WO2014185228A1 - 有機エレクトロルミネッセンス素子のパターン形成装置 - Google Patents

有機エレクトロルミネッセンス素子のパターン形成装置 Download PDF

Info

Publication number
WO2014185228A1
WO2014185228A1 PCT/JP2014/061259 JP2014061259W WO2014185228A1 WO 2014185228 A1 WO2014185228 A1 WO 2014185228A1 JP 2014061259 W JP2014061259 W JP 2014061259W WO 2014185228 A1 WO2014185228 A1 WO 2014185228A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pattern forming
organic
pattern
organic electroluminescence
Prior art date
Application number
PCT/JP2014/061259
Other languages
English (en)
French (fr)
Inventor
森川 雅弘
新藤 博之
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015517007A priority Critical patent/JPWO2014185228A1/ja
Publication of WO2014185228A1 publication Critical patent/WO2014185228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a pattern forming apparatus for an organic electroluminescence element.
  • the present invention relates to a pattern forming apparatus for an organic electroluminescence element capable of forming a light emission pattern on an organic electroluminescence element at low cost without using ultraviolet rays.
  • organic light-emitting elements are attracting attention as thin luminescent materials.
  • Organic light-emitting elements (hereinafter also referred to as “organic EL elements”) using organic electroluminescence (EL) are thin-film complete light sources capable of emitting light at a low voltage of several volts to several tens of volts. It is a solid element and has many excellent features such as high brightness, high luminous efficiency, thinness, and light weight. For this reason, it has attracted attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • Such an organic EL element has a configuration in which an organic functional layer including at least a light-emitting layer is disposed between a pair of electrodes, and emitted light generated in the light-emitting layer passes through the electrode and is extracted to the outside. For this reason, at least one of the pair of electrodes is configured as a transparent electrode, and emitted light is extracted from the transparent electrode side.
  • the organic EL element can obtain high luminance with low power, and is excellent in terms of visibility, response speed, life, and power consumption.
  • the function of the organic functional layer is changed for each predetermined region by irradiating light while adjusting the exposure amount for each predetermined region to the organic functional layer, and the amount of change
  • a method of forming a light emission pattern having a gradation of light emission luminance according to the above for example, see Patent Document 1.
  • an apparatus for performing such a pattern forming method there is an apparatus for forming a light emitting pattern by irradiating a predetermined region of an organic functional layer with ultraviolet rays by a UV lamp.
  • Patent Document 1 irradiates an organic EL element with light using a UV lamp as a light source.
  • the UV lamp since the UV lamp generally has a short life, it is necessary to frequently replace the UV lamp. Therefore, when the pattern is continuously formed on the organic EL element, the production cost increases. In addition, when the UV lamp is mounted, the apparatus becomes larger, which further increases the production cost.
  • the UV-LED generates a large amount of heat, and a cooling device is used to suppress a decrease in life due to heat generation. It is necessary to provide it, and the production cost is also increased.
  • the optical component materials that can be used are limited when ultraviolet rays are used, including the use of a UV laser that has a long lifetime and a small calorific value, the apparatus becomes expensive and the production cost further increases.
  • an apparatus for forming an emission pattern by irradiating an organic EL element with an ultraviolet ray having a wavelength shorter than 400 nm has limited optical parts for irradiating light, and by providing a cooling device or the like. Production costs increase. Moreover, when irradiating with ultraviolet rays with respect to the organic EL element which has a resin base material, and forming a light emission pattern, the said resin base material may discolor by ultraviolet irradiation. For this reason, an apparatus for irradiating ultraviolet rays to form a light emission pattern can be applied only to an organic EL element having a resin substrate that is resistant to ultraviolet rays, or an organic EL element having a substrate that is not made of resin. There is also a problem that versatility is low.
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is pattern formation of an organic electroluminescent element that can form a light-emitting pattern on the organic electroluminescent element at low cost without using ultraviolet rays. Is to provide a device.
  • a light source that emits light having a wavelength of 400 nm or more and a light emitted from the light source are irradiated onto the organic electroluminescence element. It was found that a device capable of forming a light-emitting pattern on an organic electroluminescence element at low cost without using ultraviolet rays can be provided by using a light irradiation unit that forms the light-emitting pattern. . That is, the said subject which concerns on this invention is solved by the following means.
  • a pattern forming apparatus for an organic electroluminescence element that forms an emission pattern by irradiating light to an organic electroluminescence element having an organic functional layer between a pair of electrodes, A light source that emits light having a wavelength of 400 nm or more;
  • a pattern forming apparatus for an organic electroluminescence element comprising: a light irradiation unit that forms the light emission pattern by irradiating the organic electroluminescence element with light emitted from the light source.
  • the light irradiation unit collects light emitted from the light source to form a light spot on the organic electroluminescence element, and forms the light emission pattern by point drawing.
  • Item 3 A pattern forming apparatus for an organic electroluminescence element according to Item 2.
  • a pattern forming mask provided on the organic electroluminescence element and having a transmittance distribution;
  • the light irradiation unit condenses the light emitted from the light source on the pattern forming mask to form a linear light spot, and the linear light spot, the pattern forming mask, and the organic electroluminescence element
  • a filter is further provided on the optical path of the light irradiation unit, The filter has a transmittance distribution such that the light intensity of the linear light spot formed on the pattern forming mask through the filter is constant in the linear direction, The light irradiation unit collects light emitted from the light source and passes through the filter to form the linear light spot, thereby making the light intensity of the linear light spot constant in a linear direction.
  • the light irradiation unit condenses the light emitted from the plurality of light sources on the pattern forming mask to form a plurality of light spots, and superimposes the plurality of light spots on the linear 8.
  • a pattern forming mask provided on the organic electroluminescence element and having a transmittance distribution;
  • the light irradiation unit forms the light emitting pattern by irradiating the entire light emitting surface of the organic electroluminescence element with the light emitted from the light source through the pattern forming mask.
  • a filter is further provided on the optical path of the light irradiation unit,
  • the filter has a light transmittance such that light intensity of light irradiated on the pattern forming mask through the filter is uniform on the pattern forming mask,
  • the light irradiating unit irradiates the pattern forming mask with light emitted from the light source and passing through the filter, whereby the light intensity of the light irradiated on the pattern forming mask is increased on the pattern forming mask.
  • the pattern forming apparatus for an organic electroluminescence element according to item 10, wherein the pattern is uniform.
  • the light irradiating unit irradiates the light emitted from the plurality of light sources on the pattern forming mask so that the light intensity of the light applied to the pattern forming mask is changed to the pattern formation.
  • the pattern formation apparatus of the organic electroluminescent element which can form a light emission pattern in an organic electroluminescent element at low cost without using an ultraviolet-ray can be provided.
  • the expression mechanism or action mechanism of the effect of the present invention is as follows. In the case of forming a light emission pattern by irradiating light to an organic electroluminescence element, the function of the organic functional layer can be changed by irradiating light having a wavelength of 400 nm or more, whereby the wavelength is shorter than 400 nm. A light emission pattern can be formed without irradiating with ultraviolet rays.
  • the organic electroluminescence element Since it suffices to irradiate the organic electroluminescence element with light having a wavelength of 400 nm or more, for example, a light source or a general-purpose optical member that emits light in the visible light region that has been widely used in the past can be used. Production costs can be reduced.
  • Schematic configuration diagram of a pattern forming device by dot drawing The figure which shows the irradiation power and LD electric current value which are required in order to obtain the pattern of each relative light-emitting luminance
  • Schematic configuration diagram of pattern forming apparatus by line exposure Schematic configuration diagram of pattern forming apparatus by line exposure
  • permeability distribution of the filter used for the pattern formation apparatus shown in FIG. The figure which shows an example of the transmittance
  • the figure which shows the light intensity of the linear light spot formed on the mask for pattern formation Schematic configuration diagram of pattern forming apparatus by surface exposure Schematic configuration diagram of pattern forming apparatus by surface exposure
  • permeability distribution of the filter used for the pattern formation apparatus shown in FIG. The figure which shows an example of the transmittance
  • the pattern forming apparatus for an organic electroluminescent element of the present invention is a pattern forming apparatus for an organic electroluminescent element that forms a light emission pattern by irradiating light to an organic electroluminescent element having an organic functional layer between a pair of electrodes.
  • This feature is a technical feature common to the inventions according to claims 1 to 13.
  • the light emitted from the light source preferably has a wavelength in the range of 400 to 410 nm.
  • a blue-violet semiconductor laser used in a conventionally known optical pickup device for emitting and receiving light to a Blu-ray (registered trademark) disc (hereinafter also referred to as “BD”) is patterned. Since it can be used as a light source of a forming apparatus, a pattern forming apparatus can be manufactured at low cost, and pattern formation of an organic EL element can be performed at lower cost. In the present invention, it is preferable that the light irradiation unit collects light emitted from the light source to form a light spot on the organic electroluminescence element, and forms the light emission pattern by dot drawing.
  • the light irradiation unit performs point drawing by causing the light spot to scan in a two-dimensional direction on the organic electroluminescence element.
  • a pattern formation apparatus can be reduced in size.
  • the spot can be scanned at a high speed, the light emission pattern formation time can be shortened.
  • the light irradiation unit performs point drawing by moving the organic electroluminescence element in a two-dimensional direction.
  • the present invention further includes a pattern formation mask provided on the organic electroluminescence element and having a transmittance distribution, and the light irradiation unit emits light emitted from the light source onto the pattern formation mask. Condensing to form a linear light spot, and moving the linear light spot, the pattern forming mask, and the organic electroluminescence element relative to each other in a direction perpendicular to the linear direction of the linear light spot. It is preferable to form a light emitting pattern.
  • the light emission pattern is formed by scanning the linear light spot, the light emission pattern can be formed in a shorter time.
  • the light intensity of the linear light spot is constant in the linear direction.
  • light intensity means the radiation intensity [W / cm ⁇ 2 >] of the light irradiated per unit area.
  • the present invention further includes a pattern forming mask provided on the organic electroluminescence element and having a transmittance distribution, and the light irradiating unit transmits light emitted from the light source to the pattern forming mask.
  • the light emission pattern it is preferable to form the light emission pattern by irradiating the entire light emitting surface of the organic electroluminescence element through the light emitting surface. Thereby, formation of a light emission pattern can be performed by batch processing, and productivity of the organic EL element which has a light emission pattern can be improved.
  • the light intensity of light applied to the pattern forming mask is uniform on the pattern forming mask. Thereby, the brightness nonuniformity of a light emission pattern can be reduced.
  • the “pattern” in the present invention refers to a design (design or pattern in the figure), characters, images, etc. displayed by the organic electroluminescence element.
  • “Light emission pattern” means that when an organic electroluminescence device emits light, the light intensity (luminance) is changed depending on the position of the light emitting surface based on a predetermined design (pattern or pattern in the figure), characters, images, etc.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • organic electroluminescence element (hereinafter also referred to as “organic EL element”) will be described below.
  • the organic EL element is configured by laminating a first electrode, an organic functional layer, and a second electrode in this order on a substrate. Further, an extraction electrode may be provided at the end of the first electrode, and an external power supply (not shown) may be connected to the first electrode via the extraction electrode.
  • the organic EL element is configured such that emitted light is extracted from the substrate side or the opposite side.
  • the layer structure of the organic EL element is not particularly limited, and may be a conventionally known general layer structure.
  • the first electrode functions as an anode (that is, an anode)
  • the second electrode functions as a cathode (that is, a cathode).
  • the organic functional layer can have a structure in which a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer are stacked in order from the first electrode side which is an anode. It is essential to have at least a light-emitting layer formed using an organic material.
  • the hole injection layer and the hole transport layer may be provided as a hole transport injection layer, and the electron transport layer and the electron injection layer may be provided as an electron transport injection layer.
  • the electron injection layer may be composed of an inorganic material.
  • the organic functional layer may have a structure in which a hole blocking layer, an electron blocking layer, or the like is laminated at a necessary position as necessary.
  • the light emitting layer may have a structure in which each color light emitting layer for generating light emitted in each wavelength region is laminated, and each of these color light emitting layers is laminated via a non-light emitting intermediate layer.
  • the intermediate layer may function as a hole blocking layer and an electron blocking layer.
  • the second electrode as the cathode may also have a laminated structure as necessary.
  • an auxiliary electrode may be provided in contact with the first electrode.
  • the organic EL only a portion where the organic functional layer is sandwiched between the first electrode and the second electrode (a region where the first electrode, the organic functional layer, and the second electrode overlap when viewed from the stacking direction) is the organic EL. It becomes the light emitting region of the element.
  • the organic EL element having the above-described configuration is sealed on the substrate with a sealing material to be described later for the purpose of preventing deterioration of the organic functional layer formed using an organic material or the like.
  • a sealing material to be described later for the purpose of preventing deterioration of the organic functional layer formed using an organic material or the like.
  • the terminal portions of the first electrode, the second electrode, or the extraction electrode are exposed from the sealing material in a state where insulation is maintained on the substrate.
  • a light emission pattern having a desired gradation of light emission luminance can be formed by a pattern forming apparatus described below.
  • the organic EL element pattern forming apparatus of the present invention forms a light emission pattern by irradiating light to an organic EL element having an organic functional layer between a pair of electrodes, and adjusting the intensity and time of light.
  • a light emission pattern having a desired relative light emission luminance can be formed.
  • the relative light emission luminance of the organic EL element is defined as a relative light emission luminance 1 where no light is irradiated and the function of the organic functional layer is not changed at all (corresponding to white luminance).
  • Each relative light emission luminance is set according to the amount of change in the function of the layer.
  • the light emission luminance of the organic EL element decreases according to the amount of change.
  • the state in which the organic functional layer is changed by the irradiation of light and the decrease in the emission luminance reaches the limit corresponds to the luminance of black, and this is set as a relative emission luminance of 0.1.
  • the pattern forming apparatus of the present invention includes a light source that emits light having a wavelength of 400 nm or more, and a light irradiation unit that forms a light emission pattern by irradiating the organic EL element with light emitted from the light source.
  • a light source used in an apparatus for forming a light emission pattern on an organic EL element a light source that emits ultraviolet light having a wavelength shorter than 400 nm has been generally used. It has been found that even a light source that emits light having a wavelength can change the function of the organic functional layer and form a light emission pattern. For this reason, the pattern forming apparatus of the present invention includes a light source that emits light having a wavelength of 400 nm or more. It has been confirmed that a light emission pattern cannot be formed when a light source that emits light with a wavelength of 655 nm or a light source that emits light with a wavelength of 785 nm is used.
  • a blue-violet semiconductor laser diode used in a conventionally known BD optical pickup apparatus can be used, and further, used in the optical pickup apparatus.
  • An optical system can also be used.
  • a pattern forming apparatus can be produced at low cost by diverting the configuration of a conventionally known optical pickup device almost as it is, and a light emitting pattern can be formed at a low cost on an organic EL element.
  • the pattern forming apparatus of the present invention may have any configuration as long as it has the above-described characteristics, and specifically includes an apparatus having the following configuration.
  • the light irradiation timing and the light irradiation direction may be any.
  • the timing of light irradiation may be immediately after one of the layers constituting the organic functional layer is stacked, and the light irradiation direction is from the side opposite to the substrate.
  • a substrate, an electrode, or the like provided on the light incident side in the organic EL element is made of a translucent material.
  • FIG. 1 is a schematic configuration diagram of a pattern forming apparatus 100 of the present invention.
  • the pattern forming apparatus 100 is a point drawing apparatus that forms a light emission pattern by forming a plurality of minute dot marks on the organic EL element 1.
  • the pattern forming apparatus 100 includes a semiconductor laser (Laser Diode; hereinafter referred to as “LD”) light source 101 that emits laser light having a wavelength of 400 to 410 nm, and a collimator that collimates the light emitted from the LD light source 101.
  • LD semiconductor laser
  • a light detector 106 that detects the intensity of the emitted light, a reflection mirror 107 that reflects light emitted from the condenser lens 104 toward the organic EL element 1, an adjustment unit 108 that adjusts the inclination of the reflection mirror 107, and an organic EL.
  • a moving unit 109 that moves the element 1 in the horizontal direction, and a control unit 110 that controls each member. It is equipped with a.
  • the collimator lens 103, the condenser lens 104, the beam splitter 105, the photodetector 106, the reflection mirror 107, the adjustment unit 108, the moving unit 109, and the control unit 110 constitute a light irradiation unit 102.
  • a blue-violet semiconductor laser of a conventionally known optical pickup device for BD can be used.
  • the LD light source 101 is fixed to a metal holder (not shown), and the holder is further fixed to a metal casing (not shown). Thereby, the heat dissipation of the LD light source 101 is ensured. Further, grease having high thermal conductivity may be applied to the contact surface between the holder and the housing, and the heat dissipation of the LD light source 101 can be further enhanced.
  • collimator lens 103 and the condensing lens 104 aspheric plastic lenses are used, and antireflection films for controlling the transmittance of incident light are provided on the surfaces thereof.
  • antireflection film used for the collimator lens 103 and the condenser lens 104 for example, MgF 2 is used.
  • the reflection mirror 107 and the adjustment unit 108 are configured as, for example, a uniaxially driven galvanometer mirror, and can scan a light spot formed on the organic EL element 1 in the Y direction.
  • the moving unit 109 is configured to be able to move the organic EL element 1 in the X direction. Thereby, the light spot can be moved in the X direction and the Y direction on the organic EL element 1.
  • the X direction is the horizontal direction, which refers to the left-right direction in FIG. 1
  • the Y direction is the horizontal direction, which is the direction perpendicular to the paper surface in FIG.
  • the reflection mirror 107 and the adjustment unit 108 do not have to be configured as a uniaxially driven galvanometer mirror.
  • the reflecting mirror 107 and the adjusting unit 108 may be configured by combining two uniaxially driven galvanomirrors. A galvanometer mirror and a polygon mirror may be combined.
  • the light spot can be moved in the X direction and the Y direction on the organic EL element 1 only by the reflection mirror 107 and the adjusting unit 108, and the configuration of the moving unit 109 is not necessary. The cost can be reduced.
  • the adjustment unit 108 may not be provided.
  • the moving unit 109 is configured to move the organic EL element 1 in the X direction and the Y direction.
  • the light irradiation unit 102 condenses the light emitted from the LD light source 101 to form a light spot on the organic EL element 1.
  • the light irradiation unit 102 can adjust the accuracy of the light emission pattern to be formed and the time required for pattern formation.
  • the control unit 110 emits light for each coordinate of the image from image data input from an external device (not shown) (for example, a PC, various servers, a printer, a scanner, or the like).
  • an external device for example, a PC, various servers, a printer, a scanner, or the like.
  • Light emission luminance data representing luminance is generated.
  • the control unit 110 sets the irradiation power [W] and the irradiation time [s] necessary for forming a dot mark having a desired relative light emission luminance.
  • the pattern forming apparatus 100 sets the light irradiation time constant for each dot mark, and changes the light intensity [W / cm 2 ] of the light irradiated to the organic EL element 1 to obtain a desired light emission luminance. A dot mark is formed. Therefore, the control unit 110 sets the light irradiation time for each relative light emission luminance to 1 ms, for example, and calculates the light irradiation power [mW] necessary for forming the dot mark of each relative light emission luminance.
  • the control unit 110 calculates a current (LD current) [mA] to be applied to the LD light source 101 from the irradiation power [mW] of light corresponding to each relative light emission luminance (see FIG. 2).
  • FIG. 2 is a diagram showing an example of light irradiation power and irradiation time for each relative light emission luminance.
  • the LD current necessary for forming a dot mark having a relative light emission luminance of 1 is 0, but may not be 0 as long as it is less than the threshold of the LD light source 101.
  • the control unit 110 adjusts the tilt of the reflection mirror 107 and the horizontal position of the organic EL element 1 at predetermined time intervals by the adjustment unit 108 and the moving unit 109, respectively. While scanning the spot position in the X and Y directions, a pulse signal indicating the value of the LD current is output to the LD light source 101 for each coordinate based on the generated emission luminance data.
  • the LD light source 101 emits laser light based on the input pulse signal, thereby forming a plurality of dot marks on the organic EL element 1 and forming a desired light emission pattern.
  • the control unit 110 detects the intensity of the reflected light from the beam splitter 105 by the light detector 106 and monitors the detected data. As a result, when an error occurs in the intensity of light emitted from the LD light source 101 due to a change in temperature / humidity environment or the like, the control unit 110 corrects the LD current I applied to the LD light source 101 to a desired value. The light intensity is emitted accurately.
  • the light irradiation time is set to 1 ms, but is not limited to this value.
  • the light irradiation time is constant and the light irradiation power is changed to form a dot mark having a desired relative light emission luminance.
  • the light irradiation power is constant. It is good also as what changes time. In this case, it is not necessary to detect the intensity of light over a wide range, and it is not necessary to use a sensor having a wide dynamic range and a good S / N ratio for the photodetector 106, thereby reducing the cost of the pattern forming apparatus 100. can do.
  • the light irradiation time is fixed and the light irradiation power is changed to form a dot mark having a desired relative light emission luminance.
  • the light irradiation power and the irradiation time are changed. Both may be changed.
  • FIG. 3A is a schematic configuration diagram of the pattern forming apparatus 200 of the present invention
  • FIG. 3B is a diagram of the pattern forming apparatus 200 shown in FIG. 3A viewed from the X direction.
  • the X direction is the horizontal direction and refers to the left and right direction in FIG. 3A
  • the Y direction is the horizontal direction and the direction perpendicular to the paper surface in FIG. 3A.
  • the pattern forming apparatus 200 is a drawing apparatus that forms a linear light spot on a pattern forming mask 211 provided on the organic EL element 1 and scans this to form a light emission pattern.
  • the pattern forming apparatus 200 includes an LD light source 201 that emits laser light having a wavelength of 400 to 410 nm, a filter 212 that corrects the intensity distribution of light emitted from the LD light source 201, and a collimator that collimates the light emitted from the filter 212.
  • Splitter 205 for reflecting light a light detector 206 for detecting the intensity of light reflected by beam splitter 205, a reflection mirror 207 for reflecting light emitted from convex cylindrical lens 213 toward organic EL element 1, and organic EL
  • a moving unit 209 that moves the element 1 in the horizontal direction.
  • the collimator lens 203, the convex cylindrical lens 213, the beam splitter 205, the photodetector 206, the reflection mirror 207, the moving unit 209, the concave cylindrical lens 214, and the control unit 210 constitute a light irradiation unit 202.
  • the LD light source 201, the collimator lens 203, the beam splitter 205, the light detector 206, the reflection mirror 207, and the moving unit 209 are the LD light source 101, the collimator lens 103, the beam splitter 105, the light of the pattern forming apparatus 100 described above.
  • the detector 106, the reflection mirror 107, and the moving unit 109 are configured in the same manner.
  • the convex cylindrical lens 213 and the concave cylindrical lens 214 are made of, for example, BK7, and an antireflection film for controlling the transmittance of incident light is provided on the surface thereof.
  • MgF 2 is used as the material of the antireflection film used for the convex cylindrical lens 213 and the concave cylindrical lens 214.
  • the light irradiation unit 202 collects the light emitted from the LD light source 201 on the pattern formation mask 211 to form a linear light spot extending in the Y direction. Further, the organic EL element 1 is moved in the X direction by the moving unit 209 to move the linear light spot, the pattern forming mask 211, and the organic EL element 1 relatively, and scan the linear light spot.
  • the length of the linear light spot in the line direction (Y direction) is substantially the same as the length of the organic EL element 1 in the Y direction, or the length of the linear light spot in the line direction (Y direction) is organic EL. It is preferable that the length of the element 1 is longer than the length in the Y direction because the scanning of the linear light spot can be performed once.
  • the pattern forming mask 211 is a mask in which a transmittance distribution corresponding to a desired light emission pattern to be formed on the organic EL element 1 is formed in advance based on image data. Since the pattern forming mask 211 has a different transmittance for each region, the organic EL device 1 is irradiated for each region by irradiating the organic EL device 1 with light through the pattern forming mask 211. The light intensity is adjusted. Therefore, a desired light emission pattern can be formed on the organic EL element 1 by irradiating the organic EL element 1 with light through the pattern forming mask 211.
  • the pattern forming mask 211 having such a transmittance distribution can be easily manufactured by a conventionally known method.
  • the pattern forming mask 211 is disposed and fixed so as to cover the entire light emitting surface of the organic EL element 1.
  • the pattern forming mask 211 also moves simultaneously.
  • the filter 212 is provided between the LD light source 201 and the collimator lens 203 and corrects the intensity distribution of light emitted from the LD light source 201.
  • the light intensity distribution of a semiconductor laser exhibits a Gaussian distribution.
  • the filter 212 has a constant transmittance in the direction corresponding to the X direction on the organic EL element 1, but from the LD light source 201 in the direction corresponding to the Y direction on the organic EL element 1. It has a transmittance distribution similar to a distribution obtained by inverting the intensity distribution (Gaussian distribution) of emitted light.
  • the light emitted from the filter 212 has a substantially constant intensity distribution in a direction corresponding to the Y direction on the organic EL element 1.
  • the intensity distribution of the light emitted from the LD light source 201 constant in the direction corresponding to the Y direction on the organic EL element 1
  • the light intensity of the linear light spot formed on the pattern forming mask 211 can be reduced. It is constant in the linear direction (Y direction).
  • a linear light spot having a constant light intensity in the linear direction can be formed on the pattern forming mask 211, and uneven luminance of the light emitting pattern formed on the organic EL element 1 can be suppressed.
  • the filter 212 may not be provided between the LD light source 201 and the collimator lens 203, and may be provided as appropriate on the optical path between the LD light source 201 and the organic EL element 1.
  • the control unit 210 emits light from the LD light source 201 with a predetermined power, and the light irradiation unit 202 makes the light intensity constant on the pattern forming mask 211 in the linear direction.
  • a linear light spot is formed.
  • the organic EL element 1 is irradiated with light.
  • the controller 210 scans the linear light spot in the X direction on the pattern forming mask 211 by moving the organic EL element 1 in the X direction by the moving unit 209. Thereby, light irradiation can be performed on the organic EL element 1 with different light intensity for each region, and a desired light emission pattern can be formed.
  • the moving speed of the organic EL element 1 by the moving unit 209 is appropriately set according to the configuration of the organic EL element 1, the set emission power of the LD light source 201, the light emission pattern to be formed, and the like.
  • control unit 210 may cause the LD light source 201 to always emit light with a constant power, or may cause the LD light source 201 to emit pulses in accordance with the movement of the organic EL element 1 by the moving unit 209. From the viewpoint of reducing the thermal load on the LD light source 201, the controller 210 preferably causes the LD light source 201 to emit pulses.
  • the filter 212 is provided in order to make the light intensity in the linear direction of the linear light spot on the pattern forming mask 211 constant, but the filter 212 may not be provided.
  • a plurality of LD light sources 201 are provided, and a plurality of linear light spots formed by light emitted from the plurality of LD light sources 201 are superposed on each other on the pattern forming mask 211 in the linear direction.
  • FIG. 5 is a diagram showing the light intensity with respect to the distance in the Y direction on the pattern forming mask 211.
  • a long linear light spot having higher light intensity can be formed, and a light emission pattern can be formed in a short time with respect to the organic EL element 1 having a large area.
  • the center intervals of the plurality of linear light spots are shifted from each other by a full width at half maximum (FWHM).
  • FWHM full width at half maximum
  • the organic EL element 1 is moved in the X direction by the moving unit 209, as in the pattern forming apparatus 100 described above, an adjusting unit that adjusts the tilt of the reflection mirror 207 is provided, and the adjusting unit Thus, the linear light spot may be scanned in the X direction.
  • FIG. 6A is a schematic configuration diagram of the pattern forming apparatus 300 of the present invention
  • FIG. 6B is a diagram of the pattern forming apparatus 300 shown in FIG. 6A viewed from the X direction.
  • the X direction is the horizontal direction and refers to the left and right direction in FIG. 6A
  • the Y direction is the horizontal direction and the direction perpendicular to the paper surface in FIG. 6A.
  • the pattern forming apparatus 300 is an apparatus that forms a light emitting pattern by irradiating light on the entire light emitting surface of the organic EL element 1 through a pattern forming mask 311 provided on the organic EL element 1.
  • the pattern forming apparatus 300 includes an LD light source 301 that emits laser light having a wavelength of 400 to 410 nm, a filter 316 that corrects the intensity distribution of the light emitted from the LD light source 301, and a collimator that collimates the light emitted from the filter 316.
  • Meter lens 303 that reflects part of the light emitted from collimator lens 303, light detector 306 that detects the intensity of light reflected by beam splitter 305, and light emitted from collimator lens 303
  • Mirror 307 that reflects light toward the organic EL element 1, a concave lens 317 that diffuses light reflected by the reflection mirror 307 in the X direction and the Y direction, and a pattern formation that is provided on the organic EL element 1 and has a transmittance distribution Mask 311 and control unit 310 for controlling each member It is provided.
  • the collimator lens 303, the beam splitter 305, the light detector 306, the reflection mirror 307, the concave lens 317 and the control unit 310 constitute a light irradiation unit 302.
  • the LD light source 301, the collimator lens 303, the beam splitter 305, the photodetector 306, the reflection mirror 307, and the pattern forming mask 311 are the LD light source 201, the collimator lens 203, and the beam splitter 205 of the pattern forming apparatus 200 described above.
  • the photo detector 206, the reflection mirror 207, and the pattern forming mask 211 are configured in the same manner.
  • the concave lens 317 is made of, for example, BK7, and an antireflection film for controlling the transmittance of incident light is provided on the surface thereof.
  • an antireflection film for controlling the transmittance of incident light is provided on the surface thereof.
  • MgF 2 is used as a material of the antireflection film used for the concave lens 317.
  • the filter 316 is provided between the LD light source 301 and the collimator lens 303 and corrects the intensity distribution of light emitted from the LD light source 301.
  • the filter 316 has a distribution obtained by inverting the intensity distribution (Gaussian distribution) of the light emitted from the LD light source 301 in each of the directions corresponding to the X direction and the Y direction on the organic EL element 1. It has a similar transmittance distribution. For this reason, the light intensity distribution of the light emitted from the filter 316 is substantially constant in the direction corresponding to the X direction and the Y direction on the organic EL element.
  • the filter 316 is not necessarily provided between the LD light source 301 and the collimator lens 303, and may be appropriately provided on the optical path between the LD light source 301 and the organic EL element 1.
  • the control unit 310 emits light from the LD light source 301 with a predetermined power, and the light irradiation unit 302 irradiates light with uniform light intensity on the pattern forming mask 311.
  • the light applied to the pattern forming mask 311 passes through the pattern forming mask 311 so that the organic EL element 1 is irradiated with light.
  • the irradiation time of light irradiation is suitably set according to the structure of the organic EL element 1, the emission power of the set LD light source 301, the light emission pattern to be formed, and the like.
  • the filter 316 is provided in order to make the light intensity of the light irradiated to the pattern formation mask 311 uniform, but the filter 316 may not be provided.
  • a plurality of LD light sources 301 are provided, and the light emitted from the plurality of LD light sources 301 is superimposed on the pattern forming mask 311 so that the light emitted to the pattern forming mask 311 is reflected.
  • the light intensity can be made uniform. According to such a method, it is possible to irradiate a wide area with light having a stronger light intensity, and it is possible to form a light emission pattern on the large area organic EL element 1 in a short time.
  • the centers of the lights emitted from the plurality of LD light sources 301 are overlapped with each other with the full width at half maximum being shifted from each other. Thereby, the intensity of light applied to the pattern forming mask 311 can be made uniform, and luminance unevenness of the light emitting pattern formed on the organic EL element 1 can be further reduced.
  • the substrate that can be used in the organic EL device of the present invention is not particularly limited, such as glass and plastic, and may be transparent or opaque.
  • the transparent substrate preferably used include glass, quartz, and a transparent resin film. Particularly preferred is a resin film capable of giving flexibility to the organic EL element.
  • the thickness of the substrate is not particularly limited, and may be any thickness.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by J
  • a gas barrier film made of an inorganic material, an organic material, or both may be formed on the surface of the resin film.
  • a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 0.01 g. / (M 2 ⁇ 24 h) or less is preferable, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 h).
  • the material for forming the gas barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the gas barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include a metal plate such as aluminum and stainless steel, an opaque resin substrate, and a ceramic substrate.
  • First electrode As the first electrode, it is possible to use all electrodes that can be normally used for organic EL elements. Specifically, aluminum, silver, magnesium, lithium, magnesium / same mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO 2 , An oxide semiconductor such as SnO 2 can be given.
  • the first electrode is preferably a transparent electrode, and more preferably a transparent metal electrode. Note that the transparency of the first electrode means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the method for forming the first electrode for example, a known spin coating, vapor deposition method, sputtering method or the like can be used as appropriate.
  • the patterning method for example, patterning by a known photolithography, patterning by a pattern mask, or the like can be used. It can be used depending on the situation.
  • the transmittance be greater than 10%, and the sheet resistance as the first electrode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the first electrode depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the first electrode may have a two-layer structure including a base layer formed on the substrate and an electrode layer formed thereon.
  • the electrode layer is, for example, a layer composed of silver or an alloy containing silver as a main component
  • the underlayer is, for example, a layer composed of a compound containing nitrogen atoms. It is done.
  • the main component means that the content in the electrode layer is 98% by mass or more.
  • Organic functional layer (light emitting functional layer) >> (1) Light emitting layer
  • the organic functional layer includes at least a light emitting layer.
  • the light emitting layer used in the present invention contains a phosphorescent compound as a light emitting material. Note that the light emitting layer may contain a plurality of types of phosphorescent compounds.
  • a fluorescent material may be used, or a phosphorescent compound and a fluorescent material may be used in combination.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the second electrode or the electron transport layer and holes injected from the first electrode or the hole transport layer, and the light emitting portion emits light. Even within the layer, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. There may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer (not shown) between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. Note that the sum of the thicknesses of the light emitting layers is a layer thickness including the intermediate layers when a non-light emitting intermediate layer exists between the light emitting layers.
  • each light emitting layer is preferably adjusted within the range of 1 to 50 nm, and more preferably within the range of 1 to 20 nm.
  • each of the stacked light emitting layers emits light in the respective emission colors of blue, green, and red, there is no particular limitation on the relationship of the layer thickness of each light emitting layer.
  • the light emitting layer as described above is formed by forming a known light emitting material or host compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
  • a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can do.
  • phosphorescent compound preferably used for the light emitting layer of the organic EL device include compounds described in the following documents. Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194.
  • the compounds described in the specification, US Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, and the like can be mentioned.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
  • the phosphorescent compound also referred to as a phosphorescent metal complex
  • examples of the phosphorescent compound include, for example, Organic Letter, vol. 16, pages 2579 to 2581 (2001), Inorg. Chem. 30, No. 8, pp. 1685-1687 (1991), J. MoI. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, 3055-3066 (2002) , New Journal of Chemistry Vol. 26, page 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and references disclosed in these documents. It can be synthesized by applying the method described
  • specific examples of the host compound preferably used for the light emitting layer of the organic EL device include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002. No. -43056, No. 2002-105445, No. 2002-352957, No. 2002-231453, No. 2002-234888, No. 2002-260861, No. 2002-305083, US Patent Publication No. 2005/0112407, U.S. Patent Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754.
  • Injection layer (hole injection layer, electron injection layer)
  • An injection layer is a layer provided between an electrode and a light-emitting layer in order to lower drive voltage or improve light emission luminance.
  • An organic EL element and its forefront of industrialization June 30, 1998, NTS
  • the details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of the “Company Issue”, and there are a hole injection layer and an electron injection layer.
  • the injection layer can be provided as necessary. If it is a hole injection layer, it may exist between the anode and the light emitting layer or the hole transport layer, and if it is an electron injection layer, it may exist between the cathode and the light emitting layer or the electron transport layer.
  • JP-A Nos. 9-45479, 9-260062, and 8-288069 The details of the hole injection layer are described in JP-A Nos. 9-45479, 9-260062, and 8-288069. Specific examples thereof include a phthalocyanine layer represented by copper phthalocyanine. And an oxide layer typified by vanadium oxide, an amorphous carbon layer, and a polymer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like, and specifically, metals such as strontium and aluminum Examples thereof include an alkali metal halide layer typified by potassium fluoride, an alkaline earth metal compound layer typified by magnesium fluoride, and an oxide layer typified by molybdenum oxide.
  • the electron injection layer of the present invention is desirably a very thin film, and although depending on the material, the film thickness is preferably in the range of 1 nm to 10 ⁇ m, more preferably 1 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • hole transport material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • a so-called p-type hole transport material as described in 139 can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer (not shown) are also included in the electron transport layer.
  • the electron transport layer can be provided as a single-layer structure or a multi-layer structure.
  • the electron transport material (also serving as a hole blocking material) constituting the layer portion adjacent to the light emitting layer emits electrons injected from the cathode. What is necessary is just to have the function to transmit to a layer.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the material for the electron transport layer.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the material for the electron transport layer.
  • distyrylpyrazine derivatives exemplified as the material for the light emitting layer can also be used as the material for the electron transport layer, and n-type-Si, n-type-SiC, etc. as well as the hole injection layer and the hole transport layer.
  • These inorganic semiconductors can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • impurities can be doped in the electron transport layer to increase the n property.
  • impurities include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • potassium, a potassium compound, etc. are contained in an electron carrying layer.
  • the potassium compound for example, potassium fluoride can be used.
  • the same material as that for the above-described underlayer may be used.
  • the electron transport layer that also serves as the electron injection layer and the same material as that for the above-described underlayer may be used.
  • Blocking layer (hole blocking layer, electron blocking layer)
  • the blocking layer may be further provided as an organic functional layer in addition to the above functional layers. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has a function of transporting holes but has a very small ability to transport electrons, and improves the probability of recombination of electrons and holes by blocking electrons while transporting holes. be able to.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the second electrode is an electrode film that functions as a cathode for supplying electrons to the organic functional layer, and a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
  • a metal, an alloy, an organic or inorganic conductive compound, and a mixture thereof are used.
  • An oxide semiconductor such as SnO 2 can be given.
  • the second electrode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected within the range of 5 nm to 5 ⁇ m, preferably within the range of 5 to 200 nm, and more preferably 110 nm.
  • this organic EL element is a thing which takes out emitted light also from the 2nd electrode side
  • the electroconductive material with favorable light transmittance is selected from the electroconductive materials mentioned above, and the 2nd electrode is selected. What is necessary is just to comprise.
  • the pattern forming method can be performed by irradiating light from the second electrode side.
  • the extraction electrode is for electrically connecting the first electrode and an external power source, and the material thereof is not particularly limited, and a known material can be suitably used.
  • the extraction electrode has a three-layer structure.
  • a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) can be used.
  • the auxiliary electrode is provided for the purpose of reducing the resistance of the first electrode, and is provided in contact with the electrode layer of the first electrode.
  • the material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed within a range not affected by extraction of emitted light from the light extraction surface.
  • auxiliary electrodes examples include vapor deposition, sputtering, printing, ink jet, and aerosol jet.
  • the line width of the auxiliary electrode is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • the sealing material covers the organic EL element body (organic functional layer and various electrodes and wiring) on the substrate, and a plate-like (film-like) sealing member is fixed on the substrate with an adhesive. It may be a sealing film or a sealing film. In any configuration, the sealing material seals the organic EL element with a part of the first electrode, the second electrode, the extraction electrode, and the like exposed.
  • the sealing member is composed of a plate-like (film-like) sealing member
  • a substantially plate-like base material in which a concave portion is formed on one surface that is, a concave plate-like sealing member is used. It may be used, or a plate-like substrate having a flat surface, that is, a flat sealing member may be used.
  • the plate-like (concave plate or flat plate) sealing material is disposed at a position facing the substrate with the organic EL element main body interposed therebetween.
  • a transparent substrate such as a glass plate, a polymer plate, or a metal plate
  • a transparent substrate such as a glass plate, a polymer plate, or a metal plate
  • the glass plate for example, a substrate formed of a material such as alkali-free glass, soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, or quartz is used. be able to.
  • the board substrate formed with materials, such as a polycarbonate, an acryl, a polyethylene terephthalate, a polyether sulfide, a polysulfone, can be used, for example.
  • the metal plate is formed of, for example, one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum. Substrates can be used.
  • gap between a sealing material and an organic EL element main-body part an organic functional layer, various electrodes, and wiring
  • an inert gas such as nitrogen or argon
  • an inert liquid such as fluorinated hydrocarbon or silicon oil.
  • gap between a sealing material and an organic EL element main-body part may be made into a vacuum state, and you may enclose a hygroscopic compound in a space
  • thermosetting adhesive a moisture curable adhesive such as 2-cyanoacrylate, and the like can be given.
  • thermosetting type or chemical hardening type (two-component mixing) adhesives such as an epoxy type, as an adhesive agent.
  • a sealing film may be used as the sealing material.
  • the sealing film can be composed of a film made of an inorganic material or an organic material.
  • the sealing film is made of a material having a function of suppressing the intrusion of substances such as moisture and oxygen, which causes deterioration of the organic functional layer. Examples of the material having such properties include inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride.
  • the structure of the sealing film may be a multilayer structure in which a film made of these inorganic materials and a film made of an organic material are laminated.
  • any method can be used as the method for forming the sealing film described above.
  • a vacuum deposition method a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, plasma Techniques such as a polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, and a coating method can be used.
  • the organic EL element may further include a protective film or a protective plate on the sealing material.
  • the protective film or the protective plate mechanically protects the organic EL element body by sandwiching an organic EL element body (organic functional layer, various electrodes and wiring) and a sealing material between the protective film or the protective plate.
  • a sealing film it is preferable that a protective film or a protective plate is provided because mechanical protection of the organic EL element body is not sufficient.
  • a glass plate As the protective film or protective plate, a glass plate, a polymer plate, a thin polymer film, a metal plate, a thin metal film, a polymer material film or a metal material film is used.
  • a polymer film is preferably used from the viewpoint of light weight and thinning of the element.
  • the present invention is suitable for providing a pattern forming apparatus for an organic electroluminescence element capable of forming a light emission pattern on an organic electroluminescence element at low cost without using ultraviolet rays.
  • Pattern formation apparatus 101 LD light source 102 Light irradiation part 103 Collimator lens 104 Condensing lens 105 Beam splitter 106 Photodetector 107 Reflection mirror 108 Adjustment part 109 Moving part 110 Control part 200 Pattern formation apparatus 201 LD light source 202 Light irradiation unit 203 Collimator lens 205 Beam splitter 206 Photo detector 207 Reflection mirror 209 Moving unit 210 Control unit 211 Pattern forming mask 212 Filter 213 Convex cylindrical lens 214 Concave cylindrical lens 300 Pattern forming device 301 LD light source 302 Light irradiation unit 303 Collimator lens 305 Beam splitter 306 Photo detector 307 Reflective mirror 310 Control unit 311 Pattern forming mask 316 F Luther 317 concave lens

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の課題は、紫外線を用いることなく低コストで有機エレクトロルミネッセンス素子に発光パターンを形成することのできる有機エレクトロルミネッセンス素子のパターン形成装置を提供することである。当該有機エレクトロルミネッセンス素子のパターン形成装置は、一対の電極間に有機機能層を備えた有機エレクトロルミネッセンス素子に光を照射して発光パターンを形成する有機エレクトロルミネッセンス素子のパターン形成装置であって、400nm以上の波長の光を出射する光源と、前記光源から出射された光を前記有機エレクトロルミネッセンス素子に照射することにより前記発光パターンを形成する光照射部と、を備えることを特徴とする。

Description

有機エレクトロルミネッセンス素子のパターン形成装置
 本発明は、有機エレクトロルミネッセンス素子のパターン形成装置に関する。特に、紫外線を用いることなく低コストで有機エレクトロルミネッセンス素子に発光パターンを形成することのできる有機エレクトロルミネッセンス素子のパターン形成装置に関する。
 現在、薄型の発光材料として有機発光素子が注目されている。
 有機材料のエレクトロルミネッセンス(Electro Luminescence:EL)を利用した有機発光素子(以下、「有機EL素子」ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有している。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。
 このような有機EL素子は、一対の電極間に、少なくとも発光層を含む有機機能層が配置された構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、一対の電極のうちの少なくとも一方は透明電極として構成され、透明電極側から発光光が取り出される。また、有機EL素子は、低電力で高い輝度を得ることができ、視認性、応答速度、寿命、消費電力の点で優れている。
 ここで、このような有機EL素子において、有機機能層に対して所定領域毎に露光量を調整しながら光を照射することで、所定領域毎に有機機能層の機能を変化させ、その変化量に応じた発光輝度の階調を有する発光パターンを形成する方法が提案されている(例えば、特許文献1参照。)。このようなパターン形成方法を行うための装置として、UVランプによって有機機能層の所定領域に、紫外線を照射することによって発光パターンを形成する装置が挙げられている。
 しかしながら、特許文献1に記載の装置は、UVランプを光源として有機EL素子に対して光照射を行うものであるが、一般にUVランプは短寿命であるため、UVランプの交換を頻繁に行う必要があり、有機EL素子に対して連続的にパターン形成を行う場合に生産コストが増大してしまう。また、UVランプを搭載すると装置が大型化するため、更に生産コストが増大する。
 これに対し、UVランプの代わりに、発光寿命の長いUV-LEDを装置に搭載することも考えられるが、UV-LEDは発熱量が多く、発熱による寿命の低下を抑制するため、冷却装置を設ける必要があり、やはり生産コストが増大してしまう。
 更に、長寿命で発熱量の小さいUVレーザーを用いる場合を含め、紫外線を用いる場合には使用できる光学部品材料が限定されてしまうため、装置が高価となり、生産コストが更に増大してしまう。
 このように、有機EL素子に対して波長が400nmよりも短い紫外線を照射して発光パターンを形成する装置は、光を照射するための光学部品が限定されており、冷却装置等を設けることにより生産コストが増大する。
 また、樹脂基材を有する有機EL素子に対して紫外線を照射して発光パターンを形成する場合、当該樹脂基材が紫外線照射により変色してしまう場合がある。このため、紫外線を照射して発光パターンを形成する装置は、紫外線耐性のある樹脂基材を有する有機EL素子、又は樹脂製でない基材を有する有機EL素子にしか適用することができず、装置としての汎用性が低いという問題もある。
特開2012-28335号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、紫外線を用いることなく低コストで有機エレクトロルミネッセンス素子に発光パターンを形成することのできる有機エレクトロルミネッセンス素子のパターン形成装置を提供することである。
 本発明に係る上記課題を解決すべく、上記問題の対策等について検討した結果、400nm以上の波長の光を出射する光源と、前記光源から出射された光を前記有機エレクトロルミネッセンス素子に照射することにより前記発光パターンを形成する光照射部と、を備えた装置とすることにより、紫外線を用いることなく、低コストで有機エレクトロルミネッセンス素子に発光パターンを形成することのできる装置を提供できることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.一対の電極間に有機機能層を備えた有機エレクトロルミネッセンス素子に光を照射して発光パターンを形成する有機エレクトロルミネッセンス素子のパターン形成装置であって、
 400nm以上の波長の光を出射する光源と、
 前記光源から出射された光を前記有機エレクトロルミネッセンス素子に照射することにより前記発光パターンを形成する光照射部と、を備えることを特徴とする有機エレクトロルミネッセンス素子のパターン形成装置。
 2.前記光源から出射される光が、400~410nmの範囲内の波長であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 3.前記光照射部が、前記光源から出射された光を集光して前記有機エレクトロルミネッセンス素子上に光スポットを形成し、点描画により前記発光パターンを形成することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 4.前記光照射部が、前記光スポットを前記有機エレクトロルミネッセンス素子上で二次元方向に走査させることで点描画を行うことを特徴とする第3項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 5.前記光照射部が、前記有機エレクトロルミネッセンス素子を二次元方向に移動させることで点描画を行うことを特徴とする第3項又は第4項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 6.前記有機エレクトロルミネッセンス素子上に設けられ、透過率分布を有するパターン形成用マスクを更に備え、
 前記光照射部が、前記光源から出射された光を前記パターン形成用マスク上に集光して線状光スポットを形成し、前記線状光スポットと前記パターン形成用マスク及び前記有機エレクトロルミネッセンス素子とを前記線状光スポットの線方向に直交する方向に相対移動させることで前記発光パターンを形成することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 7.前記線状光スポットの光強度が線方向で一定であることを特徴とする第6項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 8.前記光照射部の光路上にフィルターを更に備え、
 前記フィルターは、前記フィルターを介して前記パターン形成用マスク上に形成される前記線状光スポットの光強度が線方向で一定となるような透過率分布を有し、
 前記光照射部が、前記光源から出射され前記フィルターを介した光を集光して前記線状光スポットを形成することで、前記線状光スポットの光強度を線方向で一定にすることを特徴とする第7項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 9.前記光源が複数設けられ、
 前記光照射部が、前記複数の光源から出射された光を前記パターン形成用マスク上に集光して複数の光スポットを形成し、前記複数の光スポットを互いに重ね合わせることで、前記線状光スポットの光強度を線方向で一定にすることを特徴とする第7項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 10.前記有機エレクトロルミネッセンス素子上に設けられ、透過率分布を有するパターン形成用マスクを更に備え、
 前記光照射部が、前記光源から出射された光を、前記パターン形成用マスクを介して前記有機エレクトロルミネッセンス素子の発光面全体に照射することにより、前記発光パターンを形成することを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 11.前記パターン形成用マスクに照射される光の光強度が、前記パターン形成用マスク上において一様であることを特徴とする第10項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 12.前記光照射部の光路上にフィルターを更に備え、
 前記フィルターは、前記フィルターを介して前記パターン形成用マスク上に照射される光の光強度が、前記パターン形成用マスク上で一様になるような光透過率を有し、
 前記光照射部が、前記光源から出射され前記フィルターを介した光を前記パターン形成用マスクに照射することで、前記パターン形成用マスクに照射される光の光強度を、前記パターン形成用マスク上において一様にすることを特徴とする第10項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 13.前記光源が複数設けられ、
 前記光照射部が、前記複数の光源から出射された光を前記パターン形成用マスク上に互いに重ね合わせて照射することで、前記パターン形成用マスクに照射される光の光強度を、前記パターン形成用マスク上において一様にすることを特徴とする第10項に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
 本発明によれば、紫外線を用いることなく低コストで有機エレクトロルミネッセンス素子に発光パターンを形成することのできる有機エレクトロルミネッセンス素子のパターン形成装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、以下のとおりである。
 有機エレクトロルミネッセンス素子に光を照射して発光パターンを形成する場合に、400nm以上の波長の光を照射することで、有機機能層の機能を変化させることができ、これにより波長が400nmよりも短い紫外線を照射することなく発光パターンを形成することができる。400nm以上の波長の光を有機エレクトロルミネッセンス素子に対して照射すれば良いので、例えば従来から広く用いられている可視光領域の光を出射する光源や汎用的な光学部材を使用することができ、生産コストを低減することができる。
点描画によるパターン形成装置の概略構成図 各相対発光輝度のパターンを得るために必要な照射パワー及びLD電流値を示す図 線露光によるパターン形成装置の概略構成図 線露光によるパターン形成装置の概略構成図 図3に示すパターン形成装置に用いられるフィルターの透過率分布の一例を示す図 図3に示すパターン形成装置に用いられるフィルターの透過率分布の一例を示す図 パターン形成用マスク上に形成される線状光スポットの光強度を示す図 面露光によるパターン形成装置の概略構成図 面露光によるパターン形成装置の概略構成図 図6に示すパターン形成装置に用いられるフィルターの透過率分布の一例を示す図 図6に示すパターン形成装置に用いられるフィルターの透過率分布の一例を示す図
 本発明の有機エレクトロルミネッセンス素子のパターン形成装置は、一対の電極間に有機機能層を備えた有機エレクトロルミネッセンス素子に光を照射して発光パターンを形成する有機エレクトロルミネッセンス素子のパターン形成装置であって、400nm以上の波長の光を出射する光源と、前記光源から出射された光を前記有機エレクトロルミネッセンス素子に照射することにより前記発光パターンを形成する光照射部と、を備えることを特徴とする。この特徴は、請求項1から請求項13の各請求項に係る発明に共通する技術的特徴である。
 また、本発明は、前記光源から出射される光が、400~410nmの範囲内の波長であることが好ましい。これにより、ブルーレイディスク(Blu-ray(登録商標) Disc;以下、「BD」ともいう。)に対して光の出射及び受光を行う従来公知の光ピックアップ装置に用いられている青紫半導体レーザーをパターン形成装置の光源として使用することができるため、パターン形成装置を低コストで作製でき、有機EL素子のパターン形成をより低コストで行うことができる。
 また、本発明は、前記光照射部が、前記光源から出射された光を集光して前記有機エレクトロルミネッセンス素子上に光スポットを形成し、点描画により前記発光パターンを形成することが好ましい。これにより、パターン形成用マスクを用いることなく発光パターンを形成することができ、有機EL素子のパターン形成をより低コストで行うことができる。
 また、本発明は、前記光照射部が、前記光スポットを前記有機エレクトロルミネッセンス素子上で二次元方向に走査させることで点描画を行うことが好ましい。これにより、有機EL素子を移動させる必要がないため、パターン形成装置を小型化することができる。また、高速でスポットを走査させることができるため、発光パターン形成時間を短縮することができる。
 また、本発明は、前記光照射部が、前記有機エレクトロルミネッセンス素子を二次元方向に移動させることで点描画を行うことが好ましい。これにより、常に一定のスポット形状で光を照射することができ、発光パターンを高精度で形成することができる。また、従来公知の光ピックアップ装置の構成をほぼそのままパターン形成装置に転用することができ、生産コストを更に低減することができる。
 また、本発明は、前記有機エレクトロルミネッセンス素子上に設けられ、透過率分布を有するパターン形成用マスクを更に備え、前記光照射部が、前記光源から出射された光を前記パターン形成用マスク上に集光して線状光スポットを形成し、前記線状光スポットと前記パターン形成用マスク及び前記有機エレクトロルミネッセンス素子とを前記線状光スポットの線方向に直交する方向に相対移動させることで前記発光パターンを形成することが好ましい。これにより、線状光スポットを走査して発光パターンを形成するので、より短時間で発光パターンを形成することができる。
 また、本発明は、前記線状光スポットの光強度が線方向で一定であることが好ましい。これにより、発光パターンの輝度ムラを低減することができる。ここで、本発明において、光強度とは、単位面積あたりに照射される光の放射強度[W/cm]をいう。
 また、本発明は、前記有機エレクトロルミネッセンス素子上に設けられ、透過率分布を有するパターン形成用マスクを更に備え、前記光照射部が、前記光源から出射された光を、前記パターン形成用マスクを介して前記有機エレクトロルミネッセンス素子の発光面全体に照射することにより、前記発光パターンを形成することが好ましい。これにより、発光パターンの形成をバッチ処理で行うことができ、発光パターンを有する有機EL素子の生産性を向上することができる。
 また、本発明は、前記パターン形成用マスクに照射される光の光強度が、前記パターン形成用マスク上において一様であることが好ましい。これにより、発光パターンの輝度ムラを低減することができる。
 なお、本発明でいう「パターン」とは、有機エレクトロルミネッセンス素子により表示される図案(図の柄や模様)、文字、画像等をいう。
 「発光パターン」とは、有機エレクトロルミネッセンス素子が発光する際、所定の図案(図の柄や模様)、文字、画像等に基づいて、発光面の位置により発光強度(輝度)を変えて光を発光させるためにあらかじめ当該有機エレクトロルミネッセンス素子に形成(付与)される所定の図案(図の柄や模様)、文字、画像等を表示させる機能を有する発生源をいう。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
《有機エレクトロルミネッセンス素子の構成》
 まず、有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう。)の構成について以下説明する。
 有機EL素子は、基板上に、第1電極、有機機能層及び第2電極がこの順番に積層されて構成されている。また、第1電極の端部に取り出し電極が設けられて、当該取り出し電極を介して第1電極に外部電源(図示略)が接続されるように構成されていても良い。有機EL素子は、発光光が基板側又はその反対面側から取り出されるように構成されている。
 有機EL素子の層構造は特に限定されることはなく、従来公知の一般的な層構造であれば良い。例えば、第1電極がアノード(すなわち陽極)として機能し、第2電極がカソード(すなわち陰極)として機能することとする。この場合、例えば、有機機能層は、アノードである第1電極側から順に正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層を積層した構成とすることができるが、少なくとも有機材料を用いて構成された発光層を有することが必須である。正孔注入層及び正孔輸送層は、正孔輸送注入層として設けられていても良く、電子輸送層及び電子注入層は、電子輸送注入層として設けられていても良い。また、これらの有機機能層のうち、例えば、電子注入層は無機材料で構成されている場合もある。
 また、有機機能層は、これらの層の他にも正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層された構成であっても良い。更に、発光層は、各波長領域の発光光を発生させる各色発光層を有し、これらの各色発光層を、非発光性の中間層を介して積層させた構造としても良い。中間層は、正孔阻止層、電子阻止層として機能しても良い。
 また、カソードである第2電極も、必要に応じた積層構造であっても良い。また、第1電極の低抵抗化を図ることを目的とし、第1電極に接して補助電極が設けられていても良い。
 このような構成において、第1電極と第2電極とで有機機能層が挟持された部分(積層方向から見て、第1電極、有機機能層及び第2電極が重なる領域)のみが、有機EL素子の発光領域となる。
 以上のような構成の有機EL素子は、有機材料等を用いて構成された有機機能層の劣化を防止することを目的として、基板上において後述する封止材で封止されている。ただし、第1電極、第2電極又は取り出し電極の端子部分は、基板上において互いに絶縁性が保たれた状態で封止材から露出されていることとする。
 以上のように構成される有機EL素子に対し、以下に説明するパターン形成装置により、所望の発光輝度の階調を有する発光パターンを形成することができる。
《有機EL素子のパターン形成装置》
 本発明の有機EL素子のパターン形成装置は、一対の電極間に有機機能層を備えた有機EL素子に光を照射して発光パターンを形成するものであり、光の強度や時間を調整することによって所望の相対発光輝度の発光パターンを形成することができるものである。なお、本発明において有機EL素子の相対発光輝度は、光が全く照射されておらず有機機能層の機能が全く変化していない状態(白の輝度に相当)を相対発光輝度1として、有機機能層の機能の変化量に応じて各相対発光輝度が設定されている。ここで、光照射によって有機機能層の機能の変化量が増大すると、その変化量に応じて有機EL素子の発光輝度は低減する。光が照射されて有機機能層が変化し発光輝度の低下が限界に達した状態が黒の輝度に相当し、これを相対発光輝度0.1としている。
 本発明のパターン形成装置は、400nm以上の波長の光を出射する光源と、光源から出射された光を有機EL素子に照射することにより発光パターンを形成する光照射部と、備えることを特徴としている。
 従来、有機EL素子に発光パターンを形成する装置に用いられる光源としては、波長が400nmよりも短い紫外線を出射する光源が用いられることが一般的であったが、本発明者らは、400nm以上の波長の光を出射する光源であっても、有機機能層の機能を変化させることが可能であり、発光パターンを形成することができることを見出した。このため、本発明のパターン形成装置は、400nm以上の波長の光を出射する光源を備えて構成されている。なお、655nmの波長の光を出射する光源や、785nmの波長の光を出射する光源を用いた場合には、発光パターンを形成することができないことを確認している。
 上記特徴を有する本発明のパターン形成装置によれば、従来公知のBD用の光ピックアップ装置に用いられている青紫半導体レーザーダイオードを用いることができ、更には、当該光ピックアップ装置に用いられている光学系をも用いることができる。このため、従来公知の光ピックアップ装置の構成をほぼそのまま転用することで、低コストでパターン形成装置を作製することができ、有機EL素子に対して低コストで発光パターンを形成することができる。
 本発明のパターン形成装置としては、上記特徴を有していればいずれの構成であっても良いが、具体的には以下の構成の装置が挙げられる。
 また、以下の説明では、封止材で封止された後の有機EL素子に対して、基板側から光を照射することにより発光パターンを形成する装置として説明するが、本発明はこれに限定されるものではない。すなわち、有機機能層の機能を変化させることができれば、光照射を行うタイミング及び光照射を行う方向についてはいずれであっても良い。例えば、光照射を行うタイミングは、有機機能層を構成する各層のうちいずれかの層が積層された直後であっても良いし、光を照射する方向は、基板と反対側から照射するものであっても良い。ただし、有機EL素子において光入射側に設けられる基板や電極等は透光性材料からなることが好ましい。
(1)点描画によるパターン形成装置
 まず、本発明のパターン形成装置100について図1を参照して以下説明する。
 図1は、本発明のパターン形成装置100の概略構成図である。パターン形成装置100は、有機EL素子1上に微小なドットマークを複数形成して発光パターンを形成する点描画装置である。
 パターン形成装置100は、400~410nmの波長のレーザー光を出射する半導体レーザー(Laser Diode;以下、「LD」ともいう。)光源101、当該LD光源101から出射した光を平行光にするコリメーターレンズ103、コリメーターレンズ103により平行光にされた光を所定のスポット径に絞る集光レンズ104、コリメーターレンズ103から出射された光の一部を反射するビームスプリッター105、ビームスプリッター105により反射された光の強度を検知する光検知器106、集光レンズ104から出射される光を有機EL素子1に向けて反射する反射ミラー107、反射ミラー107の傾きを調整する調整部108、有機EL素子1を水平方向に移動させる移動部109、及び、各部材を制御する制御部110等を備えている。これらコリメーターレンズ103、集光レンズ104、ビームスプリッター105、光検知器106、反射ミラー107、調整部108、移動部109及び制御部110により、光照射部102が構成されている。
 LD光源101には、従来公知のBD用の光ピックアップ装置の青紫半導体レーザーを用いることができる。LD光源101は、金属製のホルダー(図示略)に固定されており、更に当該ホルダーが金属製の筐体(図示略)に固定されている。これにより、LD光源101の放熱性が確保されている。また、ホルダーと筐体との接触面には熱伝導性の高いグリスが塗布されていても良く、LD光源101の放熱性を更に高めることができる。
 コリメーターレンズ103及び集光レンズ104には、非球面プラスチックレンズが用いられ、その表面には入射光の透過率を制御する反射防止膜が設けられている。コリメーターレンズ103及び集光レンズ104に用いられる反射防止膜の材料としては、例えば、MgFが用いられる。
 反射ミラー107及び調整部108は、例えば、1軸駆動のガルバノミラーとして構成され、有機EL素子1上に形成される光スポットをY方向に走査させることができる。また、移動部109は、有機EL素子1をX方向に移動させることができるように構成されている。これにより、有機EL素子1上で光スポットをX方向及びY方向に移動させることができる。ここで、X方向は、水平方向であって図1における左右方向をいい、Y方向は、水平方向であって図1において紙面に対して垂直な方向をいうものとする。
 なお、反射ミラー107及び調整部108は、1軸駆動のガルバノミラーとして構成されていなくとも良く、例えば、1軸駆動のガルバノミラーを二つ組み合わせて構成されていても良いし、1軸駆動のガルバノミラーとポリゴンミラーとを組み合わせて構成されていても良い。この場合には、反射ミラー107及び調整部108のみで有機EL素子1上で光スポットをX方向及びY方向に移動させることができ、移動部109の構成が不要となるため、パターン形成装置100のコストを低減させることができる。
 また、調整部108は設けられていなくとも良く、この場合には、移動部109が、有機EL素子1をX方向及びY方向に移動させることができるように構成されているものである。
 光照射部102は、LD光源101から出射された光を集光して、有機EL素子1上に光スポットを形成する。光照射部102が、有機EL素子1上に形成される光スポットのスポット径を調整することにより、形成する発光パターンの精度と、パターン形成に要する時間を調整することができる。
 このようなパターン形成装置100によれば、まず、制御部110は、図示しない外部機器(例えば、PC、各種サーバー、プリンター又はスキャナー等)から入力される画像データから、当該画像の座標毎の発光輝度を表す発光輝度データを生成する。
 次に、制御部110は、所望の相対発光輝度のドットマークを形成する上で必要な光の照射パワー[W]及び照射時間[s]を設定する。
 パターン形成装置100は、例えば、各ドットマークに対して光の照射時間を一定とし、有機EL素子1に照射される光の光強度[W/cm]を変化させることにより所望の発光輝度のドットマークを形成するように構成されている。したがって、制御部110は、各相対発光輝度に対する光の照射時間を全て、例えば1msに設定し、各相対発光輝度のドットマークを形成する上で必要な光の照射パワー[mW]を算出する。制御部110は、各相対発光輝度に対応する光の照射パワー[mW]から、LD光源101に印加すべき電流(LD電流)[mA]を算出する(図2参照)。図2は、各相対発光輝度に対する光の照射パワー及び照射時間の一例を示した図である。図2に示す例では、相対発光輝度1のドットマークを形成するために必要なLD電流が0であるものとしているが、LD光源101の閾値未満であれば0でなくとも良い。
 続いて、制御部110は、調整部108及び移動部109により、反射ミラー107の傾き及び有機EL素子1の水平方向の位置をそれぞれ所定の時間間隔毎に調整し、有機EL素子1上の光スポットの位置をX方向及びY方向に走査させながら、上記生成した発光輝度データに基づき、各座標毎にLD電流の値を示すパルス信号をLD光源101に出力する。LD光源101は、入力されたパルス信号に基づきレーザー光を出射することで、有機EL素子1上に複数のドットマークを形成して所望の発光パターンを形成することができる。なお、制御部110は光照射を行うに当たり、光検知器106によりビームスプリッター105による反射光の強度を検知し、検知されたデータを監視している。これにより、制御部110は、温度・湿度環境の変化等により、LD光源101から出射した光の強度に誤差が生じる場合には、LD光源101に印加されるLD電流Iを補正して所望の光の強度を正確に出射させる。
 なお、上記したパターン形成装置100では、光の照射時間を1msとしているが、この値に限られるものではない。
 また、上記したパターン形成装置100では、光の照射時間を一定とし、光の照射パワーを変化させて所望の相対発光輝度のドットマークを形成するものとしたが、光の照射パワーを一定として照射時間を変化させるものとしても良い。この場合には、光の強度を広範囲で検知する必要がなく、光検知器106に、広いダイナミックレンジ及び良好なS/N比を有するセンサーを用いる必要がないためパターン形成装置100のコストを低減することができる。
 更に、上記したパターン形成装置100では、光の照射時間を一定とし、光の照射パワーを変化させて所望の相対発光輝度のドットマークを形成するものとしたが、光の照射パワーと照射時間をともに変化させるようにしても良い。
(2)線露光によるパターン形成装置
 次に、本発明のパターン形成装置200について図3を参照して以下説明する。
 図3Aは、本発明のパターン形成装置200の概略構成図であり、図3Bは、図3Aに示すパターン形成装置200をX方向から見た図である。ここで、X方向は、水平方向であって図3Aにおける左右方向をいい、Y方向は、水平方向であって図3Aにおいて紙面に対して垂直な方向をいうものとする。
 パターン形成装置200は、有機EL素子1上に設けられるパターン形成用マスク211上に、線状の光スポットを形成し、これを走査することで発光パターンを形成する描画装置である。
 パターン形成装置200は、400~410nmの波長のレーザー光を出射するLD光源201、当該LD光源201から出射した光の強度分布を補正するフィルター212、フィルター212から出射した光を平行光にするコリメーターレンズ203、コリメーターレンズ203により平行光にされた光を、有機EL素子1上におけるX方向に対応する方向に関して集光する凸シリンドリカルレンズ213、コリメーターレンズ203から出射された光の一部を反射するビームスプリッター205、ビームスプリッター205により反射された光の強度を検知する光検知器206、凸シリンドリカルレンズ213から出射される光を有機EL素子1に向けて反射する反射ミラー207、有機EL素子1を水平方向に移動させる移動部209、反射ミラー207により反射された光をY方向に関して拡散する凹シリンドリカルレンズ214、有機EL素子1上に設けられ透過率分布を有するパターン形成用マスク211、及び、各部材を制御する制御部210等を備えている。
 これらコリメーターレンズ203、凸シリンドリカルレンズ213、ビームスプリッター205、光検知器206、反射ミラー207、移動部209、凹シリンドリカルレンズ214及び制御部210により、光照射部202が構成されている。
 なお、LD光源201、コリメーターレンズ203、ビームスプリッター205、光検知器206、反射ミラー207及び移動部209は、上記したパターン形成装置100のLD光源101、コリメーターレンズ103、ビームスプリッター105、光検知器106、反射ミラー107及び移動部109と同様に構成されている。
 凸シリンドリカルレンズ213及び凹シリンドリカルレンズ214は、例えば、BK7で構成され、その表面には入射光の透過率を制御する反射防止膜が設けられている。凸シリンドリカルレンズ213及び凹シリンドリカルレンズ214に用いられる反射防止膜の材料としては、例えば、MgFが用いられる。
 光照射部202は、LD光源201から出射された光を、パターン形成用マスク211上に集光してY方向に延びる線状光スポットを形成する。また、移動部209により有機EL素子1をX方向に移動させることで、線状光スポットとパターン形成用マスク211及び有機EL素子1とを相対移動させ、線状光スポットを走査する。なお、線状光スポットの線方向(Y方向)の長さが有機EL素子1のY方向の長さとほぼ同一であるか、線状光スポットの線方向(Y方向)の長さが有機EL素子1のY方向の長さよりも長いと、線状光スポットの走査を一回とすることができるため、好ましい。
 パターン形成用マスク211は、画像データを元に、有機EL素子1に対して形成しようとする所望の発光パターンに対応した透過率分布があらかじめ形成されているマスクである。パターン形成用マスク211は領域毎に透過率が異なっているため、パターン形成用マスク211を介して有機EL素子1に対して光照射を行うことで、領域毎に有機EL素子1に照射される光の光強度が調整される。したがって、パターン形成用マスク211を介して有機EL素子1に光照射を行うことで、有機EL素子1に対して所望の発光パターンを形成することができる。
 このような透過率分布を有するパターン形成用マスク211としては、従来公知の方法により容易に作製することができる。
 また、パターン形成用マスク211は、有機EL素子1の発光面全体を覆うように配置されて固定され、移動部209により有機EL素子1を移動させるとパターン形成用マスク211も同時に移動する。
 フィルター212は、LD光源201とコリメーターレンズ203の間に設けられ、LD光源201から出射される光の強度分布を補正する。
 一般に、半導体レーザーの光の強度分布はガウシアン分布を呈している。フィルター212は、図4に示すように、有機EL素子1上におけるX方向に対応する方向に関して透過率が一定であるが、有機EL素子1上におけるY方向に対応する方向に関してはLD光源201から出射される光の強度分布(ガウシアン分布)を反転した分布に相似する透過率分布を有している。このため、フィルター212から出射される光は、有機EL素子1上におけるY方向に対応する方向において強度分布がほぼ一定となる。有機EL素子1上におけるY方向に対応する方向に関して、LD光源201から出射される光の強度分布を一定にすることにより、パターン形成用マスク211上に形成される線状光スポットの光強度が線方向(Y方向)で一定となる。これにより、パターン形成用マスク211上に光強度が線方向で一定な線状光スポットを形成することができ、有機EL素子1に形成される発光パターンの輝度ムラを抑制することができる。なお、フィルター212はLD光源201とコリメーターレンズ203との間に設けられるものでなくとも良く、LD光源201から有機EL素子1の間の光路上に適宜設けられていれば良い。
 このようなパターン形成装置200によれば、制御部210は、所定のパワーでLD光源201から光を出射させ、光照射部202によりパターン形成用マスク211上に線方向で光強度が一定にされた線状光スポットを形成する。当該線状光スポットがパターン形成用マスク211を透過することで、有機EL素子1に光が照射される。
 次に、制御部210は、移動部209により有機EL素子1をX方向に移動させることで、パターン形成用マスク211上で線状光スポットをX方向に走査する。これにより、有機EL素子1に対して領域毎に異なる光強度で光照射を行うことができ、所望の発光パターンを形成することができる。なお、移動部209による有機EL素子1の移動速度は、有機EL素子1の構成、設定されたLD光源201の出射パワー、及び形成する発光パターン等に応じて適宜設定される。また、制御部210は、LD光源201に常時一定のパワーで発光させても良いし、移動部209による有機EL素子1の移動に合わせてパルス発光させても良い。LD光源201に対する熱的負荷を低減する観点から、制御部210は、LD光源201にパルス発光させることが好ましい。
 なお、パターン形成用マスク211上における線状光スポットの線方向における光強度を一定にするため、フィルター212を設けるものとしたが、フィルター212が設けられていなくても良い。
 その場合には、例えば、LD光源201が複数設けられ、複数のLD光源201から出射された光により複数形成される線状光スポットをパターン形成用マスク211上で互いに線方向に重ね合わせる。これにより、図5に示すように、線方向で光強度が一定である一つの線状光スポットを形成することができる。なお、図5は、パターン形成用マスク211上において、Y方向における距離に対する光強度を示した図である。
 このような方法によれば、より強い光強度を有する長尺な線状光スポットを形成することができ、大面積の有機EL素子1に対して短時間で発光パターンを形成することができる。また、複数の線状光スポット同士の中心間隔を互いに半値全幅(Full Width at Half Maximum:FWHM)ずつずらして重ね合わせることが好ましい。これにより、重ね合わされて形成される一つの線状光スポットの線方向における光強度をより均一にすることができ、有機EL素子1に形成される発光パターンの輝度ムラをより低減することができる。
 また、移動部209により、有機EL素子1をX方向に移動させるものとしたが、上記したパターン形成装置100と同様に、反射ミラー207の傾きを調整する調整部が設けられて、当該調整部により線状光スポットをX方向に走査させるものとしても良い。
(3)面露光によるパターン形成装置
 次に、本発明のパターン形成装置300について図6を参照して以下説明する。
 図6Aは、本発明のパターン形成装置300の概略構成図であり、図6Bは、図6Aに示すパターン形成装置300をX方向から見た図である。ここで、X方向は、水平方向であって図6Aにおける左右方向をいい、Y方向は、水平方向であって図6Aにおいて紙面に対して垂直な方向をいうものとする。
 パターン形成装置300は、有機EL素子1上に設けられるパターン形成用マスク311を介して、有機EL素子1の発光面全体に光を照射することで、発光パターンを形成する装置である。
 パターン形成装置300は、400~410nmの波長のレーザー光を出射するLD光源301、当該LD光源301から出射した光の強度分布を補正するフィルター316、フィルター316から出射した光を平行光にするコリメーターレンズ303、コリメーターレンズ303から出射された光の一部を反射するビームスプリッター305、ビームスプリッター305により反射された光の強度を検知する光検知器306、コリメーターレンズ303から出射される光を有機EL素子1に向けて反射する反射ミラー307、反射ミラー307により反射された光をX方向及びY方向に関して拡散する凹レンズ317、有機EL素子1上に設けられ透過率分布を有するパターン形成用マスク311、及び、各部材を制御する制御部310等を備えている。
 これらコリメーターレンズ303、ビームスプリッター305、光検知器306、反射ミラー307、凹レンズ317及び制御部310により、光照射部302が構成されている。
 なお、LD光源301、コリメーターレンズ303、ビームスプリッター305、光検知器306、反射ミラー307及びパターン形成用マスク311は、上記したパターン形成装置200のLD光源201、コリメーターレンズ203、ビームスプリッター205、光検知器206、反射ミラー207及びパターン形成用マスク211と同様に構成されている。
 凹レンズ317は、上記したパターン形成装置200の凸シリンドリカルレンズ213及び凹シリンドリカルレンズ214と同様、例えば、BK7で構成され、その表面に入射光の透過率を制御する反射防止膜が設けられている。凹レンズ317に用いられる反射防止膜の材料としては、例えば、MgFが用いられる。
 フィルター316は、LD光源301とコリメーターレンズ303の間に設けられ、LD光源301から出射される光の強度分布を補正する。
 フィルター316は、図7に示すように、有機EL素子1上におけるX方向及びY方向に対応する方向のそれぞれに関して、LD光源301から出射される光の強度分布(ガウシアン分布)を反転した分布に相似する透過率分布を有している。このため、フィルター316から出射される光は、有機EL素子上におけるX方向及びY方向に対応する方向において光の強度分布がほぼ一定となる。有機EL素子1上におけるX方向及びY方向に対応する方向に関して、LD光源301から出射される光の強度分布を一様にすることにより、パターン形成用マスク311上に照射される光の光強度も一様となる。これにより、パターン形成用マスク311上において一様な光強度の光を照射することができ、有機EL素子1に形成される発光パターンの輝度ムラを低減することができる。なお、フィルター316はLD光源301とコリメーターレンズ303との間に設けられるものでなくとも良く、LD光源301から有機EL素子1の間の光路上に適宜設けられていれば良い。
 このようなパターン形成装置300によれば、制御部310は、所定のパワーでLD光源301から光を出射させ、光照射部302によりパターン形成用マスク311上に光強度が一様な光を照射する。パターン形成用マスク311に照射された光が当該パターン形成用マスク311を透過することで、有機EL素子1に光が照射される。これにより、有機EL素子1に対して領域毎に異なる光強度で光照射を行うことができ、所望の発光パターンを形成することができる。なお、光照射の照射時間は、有機EL素子1の構成、設定されたLD光源301の出射パワー、及び形成する発光パターン等に応じて適宜設定される。
 なお、パターン形成用マスク311に照射される光の光強度を一様にするため、フィルター316が設けられているものとしたが、フィルター316は設けられていなくても良い。
 その場合には、例えば、LD光源301が複数設けられ、複数のLD光源301から出射された光をパターン形成用マスク311上で互いに重ね合わせることで、パターン形成用マスク311に照射される光の光強度を一様にすることができる。
 このような方法によれば、より強い光強度の光で広い面積を照射することができ、大面積の有機EL素子1に対して短時間で発光パターンを形成することができる。また、複数のLD光源301から出射された光の中心間隔を互いに半値全幅ずつずらして重ね合わせることが好ましい。これにより、パターン形成用マスク311に照射される光の強度を一様にすることができ、有機EL素子1に形成される発光パターンの輝度ムラをより低減することができる。
 以下、上記した本発明のパターン形成方法を行うことが可能な有機EL素子を構成する主要各層の詳細とその製造方法について説明する。
《基板》
 本発明の有機EL素子に用いることのできる基板としては、ガラス、プラスチック等、特に限定はなく、また透明であっても不透明であっても良い。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましくは、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 基板の厚さとしては、特に制限されるものではなく、いずれの厚さであっても良い。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物若しくは有機物又はその両者からなるガスバリアー膜が形成されていても良い。そのようなガスバリアー膜としては、例えば、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。
 ガスバリアー膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に、該膜の脆弱性を改良するために、これら無機層と有機材料からなる層との積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 ガスバリアー膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、不透明樹脂基板、セラミック製基板等が挙げられる。
《第1電極》
 第1電極は、通常有機EL素子に使用可能な全ての電極を使用することができる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/同混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 本発明においては、第1電極が透明電極であることが好ましく、更には透明金属電極であることが好ましい。なお、第1電極の透明とは、波長550nmでの光透過率が50%以上であることをいう。
 第1電極の形成方法としては、例えば、公知のスピンコート、蒸着法、スパッタ法等を適宜用いることができ、そのパターニング方法としては、例えば、公知のフォトリソグラフィーによるパターニング、パターンマスクによるパターニング等を状況に応じて用いることが可能である。第1電極より発光光を取り出す場合には、透過率を10%より大きくすることが望ましく、また第1電極としてのシート抵抗は数百Ω/□以下が好ましい。
 更に、第1電極の膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
 第1電極は、基板上に形成された下地層と、その上に形成された電極層とからなる2層構造であるものとしても良い。このうち、電極層は、例えば、銀又は銀を主成分とする合金を用いて構成された層が用いられ、下地層は、例えば、窒素原子を含んだ化合物を用いて構成された層が用いられる。なお、電極層において主成分とは、電極層中の含有量が98質量%以上であることをいう。
《有機機能層(発光機能層)》
(1)発光層
 有機機能層には少なくとも発光層が含まれる。
 本発明に用いられる発光層には、発光材料としてリン光発光性化合物が含有されている。なお、発光層には、複数種類のリン光発光性化合物が含有されていても良い。また、発光材料としては、蛍光材料を用いても良いし、リン光発光性化合物と蛍光材料とを併用しても良い。
 この発光層は、第2電極又は電子輸送層から注入された電子と、第1電極又は正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であっても良い。
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あっても良い。この場合、各発光層間には、非発光性の中間層(図示略)を有していることが好ましい。
 発光層の層厚の総和は1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内であることがより好ましい。
 なお、発光層の層厚の総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む層厚である。
 複数層からなる発光層の場合、個々の発光層の層厚としては、1~50nmの範囲内に調整することが好ましく、更に、1~20nmの範囲内に調整することがより好ましい。積層された複数の各発光層が、青、緑、赤のそれぞれの発光色で発光する場合、各発光層の層厚の関係については特に制限はない。
 以上のような発光層は、公知の発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜形成方法により成膜して形成することができる。
 ここで、本発明において、有機EL素子の発光層に好ましく用いられるリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書等に記載の化合物を挙げることができる。
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許公開第2009/0039776号、米国特許第6687266号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許公開第2006/103874号明細書等に記載の化合物も挙げることができる。
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも1つの配位様式を含む錯体が好ましい。
 リン光発光性化合物(リン光発光性金属錯体ともいう)としては、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorg.Chem.第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry 第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。
 また、本発明において、有機EL素子の発光層に好ましく用いられるホスト化合物の具体例としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができるが、本発明はこれらに限定されるものではない。
(2)注入層(正孔注入層、電子注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層と電子注入層とがある。
 注入層は、必要に応じて設けることができる。正孔注入層であれば、アノードと発光層又は正孔輸送層の間、電子注入層であればカソードと発光層又は電子輸送層との間に存在させても良い。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニン層、酸化バナジウムに代表される酸化物層、アモルファスカーボン層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子層等が挙げられる。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属層、フッ化カリウムに代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデンに代表される酸化物層等が挙げられる。本発明の電子注入層はごく薄い膜であることが望ましく、素材にもよるがその膜厚は1nm~10μmの範囲が好ましく、1nmであることがより好ましい。
(3)正孔輸送層
 正孔輸送層は、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであっても良い。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているようないわゆる、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は、上記材料の1種又は2種以上からなる1層構造であっても良い。
 また、正孔輸送層の材料に不純物をドープしてp性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。
(4)電子輸送層
 電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層(図示略)も電子輸送層に含まれる。電子輸送層は単層構造又は複数層の積層構造として設けることができる。
 単層構造の電子輸送層、及び、積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送層の材料として好ましく用いることができる。また、発光層の材料としても例示されるジスチリルピラジン誘導体も電子輸送層の材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送層の材料として用いることができる。
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種又は2種以上からなる1層構造であっても良い。
 また、電子輸送層に不純物をドープし、n性を高くすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。更に電子輸送層には、カリウムやカリウム化合物などを含有させることが好ましい。カリウム化合物としては、例えば、フッ化カリウム等を用いることができる。このように電子輸送層のn性を高くすると、より低消費電力の素子を作製することができる。
 また電子輸送層の材料(電子輸送性化合物)として、上述した下地層を構成する材料と同様のものを用いても良い。これは、電子注入層を兼ねた電子輸送層であっても同様であり、上述した下地層を構成する材料と同様のものを用いても良い。
(5)阻止層(正孔阻止層、電子阻止層)
 阻止層は、有機機能層として、上記各機能層の他に、更に設けられていても良い。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層の層厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmである。
《第2電極》
 第2電極は、有機機能層に電子を供給するカソードとして機能する電極膜であり、金属、合金、有機又は無機の導電性化合物、及びこれらの混合物が用いられる。具体的には、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO、SnO等の酸化物半導体等が挙げられる。
 第2電極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、第2電極としてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μmの範囲内、好ましくは5~200nmの範囲内で選ばれ、より好ましくは110nmである。
 なお、この有機EL素子が、第2電極側からも発光光を取り出すものである場合であれば、上述した導電性材料のうち光透過性の良好な導電性材料を選択して第2電極を構成すれば良い。この場合には、第2電極側から光を照射することにより上記パターン形成方法を行うことができる。
《取り出し電極》
 取り出し電極は、第1電極と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
《補助電極》
 補助電極は、第1電極の抵抗を下げる目的で設けるものであって、第1電極の電極層に接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光の取り出しの影響のない範囲でパターン形成される。
 このような補助電極の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法等が挙げられる。補助電極の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極の厚さは、導電性の観点から1μm以上であることが好ましい。
《封止材》
 封止材は、基板上において、有機EL素子本体部(有機機能層や各種電極及び配線)を覆うものであって、板状(フィルム状)の封止部材が接着剤によって基板上に固定されるものであっても良いし、封止膜であっても良い。いずれの構成においても封止材は、第1電極や第2電極、取り出し電極等の一部を露出させた状態で、有機EL素子を封止する。
 封止部材が板状(フィルム状)の封止部材で構成される場合、封止部材として、一方の面に凹部が形成された略板状基材、すなわち、凹板状の封止部材を用いても良いし、面が平坦な板状基材、すなわち、平板状の封止部材を用いても良い。なお、板状(凹板状又は平板状)の封止材は、間に有機EL素子本体部を挟んで、基板と対向する位置に配置される。
 封止部材としては、例えば、ガラス板、ポリマー板、金属板等の透明基板を用いることができる。なお、ガラス板としては、例えば、無アルカリガラス、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等の材料で形成された基板を用いることができる。また、ポリマー板としては、例えば、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等の材料で形成された基板を用いることができる。更に、金属板としては、例えば、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金で形成された基板を用いることができる。
 また、封止材として凹板状の封止部材を用いる場合(缶封止する場合)、封止材と有機EL素子本体部(有機機能層、各種電極及び配線)との間の空隙には、例えば、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイル等の不活性液体を充填することが好ましい。また、封止材と有機EL素子本体部との間の空隙を真空状態にしても良いし、空隙に吸湿性化合物を封入しても良い。
 また、封止材として平板状の封止部材を用いる場合、封止部材と基板との接着に用いる接着剤としては、アクリル酸系オリゴマー又はメタクリル酸系オリゴマーの反応性ビニル基を有する光硬化型又は熱硬化型接着剤や、2-シアノアクリル酸エステル等の湿気硬化型接着剤などが挙げられる。また、エポキシ系等の熱硬化型又は化学硬化型(二液混合)接着剤を、接着剤として用いても良い。
 また、上述のように、封止材として封止膜を用いても良い。
 封止膜としては、無機材料や有機材料からなる膜で構成することができる。ただし、封止膜は、有機機能層の劣化をもたらす、水分や酸素等の物質の浸入を抑制する機能を有する材料で構成する。このような性質を有する材料としては、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等の無機材料が挙げられる。更に、封止膜の脆弱性を改良するために、封止膜の構造を、これらの無機材料からなる膜と、有機材料からなる膜とを積層した多層構造としても良い。
 上述した封止膜の形成手法としては、任意の手法を用いることができ、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等の手法を用いることができる。
《保護膜、保護板》
 有機EL素子は、封止材の上に保護膜又は保護板を更に備えていても良い。
 保護膜又は保護板は、基板との間に有機EL素子本体部(有機機能層、各種電極及び配線)及び封止材を挟んで、有機EL素子本体部を機械的に保護するものである。特に、封止材として封止膜が用いられている場合には、有機EL素子本体部に対する機械的な保護が十分ではないため、保護膜又は保護板が設けられていることが好ましい。
 保護膜又は保護板としては、ガラス板、ポリマー板、薄型のポリマーフィルム、金属板、薄型の金属フィルム、又はポリマー材料膜や金属材料膜が用いられる。このうち、軽量かつ素子の薄膜化という観点からポリマーフィルムが用いられることが好ましい。
 以上のように、本発明は、紫外線を用いることなく低コストで有機エレクトロルミネッセンス素子に発光パターンを形成することのできる有機エレクトロルミネッセンス素子のパターン形成装置を提供することに適している。
 1   有機EL素子
 100 パターン形成装置
 101 LD光源
 102 光照射部
 103 コリメーターレンズ
 104 集光レンズ
 105 ビームスプリッター
 106 光検知器
 107 反射ミラー
 108 調整部
 109 移動部
 110 制御部
 200 パターン形成装置
 201 LD光源
 202 光照射部
 203 コリメーターレンズ
 205 ビームスプリッター
 206 光検知器
 207 反射ミラー
 209 移動部
 210 制御部
 211 パターン形成用マスク
 212 フィルター
 213 凸シリンドリカルレンズ
 214 凹シリンドリカルレンズ
 300 パターン形成装置
 301 LD光源
 302 光照射部
 303 コリメーターレンズ
 305 ビームスプリッター
 306 光検知器
 307 反射ミラー
 310 制御部
 311 パターン形成用マスク
 316 フィルター
 317 凹レンズ

Claims (13)

  1.  一対の電極間に有機機能層を備えた有機エレクトロルミネッセンス素子に光を照射して発光パターンを形成する有機エレクトロルミネッセンス素子のパターン形成装置であって、
     400nm以上の波長の光を出射する光源と、
     前記光源から出射された光を前記有機エレクトロルミネッセンス素子に照射することにより前記発光パターンを形成する光照射部と、を備えることを特徴とする有機エレクトロルミネッセンス素子のパターン形成装置。
  2.  前記光源から出射される光が、400~410nmの範囲内の波長であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  3.  前記光照射部が、前記光源から出射された光を集光して前記有機エレクトロルミネッセンス素子上に光スポットを形成し、点描画により前記発光パターンを形成することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  4.  前記光照射部が、前記光スポットを前記有機エレクトロルミネッセンス素子上で二次元方向に走査させることで点描画を行うことを特徴とする請求項3に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  5.  前記光照射部が、前記有機エレクトロルミネッセンス素子を二次元方向に移動させることで点描画を行うことを特徴とする請求項3又は請求項4に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  6.  前記有機エレクトロルミネッセンス素子上に設けられ、透過率分布を有するパターン形成用マスクを更に備え、
     前記光照射部が、前記光源から出射された光を前記パターン形成用マスク上に集光して線状光スポットを形成し、前記線状光スポットと前記パターン形成用マスク及び前記有機エレクトロルミネッセンス素子とを前記線状光スポットの線方向に直交する方向に相対移動させることで前記発光パターンを形成することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  7.  前記線状光スポットの光強度が線方向で一定であることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  8.  前記光照射部の光路上にフィルターを更に備え、
     前記フィルターは、前記フィルターを介して前記パターン形成用マスク上に形成される前記線状光スポットの光強度が線方向で一定となるような透過率分布を有し、
     前記光照射部が、前記光源から出射され前記フィルターを介した光を集光して前記線状光スポットを形成することで、前記線状光スポットの光強度を線方向で一定にすることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  9.  前記光源が複数設けられ、
     前記光照射部が、前記複数の光源から出射された光を前記パターン形成用マスク上に集光して複数の光スポットを形成し、前記複数の光スポットを互いに重ね合わせることで、前記線状光スポットの光強度を線方向で一定にすることを特徴とする請求項7に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  10.  前記有機エレクトロルミネッセンス素子上に設けられ、透過率分布を有するパターン形成用マスクを更に備え、
     前記光照射部が、前記光源から出射された光を、前記パターン形成用マスクを介して前記有機エレクトロルミネッセンス素子の発光面全体に照射することにより、前記発光パターンを形成することを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  11.  前記パターン形成用マスクに照射される光の光強度が、前記パターン形成用マスク上において一様であることを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  12.  前記光照射部の光路上にフィルターを更に備え、
     前記フィルターは、前記フィルターを介して前記パターン形成用マスク上に照射される光の光強度が、前記パターン形成用マスク上で一様になるような光透過率を有し、
     前記光照射部が、前記光源から出射され前記フィルターを介した光を前記パターン形成用マスクに照射することで、前記パターン形成用マスクに照射される光の光強度を、前記パターン形成用マスク上において一様にすることを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
  13.  前記光源が複数設けられ、
     前記光照射部が、前記複数の光源から出射された光を前記パターン形成用マスク上に互いに重ね合わせて照射することで、前記パターン形成用マスクに照射される光の光強度を、前記パターン形成用マスク上において一様にすることを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子のパターン形成装置。
PCT/JP2014/061259 2013-05-16 2014-04-22 有機エレクトロルミネッセンス素子のパターン形成装置 WO2014185228A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015517007A JPWO2014185228A1 (ja) 2013-05-16 2014-04-22 有機エレクトロルミネッセンス素子のパターン形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013103821 2013-05-16
JP2013-103821 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014185228A1 true WO2014185228A1 (ja) 2014-11-20

Family

ID=51898208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061259 WO2014185228A1 (ja) 2013-05-16 2014-04-22 有機エレクトロルミネッセンス素子のパターン形成装置

Country Status (2)

Country Link
JP (1) JPWO2014185228A1 (ja)
WO (1) WO2014185228A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158920A1 (ja) * 2016-03-18 2017-09-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法
JP2022065074A (ja) * 2017-03-30 2022-04-26 株式会社クオルテック El表示パネルの製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127794A (ja) * 2002-10-04 2004-04-22 Pioneer Electronic Corp 有機el素子のパターンニング方法及び装置、有機el素子の作成方法、並びに、有機el素子
JP2004253599A (ja) * 2003-02-20 2004-09-09 Hitachi Ltd パネル型表示装置とその製造方法および製造装置
JP2006251688A (ja) * 2005-03-14 2006-09-21 Ricoh Co Ltd 光走査装置・画像形成装置
JP2011081233A (ja) * 2009-10-08 2011-04-21 Sharp Corp 光走査装置及びこれを備えた画像形成装置
JP2012028335A (ja) * 2006-05-04 2012-02-09 Lg Chem Ltd 発光パターンを有する有機発光素子、その製造方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004127794A (ja) * 2002-10-04 2004-04-22 Pioneer Electronic Corp 有機el素子のパターンニング方法及び装置、有機el素子の作成方法、並びに、有機el素子
JP2004253599A (ja) * 2003-02-20 2004-09-09 Hitachi Ltd パネル型表示装置とその製造方法および製造装置
JP2006251688A (ja) * 2005-03-14 2006-09-21 Ricoh Co Ltd 光走査装置・画像形成装置
JP2012028335A (ja) * 2006-05-04 2012-02-09 Lg Chem Ltd 発光パターンを有する有機発光素子、その製造方法および装置
JP2011081233A (ja) * 2009-10-08 2011-04-21 Sharp Corp 光走査装置及びこれを備えた画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158920A1 (ja) * 2016-03-18 2017-09-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法
JP2022065074A (ja) * 2017-03-30 2022-04-26 株式会社クオルテック El表示パネルの製造装置
JP7266920B2 (ja) 2017-03-30 2023-05-01 株式会社クオルテック El表示パネルの製造装置

Also Published As

Publication number Publication date
JPWO2014185228A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2017098758A1 (ja) 光学式指紋認証装置
JP6365665B2 (ja) 有機エレクトロルミネッセンスモジュール、スマートデバイス及び照明装置
US9772095B2 (en) Organic electroluminescence module, smart device, and lighting device
US20150236304A1 (en) Method for manufacturing top emission organic electroluminescence element
JP6245102B2 (ja) 有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法
JPWO2014148512A1 (ja) 透明導電体、及び、電子デバイス
WO2015174515A1 (ja) 表示装置
JP2017091695A (ja) 有機エレクトロルミネッセンス素子、並びに照明装置、面状光源及び表示装置
WO2017056682A1 (ja) 有機エレクトロルミネッセンスパネル
WO2017056684A1 (ja) 有機エレクトロルミネッセンスパネル及びその製造方法
JP6358250B2 (ja) 有機エレクトロルミネッセンス素子のパターン形成方法
JP5428162B2 (ja) 有機エレクトロルミネッセンス素子
JP5791129B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置
WO2014185228A1 (ja) 有機エレクトロルミネッセンス素子のパターン形成装置
JP2016099921A (ja) 有機エレクトロルミネッセンスモジュール、並びにこれを備えたスマートデバイス及び照明装置
JP2014225556A (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンスユニット、有機エレクトロルミネッセンス装置及び表示方法
US9431611B2 (en) Production method for organic electroluminescent element
WO2015151855A1 (ja) 有機エレクトロルミネッセンスモジュール及び情報機器
JP2009289716A (ja) 有機エレクトロルミネセンス素子及びその製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP6665856B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2016072246A1 (ja) 有機エレクトロルミネッセンス素子
JPWO2018198529A1 (ja) 有機エレクトロルミネッセンス素子、光センサおよび生体センサ
JPWO2017057023A1 (ja) 有機エレクトロルミネッセンス素子
WO2018211776A1 (ja) 有機エレクトロルミネッセンス素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797924

Country of ref document: EP

Kind code of ref document: A1