WO2014184890A1 - ステンレス鋼拡散接合製品の製造方法 - Google Patents
ステンレス鋼拡散接合製品の製造方法 Download PDFInfo
- Publication number
- WO2014184890A1 WO2014184890A1 PCT/JP2013/063495 JP2013063495W WO2014184890A1 WO 2014184890 A1 WO2014184890 A1 WO 2014184890A1 JP 2013063495 W JP2013063495 W JP 2013063495W WO 2014184890 A1 WO2014184890 A1 WO 2014184890A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- stainless steel
- steel
- diffusion bonding
- austenite
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
- B23K20/023—Thermo-compression bonding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/227—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
- B23K35/3086—Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
- B23K2103/05—Stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Definitions
- the present invention relates to a method for manufacturing a stainless steel diffusion bonding product in which stainless steel materials are diffusion bonded without an insert material.
- the diffusion bonding method includes an “insert material insertion method” in which an insert material is inserted into the bonding interface and bonded by solid phase diffusion or liquid phase diffusion, and a “direct method” in which the surfaces of both stainless steel materials are in direct contact with each other. There is.
- an insert material insertion method for example, a method using duplex stainless steel as an insert material (Patent Document 1), and a liquid phase diffusion bonding method using a foil-like insert material having the same composition as a workpiece to be plated with Ni and Au by several ⁇ m
- Patent Document 2 a method of using austenitic stainless steel containing a large amount of Si in a range of 11.5% or less as an insert material
- Patent Document 3 a method of using austenitic stainless steel containing a large amount of Si in a range of 11.5% or less
- “brazing” using a nickel-based brazing material (for example, JIS: BNi-1 to 7) or a copper-based brazing material as an insert material can be regarded as one type of liquid phase diffusion bonding.
- These insert material insertion methods are advantageous in that reliable diffusion bonding can be realized relatively easily.
- the use of the insert material is disadvantageous compared to the direct method in that the cost is increased and the corrosion resistance may be lowered due to the dissimilar metal in the
- Patent Document 4 discloses a technique for improving the diffusion bonding property of a stainless steel material by avoiding deformation of the material by diffusion bonding in a non-oxidizing atmosphere at a predetermined temperature with an S amount in steel of 0.01% or less. It is disclosed.
- Patent Document 5 discloses a method of using a stainless steel foil material having irregularities on the surface by pickling treatment.
- Patent Document 6 discloses a method of using, as a material to be joined, stainless steel in which the Al content is suppressed so that an alumina film that becomes an impediment to diffusion bonding is difficult to form during diffusion bonding.
- Patent Document 7 discloses that diffusion is promoted using a stainless steel foil that has been deformed by cold working.
- Patent Document 8 describes a ferritic stainless steel for direct diffusion bonding having an optimized composition.
- JP-A-63-1199993 Japanese Patent Laid-Open No. 4-294484 Japanese Patent Publication No.57-4431 JP 62-199277 A JP-A-2-261548 Japanese Patent Laid-Open No. 7-213918 JP-A-9-279310 JP-A-9-99218 JP 2000-303150 A
- the present invention is intended to provide a stainless steel diffusion bonding product having excellent joint reliability by a “direct method” that can be carried out with a work load equivalent to that of a conventional insert material insertion method.
- the present invention uses the growth of crystal grains accompanying such phase transformation (movement of phase boundary) to diffuse and join stainless steel materials without using an insert material.
- At least one of both stainless steel materials to be brought into contact has an austenite transformation start temperature Ac 1 point in the temperature rising process at 650 to 950 ° C.
- a method for producing a stainless steel diffusion bonded product in which diffusion bonding proceeds while accompanying grain boundary movement during transformation to an austenite phase.
- At least one of the two stainless steel materials to be contacted can be applied to a two-phase steel having a chemical composition of the following (A) and having an austenite + ferrite two-phase temperature range of 880 ° C. or more.
- A By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.0%, Mn: 0.001 to 1.0%, Ni: 0.05 to 2.5% Cr: 13.0 to 18.5%, Cu: 0 to 0.2%, Mo: 0 to 0.5%, Al: 0 to 0.05%, Ti: 0 to 0.2%, Nb: It consists of 0 to 0.2%, V: 0 to 0.2%, B: 0 to 0.01%, N: 0.005 to 0.1%, the balance Fe and unavoidable impurities.
- X value indicated by 650 is 650-950.
- X value 35 (Cr + 1.72Mo + 2.09Si + 4.86Nb + 8.29V + 1.77Ti + 21.4Al + 40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu) +310 (1)
- 2-phase steels refers Ac 1 or more points Is a steel having a two-phase structure of austenite + ferrite in the temperature range.
- Such a two-phase steel includes stainless steels classified as ferritic stainless steel and martensitic stainless steel.
- Both stainless steel materials used for diffusion bonding are two-phase steels having the chemical composition (A).
- [Pattern 2] When one of the stainless steel materials used for diffusion bonding is a two-phase steel having the chemical composition (A) and the other is a steel having the chemical composition (B) below.
- [Pattern 3] When one of the stainless steel materials used for diffusion bonding is a two-phase steel having the following chemical composition (A) and the other is a steel having the following chemical composition (C).
- C By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.001 to 0.04% S: 0.0005 to 0.03%, Ni: 0 to 0.6%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025%, B: 0 to 0.01%, V: 0 to 0 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and inevitable impurities.
- (B) is a composition range including austenitic stainless steel
- (C) is a composition range including ferritic stainless steel.
- the degree of freedom of diffusion bonding conditions is further expanded by applying a steel having a ⁇ max of 20 to less than 100 represented by the following formula (2).
- diffusion bonding is preferably advanced under the conditions of a contact surface pressure of 0.03 to 0.8 MPa and a holding temperature of 880 to 1030 ° C.
- ⁇ max 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189 (2)
- the stainless steel diffusion bonding structure according to the present invention is excellent in bonding strength and sealing performance, and is effective in avoiding a decrease in corrosion resistance due to contact with dissimilar metals (particularly metals containing Cu) since no insert material is used. .
- the contact surface pressure and temperature can be reduced, and general diffusion bonding equipment applied to the insert material insertion method can be used. For this reason, the manufacturing cost reduction effect by not using insert material is not offset by the increase in work load. Therefore, the present invention contributes to the spread of highly reliable stainless steel diffusion bonding products.
- tissue photograph (comparative example) of the laminated body used for the diffusion bonding test The cross-sectional structure
- tissue photograph (comparative example) of the laminated body used for the diffusion bonding test.
- FIG. 1 exemplifies a cross-sectional structure in the vicinity of a joint interface when diffusion bonding at 900 ° C. is attempted using a two-phase steel having the chemical composition of the present invention for both steel materials.
- This two-phase steel is a steel corresponding to D-2 in Table 1 described later, and the metal structure before diffusion bonding is a ferrite phase + M 23 C 6 (M is a metal element such as Cr) -based carbide.
- M is a metal element such as Cr
- a 2D finishing material having a thickness of 1.0 mm is used as a sample, the surfaces having a surface roughness Ra of 0.21 ⁇ m are brought into direct contact with each other, the contact surface pressure is set to 0.3 MPa, and a pressure of 10 ⁇ 3 Pa is obtained by evacuation.
- FIG. 1A shows a stage where the holding time is 10 min
- FIG. 1B shows a stage where the holding time is 50 min.
- a position where both members are in contact before diffusion bonding is referred to as an “interface position”.
- crystal grains straddling the interface position are generated at the stage of the holding time of 10 min. These crystal grains correspond to the austenite phase generated by transformation from the ferrite phase and carbide before the temperature rise (the photograph is taken after quenching from the holding temperature, so the austenite phase is a martensite phase) .
- the metal structure before diffusion bonding is a ferrite phase + carbide
- the transformation to the austenite phase occurs from the carbide.
- the generated austenite crystal grows while expanding grain boundaries in the ferrite phase. That is, austenite crystal grains grow while accompanying grain boundary movement when the ferrite phase transforms into the austenite phase.
- the metal structure of the two-phase steel that is the subject of the present invention is a ferrite phase + carbide, a ferrite phase + martensite phase, or a martensite single phase, depending on the chemical composition and steel sheet production conditions.
- the ferrite phase is present in an amount of 50% by volume or more at the time when austenite begins to be generated by heating the diffusion bonding. It is desirable.
- the two-phase steel used for diffusion bonding has a martensitic single-phase metal structure, it is effective to anneal it in advance to obtain a ferrite phase + martensitic phase structure.
- the condition of holding the material at 600 ° C. to Ac 1 point + 50 ° C. can be adopted.
- the annealing effect is obtained in the temperature rising process of diffusion bonding, and the austenite phase is in the structure state where the ferrite phase exists. The generation start can be reached.
- the austenite crystal is generated starting from carbide in a two-phase steel having a ferrite phase + carbide structure, and starting from and generating a martensite phase in a two-phase steel having a ferrite phase + martensite phase structure.
- the austenite crystal in the duplex stainless steel grows while moving the grain boundary into the surrounding ferrite phase. At that time, at the interface position between the two steel materials, the crystal grain boundary moves toward the bonding partner material without waiting for the complete disappearance of the oxide serving as a diffusion barrier.
- both stainless steel materials used for diffusion bonding is austenite + ferrite two-phase structure in a temperature range where diffusion bonding proceeds.
- the following steel duplex steel
- a two-phase steel having an austenite transformation start temperature Ac 1 in the temperature rising process at 650 to 950 ° C. and an austenite + ferrite two-phase temperature range of 880 ° C. or more is a suitable target.
- the Ac 1 point is 880 ° C. or higher, it will inevitably have a two-phase temperature range in the range of 880 ° C. or higher.
- the lower limit of the two-phase temperature range is associated with it.
- the lower limit of the heating temperature is also increased, and diffusion bonding is performed without using an insert material at a relatively low temperature by using the grain boundary movement when the ferrite phase of the two-phase steel transforms to the austenite phase.
- the merit of the present invention cannot be utilized. As a result of various studies, it is effective to apply steel having an Ac 1 point in the range of 950 ° C. or lower, and steel of 900 ° C. or lower is more preferable.
- the duplex stainless steel applied in the present invention may be a steel type classified as a so-called “martensitic stainless steel” as long as it exhibits an austenite + ferrite dual phase structure in a temperature range in which diffusion bonding proceeds. Absent. Martensitic stainless steel is a steel type that obtains a martensite structure by quenching from a high-temperature austenite single-phase region such as 1050 ° C. or more. Grain boundaries accompanying transformation to austenite phase in the austenite + ferrite two-phase temperature range There is also a martensitic stainless steel having a composition capable of diffusion bonding utilizing the movement of. Therefore, such martensitic stainless steel is also treated as a duplex stainless steel in this specification.
- Examples of the specific component composition of the duplex stainless steel targeted in the present invention include those satisfying the following (A).
- the X value indicated by 650 is 650-950.
- the above-mentioned X value accurately estimates the austenite transformation start temperature Ac 1 point (° C.) in the temperature rising process in the two-phase steel having the austenite + ferrite two-phase temperature range of 880 ° C. or more. It is an indicator that can.
- a steel having a ⁇ max represented by the following formula (2) of 20 to less than 100 can be applied.
- ⁇ max 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo + 9Cu-49Ti-50Nb-52Al + 470N + 189
- ⁇ max is an index that represents the amount (volume%) of the austenite phase that is produced when heated to about 1100 ° C.
- ⁇ max is 100 or more, the steel can be regarded as a steel type that becomes an austenite single phase at a high temperature.
- C By mass%, C: 0.0001 to 0.15%, Si: 0.001 to 1.2%, Mn: 0.001 to 1.2%, P: 0.001 to 0.04% S: 0.0005 to 0.03%, Ni: 0 to 0.6%, Cr: 11.5 to 32.0%, Mo: 0 to 2.5%, Cu: 0 to 1.0%, Nb: 0 to 1.0%, Ti: 0 to 1.0%, Al: 0 to 0.2%, N: 0 to 0.025%, B: 0 to 0.01%, V: 0 to 0 0.5%, W: 0 to 0.3%, Ca, Mg, Y, REM (rare earth elements) total: 0 to 0.1%, balance Fe and inevitable impurities.
- the contact surface pressure between the two members used for diffusion bonding is 1.0 MPa or less. If the contact surface pressure is 1.0 MPa or less, diffusion bonding using no insert material can be performed with relatively simple equipment. What is necessary is just to set the contact surface pressure which is sufficient for diffusion joining to advance according to the steel grade to apply, heating holding temperature, and holding time in the range of 1.0 Mpa or less. In particular, when a steel having a ⁇ max of less than 100 is applied as the two-phase steel, good results can be easily obtained at a contact surface pressure of 0.8 MPa or less. On the other hand, when the contact surface pressure is extremely low, the heating and holding time becomes long and the productivity is lowered.
- a contact surface pressure of 0.03 MPa or more it is preferable to ensure a contact surface pressure of 0.03 MPa or more, and the contact pressure may be controlled to be 0.1 MPa or more.
- the surface used as the joining surface of the stainless steel material used for diffusion joining it is desirable for Ra to be 0.30 micrometer or less.
- the surface finish may be pickling, bright annealing, or polishing.
- the heating temperature for diffusion bonding is 880 ° C or higher. According to the study by the inventors, when using the grain boundary movement due to the transformation of the above-mentioned two-phase steel, diffusion bonding between stainless steel materials can be performed without holding at a high temperature as in the prior art. When the pressure is 1.0 MPa or lower, heating at 880 ° C. or higher is desired. A temperature of 900 ° C. or higher is more preferable from the viewpoint of promoting diffusion.
- austenite + ferrite two-phase temperature range applied to both or one member.
- austenite crystal grains easily grow over the interface position toward the contact partner material.
- the grain boundary between the generated austenite crystal and the surrounding ferrite crystal is in a state of being very mobile due to the “transformation driving force” that tries to bring the ratio of the ferrite phase to the austenite phase closer to the equilibrium state.
- the austenite crystal grows while moving the grain boundary into the adjacent ferrite crystal in the duplex phase steel.
- the austenite crystal grains that are growing facing the interface with the contact partner material are moved to expand into the crystal grains of the contact partner material in order to become a more stable form of energy.
- austenite crystal grains straddling the interface position are formed.
- the crystal grains of both members facing the interface position in the vicinity of these austenite crystal grains also cause grain boundary movement due to diffusion and diffusion. Joining proceeds.
- the two-phase steel having a chemical composition in which ⁇ max in the above formula (2) is 100 or less has a temperature range in which an austenite + ferrite two-phase structure is formed in a temperature range lower than about 1100 ° C.
- diffusion bonding is performed under the conditions of a contact surface pressure of 0.03 to 0.8 MPa and a heating temperature of 880 to 1030 ° C. It is possible to proceed, which is advantageous for lowering the contact surface pressure and lowering the temperature of the diffusion bonding conditions.
- the use of a two-phase steel with a ⁇ max of 50 to 80 further expands the degree of freedom of diffusion bonding conditions, and the appropriate conditions for the contact surface pressure of 0.03 to 0.5 MPa and the heating temperature of 880 to 1000 ° C. Can be found.
- the upper limit of the heating temperature may be set in a low temperature range of 980 ° C. or lower, for example.
- the heat of diffusion bonding is to heat and hold the member to be bonded in an atmosphere in which the pressure is approximately 10 ⁇ 3 Pa or less by evacuation. Can be done by.
- the insert material is not used, and the stainless steel materials to be joined are brought into direct contact with each other.
- the contact surface pressure is set within a range of 1.0 MPa or less.
- a heating method in addition to a method of uniformly heating the entire member in the furnace with a heater, a method of heating the vicinity of the contact portion to a predetermined temperature by resistance heating by energization can be adopted.
- the heating and holding time may be set in the range of 30 to 120 min.
- Example 1 Steel plates having the chemical composition shown in Table 1 were prepared.
- D-1 to D-3 are steels having a ⁇ max of less than 100
- M-1 to M-2 are steels classified as so-called martensitic stainless steels
- F-1 is a ferritic single phase steel
- A-1 is an austenitic single steel. It is a phase steel.
- Table 1 also lists the plate thickness, surface finish, and surface roughness Ra of the steel plate.
- the metal structures of the prepared steel sheets are: D-1 to D to 3 are ferrite phase + carbide, M-1 and M-2 are ferrite phase + martensite phase, M-3 is martensite single phase, and F-1 is Ferrite single phase, A-1 is austenite single phase.
- a plate test piece of 20 mm ⁇ 20 mm was cut out from each steel plate, and two test pieces were overlapped by the following method to attempt diffusion bonding.
- the surface pressure applied to the contact surface of these two test pieces using a jig utilizing the principle of the two test pieces that are to be diffusion-bonded so that the surfaces are in contact with each other. (Contact surface pressure) was adjusted to a predetermined magnitude.
- This jig is attached to a carbon composite column with a carbon composite arm rotatable around a fixed axis in the horizontal direction, and a load is applied to the specimens stacked by the gravity of the weight suspended on the arm. It is given.
- this jig uses the fixed axis position of the arm as a fulcrum, the position where the load is applied to the stacked test pieces as the action point, and the position where the weight is suspended as the force point.
- the gravity applied to the weight is amplified and acts on the contact surface of the test piece.
- the two test pieces that are laminated are referred to as “steel material 1” and “steel material 2”, and a state in which the steel material 1 and the steel material 2 are laminated is referred to as a “laminate”.
- the diffusion bonding of the steel materials 1 and 2 was tried by the following heat treatment.
- a predetermined load is applied to the laminated body by the jig
- the jig and the laminated body are placed in a vacuum furnace and evacuated to obtain a vacuum degree of 10 ⁇ 3 to 10 ⁇ 4 Pa.
- the temperature was raised to a predetermined heating temperature set in a range of 880 ° C. or higher in about 1 h, held at that temperature for 2 h, then transferred to a cooling chamber and cooled.
- the above degree of vacuum was maintained up to a holding temperature of ⁇ 100 ° C., and then Ar gas was introduced to cool to about 100 ° C. or less in a 90 kPa Ar gas atmosphere.
- the inventors examined in detail the correspondence between the cross-sectional structure of the laminate after the heat treatment and the measurement result obtained by this measurement method, and the measurement result was the total thickness of the steel materials 1 and 2. It was confirmed that the area ratio of the joint portion occupying the contact area can be accurately evaluated by a value obtained by dividing the number of measurement points by the total number of measurements 49 (referred to as “joining ratio”). Therefore, diffusion bonding properties were evaluated according to the following evaluation criteria.
- the laminated body after the heat treatment was subjected to a structure observation with an optical microscope in a region including an interface position in a cross section parallel to the thickness direction.
- the degree of progress of diffusion bonding observed by microscopic observation that is, the degree of disappearance of the unbonded portion at the interface position
- the value of the above-mentioned “bonding rate” had a good correspondence.
- . 3 to 13 illustrate cross-sectional structure photographs for some examples. The structural photographs shown here were taken by intentionally selecting locations where as many unbonded portions as possible remained at the interface positions, except for those evaluated as ⁇ . Table 2 shows which test No. these cross-sectional structure photographs correspond to.
- Comparative Examples No. 9, 17, 20, 22, and 25 had high crystallinity due to the high heating temperature (see FIGS. 4, 6, and 8).
- Nos. 21 and 24 employ martensitic stainless steel with a ⁇ max of 100 or more as a two-phase steel, and the driving force for transformation to an austenite phase in a two-phase temperature range is less than that of a steel type with a ⁇ max of less than 100. It was thought that the temperature was small, and diffusion bonding did not proceed when the holding temperature was lowered to 1000 ° C.
- No. 27 and No. 28 were unable to find appropriate diffusion bonding conditions by applying martensitic stainless steels that were considered to have no temperature range that would be an austenite + ferrite two-phase structure.
- No. 32 and No. 33 were obtained by attempting diffusion bonding between steels having a ferrite single-phase structure and an austenite single-phase structure at 880 to 1080 ° C., respectively. Diffusion bonding at the heating temperature could not be realized
- Example 2 Steel with the chemical composition shown in Table 3 is melted and hot rolled into a hot rolled sheet with a thickness of 3 to 4 mm. The thickness of the sheet is determined by the sequential steps of annealing, pickling, cold rolling, finish annealing, and pickling. A 1.0 mm test steel plate was used.
- D-11 to D-15 are dual-phase steels of the present invention, F-11 is a ferritic single-phase steel, and A-11 is an austenitic single-phase steel.
- Table 3 also lists the plate thickness, surface finish, and surface roughness Ra of the steel plate.
- the metal structures of each steel sheet are: D-11 to D to 15 are ferrite phase + carbide, F-11 is a ferrite single phase, and A-11 is an austenite single phase.
- a 100 mm square steel material (hereinafter referred to as “flat plate material”) was produced from each of the test steel plates of Steel D-11 to D-15 by cutting. Further, a steel material (hereinafter referred to as “frame material”) constituted by a frame having a width of 5 mm was produced by cutting the center of a 100 mm square plate by cutting from test steel plates of all steel types. At that time, burrs are not removed. In the flat plate member and the frame member, 6 mm ⁇ holes were formed at two locations near the upper end of the diagonal line. [1] and [5] in FIG. 14A schematically show the dimensions and shape of the flat plate, and [2] to [4] schematically show the dimensions and shape of the frame material. As shown in FIG.
- Pattern A; [1] to [5] are all the same two-phase steel grades of the present invention.
- Pattern B; [1] [3] [5] are the same two-phase steel types of the subject of the present invention, and [2] [4] corresponding to the counterpart material are the same austenitic or ferritic same steel types.
- the laminate In diffusion bonding, the laminate is charged in a vacuum furnace and evacuated to a pressure of 10 ⁇ 3 Pa or lower, and then heated to a heating temperature set in the range of 900 to 1100 ° C. It hold
- a diffusion bonded product having excellent reliability at a low temperature of 880 to 1000 ° C. can be obtained by applying the duplex steel of the present invention to at least one of both steel materials in the diffusion bonded portion. It was.
- No. 49 and 50 which are comparative examples, did not use a duplex steel, and a diffusion bonded product excellent in reliability could not be obtained even at 1100 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(A)質量%で、C:0.0001~0.15%、Si:0.001~1.0%、Mn:0.001~1.0%、Ni:0.05~2.5%、Cr:13.0~18.5%、Cu:0~0.2%、Mo:0~0.5%、Al:0~0.05%、Ti:0~0.2%、Nb:0~0.2%、V:0~0.2%、B:0~0.01%、N:0.005~0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650~950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu)+310 …(1)
〔パターン1〕拡散接合に供する双方のステンレス鋼材がいずれも上記(A)の化学組成を有する2相系鋼である場合。
〔パターン2〕拡散接合に供する双方のステンレス鋼材のうち一方が上記(A)の化学組成を有する2相系鋼であり、他方が下記(B)の化学組成を有する鋼である場合。
〔パターン3〕拡散接合に供する双方のステンレス鋼材のうち一方が下記(A)の化学組成を有する2相系鋼であり、他方が下記(C)の化学組成を有する鋼である場合。
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189 …(2)
[1]接触面の凹凸が変形して密着し、接触面積が増大する過程。
[2]接触面に存在していた双方の鋼材の表面酸化皮膜が分解および拡散消失する過程。
[3]原子の相互拡散および結晶粒の成長が生じる過程。
[4]接触面に介在するボイド内の残留ガスが金属素地との反応により消失する過程。
ステンレス鋼材の表面酸化皮膜は強固な不動態皮膜であるため、特に[2]の過程を完了させるためには高い接触面圧や高温での長時間保持が必要となる。これがステンレス鋼材の直接拡散接合法の工業的な普及を阻む要因となっている。
図1(a)に見られるように、保持時間10minの段階で、界面位置を跨ぐ結晶粒が生じている。それらの結晶粒は昇温前のフェライト相と炭化物から変態により生成したオーステナイト相に相当するものである(写真は保持温度から急冷後に撮影したので、前記オーステナイト相はマルテンサイト相となっている)。この例では拡散接合前の金属組織がフェライト相+炭化物であるため、オーステナイト相への変態は炭化物を起点として生じる。生成したオーステナイト結晶はフェライト相中に粒界を拡げながら成長する。すなわち、フェライト相がオーステナイト相へ変態するときの粒界移動を伴いながらオーステナイト結晶粒が成長する。
本発明では、低温・低接触面圧下で直接法による拡散接合を実現するために、拡散接合に供する双方のステンレス鋼材のうち少なくとも一方に、拡散接合が進行する温度域でオーステナイト+フェライト2相組織となる鋼(2相系鋼)を適用する。具体的には昇温過程でのオーステナイト変態開始温度Ac1点を650~950℃に持ちオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼が好適な対象となる。ここで、Ac1点が880℃以上であれば必然的に880℃以上の範囲に2相温度域を有することとなるが、Ac1点があまり高いとそれに伴って2相温度域の下限が上昇するので、加熱温度の設定下限も高くなり、2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を利用して比較的低温でインサート材を使わずに拡散接合を行うという本発明のメリットが活かせない。種々検討の結果、Ac1点が950℃以下の範囲にある鋼を適用することが有効であり、900℃以下の鋼がより好適である。
(A)質量%で、C:0.0001~0.15%、Si:0.001~1.0%、Mn:0.001~1.0%、Ni:0.05~2.5%、Cr:13.0~18.5%、Cu:0~0.2%、Mo:0~0.5%、Al:0~0.05%、Ti:0~0.2%、Nb:0~0.2%、V:0~0.2%、B:0~0.01%、N:0.005~0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650~950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu)+310 …(1)
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189 …(2)
γmaxは1100℃程度に加熱保持した場合に生成するオーステナイト相の量(体積%)を表す指標である。γmaxが100以上となる場合、その鋼は高温でオーステナイト単相となる鋼種であるとみなすことができる。γmaxが20~100未満である鋼においては、γ単相域を避ける温度設定が容易であり、より低温、低接触面圧側に適正条件の自由度が拡がる。γmaxが50~80である鋼を適用することが一層好ましい。
上記2相系鋼からなる鋼材と拡散接合により一体化させる相手材としては、上記2相系鋼を適用できる他、拡散接合の加熱温度域でオーステナイト単相となるオーステナイト系鋼種やフェライト単相となるフェライト系鋼種を適用することができる。2相系鋼以外を相手材に用いても、一方の2相系鋼内で変態により成長するオーステナイト相は界面位置から相手材の方へも成長するので、界面位置を跨ぐ結晶粒を介する健全な拡散接合部を構築することが可能である。
拡散接合に供する両部材間の接触面圧は1.0MPa以下とする。接触面圧が1.0MPa以下であれば、比較的簡便な設備にてインサート材を用いない拡散接合が実施できる。適用する鋼種や加熱保持温度・保持時間に応じて拡散接合が進行するに足る接触面圧を1.0MPa以下の範囲で設定すればよい。特に上記2相系鋼としてγmaxが100未満の鋼を適用する場合には0.8MPa以下の接触面圧にて良好な結果を得やすい。一方、接触面圧が極端に低いと加熱保持時間が長くなり生産性が低下する。工業的には0.03MPa以上の接触面圧を確保することが好ましく、0.1MPa以上となるように管理してもよい。なお、拡散接合に供するステンレス鋼材の接合面となる表面は、Raが0.30μm以下に平滑であることが望ましい。表面の仕上は、酸洗、光輝焼鈍、研磨のいずれであっても構わない。
表1に示す化学組成を有する鋼板を用意した。D-1~D-3はγmaxが100未満の鋼、M-1~M-2はいわゆるマルテンサイト系ステンレス鋼に分類される鋼、F-1はフェライト単相鋼、A-1はオーステナイト単相鋼である。鋼板の板厚、表面仕上、表面粗さRaも表1に記載してある。用意した各鋼板の金属組織は、D-1~D~3はフェライト相+炭化物、M-1、M-2はフェライト相+マルテンサイト相、M-3はマルテンサイト単相、F-1はフェライト単相、A-1はオーステナイト単相である。
拡散接合を試みる2枚の試験片を互いの表面同士が接触するように積層した状態とし、てこの原理を利用した治具を用いてこれら2枚の試験片の接触表面に付与される面圧(接触面圧)を所定の大きさに調整した。この治具はカーボンコンポジット製の支柱にカーボンコンポジット製のアームが水平方向の固定軸周りに回転可能な状態で取付けられており、そのアームに吊り下げた錘の重力によって積層した試験片に荷重を付与するものである。すなわちこの治具は、アームの前記固定軸位置を支点、積層した試験片に荷重を付与する位置を作用点、錘を吊す位置を力点とし、支点と力点の間に作用点が位置するてこを構成しており、錘にかかる重力が増幅されて試験片の接触面に作用するようになっている。以下、積層した2枚の試験片を「鋼材1」および「鋼材2」と呼び、鋼材1と鋼材2が積層した状態のものを「積層体」と呼ぶ。
◎:接合率100%(拡散接合性;優秀)
○:接合率90~99%(拡散接合性;良好)
△:接合率60~89%(拡散接合性;やや不良)
×:接合率0~59%(拡散接合性;不良)
種々検討の結果、○評価において拡散接合部の強度は十分に確保され、かつ両部材間のシール性(連通する欠陥を介する気体の漏れが生じない性質)も良好であることから、○評価以上を合格と判定した。
評価結果を表2に示す。
表3に示す化学組成の鋼を溶製し、熱間圧延にて板厚3~4mmの熱延板とし、焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗を順次行う工程により板厚1.0mmの供試鋼板とした。D-11~D-15は本発明対象の2相系鋼、F-11はフェライト単相鋼、A-11はオーステナイト単相鋼である。鋼板の板厚、表面仕上、表面粗さRaも表3に記載してある。各鋼板の金属組織は、D-11~D~15はフェライト相+炭化物、F-11はフェライト単相、A-11はオーステナイト単相である。
パターンA;[1]~[5]全てが本発明対象の2相系同一鋼種。
パターンB;[1][3][5]が本発明対象の2相系同一鋼種、その相手材に相当する[2][4]がオーステナイト系同一鋼種またはフェライト系同一鋼種。
上記のステンレス鋼拡散接合製品(図14(b)の形状のもの)について、大気中800℃で24hの加熱試験に供した。その後、図14(b)のa-a’の位置で積層方向に切断し、内部の空洞表面(内表面)の酸化の有無を目視で調査した。拡散接合部に外部と繋がる空隙が存在していた場合や、当該加熱処理時に拡散接合部に破損が生じた場合には、内部に酸素が侵入するため加熱試験後の内表面は酸化され、当初の金属光沢が失われる。一方、拡散接合部の健全性が維持され内部が高真空の状態に保たれている場合は加熱試験後の内表面はステンレス鋼特有の金属光沢を呈する。そこで、内表面が当初の金属光沢を維持しているステンレス鋼拡散接合製品を○(拡散接合部の信頼性;良好)、それ以外を×(拡散接合部の信頼性;不良)と評価した。結果を表4に示す。
Claims (6)
- ステンレス鋼材同士を直接接触させて拡散接合により一体化させるに際し、接触させる双方のステンレス鋼材の少なくとも一方に昇温過程でのオーステナイト変態開始温度Ac1点を650~950℃に持ちオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼を適用し、接触面圧1.0MPa以下、加熱温度880~1080℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる、ステンレス鋼拡散接合製品の製造方法。
- ステンレス鋼材同士を直接接触させて拡散接合により一体化させるに際し、接触させる双方のステンレス鋼材の少なくとも一方に下記(A)の化学組成を有しオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼を適用し、接触面圧1.0MPa以下、加熱温度880~1080℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる、ステンレス鋼拡散接合製品の製造方法。
(A)質量%で、C:0.0001~0.15%、Si:0.001~1.0%、Mn:0.001~1.0%、Ni:0.05~2.5%、Cr:13.0~18.5%、Cu:0~0.2%、Mo:0~0.5%、Al:0~0.05%、Ti:0~0.2%、Nb:0~0.2%、V:0~0.2%、B:0~0.01%、N:0.005~0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650~950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu)+310 …(1) - ステンレス鋼材同士を直接接触させて拡散接合により一体化させるに際し、接触させる双方のステンレス鋼材の一方に下記(A)の化学組成を有しオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼、他方に下記(B)の化学組成を有するステンレス鋼をそれぞれ適用し、接触面圧1.0MPa以下、加熱温度880~1080℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる、ステンレス鋼拡散接合製品の製造方法。
(A)質量%で、C:0.0001~0.15%、Si:0.001~1.0%、Mn:0.001~1.0%、Ni:0.05~2.5%、Cr:13.0~18.5%、Cu:0~0.2%、Mo:0~0.5%、Al:0~0.05%、Ti:0~0.2%、Nb:0~0.2%、V:0~0.2%、B:0~0.01%、N:0.005~0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650~950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu)+310 …(1)
(B)質量%で、C:0.0001~0.15%、Si:0.001~4.0%、Mn:0.001~2.5%、P:0.001~0.045%、S:0.0005~0.03%、Ni:6.0~28.0%、Cr:15.0~26.0%、Mo:0~7.0%、Cu:0~3.5%、Nb:0~1.0%、Ti:0~1.0%、Al:0~0.1%、N:0~0.3%、B:0~0.01%、V:0~0.5%、W:0~0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0~0.1%、残部Feおよび不可避的不純物からなる。 - ステンレス鋼材同士を直接接触させて拡散接合により一体化させるに際し、接触させる双方のステンレス鋼材の一方に下記(A)の化学組成を有しオーステナイト+フェライト2相温度域を880℃以上の範囲に持つ2相系鋼、他方に下記(C)の化学組成を有するステンレス鋼をそれぞれ適用し、接触面圧1.0MPa以下、加熱温度880~1080℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる、ステンレス鋼拡散接合製品の製造方法。
(A)質量%で、C:0.0001~0.15%、Si:0.001~1.0%、Mn:0.001~1.0%、Ni:0.05~2.5%、Cr:13.0~18.5%、Cu:0~0.2%、Mo:0~0.5%、Al:0~0.05%、Ti:0~0.2%、Nb:0~0.2%、V:0~0.2%、B:0~0.01%、N:0.005~0.1%、残部Feおよび不可避的不純物からなり、下記(1)式で示されるX値が650~950である。
X値=35(Cr+1.72Mo+2.09Si+4.86Nb+8.29V+1.77Ti+21.4Al+40.0B-7.14C-8.0N-3.28Ni-1.89Mn-0.51Cu)+310 …(1)
(C)質量%で、C:0.0001~0.15%、Si:0.001~1.2%、Mn:0.001~1.2%、P:0.001~0.04%、S:0.0005~0.03%、Ni:0~0.6%、Cr:11.5~32.0%、Mo:0~2.5%、Cu:0~1.0%、Nb:0~1.0%、Ti:0~1.0%、Al:0~0.2%、N:0~0.025%、B:0~0.01%、V:0~0.5%、W:0~0.3%、Ca、Mg、Y、REM(希土類元素)の合計:0~0.1%、残部Feおよび不可避的不純物からなる。 - 前記(A)の化学組成を有する2相系鋼として、下記(2)式で示されるγmaxが20~100未満である鋼を適用する請求項2~4のいずれかに記載のステンレス鋼拡散接合製品の製造方法。
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189 …(2) - 前記(A)の化学組成を有する2相系鋼として、下記(2)式で示されるγmaxが20~100未満である鋼を適用し、接触面圧0.03~0.8MPa、加熱温度880~1030℃の条件範囲で前記2相系鋼のフェライト相がオーステナイト相へ変態するときの粒界移動を伴いながら拡散接合を進行させる請求項2~4のいずれかに記載のステンレス鋼拡散接合製品の製造方法。
γmax=420C-11.5Si+7Mn+23Ni-11.5Cr-12Mo+9Cu-49Ti-50Nb-52Al+470N+189 …(2)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13884826.2A EP2998056B1 (en) | 2013-05-15 | 2013-05-15 | Process for producing stainless steel diffusion-joined product |
PCT/JP2013/063495 WO2014184890A1 (ja) | 2013-05-15 | 2013-05-15 | ステンレス鋼拡散接合製品の製造方法 |
US14/888,975 US9987706B2 (en) | 2013-05-15 | 2013-05-15 | Method for producing a stainless steel diffusion-bonded product |
CN201380076626.4A CN105517748B (zh) | 2013-05-15 | 2013-05-15 | 不锈钢扩散接合制品的制造方法 |
SG11201509040WA SG11201509040WA (en) | 2013-05-15 | 2013-05-15 | Method for producing a stainless steel diffusion-bonded product |
KR1020157035363A KR102037653B1 (ko) | 2013-05-15 | 2013-05-15 | 스테인레스강 확산 접합 제품의 제조 방법 |
MYPI2015703918A MY172590A (en) | 2013-05-15 | 2013-05-15 | Process for producing a stainless steel diffusion-joined product |
ES13884826.2T ES2682922T3 (es) | 2013-05-15 | 2013-05-15 | Procedimiento para la producción de un producto de acero inoxidable unido por difusión |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/063495 WO2014184890A1 (ja) | 2013-05-15 | 2013-05-15 | ステンレス鋼拡散接合製品の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014184890A1 true WO2014184890A1 (ja) | 2014-11-20 |
Family
ID=51897907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/063495 WO2014184890A1 (ja) | 2013-05-15 | 2013-05-15 | ステンレス鋼拡散接合製品の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9987706B2 (ja) |
EP (1) | EP2998056B1 (ja) |
KR (1) | KR102037653B1 (ja) |
CN (1) | CN105517748B (ja) |
ES (1) | ES2682922T3 (ja) |
SG (1) | SG11201509040WA (ja) |
WO (1) | WO2014184890A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013103271A (ja) * | 2011-11-16 | 2013-05-30 | Nisshin Steel Co Ltd | ステンレス鋼拡散接合製品の製造方法 |
US20160031035A1 (en) * | 2013-09-27 | 2016-02-04 | National Institute Of Advanced Industrial Science And Technology | Method for bonding stainless steel members and stainless steel |
US20170321311A1 (en) * | 2014-11-05 | 2017-11-09 | Nisshin Steel Co., Ltd. | Stainless steel material for diffusion bonding |
JPWO2018011934A1 (ja) * | 2016-07-14 | 2018-10-18 | 新日鐵住金株式会社 | クラッド成形体の製造方法および耐熱ガスケットの製造方法 |
CN110494250A (zh) * | 2018-03-15 | 2019-11-22 | 日新制钢株式会社 | 热交换器的制造方法 |
WO2021255966A1 (ja) * | 2020-06-15 | 2021-12-23 | 日本電産株式会社 | 熱伝導部材 |
WO2021255967A1 (ja) * | 2020-06-15 | 2021-12-23 | 日本電産株式会社 | 熱伝導部材 |
JP2022501515A (ja) * | 2018-09-28 | 2022-01-06 | コーニング インコーポレイテッド | オーステナイト変態温度を上昇させた合金金属、及びこれを含む物品 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6124930B2 (ja) * | 2014-05-02 | 2017-05-10 | 日新製鋼株式会社 | マルテンサイト系ステンレス鋼板およびメタルガスケット |
JP6561481B2 (ja) * | 2015-02-02 | 2019-08-21 | 国立大学法人群馬大学 | 鉄鋼材料の接合方法 |
JP6797649B2 (ja) * | 2016-11-29 | 2020-12-09 | セイコーインスツル株式会社 | ダイヤフラムの製造方法 |
CN110512143A (zh) * | 2019-09-09 | 2019-11-29 | 王平 | 一种抗震耐火高强韧不锈结构钢及其制备方法 |
CN110833685A (zh) * | 2019-12-12 | 2020-02-25 | 晋江腾强鞋材有限公司 | 两用鞋及其折叠式滑轮装置 |
CN113369800A (zh) * | 2020-03-09 | 2021-09-10 | 天津大学 | 获得低活化铁素体/马氏体钢与tp347h奥氏体钢可靠接头的固相扩散连接的方法 |
EP4382627A4 (en) * | 2021-08-02 | 2024-10-02 | Nippon Steel Chemical & Mat Co Ltd | STAINLESS STEEL SHEET, SEPARATOR FOR A FUEL BATTERY, FUEL BATTERY CELL AND FUEL BATTERY STACK |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS574431B2 (ja) | 1979-12-05 | 1982-01-26 | ||
JPS61210158A (ja) * | 1985-03-15 | 1986-09-18 | Sumitomo Metal Ind Ltd | 超塑性2相ステンレス鋼およびその熱間加工法 |
JPS61243117A (ja) * | 1985-04-19 | 1986-10-29 | Sumitomo Metal Ind Ltd | 二相系ステンレス鋼の熱間加工方法 |
JPS62199277A (ja) | 1986-02-26 | 1987-09-02 | Sumitomo Metal Ind Ltd | ステンレス鋼の拡散接合方法 |
JPS62227597A (ja) * | 1986-03-28 | 1987-10-06 | Sumitomo Metal Ind Ltd | 固相接合用2相系ステンレス鋼薄帯 |
JPS63119993A (ja) | 1986-11-07 | 1988-05-24 | Sumitomo Metal Ind Ltd | 拡散接合方法 |
JPS63215388A (ja) * | 1987-03-02 | 1988-09-07 | Sumitomo Metal Ind Ltd | 二相ステンレス鋼部材の接合方法 |
JPH02261548A (ja) | 1989-04-03 | 1990-10-24 | Nippon Steel Corp | 自動車の排ガス浄化用触媒金属担体の製造方法 |
JPH04294884A (ja) | 1991-03-20 | 1992-10-19 | Hitachi Ltd | ステンレス鋼の液相拡散接合方法 |
JPH07213918A (ja) | 1994-02-04 | 1995-08-15 | Nippon Steel Corp | 触媒用メタルハニカム |
JPH0999218A (ja) | 1995-10-04 | 1997-04-15 | Nippon Steel Corp | 強固な接合強度を有する拡散接合された触媒用メタル担体およびその製造方法 |
JPH09262685A (ja) * | 1996-03-29 | 1997-10-07 | Sumitomo Metal Ind Ltd | ステンレス鋼の接合方法 |
JPH09279310A (ja) | 1996-04-16 | 1997-10-28 | Nippon Steel Corp | 拡散接合性の優れたステンレス箔およびそれを用いたメタル担体 |
JPH10146681A (ja) * | 1996-11-19 | 1998-06-02 | Sumitomo Metal Ind Ltd | 2相系ステンレス鋼の継手の製造方法 |
JPH11104854A (ja) * | 1997-09-30 | 1999-04-20 | Daido Steel Co Ltd | 二相ステンレス鋼の接合方法 |
JPH11129078A (ja) * | 1997-08-29 | 1999-05-18 | Daido Steel Co Ltd | 二相ステンレス鋼の接合方法 |
JP2000303150A (ja) | 1999-04-19 | 2000-10-31 | Nippon Steel Corp | 直接拡散接合用ステンレス鋼 |
JP2001115894A (ja) * | 1999-10-18 | 2001-04-24 | Natl Space Development Agency Of Japan | 推力可変噴射器の精密加工方法 |
JP2013103271A (ja) * | 2011-11-16 | 2013-05-30 | Nisshin Steel Co Ltd | ステンレス鋼拡散接合製品の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS574431A (en) | 1980-06-11 | 1982-01-11 | Kubota Ltd | Truck |
US4455352A (en) * | 1982-11-08 | 1984-06-19 | The Babcock & Wilcox Company | Materials system for high strength corrosion resistant bimetallic products |
JPS63146681A (ja) | 1986-12-10 | 1988-06-18 | Nec Corp | クロマキ−信号発生装置 |
WO1997036711A1 (fr) * | 1996-03-29 | 1997-10-09 | Sumitomo Metal Industries, Ltd. | Procede de soudage par diffusion de materiaux metalliques |
KR100262212B1 (ko) * | 1997-12-19 | 2000-07-15 | 김형국 | 연강과 스테인레스강의 확산접합방법 |
KR100262211B1 (ko) * | 1997-12-19 | 2000-07-15 | 김형국 | 스테인레스 클래드강의 열간압연 접합방법 |
FR2984782B1 (fr) * | 2011-12-23 | 2014-09-26 | Commissariat Energie Atomique | Procede d'assemblage par soudage diffusion d'une piece en acier a forte teneur en carbone avec une piece en acier ou en alliage de nickel a faible teneur en carbone, et assemblage ainsi obtenu. |
JP5850763B2 (ja) | 2012-02-27 | 2016-02-03 | 日新製鋼株式会社 | ステンレス鋼拡散接合製品 |
JP5868241B2 (ja) | 2012-03-29 | 2016-02-24 | 日新製鋼株式会社 | 拡散接合用フェライト系ステンレス鋼材および拡散接合製品の製造方法 |
-
2013
- 2013-05-15 KR KR1020157035363A patent/KR102037653B1/ko active IP Right Grant
- 2013-05-15 EP EP13884826.2A patent/EP2998056B1/en active Active
- 2013-05-15 CN CN201380076626.4A patent/CN105517748B/zh active Active
- 2013-05-15 US US14/888,975 patent/US9987706B2/en active Active
- 2013-05-15 SG SG11201509040WA patent/SG11201509040WA/en unknown
- 2013-05-15 WO PCT/JP2013/063495 patent/WO2014184890A1/ja active Application Filing
- 2013-05-15 ES ES13884826.2T patent/ES2682922T3/es active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS574431B2 (ja) | 1979-12-05 | 1982-01-26 | ||
JPS61210158A (ja) * | 1985-03-15 | 1986-09-18 | Sumitomo Metal Ind Ltd | 超塑性2相ステンレス鋼およびその熱間加工法 |
JPS61243117A (ja) * | 1985-04-19 | 1986-10-29 | Sumitomo Metal Ind Ltd | 二相系ステンレス鋼の熱間加工方法 |
JPS62199277A (ja) | 1986-02-26 | 1987-09-02 | Sumitomo Metal Ind Ltd | ステンレス鋼の拡散接合方法 |
JPS62227597A (ja) * | 1986-03-28 | 1987-10-06 | Sumitomo Metal Ind Ltd | 固相接合用2相系ステンレス鋼薄帯 |
JPS63119993A (ja) | 1986-11-07 | 1988-05-24 | Sumitomo Metal Ind Ltd | 拡散接合方法 |
JPS63215388A (ja) * | 1987-03-02 | 1988-09-07 | Sumitomo Metal Ind Ltd | 二相ステンレス鋼部材の接合方法 |
JPH02261548A (ja) | 1989-04-03 | 1990-10-24 | Nippon Steel Corp | 自動車の排ガス浄化用触媒金属担体の製造方法 |
JPH04294884A (ja) | 1991-03-20 | 1992-10-19 | Hitachi Ltd | ステンレス鋼の液相拡散接合方法 |
JPH07213918A (ja) | 1994-02-04 | 1995-08-15 | Nippon Steel Corp | 触媒用メタルハニカム |
JPH0999218A (ja) | 1995-10-04 | 1997-04-15 | Nippon Steel Corp | 強固な接合強度を有する拡散接合された触媒用メタル担体およびその製造方法 |
JPH09262685A (ja) * | 1996-03-29 | 1997-10-07 | Sumitomo Metal Ind Ltd | ステンレス鋼の接合方法 |
JPH09279310A (ja) | 1996-04-16 | 1997-10-28 | Nippon Steel Corp | 拡散接合性の優れたステンレス箔およびそれを用いたメタル担体 |
JPH10146681A (ja) * | 1996-11-19 | 1998-06-02 | Sumitomo Metal Ind Ltd | 2相系ステンレス鋼の継手の製造方法 |
JPH11129078A (ja) * | 1997-08-29 | 1999-05-18 | Daido Steel Co Ltd | 二相ステンレス鋼の接合方法 |
JPH11104854A (ja) * | 1997-09-30 | 1999-04-20 | Daido Steel Co Ltd | 二相ステンレス鋼の接合方法 |
JP2000303150A (ja) | 1999-04-19 | 2000-10-31 | Nippon Steel Corp | 直接拡散接合用ステンレス鋼 |
JP2001115894A (ja) * | 1999-10-18 | 2001-04-24 | Natl Space Development Agency Of Japan | 推力可変噴射器の精密加工方法 |
JP2013103271A (ja) * | 2011-11-16 | 2013-05-30 | Nisshin Steel Co Ltd | ステンレス鋼拡散接合製品の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2998056A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013103271A (ja) * | 2011-11-16 | 2013-05-30 | Nisshin Steel Co Ltd | ステンレス鋼拡散接合製品の製造方法 |
US20160031035A1 (en) * | 2013-09-27 | 2016-02-04 | National Institute Of Advanced Industrial Science And Technology | Method for bonding stainless steel members and stainless steel |
US10449629B2 (en) | 2013-09-27 | 2019-10-22 | National Institute Of Advanced Industrial Science And Technology | Method for bonding stainless steel members and stainless steel |
US10549380B2 (en) | 2013-09-27 | 2020-02-04 | National Institute Of Advanced Industrial Science And Technology | Method for bonding stainless steel members and stainless steel |
US20170321311A1 (en) * | 2014-11-05 | 2017-11-09 | Nisshin Steel Co., Ltd. | Stainless steel material for diffusion bonding |
JPWO2018011934A1 (ja) * | 2016-07-14 | 2018-10-18 | 新日鐵住金株式会社 | クラッド成形体の製造方法および耐熱ガスケットの製造方法 |
CN110494250A (zh) * | 2018-03-15 | 2019-11-22 | 日新制钢株式会社 | 热交换器的制造方法 |
CN110494250B (zh) * | 2018-03-15 | 2021-04-30 | 日新制钢株式会社 | 热交换器的制造方法 |
JP2022501515A (ja) * | 2018-09-28 | 2022-01-06 | コーニング インコーポレイテッド | オーステナイト変態温度を上昇させた合金金属、及びこれを含む物品 |
WO2021255966A1 (ja) * | 2020-06-15 | 2021-12-23 | 日本電産株式会社 | 熱伝導部材 |
WO2021255967A1 (ja) * | 2020-06-15 | 2021-12-23 | 日本電産株式会社 | 熱伝導部材 |
Also Published As
Publication number | Publication date |
---|---|
ES2682922T3 (es) | 2018-09-24 |
KR20160042818A (ko) | 2016-04-20 |
US9987706B2 (en) | 2018-06-05 |
EP2998056A4 (en) | 2017-01-18 |
CN105517748A (zh) | 2016-04-20 |
EP2998056A1 (en) | 2016-03-23 |
US20160114423A1 (en) | 2016-04-28 |
KR102037653B1 (ko) | 2019-10-29 |
SG11201509040WA (en) | 2015-12-30 |
EP2998056B1 (en) | 2018-07-11 |
CN105517748B (zh) | 2018-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846868B2 (ja) | ステンレス鋼拡散接合製品の製造方法 | |
WO2014184890A1 (ja) | ステンレス鋼拡散接合製品の製造方法 | |
JP5850763B2 (ja) | ステンレス鋼拡散接合製品 | |
JP5086806B2 (ja) | クラッド合金基板及びその製造方法 | |
KR102384698B1 (ko) | 확산 접합용 스테인리스 강재 | |
JP5868242B2 (ja) | 拡散接合用オーステナイト系ステンレス鋼材および拡散接合製品の製造方法 | |
CN107030367A (zh) | 钛合金与不锈钢的异种金属扩散焊方法 | |
JP2013204149A (ja) | 拡散接合用フェライト系ステンレス鋼材および拡散接合製品の製造方法 | |
Guo et al. | Forming and tensile fracture characteristics of Ti-6Al-4V and T2 Cu vacuum electron beam welded joints | |
CN112958626A (zh) | 一种适用于TiAl合金轧制的包套及其制备方法 | |
JP7385487B2 (ja) | ステンレス鋼材及び拡散接合体 | |
JP6440552B2 (ja) | Cuろう接合時のCu拡散性に優れたフェライトおよびマルテンサイト系二相ステンレス鋼 | |
JPH04157001A (ja) | 接合強度の優れたチタンクラッド鋼板の製造方法 | |
Saboktakin et al. | The Effect of Copper Interlayer on Metallurgical Properties of Roll Bonding Titanium Clad Steel | |
ZHENG et al. | Performance of dissimilar metal weld between SA335P91 and 12Cr1MoV steels in ultra (ultra) supercritical thermal power units | |
MUZVIDZIWA | Fatigue Resistance Relevant to Locally Developed Microstructures in Friction Stir Welded Light Metal Joints | |
KR20070022388A (ko) | 클래드 합금 기판 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13884826 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14888975 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013884826 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157035363 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: JP |