WO2014180183A1 - 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法 - Google Patents

利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法 Download PDF

Info

Publication number
WO2014180183A1
WO2014180183A1 PCT/CN2014/073104 CN2014073104W WO2014180183A1 WO 2014180183 A1 WO2014180183 A1 WO 2014180183A1 CN 2014073104 W CN2014073104 W CN 2014073104W WO 2014180183 A1 WO2014180183 A1 WO 2014180183A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
filler
red mud
carbon
lignin
Prior art date
Application number
PCT/CN2014/073104
Other languages
English (en)
French (fr)
Inventor
岳钦艳
黄德毅
高宝玉
孙媛媛
张晓伟
高原
傅凯放
孔娇娇
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US14/786,746 priority Critical patent/US9428407B2/en
Publication of WO2014180183A1 publication Critical patent/WO2014180183A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46176Galvanic cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46195Cells containing solid electrolyte
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to an anti-plate-like granular ceramic iron-carbon micro-electrolytic filler and a preparation method thereof, and belongs to the technical field of sewage treatment, in particular to the field of pretreatment of high-concentration refractory wastewater.
  • lignin reserves are second only to cellulose and are regenerated every year at a rate of 50 billion tons.
  • the pulp and paper industry separates about 140 million tons of cellulose from plants every year and gets about 50 million tons of lignin by-products. But so far, more than 95% of the lignin is still discharged directly into the river by "black liquor”. After concentrating and burning off, the reuse of lignin needs to find a suitable method.
  • Iron filings are a kind of solid waste in the production process of machinery factories. Long-term stacking of large quantities of iron filings not only occupies land, but also affects the ecological environment. The resource utilization of scrap iron filings has also been extensively studied.
  • Red mud is a polluting waste discharged from the aluminum industry for the extraction of alumina. Generally, for every ton of alumina produced, 1.0 to 2.0 tons of red mud is produced. As the world's fourth largest alumina producer, China emits millions of tons of red mud each year. The pH of the red mud is very high, among which: the P H value of the leachate is 12.1-13.0. Therefore, the red mud (including the liquid) is a harmful waste residue (strong alkaline soil). In the past, China's related industries generally could only be piled up, which not only occupied a large amount of land, but also caused pollution to soil, water and atmosphere. Therefore, the treatment and disposal of red mud has become a worldwide environmental problem.
  • Micro-electrolysis technology is an ideal process for the treatment of high concentration, high chroma, high salt content, and difficult to biodegrade organic wastewater. It is also called internal electrolysis.
  • the iron-carbon microelectrolytic filler When the iron-carbon microelectrolytic filler is immersed in the wastewater, due to the electrode potential difference between iron and carbon, numerous micro-primary cells are formed in the wastewater.
  • These fine batteries are made of iron having a low potential as a cathode, and carbon having a high potential as an anode, and an electrochemical reaction occurs in an aqueous solution containing an acidic electrolyte to degrade the contaminants.
  • This method was introduced into China in the 1980s and has been successfully applied to the treatment of wastewater such as printing and dyeing, pharmaceuticals and pesticides.
  • the traditional ceramic iron-carbon filler such as the micro-electrolytic filler for sewage treatment disclosed in CN201010184817.0, is mainly added with activated carbon or charcoal as the anode material of the iron-carbon primary battery in the preparation process.
  • activated carbon or charcoal in the filler The form is stable during the process, and no gas is generated, so that the packing density is large.
  • activated carbon and charcoal are industrial raw materials that are fired and used to re-burn fillers to waste resources and energy.
  • the present invention is directed to the deficiencies of the prior art, in order to make full use of the biomass lignin and industrial waste red mud and iron filings, to improve the raw materials and processes prepared by the iron-carbon micro-electrolytic filler, and to provide an anti-plate-like granular iron-carbon A method for preparing a microelectrolytic filler.
  • a method for preparing an anti-plate-grained ceramic iron-carbon micro-electrolytic filler by using industrial waste comprising the following steps:
  • iron filings contain 90%-95% iron; lignin contains 60%-70% cellulose; red mud is Bayer red mud: Si0 2 content 18-20%, A1 2 0 3 content 12-15 %, Fe 2 0 3 content 14-17%; all are mass percentage;
  • the dried green pellets are sintered under anaerobic conditions, first calcined at 300-40 CTC for 10-15 minutes, and then heated to 800-900 °C for 20-25 minutes. Then, it is naturally cooled to below 100 °C in an oxygen-free environment in the furnace, taken out in a ventilated place, cooled to room temperature, and sealed.
  • the filler fired in the step (3) must be naturally cooled to below 100 ° C in an oxygen-free atmosphere in the furnace.
  • the mass ratio of iron filings, lignin, red mud and clay in step (2) is 4:2:3:3.
  • the granulation in the step (2) is carried out by pouring the raw material into a granulator to form raw granules, and in the process, a binder dilution spray is continuously sprayed to help the raw material into a ball.
  • Granulation is according to the prior art.
  • the binder may be in the prior art.
  • the binder is boiled and boiled for 30-60 minutes from an aqueous solution of 0.5 wt% polyvinyl alcohol and 1.5 wt% sodium carboxymethylcellulose.
  • the binder diluent is prepared by diluting the binder with 80-10 CTC hot water 5-10 times.
  • step (3) the green pellets are first calcined at 300 ° C for 15 minutes and then the temperature is raised to 800 ° C for roasting.
  • the anti-plate-like granular iron-carbon micro-electrolytic filler prepared by the above method has a round granular shape and a particle diameter of 4-6 mm.
  • the bulk density is 870-900kg/m 3 and the water absorption rate is 11%-14%.
  • the raw materials such as iron filings, lignin and red mud of the present invention are industrial waste or by-products, which are commercially available.
  • the anti-plate-like granular iron-carbon micro-electrolytic filler prepared by the invention is used for pretreatment of high-concentration refractory wastewater.
  • the ceramic micro-electrolytic filler of the present invention, the iron filings, red mud, lignin, etc. in the raw material of the preparation are solid wastes. Discards, if exposed to the environment for a long time, will have a serious impact on human health and the natural ecological environment.
  • the invention adopts iron filings and lignin as main raw materials, and is mixed with clay red mud to form anti-plate-like granular iron-carbon micro-electrolytic filler, which not only saves the increasingly scarce clay resources, but also realizes iron filings and red mud. , solid waste recycling of lignin. It is used to treat high-concentration organic industrial wastewater, and it has achieved the purpose of treating waste by waste.
  • the carbon formed by carbonization of biomass lignin under the condition of no oxygen and high temperature is used without using precious resources of activated carbon and charcoal, and the anode in the microelectrolysis reaction is formed. Carbonization is achieved while burning ceramsite, saving energy and raw materials. The gas released during the carbonization process increases the voids inside the ceramsite, increases its specific surface area, and reduces its bulk density.
  • the filler of the invention has a regular shape, the contact between the particles and the particles is very limited, and the surface layer of the filler will fall off slowly, so that it has good anti-caking property, reduces the maintenance problem during the use of the filler, and prolongs the maintenance.
  • the use cycle of the filler improves the utilization efficiency of the environmentally friendly filter material. At the same time, the uniform mixing of iron and carbon also ensures the good processing efficiency of the filler.
  • the invention has the advantages of low preparation cost, simple use and maintenance, simple process operation, wide application for treatment and pretreatment of high-concentration organic industrial wastewater, and good application prospect.
  • the organic pollutants of macromolecules are degraded into small molecular substances by oxidation, reduction, electroplating, flocculation and sedimentation, etc., and the biodegradability of the wastewater is improved in a short time. And reduce the COD & toxicity of wastewater, providing a feasible solution for the widespread promotion of high concentration organic industrial wastewater pretreatment.
  • the present invention uses biomass to completely replace activated carbon or charcoal to prepare a ceramic iron carbon filler. When an organic substance such as biomass is heated at a high temperature in a reducing atmosphere, a carbonization reaction occurs to form carbon.
  • Figure 1 is a columnar reactor filled with the anti-plate-junction micro-electrolytic filler of the present invention, wherein 1 is an aeration pump, 2 is an influent peristaltic pump, 3 is a water-distributing gas plate, 4 is a sampling port, 5 is a water outlet, 6 It is a micro-electrolytic filler, 7 is a stainless steel bracket, and 8 is a water inlet tank.
  • AIR is air.
  • the clay in the example was purchased from the brick factory of Zibo City, Shandong province; the iron filings were purchased by Jinan Machinery Factory, containing 90%-95% of iron; the red mud was Bayer method red mud was provided by a factory in Liaocheng, Shandong, Si0 2 content of about 19%, A1 2 0 3 content of about 14%, Fe 2 0 3 content of about 15.5%; lignin Linyi provided by a paper mill, the cellulose content of 60-70%; are percentages by mass.
  • the binder in the examples was boiled and kneaded by an aqueous solution of 0.5 wt% polyvinyl alcohol and 1.5 wt% sodium carboxymethylcellulose for 45 min ; the binder was further diluted with hot water at 80-100 ° C for 5-10 times. Become a binder diluent.
  • the binder diluted solution (same as in Example 1) was sprayed during the rolling process, and the raw material was rolled into a spherical shape. After the raw ball was dried for 24 hours, it was fired in a tube furnace with a nitrogen protection device.
  • the specific method of firing is as follows. The raw material ball is placed in a furnace, nitrogen gas is introduced, the temperature is set to 350 ° C, the temperature is raised to 350 ° C and then left for 20 minutes, and then the temperature is raised to 900 ° C for 30 minutes. Close the tube furnace and remove the packing after cooling.
  • the iron-carbon filler prepared in accordance with Example 1 and Example 2 was separately packed in the cylindrical reactor shown in Fig. 1 to carry out an application test for the novel iron-carbon filler of the anti-plate.
  • the wastewater treated by the iron-carbon filler of Example 1 is a high-concentration acrylonitrile simulated wastewater of 2000 mg/L.
  • the P H of the wastewater is first adjusted to about 3, and then the wastewater is introduced into the reactor by a peristaltic pump, at HRT (hydraulic force) Residence time)
  • HRT hydroaulic force
  • the COD of wastewater is reduced from 3000mg/L to 1800mg/L, the removal efficiency is about 40%; the removal rate of acrylonitrile is 70%; the cyanide ion is almost completely removed.
  • the reactor was continuously operated for 1 month, and no obvious knotting phenomenon was observed, and the operation was relatively stable.
  • the iron carbon filler of Example 1 treats industrial coking wastewater with a COD of 12000-15000 mg/L and a color of about 12000-13000.
  • the pH of the wastewater was adjusted to about 4, and the COD removal rate was 60%-70% under the condition of HRT (hydraulic residence time) for 6 hours, and the chromaticity was completely removed.
  • the reactor was operated continuously for 1 month, and the effluent effect was relatively stable, and no stagnation occurred.
  • the reactor was continuously operated for 6 weeks, and the operation effect was stable and was not found. Significantly knotted.
  • the reactor was continuously operated for 6 weeks, no significant knotting was observed, and the wastewater treatment efficiency was stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及一种利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法。该方法包括以铁屑、木质素、赤泥、粘土为原料按(4-5):(2-3):(1-3):3的质量比例混合、造粒,还原气氛下烧制而成。制得的抗板结粒状陶制铁碳微电解填料粒径4-6mm。本发明的产品用于污水处理,可在较短时间内提高废水的可生化性,并降低废水的CODCr和毒性;在使用过程中不易板结,使用周期长,维护简单。使用工业废料为原料,节约资源能源并实现以废治废。

Description

利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法 技术领域
本发明涉及一种抗板结粒状陶制铁碳微电解填料及其制备的方法,属污水处理技术领域, 尤其是高浓度难降解废水的预处理领域。
背景技术
进入 20世纪 60年代以来, 随着化学化工产业的迅猛发展, 大量的人工合成的有机材料 进行工业化生产, 如橡胶、 塑料、 尼龙、 合成纤维等大分子有机物。 在这些有机材料生产的 过程中, 会产生大量的高浓度的有机废水。 据《全球环境统计公报》显示, 截至 2008年, 我 国工业有机废水的排放量占废水总排放量的 44.3%。 其成分复杂, 以芳香族化合物和杂环化 合物居多, 还有含有硫化物、 氰化物、 重金属等有害物质。 其中一些有机物有极强的致癌、 致突变和毒性, 并且可生化性低, 难以生化降解, 对人类健康和自然环境都有巨大的危害。 传统的处理及预处理方法, 或者处理成本较大, 或者技术手段不完善, 难以广泛推行。
在自然界中, 木质素的储量仅次于纤维素, 而且每年都以 500 亿吨的速度再生。 制浆造 纸工业每年要从植物中分离出大约 1.4 亿吨纤维素, 同时得到 5000万吨左右的木质素副产 品, 但迄今为止, 超过 95 %的木质素仍以 "黑液 "直接排入江河或浓縮后烧掉, 木质素的再 利用需要寻找一个合适的方法。 铁屑是机械厂生产过程中的一种固废, 大量铁屑长期堆放不 仅占用土地, 而且会影响生态环境。 废铁屑的资源化利用也已被广泛研究。 赤泥是制铝工业 提取氧化铝时排出的污染性废渣, 一般平均每生产 1吨氧化铝, 附带产生 1.0〜2.0吨赤泥。 中国作为世界第 4大氧化铝生产国, 每年排放的赤泥高达数百万吨。 赤泥的 pH值很高, 其 中: 浸出液的 PH值为 12.1-13.0, 因此, 赤泥 (含附液) 属于有害废渣 (强碱性土)。 中国相 关行业过去一般只能堆存, 既占用了大量土地, 又对土壤、 水源、 大气等造成污染。 因此, 赤泥的处理处置及资源化利用也成为了世界性环保难题。
微电解技术是目前处理高浓度、 高色度、 高含盐量、 难生物降解有机废水的一种理想工 艺, 又称内电解法。 铁碳微电解填料浸入废水中时, 由于铁和碳之间的电极电位差, 废水中 会形成无数个微原电池。这些细微电池是以电位低的铁成为阴极,电位高的碳做阳极,在含有酸 性电解质的水溶液中发生电化学反应, 使污染物降解。 80年代此方法引入我国, 目前已成功 应用于印染、 制药、 农药等废水的处理。 其优点有成本低廉、 工艺简单、 应用范围广泛, 但 传统微电解工艺在设备运行一段时间后, 填料中的铁屑会发生板结, 污水在填料中产生沟流, 影响出水水质, 使得微电解反应器要频繁反冲洗和填料更换, 这也是限制此方法推广的重要 原因。 陶制铁碳填料, 在抗板结方面较传统填料有较大的优势。
传统的陶制铁碳填料, 如 CN201010184817.0公布的一种污水处理用的微电解填料, 在其 制备的过程中大都要加入活性炭或木炭作为铁碳原电池的阳极材料。 活性炭或木炭在填料烧 制的过程中形态稳定, 不会产生气体, 从而使填料密度较大。 此外, 活性炭和木炭都是经过 烧制而成的工业原料, 用来再度烧制填料浪费资源能源。
发明内容
本发明针对现有技术的不足, 为了充分利用生物质木质素和工业废弃物赤泥、 铁屑, 就 铁碳微电解填料制备的原料及工艺进行改进, 提供一种抗板结粒状陶制铁碳微电解填料的制 备方法。
本发明技术方案如下:
一种利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法, 包括以下步骤:
( 1)将铁屑、 木质素、 赤泥、 粘土分别在 105-11CTC进行烘干处理 2-4小时, 然后粉碎, 过 100目筛;
上述原材料中, 铁屑中含铁 90%-95%; 木质素含纤维素 60%-70%; 赤泥为拜耳法赤泥: Si02含量 18-20%, A1203含量 12-15%, Fe203含量 14-17%; 均为质量百分含量;
( 2)将步骤(1)中经过预处理的原材料,按照铁屑:木质素:赤泥:粘土 =(4-5):(2-3):(1-3):3 质量比混合均匀后, 造粒; 过 5-6目筛, 筛选出的生料粒置于干燥通风处放置 20-24小时, 室 温干燥, 得生料粒;
( 3) 干燥的生料粒在无氧条件下进行烧结, 首先在 300-40CTC焙烧 10-15分钟, 然后温 度升至 800-900°C焙烧 20-25分钟。 然后在炉内无氧的环境下自然冷却至 100°C以下, 取出放 在通风处继续冷却至室温, 密封保存。
为防止填料中的铁在高温下被氧化, 经步骤(3)烧制的填料必须在炉内无氧的环境下自 然冷却至 100°C以下。
根据本发明优选的, 步骤 (2) 中铁屑、 木质素、 赤泥、 粘土的质量比为 4:2:3:3。
根据本发明优选的, 步骤(2) 中的造粒是将原料倒入造粒机制成生料颗粒, 在此过程中 不断喷洒粘结剂稀释液喷雾以帮助生料成球。造粒按现有技术。所述粘结剂按现有技术即可, 优选粘结剂由 0.5 wt% 聚乙烯醇和 1.5 wt% 羧甲基纤维素钠的水溶液, 煮沸熬制 30-60min。
所述粘结剂稀释液由所述的粘结剂加 80-10CTC热水稀释 5-10倍配制而成。
根据本发明优选的, 步骤 (3)中,生料粒先在 300°C焙烧 15分钟, 然后温度升至 800°C焙烧
25分钟, 待冷却至室温后取出, 密封保存。
由上述方法制备的抗板结粒状陶制铁碳微电解填料, 外形呈圆粒状, 粒径 4-6mm。 堆积 密度 870-900kg/m3, 吸水率 11%-14%。
本发明的原料铁屑、 木质素、 赤泥均采用工业废弃物或副产品, 可通过市场购买。
本发明制备的抗板结粒状陶制铁碳微电解填料用于高浓度难降解废水的预处理。
本发明的有益效果如下:
1.本发明中的陶制微电解填料, 其制备原料中的铁屑、 赤泥、 木质素等本身就是固体废 弃物, 若长期暴露于环境中, 会对人类健康和自然生态环境造成严重影响。本发明采用铁屑、 木质素为主要原料, 配以粘土赤泥, 烧制成了抗板结粒状陶制铁碳微电解填料, 不仅节约了 日益紧缺的粘土资源, 同时实现了铁屑、 赤泥、 木质素的固废资源化。 用其处理高浓度有机 工业废水, 更是达到了以废治废的目的, 可谓一举多得。
2.本发明在陶粒制备的过程中, 不使用活性炭和木炭珍贵资源, 仅利用生物质木质素在 无氧高温条件下炭化而形成的碳, 形成了微电解反应中的阳极。在烧制陶粒的同时完成碳化, 节约能源和原材料。碳化过程中释放出的气体, 增加了陶粒内部的空隙, 增大了其比表面积, 同时减小了其堆积密度。
3.本发明填料呈规整状, 颗粒与颗粒之间的接触非常有限, 同时填料表层会缓慢的脱落, 使得其有很好的抗板结性能, 减少了填料使用过程中的维护问题, 并延长了填料的使用周期, 提高了环保滤料的利用效率。 同时铁碳均匀的混合也保证了填料良好的处理效率。
4.本发明的制备成本较低, 使用维护简单, 工艺操作简单, 能够广泛的用于高浓度有机 工业废水的处理和预处理, 有良好的应用前景。
本发明据铁碳原电池的反应, 通过氧化、 还原、 在电沉积、 絮凝沉降等作用, 将大分子 的有机污染物降解为小分子物质,在较短的时间里提高废水的可生化性,并降低废水的 COD& 和毒性, 为高浓度有机工业废水的预处理的广泛推广, 提供了一个可行的方案。 本发明用生 物质来完全代替活性炭或木炭, 制备陶制铁碳填料。 生物质等有机物在还原气氛下高温加热 会发生碳化反应, 形成碳。
附图说明
图 1是装填本发明抗板结微电解填料的柱形反应器, 其中 1是曝气泵, 2是进水蠕动泵, 3是布水布气板, 4是取样口, 5是出水口, 6是微电解填料, 7是不锈钢支架, 8是进水水箱。 AIR是空气。
具体实施方式
下面结合具体的实施例来进一步说明本发明的技术方案。 但不限于此。
实施例中的粘土由山东省淄博市砖厂购得; 铁屑由济南机械厂购得, 含铁 90%-95%; 赤 泥是拜耳法赤泥由山东聊城茌平某厂提供, Si02含量约 19%, A1203含量约 14%, Fe203含量 约 15.5%; 木质素由临沂某造纸厂提供, 纤维素含量 60-70%; 均为质量百分比。
实施例中的粘结剂由 0.5 wt% 聚乙烯醇和 1.5 wt% 羧甲基纤维素钠的水溶液, 煮沸熬制 45min; 该粘合剂再加 80-100°C热水稀释 5-10倍配成粘结剂稀释液。
实施例 1
按照质量份数, 粉碎铁屑 40份、 木质素 20份、 赤泥 30份、 粘土 30份的比例, 将干燥 后的原料在混合器中混合均匀, 将生料置于盘式成球机中, 在滚制的过程中喷洒经粘结剂稀 释液 (由 0.5 wt% 聚乙烯醇和 1.5 wt% 羧甲基纤维素钠水溶液熬制后再稀释 6倍), 将生料 滚制成球状。 待生料球干燥 24h后, 在有氮气保护装置的管式炉中, 将其烧制而成。 烧制方 法: 将生料球放入炉内, 通入氮气, 待温度升至 300°C后停留 15分钟, 然后将温度升至 800 °C停留 25分钟, 关闭管式炉, 待冷却后将填料取出。
所得到的填料的性能参数如下: 粒径: 4mm; 堆积密度: 870 kg/m3; 吸水率: 13%。 实施例 2
按照质量份数, 粉碎铁屑 45份、 木质素 25份、 赤泥 25份、 粘土 30份的比例, 将干燥 后的原料在混合器中混合均匀, 将生料置于盘式成球机中, 在滚制的过程中喷洒经粘结剂稀 释液 (同实施例 1), 将生料滚制成球状。 待生料球干燥 24h后, 在有氮气保护装置的管式炉 中, 将其烧制而成。 烧制具体方法如下, 将生料球放入炉内, 通入氮气, 温度设为 350°C, 待温度升至 350°C后停留 20分钟, 然后将温度升至 900°C停留 30分钟, 关闭管式炉, 待冷却 后将填料取出。
所得到的填料的性能参数如下: 粒径: 5mm; 堆积密度: 870 kg/m3; 吸水率: 12%。 实施例 3
按照质量份数, 粉碎铁屑 45份、 木质素 30份、 赤泥 20份、 粘土 30份的比例, 将干燥 后的原料在混合器中混合均匀, 将生料置于盘式成球机中, 在滚制的过程中喷洒经粘结剂稀 释液 (同实施例 1), 将生料滚制成球状。 待生料球干燥 24h后, 在有氮气保护装置的管式炉 中, 将其烧制而成。 烧制具体方法如下, 将生料球放入炉内, 通入氮气, 待温度升至 400°C 后停留 10分钟, 然后将温度升至 850°C停留 30分钟, 关闭管式炉, 待冷却后将填料取出。
所得到的填料的性能参数如下: 粒径: 5mm; 堆积密度: 880 kg/m3; 吸水率: 13%。 应用试验举例
分别将按照实施例 1、 实施例 2制备出的铁碳填料填装于图 1所示的柱形反应器中, 进 行对于这种抗板结新型铁碳填料的应用试验。
1. 实施例 1的铁碳填料所处理的废水为 2000mg/L的高浓度丙烯腈模拟废水, 先将废水 的 PH调至 3左右, 然后用蠕动泵将废水进入反应器, 在 HRT (水力停留时间) 8h的条件下, 废水的 COD由 3000mg/L降至 1800mg/L左右,去除效率 40%左右;丙烯腈的去除率达到 70%; 氰根离子基本全部去除。 反应器连续运行 1个月, 未发现明显的板结现象, 运行较为稳定。
2. 实施例 1 的铁碳填料处理工业焦化废水, 其 COD为 12000-15000mg/L, 色度约为 12000-13000。 将废水 pH调至 4左右, 在 HRT (水力停留时间) 6h的条件下, COD去除率可 达 60%-70%, 色度全部去除。 反应器连续运行 1个月, 出水效果比较稳定, 没有出现板结的 情况。
3. 实施例 2的铁碳填料所处理的废水为酸性大红 GR模拟废水, 浓度为 1000mg/L, 在进 水 pH为 3、 气水流量比 A/L=1.5、 HRT (水力停留时间) 6h的条件下, COD去除率可达 50% 以上, 色度去除率可达到 95%以上。 反应器连续运行 6周, 运行处理效果较为稳定, 未发现 明显板结现象。
4. 实施例 3的铁碳填料所处理的废水为硝基苯工业废水, COD为 1400-1600mg/L, 在进 水 pH为 3、气水流量比 A/L=2.0、 HRT (水力停留时间) 6h的条件下, COD去除率可达 50%-60%, 色度去除率可达到 50%以上。 反应器连续运行 6周, 未发现明显的板结现象, 废水处理效率 稳定。

Claims

权 利 要 求 书
1、 一种利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法, 包括以下步骤:
( 1)将铁屑、 木质素、 赤泥、 粘土分别在 105-11CTC进行烘干处理 2-4小时, 然后粉碎, 过 100目筛;
上述原材料中, 铁屑中含铁 90%-95%; 木质素含纤维素 60%-70%; 赤泥为拜耳法赤泥: Si02含量 18-20%, Al203含量 12-15%, Fe203含量 14-17%; 均为质量百分含量;
( 2)将步骤(1)中经过预处理的原材料,按照铁屑:木质素:赤泥:粘土 =(4-5):(2-3):(1-3):3 质量比混合均匀后, 造粒; 过 5-6目筛, 筛选出的生料粒置于干燥通风处放置 20-24小时, 室 温干燥, 得生料粒;
( 3) 干燥的生料粒在无氧条件下进行烧结, 首先在 300-40CTC焙烧 10-15分钟, 然后温 度升至 800-900°C焙烧 20-25分钟; 然后在炉内无氧的环境下自然冷却至 100°C以下, 取出放 在通风处继续冷却至室温, 密封保存。
2、如权利要求 1所述的抗板结粒状陶制铁碳微电解填料的制备方法,其特征在于步骤 ( 2) 中铁屑、 木质素、 赤泥、 粘土的质量比为 4:2:3:3。
3、如权利要求 1所述的抗板结粒状陶制铁碳微电解填料的制备方法,其特征在于步骤(2) 中造粒是将原料倒入造粒机制成生料颗粒, 在此过程中不断喷洒经稀释的粘结剂以帮助生料 成球; 所述粘结剂由 0.5 wt% 聚乙烯醇和 1.5 wt% 羧甲基纤维素钠的水溶液煮沸熬制 30-60min, 然后再加入 80-100°C热水稀释 5-10倍制得粘结剂稀释液。
4、如权利要求 1所述的抗板结粒状陶制铁碳微电解填料的制备方法,其特征在于步骤 (3) 中,生料粒先在 300°C焙烧 15分钟, 然后温度升至 800°C焙烧 25分钟, 待冷却至室温后取出, 密封保存。
5、如权利要求 1所述的抗板结粒状陶制铁碳微电解填料的制备方法, 其特征在于所述铁 碳微电解填料, 粒径 4-6mm; 堆积密度 870-900kg/m3, 吸水率 11%- 14%。
PCT/CN2014/073104 2013-05-10 2014-03-10 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法 WO2014180183A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/786,746 US9428407B2 (en) 2013-05-10 2014-03-10 Method for preparing anti-hardening granulous ceramic iron-carbon micro-electrolysis filler by using industrial waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310173058.1A CN103253741B (zh) 2013-05-10 2013-05-10 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法
CN201310173058.1 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014180183A1 true WO2014180183A1 (zh) 2014-11-13

Family

ID=48958022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073104 WO2014180183A1 (zh) 2013-05-10 2014-03-10 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法

Country Status (3)

Country Link
US (1) US9428407B2 (zh)
CN (1) CN103253741B (zh)
WO (1) WO2014180183A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620413A (zh) * 2021-09-10 2021-11-09 北京交通大学 一种弱磁场强化铁碳微电解的硝态氮污染物去除方法和装置
CN115124321A (zh) * 2022-06-10 2022-09-30 东莞市唯美陶瓷工业园有限公司 一种用于制备陶瓷砖的污水泥、仿古砖及其制备方法
CN115477369A (zh) * 2022-04-28 2022-12-16 中国矿业大学 一种基于气化细渣的铁碳填料及其制备方法、应用

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049973B1 (ko) * 2012-12-27 2019-11-28 엘지디스플레이 주식회사 청색 형광 화합물 및 이를 사용한 유기전계발광소자
CN103253741B (zh) * 2013-05-10 2014-01-01 山东大学 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法
CN103880122B (zh) * 2014-03-17 2015-08-26 山东大学 一种制备抗板结粒状免烧铁碳微电解填料的方法
CN104086033B (zh) * 2014-08-05 2015-11-25 顾祥茂 一种含铜工业废水的处理方法
CN104724794B (zh) * 2015-03-16 2017-07-11 武汉金钢新材料有限公司 工业废水降解微电解铁碳填料的制备方法
CN104961201B (zh) * 2015-07-14 2017-04-26 山东理工大学 水处理用铁碳微电解陶粒填料的制备方法
CN105254236B (zh) * 2015-09-17 2017-04-26 武汉长建创维环境科技有限公司 一种透水砖及其制造方法
CN105129926B (zh) * 2015-10-23 2017-11-17 山东大学 一种用于处理吡啶废水的抗板结微电解颗粒填料及制备方法
CN105819550B (zh) * 2015-11-23 2019-01-15 温州大学 一种镁碳微电解填料的制作方法
CN105502588A (zh) * 2015-11-26 2016-04-20 中国科学院广州能源研究所 工业废水微电解预处理的铁碳填料及其制备方法
CN107840415A (zh) * 2016-09-20 2018-03-27 张家港格林台科环保设备有限公司 一种利用酸洗铁泥制备铁碳微电解填料的方法
CN107129014A (zh) * 2017-06-15 2017-09-05 中科院广州能源所盱眙凹土研发中心 纳米铁碳微电解填料的制备方法
CN107200385B (zh) * 2017-07-18 2021-02-19 上海明奥环保科技有限公司 一种利用废水处理工艺中铁碳或芬顿污泥制备多孔微电解颗粒的方法
CN110194507B (zh) * 2018-02-27 2021-11-26 湖南金保树环保科技有限公司 一种污泥处理后的污水处理方法
CN109928511B (zh) * 2019-03-15 2021-06-29 西安建筑科技大学 基于铁碳微电解的物化-生物耦合脱氮除磷方法及反应器
CN110028135B (zh) * 2019-04-25 2021-11-19 郑州大学 一种用于分离净化水体有机物的微电解填料及应用
CN110357245B (zh) * 2019-07-31 2022-01-04 华北理工大学 处理农药废水的铁碳微电解-微生物燃料电池-人工湿地复合装置
CN111450799B (zh) * 2020-03-24 2022-04-01 天津科技大学 一种基于黑液木质素和芬顿污泥的磁性活性炭制备方法
CN111453841A (zh) * 2020-04-29 2020-07-28 广东亮科环保工程有限公司 一种缓释碳源镂空棒的制备方法
CN111545206A (zh) * 2020-06-01 2020-08-18 山东祥桓环境科技有限公司 一种由生物质一步制备高级氧化铁炭催化剂的方法和应用
CN112266140B (zh) * 2020-11-24 2023-04-25 河南永泽环境科技有限公司 一种人工湿地生物膜耦合铁碳微电解填料
CN112678919A (zh) * 2020-12-02 2021-04-20 宝武环科武汉金属资源有限责任公司 一种基于钢铁固废制备焦化污水净化剂及其制备方法
CN113526620B (zh) * 2021-06-29 2024-02-06 中冶南方都市环保工程技术股份有限公司 一种用于废水处理的铁碳微电解填料及其制备方法
CN114524525A (zh) * 2022-02-22 2022-05-24 同济大学 一种高效多功能微电解复合填料及其制备方法和应用
CN114538570A (zh) * 2022-02-25 2022-05-27 温州大学 一种基于湿地植物残体的铁炭微电解复合填料及制备方法
CN114538600B (zh) * 2022-03-28 2023-12-26 中化学朗正环保科技有限公司 铁碳耦合微生物膜载体材料及其反应装置和脱氮除磷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698547A (zh) * 2009-10-30 2010-04-28 华南理工大学 复合电解反应器及化学机械浆制浆废液处理方法
CN101817574A (zh) * 2010-04-16 2010-09-01 吉林大学 规整化铁碳微电解填料及其制备方法
CN102276024A (zh) * 2011-06-29 2011-12-14 吴江市恒茂环保科技有限公司 一种废水处理用规整化微电解填料的制备方法及规整化微电解填料
CN102583659A (zh) * 2012-01-18 2012-07-18 山东大学 一种粒状防板结酸碱两用三元微电解填料及其制备方法
WO2013052374A1 (en) * 2011-10-07 2013-04-11 Robert Brian Dopp Electrochemical digestion of organic molecules
CN103253741A (zh) * 2013-05-10 2013-08-21 山东大学 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100540477C (zh) * 2007-11-28 2009-09-16 河北理工大学 一种用于处理废水的高含碳金属化球团及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698547A (zh) * 2009-10-30 2010-04-28 华南理工大学 复合电解反应器及化学机械浆制浆废液处理方法
CN101817574A (zh) * 2010-04-16 2010-09-01 吉林大学 规整化铁碳微电解填料及其制备方法
CN102276024A (zh) * 2011-06-29 2011-12-14 吴江市恒茂环保科技有限公司 一种废水处理用规整化微电解填料的制备方法及规整化微电解填料
WO2013052374A1 (en) * 2011-10-07 2013-04-11 Robert Brian Dopp Electrochemical digestion of organic molecules
CN102583659A (zh) * 2012-01-18 2012-07-18 山东大学 一种粒状防板结酸碱两用三元微电解填料及其制备方法
CN103253741A (zh) * 2013-05-10 2013-08-21 山东大学 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620413A (zh) * 2021-09-10 2021-11-09 北京交通大学 一种弱磁场强化铁碳微电解的硝态氮污染物去除方法和装置
CN115477369A (zh) * 2022-04-28 2022-12-16 中国矿业大学 一种基于气化细渣的铁碳填料及其制备方法、应用
CN115124321A (zh) * 2022-06-10 2022-09-30 东莞市唯美陶瓷工业园有限公司 一种用于制备陶瓷砖的污水泥、仿古砖及其制备方法
CN115124321B (zh) * 2022-06-10 2023-07-07 东莞市唯美陶瓷工业园有限公司 一种用于制备陶瓷砖的污水泥、仿古砖及其制备方法

Also Published As

Publication number Publication date
US20160075571A1 (en) 2016-03-17
US9428407B2 (en) 2016-08-30
CN103253741B (zh) 2014-01-01
CN103253741A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2014180183A1 (zh) 利用工业废弃物制备抗板结粒状陶制铁碳微电解填料的方法
CN109607699B (zh) 一种铁碳微电解填料及其制备方法
CN106861654B (zh) 一种处理酸性矿山废水的固定化颗粒及其制备和使用方法
CN103880122B (zh) 一种制备抗板结粒状免烧铁碳微电解填料的方法
CN112316913A (zh) 一种以赤泥废渣为原料的水处理吸附剂及其制备方法
CN102225806A (zh) 一种磁性生物载体及其制备方法
CN105198048A (zh) 一种三维电极填料及其制备方法
CN102107872A (zh) 一种化工污泥添加果壳制备活性炭的工艺
CN103084155B (zh) 一种微波辅助再生活性炭的方法
CN106810204B (zh) 一种芬顿铁泥阴阳极一体化陶粒及利用芬顿铁泥制备陶粒的方法
CN105536698A (zh) 造纸污泥活性生物质炭的制备方法
CN108554379B (zh) 基于废弃钢渣的吸附剂及其制备方法和应用
CN103084154A (zh) 一种酵母菌联合化学法再生活性炭的方法
CN110950480A (zh) 一种氧化镨生产废液回收处理方法
CN105967284A (zh) 一种硅藻土基铁炭陶粒填料及其制备方法
CN109336638A (zh) 一种使用印染污泥与水玻璃碱渣协同制备陶粒的方法
CN111545163B (zh) 一种用于重金属废水处理的吸附剂及制备方法
CN106423112B (zh) 一种重金属离子吸附剂及其制备方法
CN110092438B (zh) 一种电解锰渣作为光催化剂处理有机废水的方法
CN104310535B (zh) 高炉除尘灰和焦炉除尘灰的资源化利用方法
CN106006854A (zh) 一种膨润土基铁炭陶粒填料及其制备方法
CN102160988A (zh) 一种印染废水处理材料的制备方法
CN106477640B (zh) 一种阳离子染料废水脱色剂及其制备方法
CN111617768A (zh) 一种固废催化剂及其制备方法
CN110117057A (zh) 一种氰化物废水或矿浆处理药剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14786746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794769

Country of ref document: EP

Kind code of ref document: A1