に尖ったコーナー部分22,22が形成されている。
 このような本変形例に係るノズルプレート3は、燃料がオリフィス8から噴射されると、空気が干渉体16の燃料衝突面18と底壁部11の外表面20との隙間38から噴霧に巻き込まれ、空気が第1実施形態に係るノズルプレート3による燃料噴射時よりも多く燃料に流入し、燃料を微粒化する効果がある。
 なお、図14(a)に示すように、干渉体16の燃料衝突面18と底壁部11の外表面20との間に隙間38を設けることは、上記第1~第9変形例に適用できる。
  (第1実施形態の第11変形例)
 図15は、第1実施形態の第11変形例に係るノズルプレート3の要部を示す図であり、第5変形例(図9参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第5変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第5変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、第5変形例における一対の干渉体16,16をノズル孔7の中心CLに対して+X方向へε3だけずらしたものである。そして、この変形例に係るノズルプレート3は、第5変形例におけるノズルプレート3と同様に、ノズル孔7の円形の出口側開口部15と一対の干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分(4箇所のコーナー部分)22は、丸みのない鋭利な尖った形状になっており、オリフィス8のコーナー部分22及びその近傍を通過する液膜を薄膜化することができ、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易くなっている。しかも、本変形例に係るノズルプレート3は、一対の干渉体16,16の一方と他方とでノズル孔7を塞ぐ面積が異なり、一方(図15の-X方向側)の干渉体16がノズル孔7を塞ぐ面積の方が、他方(図15の+X方向側)の干渉体16がノズル孔7を塞ぐ面積よりも大きく、一方の干渉体16に衝突した後に他方の干渉体16側へ流動方向を変換させられる燃料の方が、他方の干渉体16に衝突した後に一方の干渉体16側へ流動方向を変換させられる燃料よりも多い。更に、オリフィス8がノズル孔7の中心に対して+X方向寄りにずれて位置している。その結果、本変形例に係るノズルプレート3は、オリフィス8からの燃料の噴射方向をノズル孔7の中心CLに対して+X方向にずらすことができる。
 なお、本変形例に係るノズルプレート3は、一対の干渉体16,16をノズル孔7の中心CLに対して+X方向へずらした例を示したが、これに限られず、燃料をオリフィス8の中心CLに対してどの方向へずらして噴射させたいのかによって、一対の干渉体16,16をノズル孔7の中心CLに対してどの方向にずらすのかが決定される。
  (第1実施形態の第12変形例)
 図16は、第1実施形態の第12変形例に係るノズルプレート3の要部を示す図であり、第6変形例(図10参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第6変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第6変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、第6変形例における一対の干渉体16,16をノズル孔7の中心CLに対して+X方向へε3だけずらしたものである。そして、この変形例に係るノズルプレート3は、第6変形例におけるノズルプレート3と同様に、ノズル孔7の円形の出口側開口部15と一対の干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分(4箇所のコーナー部分)22に加え、一対の干渉体16,16の突き合わせ部に2箇所のコーナー部分22’,22’が形作られている。これらコーナー部分22,22’は、丸みのない鋭利な尖った形状になっており、オリフィス8のコーナー部分22,22’及びその近傍を通過する液膜を薄膜化することができ、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易くなっている。しかも、本変形例に係るノズルプレート3は、一対の干渉体16,16の一方と他方とでノズル孔7を塞ぐ面積が異なり、一方(図15の-X方向側)の干渉体16がノズル孔7を塞ぐ面積の方が、他方(図15の+X方向側)の干渉体16がノズル孔7を塞ぐ面積よりも大きく、一方の干渉体16に衝突した後に他方の干渉体16側へ流動方向を変換させられる燃料の方が、他方の干渉体16に衝突した後に一方の干渉体16側へ流動方向を変換させられる燃料よりも多い。更に、オリフィス8がノズル孔7の中心CLに対して+X方向寄りにずれて位置している。その結果、本変形例に係るノズルプレート3は、オリフィス8からの燃料の噴射方向をノズル孔7の中心CLに対して+X方向にずらすことができる。
 なお、本変形例に係るノズルプレート3は、一対の干渉体16,16をノズル孔7の中心CLに対して+X方向へずらした例を示したが、これに限られず、燃料をオリフィス8の中心CLに対してどの方向へずらして噴射させたいのかによって、一対の干渉体16,16をノズル孔7の中心CLに対してどの方向にずらすのかが決定される。
  (第1実施形態の第13変形例)
 図17は、第1実施形態の第13変形例に係るノズルプレート3の要部を示す図であり、第12変形例(図16参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第12変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第12変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、一対の干渉体16,16の一方(右側:+X側の干渉体16)が他方(左側:-X側の干渉体16)よりも小さく形成されている。その結果、本変形例に係るノズルプレート3は、第12変形例に係るノズルプレート3と比較し、オリフィス8がノズル孔7の中心CLに対して+X方向寄りにずれる量(ε3)が同じであっても、一対の干渉体16,16の一方と他方とがノズル孔7を塞ぐ面積の差が大きくなると共に、オリフィス8の開口面積が大きくなり、第12変形例に係るノズルプレート3と異なる燃料噴射特性を得ることができる。なお、この変形例に係るノズルプレート3は、第12変形例におけるノズルプレート3と同様に、ノズル孔7の円形の出口側開口部15と一対の干渉体16,16の円形状外縁部21,21とで形作られるオリフィス8の開口縁の各コーナー部分(4箇所のコーナー部分)22に加え、一対の干渉体16,16の突き合わせ部に2箇所のコーナー部分22’,22’が形作られている。
  (第1実施形態の第14変形例)
 図18は、第1実施形態の第14変形例に係るノズルプレート3の要部を示す図であり、第13変形例(図17参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第13変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第13変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、第13変形例に係るノズルプレート3の一対の干渉体16,16の一方(右側:+X側の干渉体16)を図8で示した干渉体16’に代え、他方の干渉体16(左側:-X側の干渉体16)と一方の干渉体16’とを押し潰すように(±Y方向に所定の幅で接触するように)突き合わせた形状になっている。
 このような本変形例に係るノズルプレート3は、第13変形例に係るノズルプレート3と比較し、オリフィス8の開口面積が狭くなり、一方の干渉体16’と他方の干渉体16がノズル孔7を塞ぐ面積の差も異なることになる。しかも、本変形例に係るノズルプレート3は、ノズル孔7の円形の出口側開口部15と干渉体16の円形状外縁部21とで形作られる尖ったコーナー部分22、及びノズル孔7の円形の出口側開口部15と干渉体16’の直線状外縁部34とで形作られる尖ったコーナー部分22の方が、第13変形例に係るノズルプレート3のコーナー部分22よりも狭く尖った形状になっている。一方、本変形例に係る一方の干渉体16’と他方の干渉体16の突き合わせ部42に形作られるコーナー部分22’,22’は、第13変形例に係るノズルプレート3のコーナー部分22’,22’よりも尖っていない。その結果、本変形例に係るノズルプレート3は、第13変形例に係るノズルプレート3と異なる燃料噴射特性を得ることができる。
 なお、干渉体16と干渉体16’の突き合わせ部42は、ノズル孔7の中心CLから+X方向にε3だけずれて位置している。
  (第1実施形態の第15変形例)
 図19は、第1実施形態の第15変形例に係るノズルプレート3の要部を示す図であり、第14変形例(図18参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第14変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第14変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、第14変形例に係るノズルプレート3のノズル孔7を四角孔とし、ノズル孔7の出口側開口部15の形状を四角形状とした点が第14変形例に係るノズルプレート3と相違する。
 このような本変形例に係るノズルプレート3は、一方の干渉体16’と他方の干渉体16の突き合わせ部42がノズル孔7の中心CLに対して+X方向へε3だけずれて位置している。また、本変形例に係るノズルプレート3において、ノズル孔7の出口側開口部15と干渉体16’の直線状外縁部34とで形作られる2箇所のコーナー部分22と、ノズル孔7の出口側開口部15と干渉体16の円形状外縁部21とで形作られる2箇所のコーナー部分22、及び干渉体16’と干渉体16の突き合わせ部42に形作られる2箇所のコーナー部分22’は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化しやすい鋭利な尖った形状にすることができる。
  (第1実施形態の第16変形例)
 図20は、第1実施形態の第16変形例に係るノズルプレート3の要部を示す図であり、第8変形例(図12参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第8変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第8変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、一対の干渉体16,16がノズル孔7よりも大きく、且つ、一対の干渉体16,16の突き合わせ部42がノズル孔7の中心線(Y軸方向に沿った中心線)35上に位置しており、一対の干渉体16,16の突き合わせ部42の一端(コーナー部分22’)がノズル孔7の中心CLの近傍に位置し、一対の干渉体16,16の突き合わせ部42の他端がノズル孔7の外方に位置している。そして、本変形例に係るノズルプレート3は、ノズル孔7が一対の干渉体16,16で部分的に塞がれることにより、ノズル孔7の出口側開口部15と一対の干渉体16,16の円形状外縁部21,21とで略扇形のオリフィス8が形作られている。また、オリフィス8の開口縁には、ノズル孔7の出口側開口部15と一対の干渉体16,16の円形状外縁部21,21とで形作られるコーナー部分22,22と、一対の干渉体16,16の突き合わせ部42に形作られるコーナー部分22’とが形成されている。これらオリフィス8のコーナー部分22,22’は、丸みのない尖った形状になっており、オリフィス8を通過する液膜の端部を薄膜化することができ、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易くなっている。
 また、本変形例に係るノズルプレート3は、第8変形例に係るノズルプレート3と比較し、オリフィス8の開口面積が小さく、且つ、オリフィス8がノズル孔7の中心CLに対して+Y方向側に偏って位置している点において相違している。その結果、本変形例に係るノズルプレート3は。第8変形例に係るノズルプレート3と異なる燃料噴射特性を発揮することができる。
  (第1実施形態の第17変形例)
 図21は、第1実施形態の第17変形例に係るノズルプレート3の要部を示す図であり、第9変形例(図13参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第9変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第9変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、第9変形例に係るノズルプレート3において、中央部に位置する干渉体16’を-X方向へずらし、且つ、+Y軸方向に隣り合って位置する干渉体16’と-Y軸方向に隣り合って位置する干渉体16’を円錐台形状の干渉体16,16にそれぞれ変更した形状になっている。その結果、本変形例に係るノズルプレート3は、第9変形例に係るノズルプレート3と比較し、オリフィス8をX軸寄りに狭めることになり、燃料を+X軸寄りに多く出射できるようになっている。
 なお、一対の干渉体16,16は、X軸を中心とした線対称の形状であり、中心位置がY軸から-X軸方向へ所定寸法ε4だけずれて位置している。
 また、本変形例に係るノズルプレート3において、一対の干渉体16,16の円形状外縁部21,21とノズル孔7の出口側開口部15とで形作られるコーナー部分22,22と、一対の干渉体16,16と干渉体16’との突き合わせ部42,42に形作られるコーナー部分22’、22’は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。
  (第1実施形態の第18変形例)
 図22は、第1実施形態の第18変形例に係るノズルプレート3の要部を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、ノズル孔7が矩形形状の孔であり、ノズル孔7の出口側開口部15の形状が長方形となるように形成されている。この長方形の出口側開口部15の長手方向一端側には第1の干渉体16が形成され、長方形の出口側開口部15の長手方向他端側のコーナー部分15cには第2の干渉体16が形成されている。第1の干渉体16は、出口側開口部15の長手方向一端側の両コーナー部分15a,15bを覆うようにノズル孔7側へ張り出しており、出口側開口部15を部分的に塞いでいる。第2の干渉体16は、第1の干渉体16よりも大きく形成され、出口側開口部15の長手方向他端側に位置する両コーナー部分15c,15dのうちの一方(15c)を覆い、一方のコーナー部分15cを形作る長辺と短辺に跨るようにノズル孔7側に張り出し、出口側開口部15を部分的に塞いでいる。また、本変形例において、第2の干渉体16が出口側開口部15を部分的に塞ぐ面積は、第1の干渉体16が出口側開口部15を部分的に塞ぐ面積よりも大きい。そして、オリフィス8の開口縁は、第1及び第2の干渉体16,16の円弧状外縁部21,21とノズル孔7の出口側開口部15とで形作られている。また、本変形例に係るノズルプレート3は、第1及び第2の干渉体16,16の円形状外縁部21,21とノズル孔7の出口側開口部15とでコーナー部分22が4箇所形作られ、この4箇所のコーナー部分22が丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。また、ノズルプレート3は、第2の干渉体16の円弧状外縁部21と出口側開口部15の開口縁との間に出口側開口部15の他部分よりも狭い開口部分15’が形成されており、この狭い開口部分15’がノズル孔7を通過する燃料の流れを部分的に薄膜化することができる。
 このように構成された本変形例に係るノズルプレート3は、ノズル孔7を通過する燃料の一部が第1の干渉体16の燃料衝突面18に衝突し、この燃料衝突面18に衝突した燃料の流動方向が+X方向へ急激に変えられると共に、ノズル孔7を通過する燃料の一部が第2の干渉体16の燃料衝突面18に衝突し、この燃料衝突面18に衝突した燃料の流動方向がほぼ-Y方向へ急激に変えられる(図22(a)参照)。その結果、第1の干渉体16及び第2の干渉体16の燃料衝突面18,18に衝突して流動方向が急激に変えられた燃料の流れとノズル7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。そして、オリフィス8から噴射される燃料は、主に+Z方向に対して斜めに傾いた(図22(a)における+X軸と-Y軸の中間方向へ傾いた)流れになる。また、本変形例に係るノズルプレート3は、上述のように、第1及び第2干渉体16,16の円弧状外縁部21,21とノズル孔7の出口側開口部15とで形作られた4箇所のコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
 図22(c)は、本変形例に係る燃料噴射装置用ノズルプレート3の中央部側平面図である。この図22(c)に示すように、本変形例に係る燃料噴射装置用ノズルプレート3は、ノズル孔7と第1及び第2の干渉体16,16がノズルプレート中心3cの周囲に等間隔で4箇所配置されている。このような本変形例に係る燃料噴射装置用ノズルプレート3は、各ノズル孔7(オリフィス8)から噴射された燃料がノズルプレート中心3cを中心とする螺旋状の流れを生じさせる。なお、図22(c)は、ノズル孔7と第1及び第2の干渉体16,16をノズルプレート中心3cの周囲に複数配置する場合の一例を示すものであり、本変形例を限定するものではない。すなわち、本変形例において、ノズル孔7と第1及び第2の干渉体16,16は、使用条件等に応じた最適の個数がノズルプレート中心3cの周囲に配置される。
  (第1実施形態の第19変形例)
 図23は、第1実施形態の第19変形例に係るノズルプレート3の要部を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、ノズル孔7の円形の出口側開口部15の周囲に等間隔で3個の干渉体16,16,16を配置すると共に、隣り合う干渉体16,16の間に隙間43が生じるように形成されている。そして、本変形例に係るノズルプレート3は、ノズル孔7の出口側開口部15と3個の干渉体16,16,16とでオリフィス8が形作られている。
 このような本変形例に係るノズルプレート3は、3個の干渉体16の円形状外縁部21とノズル孔7の出口側開口部15とでコーナー部分22が6箇所形作られ、この6箇所のコーナー部分22が丸みのない鋭利な形状になっているため、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。
 また、本変形例に係るノズルプレート3は、3個の各干渉体16がノズル孔7を塞ぐ面積が等しく、オリフィス8がノズル孔7の中央CLからノズル孔7の開口縁(出口側開口部15)に向かうに従って流路面積が漸減するようになっているため、燃料の流れをノズル孔7の中心寄りに集め易く、ノズル孔7の中心線方向(+Z軸方向)に沿った方向へ向けて燃料を噴射することが可能となる。
 また、本変形例に係るノズルプレート3は、隣り合う干渉体16,16の間の隙間43がコーナー部分22,22の近傍で狭くなっているため、オリフィス8のコーナー部分22,22の近傍を通過する燃料の流れを薄膜化でき、オリフィス8のコーナー部分22,22の近傍を通過する燃料の流れを空気との摩擦で微粒化し易くなっている。
 (第1実施形態の第20変形例)
 図24は、第1実施形態の第20変形例に係るノズルプレート3の要部を示す図であり、第19変形例(図23参照)の類似例を示す図である。なお、本変形例に係るノズルプレート3は、第1実施形態及び第19変形例のノズルプレート3と共通する構成部分には同一符号を付し、第1実施形態及び第19変形例のノズルプレート3の説明と重複する説明を省略する。
 本変形例に係るノズルプレート3は、3個の干渉体16をノズル孔7の周囲に等間隔で配置する点において第19変形例に係るノズルプレート3と同様であるが、以下の点において第19変形例に係るノズルプレート3と相違する。
 すなわち、本変形例に係るノズルプレート3は、ノズル孔7の中心CLに対して+Y方向に位置する干渉体16を他の2個の干渉体16,16よりも小さくし、その小さな干渉体16のノズル孔7を塞ぐ面積が他の干渉体16のノズル孔7を塞ぐ面積よりも小さくなっており、図24(a)におけるオリフィス8の図心位置がノズル孔7の中心CLから+Y方向にずれて位置するようになっている。その結果、本変形例に係るノズルプレート3は、オリフィス8からの燃料噴射方向をノズル孔7の中心CLに対して+Y方向へずらすことが可能となる。
 なお、本変形例に係るノズルプレート3は、第19変形例に係るノズルプレート3と同様に、3個の干渉体16の円形状外縁部21とノズル孔7の出口側開口部15とでコーナー部分22が6箇所形作られ、この6箇所のコーナー部分22が丸みのない鋭利な形状になっているため、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。
 また、本変形例に係るノズルプレート3は、第19変形例に係るノズルプレート3の3個の干渉体16のうちの+Y方向に位置する干渉体16が他の干渉体16,16よりも小さく形成される態様を例示したが、これに限られず、オリフィス8からの燃料の噴射方向をノズル孔7の中心CLに対してどのようにずらすのかによって、3個の干渉体16のうちのいずれか1個を他の2個よりも小さくする。
 また、本変形例に係るノズルプレート3は、第19変形例に係るノズルプレート3の3個の干渉体16のうちの任意の2個を他の1個よりも小さくしてもよい。
  (他の変形例)
 上記第1実施形態、第1~20変形例は、合成樹脂材料製のノズルプレート3を例示したが、これに限られず、メタルインジェクションモールド法を使用して形成される焼結金属製のノズルプレートに適用できる。
 また、上記第1実施形態、第1~20変形例は、一対のノズル孔7,7及び一対のオリフィス8をノズルプレート3に形成する態様を例示したが、これに限られず、単一のノズル孔7及び単一のオリフィス8をノズルプレート3に形成してもよく、3個以上の複数のノズル孔7及びこのノズル孔7と同数のオリフィス8、又はノズル孔7よりも多くのオリフィス8をノズルプレート3に形成するようにしてもよい。
 また、上記第1実施形態、第1~20変形例において、干渉体16,16’の側面17,17’の傾斜角θは、0°<θとなる態様を例示したが、これに限られず、0°=θとしてもよい。
 また、ノズルプレート3は、上記第1実施形態、第1~20変形例のものを適宜組み合わせて構成してもよい。
 [第2実施形態]
 図25乃至図27は、本発明の第2実施形態に係るノズルプレート3の一部を拡大して示す図である。このうち、図25(a)がノズルプレート3の平面図(図3(a)に対応する図)であり、図25(b)が図25(a)のB22-B22線に沿って切断して示すノズルプレート3の断面図である。また、図26(a)が第1ノズルプレート3aの平面図であり、図26(b)が図26(a)のB23-B23線に沿って切断して示す第1ノズルプレート3aの断面図である。また、図27(a)が第2ノズルプレート3bの平面図であり、図27(b)が図27(a)のB24-B24線に沿って切断して示す第2ノズルプレート3bの断面図である。
 これらの図に示すように、本実施形態に係るノズルプレート3は、金属プレート(例えば、ステンレス鋼板)をプレス成形してなる第1ノズルプレート3aと第2ノズルプレート3bとを重ねて構成されている。そして、第2ノズルプレート3bは、丸孔であるノズル孔7が穿孔されている。また、第1ノズルプレート3aは、燃料逃がし孔40が穿孔されると共に、ノズル孔7の円形の出口側開口部15を部分的に塞ぐ干渉体16”が形成されている。第1ノズルプレート3aの干渉体16”は、平面視した形状が略矩形形状の燃料逃がし孔40の一辺を対向する他の一辺側へ張り出させたような舌片状体であり、先端側が半円形に丸められ、先端側の半円形状外縁部(円弧状外縁部、外縁部)33’とノズル孔7の円形の出口側開口部22とで三日月形状のオリフィス8を形作るようになっている。このノズル孔7の出口側開口部15と干渉体16”の半円形状外縁部33’とで形作られるオリフィス8の開口縁のコーナー部分22,22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状になっている。
 また、第1ノズルプレート3aの燃料逃がし孔40は、干渉体16”を除いた燃料逃がし孔40の側面41がオリフィス8から噴射される噴霧を邪魔しないように、干渉体16”を除いた燃料逃がし孔40の側面41がノズル孔7の出口側開口部15から大きく離れて位置するように形成されている。また、第1ノズルプレート3aは、燃料逃がし孔40をプレスで穿孔する都合上、燃料逃がし孔40の4隅が丸められている。
 なお、第1ノズルプレート3aと第2ノズルプレート3bは、干渉体16”がノズル孔7に対して正確に位置するように、図示しない位置決め突起と位置決め孔との凹凸係合等で位置決めされた状態で重ねられる。
 本実施形態に係るノズルプレート3によれば、第1実施形態のノズルプレート3と同様の効果を得ることができる。
 [第3実施形態]
 図28乃至図29は、本発明の第3実施形態に係るノズルプレート3を示す図である。なお、図28(a)がノズルプレート3の正面図であり、図28(b)が図28(a)のB25-B25線に沿って切断して示すノズルプレート3の断面図であり、図28(c)がノズルプレート3の背面図である。図29(a)が図28(a)で示したノズルプレート3の中心部の拡大図であり、図29(b)が図29(a)のB26-B26線に沿って切断して示すノズルプレート3の中心部の断面図である。
 図28乃至図29に示すように、本実施形態に係るノズルプレート3は、円筒状壁部10と、この円筒状壁部10の一端を塞ぐように形成された底壁部11と、が一体に成形された有底筒状体である。底壁部11は、ノズル孔7が開口するノズル孔プレート部分50と、干渉体51が形成された干渉体プレート部分52とを有している。干渉体プレート部分52は、底壁部11の中心軸53の周りを座繰るようにして形成されている。ノズル孔プレート部分50は、干渉体プレート部分52のうちの中心軸53を取り囲む部分がリング状に部分的に座繰りされて形成されたような形状になっている。また、底壁部11は、ノズル孔7が中心軸53の周りに等間隔で6箇所形成されており、ノズル孔7の一部がノズル孔プレート部分50の表裏を貫通するように(表裏に開口するように)形成されている。また、底壁部11は、各ノズル孔7の一部を塞ぐ干渉体51がノズル孔プレート部分50で取り囲まれた内側の干渉体プレート部分52a(52)に複数形成されている。
 干渉体51は、ノズル孔7の数と同数形成されている。この干渉体51は、第1実施形態に係るノズルプレート3の干渉体16,16’に対応し、ノズル孔7を部分的に塞いでオリフィス8を形成しており、オリフィス8の開口縁の一部を形作る円弧状外縁部(外縁部)54を有している。そして、干渉体51の円弧状外縁部54とノズル孔7の円形の出口側開口部15とで形作られるオリフィス8の開口縁のコーナー部分22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化され易い鋭利な形状にする。このような本実施形態に係るノズルプレート3によれば、オリフィス8から噴射される燃料のうちのオリフィス8の両コーナー部分22,22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になり、オリフィス8のコーナー部分22,22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。
 また、干渉体51は、ノズル孔7を通過する燃料の一部が衝突する燃料衝突面55と、燃料衝突面55に鋭角(例えば、75°)で交わる側面(傾斜面)56と、を有している。この干渉体51の燃料衝突面55は、ノズル孔7を通過する燃料の一部を衝突させることによって、ノズル孔7を通過する燃料の一部を微粒化すると共に、ノズル孔7を通過する燃料の一部の流れを急激に曲げてノズル孔7及びオリフィス8を直進して通過しようとする燃料に衝突させ、オリフィス8を通過した燃料が空気中で微粒化しやすくなるように燃料の流れを乱流にする。また、干渉体51の側面56は、オリフィス8を通過した燃料との間に空気層が生じるようになっており、オリフィス8を通過した燃料が空気を巻き込みやすく、オリフィス8を通過する燃料の微粒化が促進され、微粒化された燃料を吸気管2内に均一に分散させやすくなる。
 また、底壁部11は、ノズルガード突起57がノズル孔プレート部分50を取り囲む位置で且つ外表面58の径方向外方端側に形成されている。このノズルガード突起57は、ノズルプレート3がバルブボディ5の先端側に取り付けられた状態において(図2参照)、バルブボディ5の中心軸の延びる方向に沿って出っ張るように形成されており、底壁部11の周方向に沿って形成された環状体である。また、ノズルガード突起57は、先端が仮想平面に接触した際に、仮想平面と底壁部11との間に隙間が生じるように形成されている。このように、底壁部11に形成されたノズルガード突起57は、ノズルプレート3をバルブボディ5に組み付ける際に、工具等がノズル孔7及びその周辺に衝突するのを防止し、底壁部11のノズル孔7及びその周辺箇所が損傷するのを防止するとともに、ノズルプレート3がバルブボディ5に組み付けられた燃料噴射装置1をエンジンの吸気管2に組み付ける際に、エンジン部品等がノズル孔7及びその周辺に衝突するのを防止し、底壁部11のノズル孔7及びその周辺箇所が損傷するのを防止する。
 また、底壁部11において、ノズル孔プレート部分50の外側に位置する外側の干渉体プレート部分52b(52)の外表面とノズル孔プレート部分50の外表面とを接続する側面60は、ノズル孔プレート部分50の内側に位置する干渉体プレート部分52a(52)の外縁に倣うような波形形状に形成されており、干渉体プレート部分52a(52)の外縁からほぼ等距離に位置している。また、ノズル孔プレート部分50の外表面と外側の干渉体プレート部分52b(52)の外表面とを接続する側面60と、干渉体プレート部分52b(52)の外表面と底壁部11の外表面とを接続する側面61と、ノズルガード突起57の側面62は、オリフィス8から噴射された燃料の流動方向(噴射方向)を考慮し、オリフィス8から噴射された噴霧を妨げることがないように形成されている。
 以上のような本実施形態に係るノズルプレート3は、各ノズル孔7毎に干渉体16を別々に形成する場合に比較し(図2参照)、ノズル孔7周辺の肉厚を広範囲に厚くすることができ、ノズル孔7の周辺部位の強度向上を図ることができる。
 また、本実施形態に係るノズルプレート3は、第1実施形態に係るノズルプレート3と同様に、オリフィス8から噴射される燃料のうちのオリフィス8の両コーナー部分22,22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になるため、オリフィス8のコーナー部分22,22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。
 なお、本実施形態において、ノズル孔7は、底壁部11の中心軸53の周りに等間隔で6箇所形成する態様を例示したが、これに限られず、底壁部11の中心軸53の周りに等間隔又は不等間隔で2箇所以上の複数箇所に形成してもよい。そして、本実施形態における干渉体プレート部分52a,52bは、ノズル孔7の個数及び配置によって平面形状が異なるものになる。また、本実施形態において、底壁部11の干渉体プレート部分52とノズル孔プレート部分50の肉厚は、求められる燃料噴射特性等に応じて適宜変更される。
 [第4実施形態]
 図30乃至図31は、本発明の第4実施形態に係るノズルプレート3を示す図であり、図24において示したノズルプレート3の変形例を示す図である。なお、図30(a)がノズルプレート3の正面図であり、図30(b)が図30(a)のB27-B27線に沿って切断して示すノズルプレート3の断面図であり、図30(c)がノズルプレート3の背面図である。図31(a)が図30(a)で示したノズルプレート3の中心部の拡大図であり、図31(b)が図31(a)のB28-B28線に沿って切断して示すノズルプレート3の中心部の断面図である。
 図30乃至図31に示すように、本実施形態に係るノズルプレート3は、円筒状壁部10と、この円筒状壁部10の一端を塞ぐように形成された底壁部11と、が一体に成形された有底筒状体である。底壁部11は、ノズル孔7が中心軸53の周りに等間隔で3箇所形成されている。また、底壁部11は、ノズル孔7を取り囲むように逆円錐台形状に座繰りがされ、ノズル孔7の周囲に干渉体プレート部分63が形成され、干渉体プレート部分63を部分的に座繰るようにしてノズル孔プレート部分64が形成されている。干渉体プレート部分63は、ノズル孔プレート部分64よりも肉厚に形成されており、ノズル孔7の周囲の形状が図24(a)に示した3個の干渉体16を接続して一体化したような形状になっている。干渉体プレート部分63は、3箇所のノズル孔7に対応して3箇所形成されている。この干渉体プレート部分63の干渉体65は、第1実施形態に係るノズルプレート3の干渉体16に対応し、ノズル孔7の3箇所を部分的に塞ぐように3箇所形成されている。そして、3箇所の干渉体65のそれぞれは、図24(a)に示したノズルプレート3の3個の干渉体16のいずれかに対応している。これら3個の干渉体65は、ノズル孔7を部分的に塞いでオリフィス8を形成しており、オリフィス8の開口縁の一部を形作る円弧状外縁部(外縁部)66を有している。そして、干渉体65の円弧状外縁部66とノズル孔7の円形の出口側開口部15とで形作られるオリフィス8の開口縁のコーナー部分22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化され易い鋭利な形状にする。このような本実施形態に係るノズルプレート3によれば、オリフィス8から噴射される燃料のうちのオリフィス8の両コーナー部分22,22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になり、オリフィス8のコーナー部分22,22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。
 ノズル孔7の一部は、干渉体プレート部分63よりも薄肉のノズル孔プレート部分64の表裏を貫通するように(表裏に開口するように)形成されている。そして、干渉体プレート部分63のうちの隣り合う干渉体65,65を接続する側面67は、ノズル孔7の出口側開口部15から噴射される燃料の噴射方向を考慮し、噴霧を妨げることがない位置に形成されている。
 また、干渉体65は、ノズル孔7を通過する燃料の一部が衝突する燃料衝突面68と、燃料衝突面68に鋭角(例えば、75°)で交わる側面(傾斜面)70と、を有している。この干渉体65の燃料衝突面68は、ノズル孔7を通過する燃料の一部を衝突させることによって、ノズル孔7を通過する燃料の一部を微粒化すると共に、ノズル孔7を通過する燃料の一部の流れを急激に曲げてノズル孔7及びオリフィス8を直進して通過しようとする燃料に衝突させ、オリフィス8を通過した燃料が空気中で微粒化しやすくなるように燃料の流れを乱流にする。また、干渉体65の側面70は、オリフィス8を通過した燃料との間に空気層が生じるようになっており、オリフィス8を通過した燃料が空気を巻き込みやすく、オリフィス8を通過する燃料の微粒化が促進され、微粒化された燃料を吸気管2内に均一に分散させやすくなる(図1参照)。
 また、底壁部11は、ノズルガード突起71が外表面の径方向外方端側の周方向に沿って等間隔で3箇所形成されている。このノズルガード突起71は、ノズルプレート3がバルブボディ5の先端側に取り付けられた状態において(図2参照)、バルブボディ5の中心軸の延びる方向に沿って出っ張るように形成されており、隣り合うノズル孔7,7の中間に位置するように形成されたブロック体である。また、ノズルガード突起71は、先端が仮想平面に接触した際に、仮想平面と底壁部11との間に隙間が生じるように形成されている。このように、底壁部11に3箇所形成されたノズルガード突起71は、ノズルプレート3をバルブボディ5に組み付ける際に、工具等がノズル孔7及びその周辺に衝突するのを防止し、底壁部11のノズル孔7及びその周辺箇所が損傷するのを防止するとともに、ノズルプレート3がバルブボディ5に組み付けられた燃料噴射装置1をエンジンの吸気管2に組み付ける際に、エンジン部品等がノズル孔7及びその周辺に衝突するのを防止し、底壁部11のノズル孔7及びその周辺箇所が損傷するのを防止する。
 また、底壁部11において、干渉体プレート部分63の外表面と底壁部11の外表面とを接続する側面72と、ノズルガード突起71の側面73は、オリフィス8から噴射された燃料の流動方向(噴射方向)を考慮し、オリフィス8から噴射された噴霧を妨げることがないように形成されている。
 以上のような本実施形態に係るノズルプレート3は、ノズル孔7の周囲に複数の干渉体16を独立して形成する場合と比較し(図24(a)参照)、ノズル孔7の周辺の肉厚を広範囲に厚くすることができ、ノズル孔7の周辺部位の強度向上を図ることができる。
 また、本実施形態に係るノズルプレート3は、第1実施形態に係るノズルプレート3と同様に、オリフィス8から噴射される燃料のうちのオリフィス8のコーナー部分22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になるため、オリフィス8のコーナー部分22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。
 なお、本実施形態において、ノズル孔7は、底壁部11の中心軸53の周りに等間隔で3箇所形成する態様を例示したが、これに限られず、底壁部11の任意の位置に少なくとも1箇所形成される。そして、本実施形態における干渉体65は、1個のノズル孔7に対して3箇所形成されているが、これに限られず、求められる燃料噴射特性等に応じた最適の個数及び配置が決定される。また、本実施形態において、底壁部11の干渉体プレート部分63とノズル孔プレート部分64の肉厚は、求められる燃料噴射特性等に応じて適宜変更される。
 [第5実施形態]
 図32は、本発明の第5実施形態に係るノズルプレート3を示す図である。なお、図32(a)がノズルプレート3の正面図であり、図32(b)が図32(a)で示したノズルプレート3の中心部の拡大図であり、図32(c)が図32(a)のB29-B29線に沿って切断して示すノズルプレート3の部分的断面図である。
 図32に示すように、本実施形態に係るノズルプレート3は、底壁部11のノズル孔7の周辺形状が第4実施形態に係るノズルプレート3と相違するものの、他の構成が第4実施形態に係るノズルプレート3と同様であるので、第4実施形態に係るノズルプレート3の説明と重複する説明を省略する。
 底壁部11は、ノズル孔7が中心軸53の周りに等間隔で3箇所形成されている。また、底壁部11は、ノズル孔7を取り囲むように逆円錐台形状に座繰りがされ、ノズル孔7の周囲に干渉体プレート部分74が形成され、干渉体プレート部分74を部分的に座繰るようにしてノズル孔プレート部分75が形成されている。干渉体プレート部分74は、ノズル孔プレート部分75よりも肉厚に形成されており、一部が干渉体76としてノズル孔7を部分的に塞いでいる。干渉体76は、第1実施形態に係るノズルプレレート3の干渉体16,16’に対応し、各ノズル孔7に対応するように3箇所形成されている。この干渉体76は、ノズル孔7を部分的に塞いでオリフィス8を形成しており、オリフィス8の開口縁の一部を形作る円弧状外縁部(外縁部)77を有している。そして、干渉体76の円弧状外縁部77とノズル孔7の円形の出口側開口部15とで形作られるオリフィス8の開口縁のコーナー部分22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化され易い鋭利な形状にする。このような本実施形態に係るノズルプレート3によれば、オリフィス8から噴射される燃料のうちのオリフィス8の両コーナー部分22,22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になり、オリフィス8のコーナー部分22,22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。
 ノズル孔7の一部は、干渉体プレート部分74よりも薄肉のノズル孔プレート部分75の表裏を貫通するように(表裏に開口するように)形成されている。なお、ノズル孔プレート部分75は、干渉体76及びその近傍を除き、ノズル孔7と同心状に形成されている。そして、干渉体プレート部分74の側面78は、ノズル孔7の出口側開口部15から噴射される燃料の噴射方向を考慮し、噴霧を妨げることがない位置に形成されている。
 また、干渉体76は、ノズル孔7を通過する燃料の一部が衝突する燃料衝突面80と、燃料衝突面80に鋭角(例えば、75°)で交わる側面(傾斜面)81と、を有している。この干渉体76の燃料衝突面80は、ノズル孔7を通過する燃料の一部を衝突させることによって、ノズル孔7を通過する燃料の一部を微粒化すると共に、ノズル孔7を通過する燃料の一部の流れを急激に曲げてノズル孔7及びオリフィス8を直進して通過しようとする燃料に衝突させ、オリフィス8を通過した燃料が空気中で微粒化しやすくなるように燃料の流れを乱流にする。また、干渉体76の側面81は、オリフィス8を通過した燃料との間に空気層が生じるようになっており、オリフィス8を通過した燃料が空気を巻き込みやすく、オリフィス8を通過する燃料の微粒化が促進され、微粒化された燃料を吸気管2内に均一に分散させやすくなる(図1参照)。
 また、底壁部11は、ノズルガード突起82が外表面の径方向外方端側の周方向に沿って等間隔で3箇所形成されている。このノズルガード突起82は、隣り合うノズル孔7の中間に位置するように形成されている。また、ノズルガード突起82は、先端が仮想平面に接触した際に、仮想平面と底壁部11との間に隙間が生じるように形成されている。このように、底壁部11に3箇所形成されたノズルガード突起82は、ノズルプレート3をバルブボディ5に組み付ける際(図2参照)に、工具等がノズル孔7及びその周辺に衝突するのを防止し、底壁部11のノズル孔7及びその周辺箇所が損傷するのを防止するとともに、ノズルプレート3がバルブボディ5に組み付けられた燃料噴射装置1をエンジンの吸気管2に組み付ける際に、エンジン部品等がノズル孔7及びその周辺に衝突するのを防止し、底壁部11のノズル孔7及びその周辺箇所が損傷するのを防止する。
 また、底壁部11において、干渉体プレート部分74の外表面と底壁部11の外表面とを接続する側面83と、ノズルガード突起82の側面84は、オリフィス8から噴射された燃料の流動方向(噴射方向)を考慮し、オリフィス8から噴射された噴霧を妨げることがないように形成されている。
 以上のような本実施形態に係るノズルプレート3は、ノズル孔7の周囲に干渉体16を独立して形成する場合と比較し(図2参照)、ノズル孔7の周辺の肉厚を広範囲に厚くすることができ、ノズル孔7の周辺部位の強度向上を図ることができる。
 また、本実施形態に係るノズルプレート3は、第1実施形態に係るノズルプレート3と同様に、オリフィス8から噴射される燃料のうちのオリフィス8の両コーナー部分22,22及びその近傍から噴射される燃料の液膜が薄く且つ鋭利に尖った状態になるため、オリフィス8のコーナー部分22,22及びその近傍から噴射される燃料がオリフィス8近傍の空気との摩擦で微粒化し易い。
 なお、本実施形態において、ノズル孔7は、底壁部11の中心軸53の周りに等間隔で3箇所形成する態様を例示したが、これに限られず、底壁部11の任意の位置に少なくとも1箇所形成される。
 [第6実施形態]
 図33は、本発明の第6実施形態に係るノズルプレート3を示す図である。なお、図33(a)がノズルプレート3の一部平面図であり、図33(b)が図33(a)のB30-B30線に沿って切断して示すノズルプレート3の部分的断面図である。また、図33で示す本実施形態に係るノズルプレート3は、第1実施形態に係るノズルプレート3と共通する構成部分に第1実施形態に係るノズルプレート3の構成部分と同一の符号を付し、第1実施形態に係るノズルプレート3の説明と重複する説明を省略する。
 図33に示すように、本実施形態に係るノズルプレート3は、干渉体16’の直線状外縁部34がオリフィス8の一部を構成する点に特徴を有している。すなわち、本実施形態に係るノズルプレート3は、干渉体16と干渉体16’とがノズル孔7の円形状の出口側開口部15を部分的に塞いで、干渉体16の円弧状外縁部21、干渉体16’の直線状外縁部34、及びノズル孔7の出口側開口部15によってオリフィス8が形作られている。干渉体16は、平面視した形状が円形状であり、円弧状外縁部21がオリフィス8を部分的に形成している。また、干渉体16’は、平面視した形状が長方形の長手方向両端部を半円形にした形状になっている。そして、干渉体16の円弧状外縁部21とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22は、平面視した形状が三日月状の丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い鋭利な尖った形状になっている。また、干渉体16’の直線状外縁部34とノズル孔7の出口側開口部15とで形作られたコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。
 このような本実施形態に係るノズルプレート3は、干渉体16と干渉体16’がノズル孔7の出口側開口部15を部分的に塞ぐことにより、ノズル孔7を通過する燃料の一部が干渉体16,16’の燃料衝突面18,18に衝突し、この燃料衝突面18,18に衝突した燃料の流動方向が急激に変えられ、この流動方向が急激に変えられた燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本実施形態に係るノズルプレート3は、上述のように、干渉体16の円弧状外縁部21とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22、及び干渉体16’の直線状外縁部34とノズル孔7の出口側開口部15とで形作られたコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。したがって、本実施形態に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。なお、本実施形態及び以下に説明する各変形例に係るノズルプレート3には、第3乃至第5実施形態で示した技術を適用してもよい。
  (第6実施形態の第1変形例)
 図34は、第6実施形態の第1変形例に係るノズルプレート3を示す図である。なお、図34(a)がノズルプレート3の一部平面図であり、図34(b)が図34(a)のB31-B31線に沿って切断して示すノズルプレート3の部分的断面図である。また、図34で示す本変形例に係るノズルプレート3は、第6実施形態に係るノズルプレート3と共通する構成部分に第6実施形態に係るノズルプレート3の構成部分と同一の符号を付し、第6実施形態に係るノズルプレート3の説明と重複する説明を省略する。
 図34に示すように、本変形例に係るノズルプレート3は、第1干渉体16’と第2干渉体16’の直線状外縁部34,34がオリフィス8の一部を構成する点に特徴を有している。すなわち、本変形例に係るノズルプレート3は、第1干渉体16’と第2干渉体16’がノズル孔7の出口側開口部15を部分的に塞いでおり、第1干渉体16’と第2干渉体16’の直線状外縁部34,34、第1干渉体16’の半円形状外縁部(円弧状外縁部)33、及びノズル孔7の円形状の出口側開口部15によってオリフィス8が形作られている。第1及び第2干渉体16’は、平面視した形状が長方形の長手方向両端部を半円形にした形状になっている。そして、第1干渉体16’は、長手方向がX軸と平行に延びる中心線37に沿って配置され、一端側の半円形状外縁部33の先端が第2干渉体16’の直線状外縁部34に突き当てられている。第2干渉体16’は、長手方向がY軸と平行になるように配置されており、第1干渉体16’よりも大きく形成されている。
 また、図34に示すように、本変形例に係るノズルプレート3において、第1干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22は、平面視した形状が略三日月状の丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、第2干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、第1干渉体16’の半円形状外縁部33と第2干渉体16’の直線状外縁部34との突き当て部分に形作られるコーナー部分22’,22’は、平面視した形状が略三日月状の丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。
 このような本変形例に係るノズルプレート3は、第1干渉体16’と第2干渉体16’がノズル孔7の出口側開口部15を部分的に塞ぐことにより、ノズル孔7を通過する燃料の一部が第1干渉体16’及び第2干渉体16’の燃料衝突面18,18に衝突して流動方向が急激に変えられ、この流動方向が急激に変えられた一部の燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本変形例に係るノズルプレート3において、上述のように、第1干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22と、第2干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22と、第1干渉体16’の半円形状外縁部33と第2干渉体16’の直線状外縁部34との接触部分に形作られるコーナー部分22’,22’は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。したがって、本実施形態に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第2変形例)
 図35は、第6実施形態の第2変形例に係るノズルプレート3を示す図である。なお、図35(a)がノズルプレート3の一部平面図であり、図35(b)が図35(a)のB32-B32線に沿って切断して示すノズルプレート3の部分的断面図である。また、図35(c)が金型87のキャビティ89の形状と回転加工工具88との関係を示す平面図であり、図35(d)がB35(c)のB32’-B32’線に沿って切断して示す断面図である。また、図35で示す本変形例に係るノズルプレート3は、第6実施形態に係るノズルプレート3と共通する構成部分に第6実施形態に係るノズルプレート3の構成部分と同一の符号を付し、第6実施形態に係るノズルプレート3の説明と重複する説明を省略する。
 図35に示すように、本変形例に係るノズルプレート3は、V字状干渉体16aの直線状外縁部86,86がオリフィス8の一部を構成する点に特徴を有している。すなわち、本変形例に係るノズルプレート3は、干渉体16とV字状干渉体16aがノズル孔7の出口側開口部15を部分的に塞いでおり、干渉体16の円弧状外縁部21、V字状干渉体16aの直線状外縁部(外縁部)86,86、及びノズル孔7の円形状の出口側開口部15とによってオリフィス8が形作られている。干渉体16は、平面視した形状が円形状になっている。また、V字状干渉体16aは、平面視した形状が一対の干渉体16’,16’をV字状に突き合わせたような形状になっている。このV字状干渉体16aは、図35(c)~(d)に示すように、金型87を回転加工工具(エンドミル等)88によって切削又は研削することにより、射出成形用のV字状のキャビティ89を形成し、この金型87のキャビティ89内に溶融樹脂を射出することにより形作られたものである。なお、キャビティ89のV字形状の内側側壁90,90は、ノズル孔7を塞ぐように位置する直線状外縁部86,86を形作るための側壁である。このV字形状の内側側壁90,90は、回転加工工具88の移動軌跡がV字の谷底で交差し、回転加工工具88の交差部分に丸みのない鋭利な稜線91が形成される。したがって、この射出成形用のV字状のキャビティ89で成形された干渉体16aは、V字状に交差する一対の直線状外縁部86,86のコーナー部分(一対の直線状外縁部86,86の交差部分)92が丸みのない鋭利な尖った形状になる。また、V字状干渉体16aの側面17aは、円錐台形状の干渉体16の側面17と同様に、燃料衝突面18に鋭角で交わるように形成されている。
 また、図35に示すように、本変形例に係るノズルプレート3は、干渉体16の中心がX軸に沿った方向に延びるノズル孔7の中心線37上に位置するように形成されている。また、本変形例に係るノズルプレート3は、V字状に交差する一対の直線状外縁部86,86のコーナー部分92の先端がX軸に沿った方向に延びるノズル孔7の中心線37上に位置し、且つ、V字状に交差する一対の直線状外縁部86,86のコーナー部分92の先端が出口側開口部15の開口縁上に位置するように形成されている。そして、V字状干渉体16aは、X軸に沿った方向に延びるノズル孔7の中心線37を対称軸とする線対称の形状となるように形成されている。
 また、図35に示すように、本変形例に係るノズルプレート3は、干渉体16とV字状干渉体16aとがノズル孔7の円形状の出口側開口部15を部分的に塞いで、干渉体16の円弧状外縁部21、V字状干渉体16aの一対の直線状外縁部86,86、及びノズル孔7の円形状の出口側開口部15によってオリフィス8が形作られている。干渉体16の円弧状外縁部21とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22は、平面視した形状が三日月状の丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い鋭利な尖った形状になっている。また、V字状干渉体16aの直線状外縁部86,86とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、V字状干渉体16aのV字状のコーナー部分92は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。
 このような本変形例に係るノズルプレート3は、干渉体16とV字状干渉体16aがノズル孔7の出口側開口部15を部分的に塞ぐことにより、ノズル孔7を通過する燃料の一部が干渉体16及びV字状干渉体16aの燃料衝突面18,18に衝突して流動方向が急激に変えられ、この流動方向が急激に変えられた燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本変形例に係るノズルプレート3において、上述のように、干渉体16の円弧状外縁部21とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22と、V字状干渉体16aの直線状外縁部86,86とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22と、V字状干渉体16aのV字状のコーナー部分92は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第3変形例)
 図36は、第6実施形態の第3変形例に係るノズルプレート3を示す図であり、第6実施形態の第2変形例に係るノズルプレート3の変形例を示す図である。なお、図36(a)がノズルプレート3の一部平面図であり、図36(b)が図36(a)のB33-B33線に沿って切断して示すノズルプレート3の部分的断面図である。また、図36で示す本変形例に係るノズルプレート3は、第2変形例に係るノズルプレート3と共通する構成部分に第2変形例に係るノズルプレート3の構成部分と同一の符号を付し、第2変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図36に示す本変形例に係るノズルプレート3は、第2変形例に係るノズルプレート3と比較して、V字状干渉体16aを干渉体16に近づけ、オリフィス8の開口面積を狭めた点に特徴を有している。なお、本変形例に係るノズルプレート3は、V字状のコーナー部分92の先端がノズル孔7の出口側開口部15の径方向内方側に位置している。
 このような本変形例に係るノズルプレート3は、第2変形例に係るノズルプレート3と同様の効果を得ることができることはもちろんのこと、オリフィス8を通過する燃料の液膜を全体として薄膜化することができ、オリフィス8から噴射される燃料の微粒化の程度をより一層効果的に向上させることができる。
  (第6実施形態の第4変形例)
 図37は、第6実施形態の第4変形例に係るノズルプレート3を示す図であり、第6実施形態の第2変形例に係るノズルプレート3の変形例を示す図である。なお、図37(a)がノズルプレート3の一部平面図であり、図37(b)が図37(a)のB34-B34線に沿って切断して示すノズルプレート3の部分的断面図である。また、図37で示す本変形例に係るノズルプレート3は、第2変形例に係るノズルプレート3と共通する構成部分に第2変形例に係るノズルプレート3の構成部分と同一の符号を付し、第2変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図37に示す本変形例に係るノズルプレート3は、第2変形例に係るノズルプレート3と比較して、V字状干渉体16aのV字状に交差する一対の直線状外縁部86,86の開き角(一対の直線状外縁部86,86の交差角)を鋭角にし、V字状干渉体16aのV字状に交差する一対の直線状外縁部86,86を干渉体16の円弧状外縁部21に接触させた点に特徴を有している。そして、V字状干渉体16aの直線状外縁部86と干渉体16の円弧状外縁部21との接触部分に形作られるコーナー部分22’は、平面視した形状が略三日月状の丸みのない鋭利な尖った形状になっている。そのため、オリフィス8を通過する燃料の液膜の端部は、空気との摩擦で微粒化し易い形状になっている。また、V字状干渉体16aのV字状のコーナー部分92は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。したがって、本実施形態に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。なお、本変形例において、V字状干渉体16aのV字状のコーナー部分92をノズル孔7の出口側開口部15よりも径方向外方側に配置し、V字状干渉体16aの一対の直線状外縁部86,86とノズル孔7の出口側開口部15とで丸みのない鋭利な尖った形状のコーナー部分(図示せず)を形作るようにしてもよい。
  (第6実施形態の第5変形例)
 図38は、第6実施形態の第5変形例に係るノズルプレート3を示す図であり、第6実施形態の第2変形例に係るノズルプレート3の変形例を示す図である。なお、図38(a)がノズルプレート3の一部平面図であり、図38(b)がノズルプレート3の一部を部分的に破断して示す側面図である。また、図38で示す本変形例に係るノズルプレート3は、第2変形例に係るノズルプレート3と共通する構成部分に第2変形例に係るノズルプレート3の構成部分と同一の符号を付し、第2変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図38に示す本変形例に係るノズルプレート3は、一対の干渉体16,16とV字状干渉体16aによってノズル孔7の出口側開口部15を部分的に塞いでいる。そして、ノズルプレート3は、一対の干渉体16,16の円弧状外縁部21,21、V字状干渉体16aの一対の直線状外縁部86,86、及びノズル孔7の出口側開口部15でオリフィス8を形作っている。
 この変形例において、一対の干渉体16,16は、ノズル孔7のY軸に沿って延びる中心線35上で且つ出口側開口部15の開口縁上で接触している。また、V字状干渉体16aは、一対の直線状外縁部86,86が干渉体16の円弧状外縁部21にノズル孔7の径方向外方側で接触し、ノズル孔7のY軸に沿って延びる中心線35を対称軸とする線対称の形状となるように形成されている。また、V字状干渉体16aのV字状のコーナー部分92は、出口側開口部15の開口縁よりも径方向内方側に位置している。
 また、図38に示す本変形例に係るノズルプレート3は、干渉体16の円弧状外縁部21とノズル孔7の出口側開口部15とで形作られるコーナー部分22が丸みのない鋭利な尖った形状であり、V字状干渉体16aの直線状外縁部86とノズル孔7の出口側開口部15とで形作られるコーナー部分22が丸みのない鋭利な尖った形状である。また、一対の干渉体16,16の円弧状外縁部21,21が接触することにより形作られるコーナー部分22’は、丸みのない鋭利な尖った形状である。また、V字状干渉体16aのV字状のコーナー部分92は、丸みのない鋭利な尖った形状である。
 このような本変形例に係るノズルプレート3は、一対の干渉体16,16とV字状干渉体16aがノズル孔7の出口側開口部15を部分的に塞ぐことにより、ノズル孔7を通過する燃料の一部が一対の干渉体16,16及びV字状干渉体16aの燃料衝突面18に衝突して流動方向が急激に変えられ、この流動方向が急激に変えられた一部の燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本変形例に係るノズルプレート3は、オリフィス8の6箇所のコーナー部分(22,22’,92)が丸みのない鋭利な尖った形状であるため、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易くなっている。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第6変形例)
 図39は、第6実施形態の第6変形例に係るノズルプレート3を示す図である。なお、図39(a)がノズルプレート3の一部平面図であり、図39(b)が図39(a)のB35-B35線に沿って切断して示すノズルプレート3の部分的断面図である。また、図39で示す本変形例に係るノズルプレート3は、第6実施形態に係るノズルプレート3と共通する構成部分に第1実施形態に係るノズルプレート3の構成部分と同一の符号を付し、第1実施形態に係るノズルプレート3の説明と重複する説明を省略する。
 図39に示すように、本変形例に係るノズルプレート3は、干渉体16’の直線状外縁部34がオリフィス8の一部を構成し、離れて位置する一対の干渉体16,16の円弧状外縁部21,21がオリフィス8の一部を構成する点に特徴を有している。すなわち、本実施形態に係るノズルプレート3は、一対の干渉体16,16と干渉体16’とがノズル孔7の円形状の出口側開口部15を部分的に塞いで、一対の干渉体16,16の円弧状外縁部21,21と干渉体16’の直線状外縁部34、及びノズル孔7の円形状の出口側開口部15とによってオリフィス8が形作られている。そして、干渉体16の円弧状外縁部21とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22は、平面視した形状が丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い鋭利な形状になっている。また、干渉体16’の直線状外縁部34とノズル孔7の出口側開口部15とで形作られたコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。
 また、図39に示すように、本変形例に係るノズルプレート3において、一対の干渉体16,16は、Y軸と平行に延びる中心線35を対称軸として線対称となるように離れて位置している。また、干渉体16’は、長手方向の中心位置がノズル孔7のY軸に沿った方向へ延びる中心線35上に位置するように形成されている。
 このような本変形例に係るノズルプレート3は、一対の干渉体16,16と干渉体16’がノズル孔7の出口側開口部15を部分的に塞ぐことにより、ノズル孔7を通過する燃料の一部が一対の干渉体16,16及び干渉体16’の燃料衝突面18に衝突し、この燃料衝突面18に衝突した燃料の流動方向が急激に変えられ、この流動方向が急激に変えられた燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本実施形態に係るノズルプレート3は、上述のように、一対の干渉体16,16の円弧状外縁部21,21とノズル孔7の円形状の出口側開口部15とで形作られたコーナー部分22、及び干渉体16’の直線状外縁部34とノズル孔7の出口側開口部15とで形作られたコーナー部分22は、丸みのない鋭利な尖った形状であり、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第7変形例)
 図40は、第6実施形態の第7変形例に係るノズルプレート3を示す図であり、第6実施形態の第6変形例の変形例を示す図である。なお、図40(a)がノズルプレート3の一部平面図であり、図40(b)が図40(a)のB36-B36線に沿って切断して示すノズルプレート3の部分的断面図である。また、図40で示す本変形例に係るノズルプレート3は、第6変形例に係るノズルプレート3と共通する構成部分に第6変形例に係るノズルプレート3の構成部分と同一の符号を付し、第6変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図40に示すように、本変形例に係るノズルプレート3は、一対の干渉体16,16の円弧状外縁部21,21に干渉体16’の直線状外縁部34を突き合わせ、これら一対の干渉体16,16と干渉体16’によってノズル孔7の円形状の出口側開口部15を部分的に塞いでいる。そして、このノズルプレート3は、一対の干渉体16,16の円弧状外縁部21,21、干渉体16’の直線状外縁部34、及びノズル孔7の出口側開口部15とでオリフィス8を形作っている。
 また、図40に示すように、本変形例に係るノズルプレート3は、一対の干渉体16,16の円弧状外縁部21,21と干渉体16’の直線状外縁部34とで形作られるコーナー部分22’は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、干渉体16,16の円弧状外縁部21,21とノズル孔7の出口側開口部15とで形作られるコーナー部分22は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。
 また、図40に示すように、本変形例に係るノズルプレート3は、一対の干渉体16,16と干渉体16’によってノズル孔7の円形状の出口側開口部15を部分的に塞いでおり、ノズル孔7を通過する燃料の一部が一対の干渉体16,16及び干渉体16’の燃料衝突面18に衝突して流動方向が急激に変えられ、この流動方向が急激に変えられた一部の燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本変形例に係るノズルプレート3は、オリフィス8の各コーナー部分22,22’が丸みのない鋭利な尖った形状であるため、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易くなっている。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第8変形例)
 図41は、第6実施形態の第8変形例に係るノズルプレート3を示す図であり、第6実施形態の第6変形例の変形例を示す図である。なお、図41(a)がノズルプレート3の一部平面図であり、図41(b)がノズルプレート3の部分的側面図である。また、図41で示す本変形例に係るノズルプレート3は、第6変形例に係るノズルプレート3と共通する構成部分に第6変形例に係るノズルプレート3の構成部分と同一の符号を付し、第6変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図41に示すように、本変形例に係るノズルプレート3は、一対の干渉体16,16の円弧状外縁部21,21を突き合わせ、これら一対の干渉体16,16と干渉体16’によってノズル孔7の円形状の出口側開口部15を部分的に塞いでいる。そして、このノズルプレート3は、一対の干渉体16,16の円弧状外縁部21,21、干渉体16’の直線状外縁部34、及びノズル孔7の円形状の出口側開口部15とでオリフィス8を形作っている。
 また、図41に示すように、本変形例に係るノズルプレート3において、一対の干渉体16,16の円弧状外縁部21,21の突き合わせ部分に形作られるコーナー部分22’は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、一対の干渉体16,16の円弧状外縁部21,21とノズル孔7の円形状の出口側開口部15とで形作られるコーナー部分22は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、干渉体16’の直線状外縁部34とノズル孔7の出口側開口部15とで形作られるコーナー部分22は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。
 また、図41に示すように、本変形例に係るノズルプレート3は、一対の干渉体16,16と干渉体16’によってノズル孔7の円形状の出口側開口部15を部分的に塞いでおり、ノズル孔7を通過する燃料の一部が一対の干渉体16,16及び干渉体16’の燃料衝突面18に衝突して流動方向が急激に変えられ、この流動方向が急激に変えられた一部の燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。また、本変形例に係るノズルプレート3は、オリフィス8の各コーナー部分22,22’が丸みのない鋭利な尖った形状であるため、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易くなっている。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第9変形例)
 図42は、第6実施形態の第9変形例に係るノズルプレート3を示す図である。なお、図42(a)がノズルプレート3の一部平面図であり、図42(b)が図42(a)のB37-B37線に沿って切断して示すノズルプレート3の断面図である。また、図42で示す本変形例に係るノズルプレート3は、第6実施形態に係るノズルプレート3と共通する構成部分に第6実施形態に係るノズルプレート3の構成部分と同一の符号を付し、第6実施形態に係るノズルプレート3の説明と重複する説明を省略する。
 図42に示すように、本変形例に係るノズルプレート3は、第6実施形態に係るノズルプレート3の干渉体16を省略し、ノズル孔7の出口側開口部15を干渉体16’だけで部分的に塞ぐように構成されている。そして、干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られるオリフィス8のコーナー部分22は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易くなっている。また、本変形例に係るノズルプレート3は、ノズル孔7を通過する燃料の一部が干渉体16’の燃料衝突面18に衝突し、この燃料衝突面18に衝突した燃料の流動方向が急激に変えられ、この流動方向が急激に変えられた燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第10変形例)
 図43は、第6実施形態の第10変形例に係るノズルプレート3を示す図であり、第6実施形態の第9変形例に係るノズルプレート3の変形例を示す図である。なお、図43(a)がノズルプレート3の一部平面図であり、図43(b)が図43(a)のB38-B38線に沿って切断して示すノズルプレート3の断面図である。また、図43で示す本変形例に係るノズルプレート3は、第6実施形態の第9変形例に係るノズルプレート3と共通する構成部分に第6実施形態の第9変形例に係るノズルプレート3の構成部分と同一の符号を付し、第6実施形態の第9変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図43に示すように、本変形例に係るノズルプレート3は、ノズル孔7の出口側開口部15が干渉体16’によって塞がれる面積を第9変形例に係るノズルプレート3よりも大きくし、干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られるオリフィス8の開口面積を第9変形例に係るノズルプレート3のオリフィス8の開口面積よりも小さくしてある。また、本変形例に係るノズルプレート3は、干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られるオリフィス8のコーナー部分22が第9変形例に係るノズルプレート3のオリフィス8のコーナー部分22よりも尖った形状になっている。
 このような本変形例に係るノズルプレート3は、第9変形例に係るノズルプレート3と同様の効果を得ることができるものの、第9変形例に係るノズルプレート3と異なる燃料噴射特性を有している。例えば、本変形例に係るノズルプレート3は、第9変形例に係るノズルプレート3と比較し、燃料噴射方向がノズル孔7の中心軸Coに対してより大きく傾斜する。
  (第6実施形態の第11変形例)
 図44は、第6実施形態の第11変形例に係るノズルプレート3を示す図であり、第6実施形態の第4変形例に係るノズルプレート3の変形例を示す図である。なお、図44(a)がノズルプレート3の一部平面図であり、図44(b)が図44(a)のB39-B39線に沿って切断して示すノズルプレート3の断面図である。また、図44で示す本変形例に係るノズルプレート3は、第6実施形態の第4変形例に係るノズルプレート3と共通する構成部分に第6実施形態の第4変形例に係るノズルプレート3の構成部分と同一の符号を付し、第6実施形態の第4変形例に係るノズルプレート3の説明と重複する説明を省略する。
  図44に示すように、本変形例に係るノズルプレート3は、第6実施形態の第4変形例に係るノズルプレート3の干渉体16を省略した構造になっており、ノズル孔7の出口側開口部15がV字状干渉体16aによって部分的に塞がれている。そして、本変形例に係るノズルプレート3において、一対の直線状外縁部86,86とノズル孔7の円形状の出口側開口部15とで形作られるコーナー部分22、及び一対の直線状外縁部86,86の交差部分に形作られるV字状のコーナー部分92は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、本変形例に係るノズルプレート3は、ノズル孔7を通過する燃料の一部がV字状干渉体16aの燃料衝突面18に衝突し、この燃料衝突面18に衝突した燃料の流動方向が急激に変えられ、この流動方向が急激に変えられた燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
  (第6実施形態の第12変形例)
 図45は、第6実施形態の第12変形例に係るノズルプレート3を示す図であり、第6実施形態の第9変形例に係るノズルプレート3の変形例を示す図である。なお、図45(a)がノズルプレート3の一部平面図であり、図45(b)が図45(a)のB40-B40線に沿って切断して示すノズルプレート3の断面図である。また、図45で示す本変形例に係るノズルプレート3は、第9変形例に係るノズルプレート3と共通する構成部分に第9変形例に係るノズルプレート3の構成部分と同一の符号を付し、第9変形例に係るノズルプレート3の説明と重複する説明を省略する。
 図45に示す本変形例に係るノズルプレート3は、干渉体16’がノズル孔7の出口側開口部15の周囲に等間隔で3箇所形成されている。そして、本変形例に係るノズルプレート3は、3箇所の干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とでオリフィス8が形作られている。
 また、本変形例に係るノズルプレート3において、3箇所の干渉体16’の直線状外縁部34とノズル孔7の円形状の出口側開口部15とで形作られる6箇所のコーナー部分22は、丸みのない鋭利な尖った形状になっており、オリフィス8を通過する燃料の液膜の端部が空気との摩擦で微粒化し易い形状になっている。また、本変形例に係るノズルプレート3は、ノズル孔7を通過する燃料の一部がV字状干渉体16aの燃料衝突面18に衝突し、この燃料衝突面18に衝突した燃料の流動方向が急激に変えられ、この流動方向が急激に変えられた燃料の流れとノズル孔7内を直進する燃料の流れとが衝突し、ノズル孔7及びオリフィス8を通過する燃料の流れが乱流になる。したがって、本変形例に係るノズルプレート3は、従来のノズルプレートと比較して、オリフィス8から噴射される燃料の微粒化の程度をより一層向上させることができる。
 [第7実施形態]
 図46乃至図47は、本発明の第7実施形態に係るノズルプレート3を示す図である。なお、図46(a)が本実施形態に係るノズルプレート3の正面図であり、図46(b)が図46(a)のB41-B41線に沿って切断して示すノズルプレート3の断面図であり、図46(c)が図46(a)のB42-B42線に沿って切断して示すノズルプレート3の断面図であり、図46(d)が本実施形態に係るノズルプレート3の背面図である。また、図47(a)が図46(a)のノズルプレート3の一部(中心部)拡大図であり、図47(b)がノズル孔7及びその近傍を拡大して示すノズルプレート3の部分的拡大図であり、図47(c)が図47(b)のB43-B43線に沿って切断して示す拡大断面図である。
 これらの図に示すように、本実施形態に係るノズルプレート3において、ノズルプレート本体9は、バルブボディ5の先端側に嵌合される円筒状壁部10と、円筒状壁部10の一端側を塞ぐように形成された底壁部11と、を有している(図2参照)。また、底壁部11は、ノズル孔7が開口するノズル孔プレート部分64と、干渉体65が形成された干渉体プレート部分63と、を有している。干渉体プレート部分63は、底壁部11の中心(中心軸53と合致する位置)に先端が丸められた円錐状突起94が形成され、この円錐状突起94の周囲の底壁部11を円板状に座繰るようにして形成されている。また、ノズル孔プレート部分64は、干渉体プレート部分63のうちのノズル孔7の周辺を部分的に座繰ることによって形成されたような形状になっており、干渉体プレート部分63よりも薄肉に形成されている。また、底壁部11は、ノズル孔7が中心軸53の周りに等間隔で4箇所形成されており、ノズル孔7の一部がノズル孔プレート部分64の表裏を貫通するように(表裏に開口するように)形成されている。そして、各ノズル孔7は、図47(a)に示すように、ノズル孔7の中心7aが底壁部11の中心線95,96(中心軸53を通り且つX軸と平行な直線95、及び中心軸53を通り且つY軸と平行な直線96)上に位置するように形成されている。
 また、図47(a)及び(b)に示すように、底壁部11の干渉体プレート部分63には、ノズル孔7の一部を塞ぐ干渉体65が1個のノズル孔7に対して3箇所形成されている。そして、これら3箇所の干渉体65は、ノズル孔の中心7aを通る中心線95(96)と直交する直線97に対して線対称の形状のオリフィス8を形作るようになっており、オリフィス8から噴射される噴霧の中心方向98がノズル孔7の中心軸7cに対して+Y方向側に斜めに傾き、且つ、オリフィス8から噴射される噴霧の中心方向98が直線97に沿うように形成されている。そして、4箇所のオリフィス8から噴射される噴霧の中心方向98は、底壁部11の中心軸53を中心とする反時計回り方向に揃っている。その結果、4箇所のオリフィス8から噴射される噴霧は、底壁部11の中心軸53を中心とする反時計回り方向の旋回流を生じさせる。
 また、図47(b)で詳細に示すように、干渉体プレート部分63に形成された3箇所の干渉体65は、第1実施形態で示した干渉体16の一部の形状と同様であり、ノズル孔7を部分的に塞いでオリフィス8を形成している。そして、干渉体65の円弧状外縁部66とノズル孔7の出口側開口部15とで形作られるコーナー部分22は、丸みのない鋭利な形状になっており、オリフィス8を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。なお、本実施形態に係るノズルプレート3のオリフィス8は、図31(a)で示したオリフィス8と同様の形状になっている。また、図47を使用した本実施形態に係るノズルプレート3の説明は、図31(a)で示したノズルプレート3と同一の箇所に同一の符号を付し、図31(a)のノズルプレート3の説明と重複する説明を適宜省略する。
 また、図47(b)において、干渉体プレート部分63に形成された3箇所の干渉体65は、第4実施形態に係る図31で示した干渉体65と同様の燃料衝突面68及び側面(傾斜面)67を有しており、第4実施形態で示した干渉体65の燃料衝突面68及び側面67によって得られる効果と同様の効果を得ることができる。
 また、底壁部11は、同一形状の8枚の羽根100が中心軸53の周りに等間隔で且つ干渉体プレート部分63の径方向外方側に位置するように一体に形成されている。この羽根100は、平面視した形状が円弧形状であり、半径方向内方端から半径方向外方端まで一定の肉厚で形成されている。また、羽根100は、オリフィス8から噴射された噴霧を邪魔しないように、径方向内方端から斜めに切り上げられて、オリフィス8から噴射された燃料の噴霧状態に影響を及ぼさないようなスペースが十分に確保されるように、燃料衝突回避部101が形成されている。また、羽根100は、径方向内方端側の燃料衝突回避部101を除いた部分が同一の羽根高さに形成されている。そして、隣り合う一対の羽根100,100は、径方向外方から径方向内方へ向かうに従って間隔を狭め、羽根100間の羽根溝102が径方向外方から径方向内方に向かうに従って狭められている。
 図46(a)において、底壁部11の中心軸53を基点として、+X軸方向へ延びる中心線95上に中心が位置するノズル孔7を第1ノズル孔7とし、この第1ノズル孔7に対して反時計回り方向に90°毎にずれて位置する各ノズル孔7を第2乃至第4ノズル孔7とする。また、図46(a)において、底壁部11の中心軸53が直交座標系のX-Y座標面の中心とすると、第1象限の+X軸寄りの位置に径方向内方端が位置する羽根溝102を第1羽根溝102とし、この第1羽根溝102に対して反時計回り方向に45°毎にずれて位置する各羽根溝102を第2乃至第8羽根溝102とする。このような図46(a)において、第1羽根溝102の中心線103は、第2ノズル孔7の中心を通るようになっている。また、第3羽根溝102の中心線103は、第3ノズル孔7の中心を通るようになっている。また、第5羽根溝102の中心線103は、第4ノズル孔7の中心を通るようになっている。また、第7羽根溝102の中心線103は、第1ノズル孔7の中心を通るようになっている。また、第2羽根溝102の中心線103は、第2ノズル孔7の近傍を通るようになっている。また、第4羽根溝102の中心線103は、第3ノズル孔7の近傍を通るようになっている。また、第6羽根溝102の中心線103は、第4ノズル孔7の近傍を通るようになっている。また、第8羽根溝102の中心線103は、第1ノズル孔7の近傍を通るようになっている。そして、これら第1乃至第8羽根溝102の中心線103は、底壁部11の中心軸53の周囲を通るように位置している。
 以上のように構成されたノズルプレート3は、各オリフィス8から燃料が噴射されると、オリフィス8の出口側周辺部分の圧力が降下するため(大気圧よりも低下するため)、ノズルプレート3の周囲の空気が第1乃至第8羽根溝102の径方向外方端側から径方向内方端側へ向けて流動させられ(引き寄せられ)、第1乃至第8羽根溝102の径方向内方端からノズル孔7の中心7a又はノズル孔7の近傍に向けて空気が流出する。すなわち、第1乃至第8羽根溝102の径方向内方端から流出した空気の流れは、底壁部11の中心軸53の周りを所定距離(少なくとも、円錐状突起94の形状分)だけ離れて流動することになり、底壁部11の中心軸53を中心とする反時計回り方向の旋回流を生じさせる。また、噴霧中の微粒化された液滴(燃料の微粒子)は、運動量(反時計回り方向の速度成分)をもっており、周囲の空気及び周囲を旋回する空気を巻き込み、その巻き込んだ空気に運動量を与える。この運動量を得た空気は、螺旋状の流れとなって液滴(燃料の微粒子)を運搬する。そして、噴霧中の液滴(燃料の微粒子)は、この螺旋状の空気流によって運搬されることにより、周囲に散乱することが防止される。そのため、本実施形態に係るノズルプレート3は、吸気管2の壁面等に付着する燃料を少なくすることができ、燃料の利用効率を向上させることができる(図1参照)。
 また、本実施形態に係るノズルプレート3は、8枚の羽根100が中心軸53の周りに等間隔で且つ干渉体プレート部分63の径方向外方側に位置するように底壁部11と一体に形成されているため、ノズルプレート3をバルブボディ5に組み付ける際に、工具等がノズル孔7及びその周辺に衝突するのを羽根100によって防止できると共に、底壁部11のノズル孔7及びその周辺箇所が損傷するのを羽根100によって防止できる。また、本実施形態に係るノズルプレート3は、ノズルプレート3がバルブボディ5に組み付けられた燃料噴射装置1をエンジンの吸気管2に組み付ける際に、エンジン部品等がノズル孔7及びその周辺に衝突するのを羽根100によって防止でき、底壁部11のノズル孔7及びその周辺箇所が損傷するのを羽根100によって防止することができる。
  (第7実施形態の第1変形例)
 図48は、本発明の第7実施形態に係るノズルプレート3の第1変形例を示す図である。なお、図48(a)は、ノズルプレート3の正面図であり、図46(a)に対応する図である。また、図48(b)は、ノズルプレート3の中央部を拡大して示す図であり、図47(a)に対応する図である。
 本変形例に係るノズルプレート3は、各オリフィス8から噴射された噴霧の中心方向98が隣合う(燃料噴射方向に沿った前側に位置する)他のノズル孔7の中心7aに向かうように、各ノズル孔7毎に3箇所の干渉体65が形成されている。すなわち、本変形例に係るノズルプレート3は、第7実施形態に係るノズルプレート3のオリフィス8を(図46(a)参照)、ノズル孔7の中心7aを回転中心として反時計回り方向に45°回転させると共に、第7実施形態に係るノズルプレート3の4箇所のノズル孔7及びオリフィス8を(図46(a)参照)、底壁部11の中心軸53に対して径方向外方寄りにずらすことにより形成されている。
 このように形成された本実施形態に係るノズルプレート3は、第7実施形態に係るノズルプレート3と比較し、隣り合うオリフィス8からの噴霧が大きく影響し合い、複数の羽根100によって旋回させられる空気が噴霧中の燃料の微粒子から旋回方向の運動量をより多く与えられ、より一層強い螺旋状の空気流が形成される。
  (第7実施形態の第2変形例)
 図49は、本発明の第7実施形態に係るノズルプレート3の第2変形例を示す図である。なお、図49(a)は、ノズルプレート3の正面図であり、図46(a)に対応する図である。また、図49(b)は、図49(a)のB44-B44線に沿って切断して示す図である。また、図49(c)は、ノズルプレートの背面図であり、図46(d)に対応する図である。
 本変形例に係るノズルプレート3は、干渉体プレート部分63の表面が底壁部11の表面と同一面になるように形成されており、底壁部11を円板状に座繰るようにして干渉体プレート部分63が形成された第7実施形態に係るノズルプレート3と相違する。そして、本変形例に係るノズルプレート3は、ノズル孔プレート部分64の肉厚及び干渉体プレート部分63の肉厚を第7実施形態に係るノズルプレート3と同一寸法にするため、底壁部11の背面側に有底の丸穴104が座繰るように形成されている。この丸穴104の底面には、4個のノズル孔7が開口している。そして、丸穴104の側面104aが4個のノズル孔7を取り囲むように位置している。
 また、本変形例に係るノズルプレート3において、底壁部11は、羽根100の径方向内方端よりも僅かに径方向外方側の位置から径方向外方端へ向けて斜めに削り落とされるように形成されることにより、中空円板状の傾斜面105が形作られている。そして、この中空円板状の傾斜面105の径方向外方端は、滑らかな曲面106で丸められている。その結果、本変形例に係るノズルプレート3は、第7実施形態に係るノズルプレート3と比較し、羽根溝102の周囲の空気を広範囲に且つ円滑に羽根溝102内に導入できる。しかも、本変形例に係るノズルプレート3は、上述のように、干渉体プレート部分63の表面が底壁部11の表面と同一面になるように形成されているため、底壁部11を円板状に座繰るようにして干渉体プレート部分63が形成された第7実施形態に係るノズルプレート3と比較し、羽根溝102の径方向内方端から干渉体プレート部分側に流入する空気が凹部の影響を受けにくく、羽根溝102の径方向内方端からオリフィス8側に向かう空気の速度が大きくなる。
 以上のような構成の本変形例に係るノズルプレート3は、第7実施形態に係るノズルプレート3と比較して、羽根溝102の径方向内方端からオリフィス8側へ向かう空気の速度が大きいため、オリフィス8側へ向かう空気が噴霧中の燃料の微粒子から運動量を与えられると、より一層強い螺旋状の空気流が形成される。
  (第7実施形態の第3変形例)
 図50は、本発明の第7実施形態に係るノズルプレート3の第3変形例を示す図であり、上記第2変形例に係るノズルプレート3の変形例を示す図である。なお、図50(a)が図49(b)に対応するノズルプレート3の断面図であり、図50(b)が図49(c)に対応するノズルプレート3の背面図である。
 この図50に示す本変形例に係るノズルプレート3は、上記第2変形例に係るノズルプレート3の底壁部11の裏面側に形成された丸穴104をリング状の穴107に変更し、穴107内に溜まる燃料の量を丸穴104内に溜まる燃料の量よりも少なくしてある。
  (第7実施形態の第4変形例)
 図51は、本発明の第7実施形態に係るノズルプレート3の第4変形例を示す図であり、上記第2変形例に係るノズルプレート3の変形例を示す図である。なお、図51(a)が図49(b)に対応するノズルプレート3の断面図であり、図51(b)が図49(c)に対応するノズルプレート3の背面図である。
 この図51に示す本変形例に係るノズルプレート3は、上記第2変形例に係るノズルプレート3の底壁部11の裏面側に形成された丸穴104を十字形状の穴108に変更し、穴108内に溜まる燃料の量を丸穴104内に溜まる燃料の量よりも少なくしてある。
 [第8実施形態]
 図52乃至図53は、本発明の第8実施形態に係るノズルプレート3を示す図である。なお、図52は、第7実施形態の第1変形例に係るノズルプレート3を更に変更した構造を示す図である。また、図53は、図52で示したノズルプレート3の中央部分を拡大して示す図である。
 これらの図に示すように、ノズルプレート3は、底壁部11の中央(中心軸53に合致する位置)に、底壁部11を中心軸53に沿って貫通する中央ノズル孔110が形成されている。そして、この中央ノズル孔110は、外面側の出口側開口部111が干渉体112によって4箇所部分的に塞がれている。4箇所の干渉体112は、円弧状外縁部113が中央ノズル孔110の径方向内方側に張り出し、中央ノズル孔110の出口側開口部111を部分的に塞ぐことによって、中央オリフィス114を形作っている。また、隣り合う干渉体112,112の円弧状外縁部113,113は、中央ノズル孔110の出口側開口部111の開口縁上で接している。そして、一対の円弧状外縁部113,113の交差部には、コーナー部分115が形作られている。このコーナー部分115は、中央オリフィス114の開口縁に等間隔で4箇所形成されており、丸みの無い鋭利な尖った形状になっている。その結果、このコーナー部分115は、中央オリフィス114を通過する燃料の液膜の端部を空気との摩擦で微粒化し易い鋭利な尖った形状にすることができる。また、各干渉体112は、中央ノズル孔110の中心軸53に直交する平面である燃料衝突面116と、円弧状外縁部113から斜めに切り上げられる側面(傾斜面)70とを有している。そして、隣合う干渉体112,112の側面117は、コーナー部分115で円弧状に滑らかに接続されている。
 このような本実施形態に係るノズルプレート3は、燃料が底壁部11の4箇所のオリフィス8から噴射されて生じる噴霧に、燃料が底壁部11の中央の中央オリフィス114から噴射されて生じる噴霧が加わり、中央の噴霧に周囲の噴霧が引き寄せられると共に、複数の羽根100よって旋回させられる空気が噴霧中の燃料の微粒子から旋回方向の運動量をより多く与えられ、より一層強い螺旋状の空気流が形成される。
 また、本実施形態に係るノズルプレート3は、第7実施形態に係るノズルプレート3にも適用でき、第7実施形態に係るノズルプレート3と同様の効果を得ることができる。また、中央オリフィス114は、本実施形態の形状に限定されず、上記他の実施形態のオリフィス形状を適用してもよい。
 [その他の実施形態]
 上記第7乃至第8実施形態に係るノズルプレート3は、ノズル孔7を4箇所形成すると共に、羽根100をノズル孔7の個数の2倍(8枚)だけ設ける態様を例示したが、これに限られず、ノズル孔7を複数(2個以上)形成し、羽根100をノズル孔7の個数の2倍だけ設けるようにしてもよい。また、上記第7乃至第8実施形態係るノズルプレート33は、ノズル孔7の個数の2倍だけ羽根溝102を形成するようになっているが、これに限られず、ノズル孔7と同数だけ羽根溝102を設けるようにしてもよい。また、上記第7乃至第8実施形態係るノズルプレート3は、ノズル孔7の個数の2倍だけ羽根溝102を形成するようになっているが、これに限られず、ノズル孔7の個数の任意の倍数だけ羽根溝102を設けるようにしてもよい。
 また、上記第7乃至第8実施形態に係るノズルプレート3は、底壁部11の中心軸53の周りに反時計回り方向の旋回流が生じるように、オリフィス8及び羽根100の形状(右ねじれの形状)が決定されている。しかしながら、本発明は、これら第7乃至第8実施形態に係るノズルプレート3に限定されず、底壁部11の中心軸53の周りに時計回り方向の旋回流が生じるように、オリフィス8及び羽根100の形状(左ねじれの形状)を形成してもよい。
 また、上記第7乃至第8実施形態に係るノズルプレート3は、羽根100の平面視した形状が円弧形状であるが、これに限られず、羽根100の平面視した形状が直線状でもよい。
 また、上記第3乃至第8実施形態に係るノズルプレート3は、合成樹脂材料を射出成形することにより製造される場合に限られず、メタルインジェクションモールド法を使用して製造することができる。
 1……燃料噴射装置、3……ノズルプレート(燃料噴射装置用ノズルプレート)、4……燃料噴射口、7……ノズル孔、8……オリフィス、15……出口側開口部、16,16’,16”,51,65,76……干渉体、16a……V字状干渉体(干渉体)、21,54,66,77……円形状外縁部(円弧状外縁部、外縁部)、22,22’,92……コーナー部分、33,33’……半円形状外縁部(円弧状外縁部、外縁部)、34,86……直線状外縁部(外縁部)

Claims (14)

  1.  燃料噴射装置の燃料噴射口に取り付けられて、前記燃料噴射口から噴射された燃料が通過するノズル孔を備えた燃料噴射装置用ノズルプレートにおいて、
     前記ノズル孔は、燃料の流出側の開口部である出口側開口部が干渉体で部分的に塞がれることにより、前記出口側開口部と前記干渉体とによって燃料の流れを絞るオリフィスが形作られており、
     前記干渉体は、前記オリフィスの開口縁の一部を形作る外縁部を有し、前記ノズル孔を通過する燃料の一部を衝突させることによって、前記ノズル孔を通過する燃料の一部を微粒化すると共に、前記ノズル孔を通過する燃料の一部の流れを急激に曲げて前記ノズル孔及び前記オリフィスを直進して通過しようとする燃料に衝突させ、前記オリフィスを通過した燃料が空気中で微粒化しやすくなるように燃料の流れを乱流にし、
     前記ノズル孔の前記出口側開口部と前記干渉体とで形作られる前記オリフィスの開口縁のコーナー部分は、丸みのない鋭利な形状になっており、前記オリフィスを通過する燃料の液膜の端部を空気との摩擦で微粒化され易い鋭利な形状にする、
     ことを特徴とする燃料噴射装置用ノズルプレート。
  2.  燃料噴射装置の燃料噴射口に取り付けられて、前記燃料噴射口から噴射された燃料が通過するノズル孔を備えた燃料噴射装置用ノズルプレートにおいて、
     前記ノズル孔は、燃料の流出側の開口部である出口側開口部が干渉体で部分的に塞がれることにより、前記出口側開口部と前記干渉体とによって燃料の流れを絞るオリフィスが形作られており、
     前記干渉体は、前記オリフィスの開口縁の一部を形作る円弧状外縁部を有し、前記ノズル孔を通過する燃料の一部を衝突させることによって、前記ノズル孔を通過する燃料の一部を微粒化すると共に、前記ノズル孔を通過する燃料の一部の流れを急激に曲げて前記ノズル孔及び前記オリフィスを直進して通過しようとする燃料に衝突させ、前記オリフィスを通過した燃料が空気中で微粒化しやすくなるように燃料の流れを乱流にし、
     前記ノズル孔の前記出口側開口部と前記干渉体とで形作られる前記オリフィスの開口縁のコーナー部分は、丸みのない鋭利な形状になっており、前記オリフィスを通過する燃料の液膜の端部を空気との摩擦で微粒化され易い鋭利な形状にする、
     ことを特徴とする燃料噴射装置用ノズルプレート。
  3.  前記コーナー部分は、前記干渉体の直線状外縁部と前記ノズル孔の円弧状の前記出口側開口部とで形作られる、ことを特徴とする請求項1に記載の燃料噴射装置用ノズルプレート。
  4.  前記コーナー部分は、前記干渉体の円弧状外縁部と前記ノズル孔の前記出口側開口部とで形作られる、ことを特徴とする請求項1又は2に記載の燃料噴射装置用ノズルプレート。
  5.  前記干渉体は、
     前記ノズル孔を通過する燃料の一部が衝突する燃料衝突面と、前記燃料衝突面に鋭角で交わる傾斜面と、を有し、
     前記オリフィスを通過した燃料に空気が巻き込まれやすくなるように、前記オリフィスを通過した燃料と前記傾斜面との間に空気層が生じるようになっている、
     ことを特徴とする請求項1乃至4のいずれかに記載の燃料噴射装置用ノズルプレート。
  6.  前記干渉体によって形作られる前記オリフィスの開口縁が円弧形状である、ことを特徴とする請求項1、2、4又は5に記載の燃料噴射装置用ノズルプレート。
  7.  前記ノズル孔の前記出口側開口部の形状が円形状である、ことを特徴とする請求項6に記載の燃料噴射装置用ノズルプレート。
  8.   前記ノズル孔の前記出口側開口部の形状が四角形状である、ことを特徴とする請求項6に記載の燃料噴射装置用ノズルプレート。
  9.   前記ノズル孔の前記出口側開口部の形状が三角形状である、ことを特徴とする請求項6に記載の燃料噴射装置用ノズルプレート。
  10.  前記ノズル孔の前記出口側開口部の形状が楕円形状である、ことを特徴とする請求項6に記載の燃料噴射装置用ノズルプレート。
  11.  前記オリフィスの開口縁の形状が三日月形状であり、前記オリフィスの開口縁の両端にそれぞれ位置するコーナー部分が丸みのない鋭利な形状になっている、ことを特徴とする請求項7に記載の燃料噴射装置用ノズルプレート。
  12.  前記燃料噴射口が形成された前記燃料噴射装置のバルブボディに嵌合される円筒状壁部と、前記円筒状壁部の一端側を塞ぐように形成された底壁部と、を有し、
     前記底壁部は、前記ノズル孔が開口するノズル孔プレート部分と、前記干渉体が形成された干渉体プレート部分と、を有し、
     前記ノズル孔プレート部分は、前記干渉体プレート部分が部分的に座繰りされたような形状に形成された、
     ことを特徴とする請求項1乃至11のいずれかに記載の燃料噴射装置用ノズルプレート。
  13.  前記燃料噴射口が形成された前記燃料噴射装置のバルブボディに嵌合される円筒状壁部と、前記円筒状壁部の一端側を塞ぐように形成された底壁部と、を有し、
     前記底壁部は、複数の前記ノズル孔が開口するノズル孔プレート部分と、前記干渉体が前記複数のノズル孔毎に形成された干渉体プレート部分と、を有し、
     前記ノズル孔プレート部分は、前記干渉体プレート部分が部分的に座繰りされたような形状に形成された、
     ことを特徴とする請求項1乃至11のいずれかに記載の燃料噴射装置用ノズルプレート。
  14.  前記底壁部は、前記ノズル孔プレート部分を取り囲む位置の外表面に、前記バルブボディの中心軸が延びる方向に沿って出っ張るノズルガード突起が形成され、
     前記ノズルガード突起は、前記ノズル孔プレート部分を取り囲むように前記底壁部に形成された環状体か又は前記ノズル孔プレート部分を取り囲むように前記底壁部に複数形成されたブロック体であり、先端が仮想平面に接触した際に、前記仮想平面と前記底壁部との間に隙間が生じるように形成され、且つ、前記ノズル孔から噴射された噴霧を妨げないように形成された、
     ことを特徴とする請求項12又は13に記載の燃料噴射装置用ノズルプレート。
PCT/JP2014/062148 2013-05-13 2014-05-02 燃料噴射装置用ノズルプレート WO2014185290A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14798280.5A EP2998567B1 (en) 2013-05-13 2014-05-02 Fuel injector nozzle plate
CN201480026502.XA CN105190020B (zh) 2013-05-13 2014-05-02 燃料喷射装置用喷嘴板
US14/890,734 US10352285B2 (en) 2013-05-13 2014-05-02 Nozzle plate for fuel injection device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2013-101268 2013-05-13
JP2013101268 2013-05-13
JP2013152629 2013-07-23
JP2013-152629 2013-07-23
JP2013-216186 2013-10-17
JP2013216186 2013-10-17
JP2013256822 2013-12-12
JP2013-256822 2013-12-12
JP2014-024846 2014-02-12
JP2014024846A JP6429461B2 (ja) 2013-05-13 2014-02-12 燃料噴射装置用ノズルプレート

Publications (1)

Publication Number Publication Date
WO2014185290A1 true WO2014185290A1 (ja) 2014-11-20

Family

ID=51898269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062148 WO2014185290A1 (ja) 2013-05-13 2014-05-02 燃料噴射装置用ノズルプレート

Country Status (5)

Country Link
US (1) US10352285B2 (ja)
EP (1) EP2998567B1 (ja)
JP (1) JP6429461B2 (ja)
CN (1) CN105190020B (ja)
WO (1) WO2014185290A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111149A1 (ja) * 2015-01-09 2016-07-14 株式会社エンプラス 燃料噴射装置用ノズルプレート

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433162B2 (ja) * 2014-02-12 2018-12-05 株式会社エンプラス 燃料噴射装置用ノズルプレート
JP6641748B2 (ja) * 2015-07-08 2020-02-05 株式会社三洋物産 遊技機
US11898526B2 (en) 2018-04-25 2024-02-13 Robert Bosch Gmbh Fuel injector valve seat assembly including insert locating and retention features
US10808668B2 (en) * 2018-10-02 2020-10-20 Ford Global Technologies, Llc Methods and systems for a fuel injector
JP7272645B2 (ja) * 2019-06-20 2023-05-12 株式会社デンソー 燃料噴射弁

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303172A (ja) * 1991-02-09 1992-10-27 Robert Bosch Gmbh 穴あき板及び穴あき板を装備した燃料噴射弁
JPH10122097A (ja) 1996-10-16 1998-05-12 Aisan Ind Co Ltd 燃料噴射弁
JP2000508739A (ja) * 1997-01-30 2000-07-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
JP2002115627A (ja) * 2000-10-05 2002-04-19 Optonix Seimitsu:Kk オリフィスプレートおよびオリフィスプレートの製造方法
JP2002210392A (ja) * 2001-01-17 2002-07-30 Aisan Ind Co Ltd 流体噴射ノズルとその流体噴射ノズルを備えた流体噴射弁
JP2006112391A (ja) * 2004-10-18 2006-04-27 Nissan Motor Co Ltd 燃料噴射装置
JP2011001864A (ja) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd 燃料噴射弁

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8709111U1 (ja) * 1987-07-01 1987-09-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE19637103A1 (de) * 1996-09-12 1998-03-19 Bosch Gmbh Robert Ventil, insbesondere Brennstoffeinspritzventil
US6848635B2 (en) * 2002-01-31 2005-02-01 Visteon Global Technologies, Inc. Fuel injector nozzle assembly with induced turbulence
JP4154317B2 (ja) * 2003-04-25 2008-09-24 トヨタ自動車株式会社 燃料噴射弁
JP4147405B2 (ja) * 2003-09-25 2008-09-10 株式会社デンソー 燃料噴射弁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303172A (ja) * 1991-02-09 1992-10-27 Robert Bosch Gmbh 穴あき板及び穴あき板を装備した燃料噴射弁
JPH10122097A (ja) 1996-10-16 1998-05-12 Aisan Ind Co Ltd 燃料噴射弁
JP2000508739A (ja) * 1997-01-30 2000-07-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
JP2002115627A (ja) * 2000-10-05 2002-04-19 Optonix Seimitsu:Kk オリフィスプレートおよびオリフィスプレートの製造方法
JP2002210392A (ja) * 2001-01-17 2002-07-30 Aisan Ind Co Ltd 流体噴射ノズルとその流体噴射ノズルを備えた流体噴射弁
JP2006112391A (ja) * 2004-10-18 2006-04-27 Nissan Motor Co Ltd 燃料噴射装置
JP2011001864A (ja) * 2009-06-18 2011-01-06 Hitachi Automotive Systems Ltd 燃料噴射弁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111149A1 (ja) * 2015-01-09 2016-07-14 株式会社エンプラス 燃料噴射装置用ノズルプレート
JP2016128664A (ja) * 2015-01-09 2016-07-14 株式会社エンプラス 燃料噴射装置用ノズルプレート
US10619613B2 (en) 2015-01-09 2020-04-14 Enplas Corporation Nozzle plate for fuel injection device

Also Published As

Publication number Publication date
US10352285B2 (en) 2019-07-16
JP2015132253A (ja) 2015-07-23
US20160097361A1 (en) 2016-04-07
CN105190020B (zh) 2018-11-20
EP2998567A1 (en) 2016-03-23
EP2998567A4 (en) 2016-10-26
CN105190020A (zh) 2015-12-23
JP6429461B2 (ja) 2018-11-28
EP2998567B1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6429461B2 (ja) 燃料噴射装置用ノズルプレート
JP6433162B2 (ja) 燃料噴射装置用ノズルプレート
CN106715888B (zh) 燃料喷射装置用喷嘴板
CN107407244B (zh) 燃料喷射装置用喷嘴板
JP4623175B2 (ja) 内燃機関の燃料噴射弁
JP6188140B2 (ja) 燃料噴射装置用ノズルプレート
JP6348740B2 (ja) 燃料噴射装置用ノズルプレート
JP6289143B2 (ja) 燃料噴射装置用ノズルプレート
JP6460802B2 (ja) 燃料噴射装置用ノズルプレート
WO2016181982A1 (ja) 燃料噴射装置用ノズルプレート
JP6208053B2 (ja) 燃料噴射弁
JP6305119B2 (ja) 燃料噴射装置用ノズルプレート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026502.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014798280

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14890734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE