WO2014180077A1 - 柔性基板及制造方法、oled显示装置 - Google Patents

柔性基板及制造方法、oled显示装置 Download PDF

Info

Publication number
WO2014180077A1
WO2014180077A1 PCT/CN2013/082311 CN2013082311W WO2014180077A1 WO 2014180077 A1 WO2014180077 A1 WO 2014180077A1 CN 2013082311 W CN2013082311 W CN 2013082311W WO 2014180077 A1 WO2014180077 A1 WO 2014180077A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible substrate
layer
mesh
substrate
flexible
Prior art date
Application number
PCT/CN2013/082311
Other languages
English (en)
French (fr)
Inventor
郭远辉
王辉
王春
张一三
Original Assignee
合肥京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 合肥京东方光电科技有限公司
Priority to JP2016512193A priority Critical patent/JP2016520975A/ja
Priority to EP13828968.1A priority patent/EP2996167B1/en
Priority to US14/344,202 priority patent/US9281493B2/en
Priority to KR1020147005599A priority patent/KR20140143131A/ko
Publication of WO2014180077A1 publication Critical patent/WO2014180077A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • Embodiments of the present invention relate to a flexible substrate, a method of fabricating the flexible substrate, and an OLED display device including the flexible substrate. Background technique
  • the display devices that have been put into practical use mainly include cathode ray tube (CRT), liquid crystal display (LCD), vacuum fluorescent device (VFD), plasma display (PDP), organic light emitting diode (OLED), and field emission display ( FED) and electroluminescent displays (ELD).
  • CTR cathode ray tube
  • LCD liquid crystal display
  • VFD vacuum fluorescent device
  • PDP plasma display
  • OLED organic light emitting diode
  • FED field emission display
  • ELD electroluminescent displays
  • An OLED (Organic Light-Emitting Diode) display device includes an anode, an organic light-emitting layer, and a cathode.
  • OLED display devices have thin, light, wide viewing angle, active illumination, continuously adjustable color, low cost, fast response, low power consumption, low driving voltage, wide operating temperature range, and production process Single, high luminous efficiency and flexible display. OLEDs have received great attention from industry and the scientific community due to their incomparable advantages and other promising applications.
  • the cathode typically uses a low work function metal
  • the anode requires a high work function material to match.
  • the anode material currently used is a conductive polymer material, but the conductivity of the polymer material is somewhat different from that of the metal and indium tin oxide (ITO) material. Summary of the invention
  • Embodiments of the present invention provide a flexible substrate and a manufacturing method thereof, and an OLED display device in which a mesh current collecting layer is embedded in a mesh recessed layer to achieve the purpose of improving conductivity of the flexible substrate.
  • One aspect of the present invention provides a flexible substrate comprising a flexible substrate, the flexible substrate having a mesh recessed layer, and a mesh current collecting layer embedded in the mesh recess.
  • a top surface of the mesh current collecting layer may be associated with the flexible base
  • the upper surface of the board is flush.
  • the flexible substrate can be an OLED flexible substrate.
  • the mesh-shaped recessed layer may be disposed in a rectangular hole-shaped mesh shape.
  • the mesh current collecting layer may be made of a metal material.
  • the flexible substrate may be made of a photopolymer material.
  • the mesh current collecting layer may have a thickness of between 5 and 30 nm.
  • Another aspect of the present invention provides a method for fabricating any of the above flexible substrates, comprising: providing a current collecting film layer on a film forming substrate; and forming a current collecting film layer into a mesh current collecting layer; A flexible substrate substrate is disposed on the current collecting layer; the substrate on which the flexible substrate substrate is formed is cured; and the film forming substrate is removed to form a flexible substrate.
  • a current collecting film substrate may be formed into a mesh current collecting layer by a patterning process.
  • an OLED display device includes an anode and any of the above flexible substrates; and the anode is disposed on the flexible substrate.
  • the anode material may be one or both of polyethylene dioxythiophene and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid). mixing.
  • the display device may further include an organic light emitting layer and a cathode.
  • the organic light emitting layer may be disposed on the anode, and the cathode may be disposed on the organic light emitting layer.
  • FIG. 1 is a schematic structural view (front view) of a flexible substrate in the present invention
  • FIG. 2 is a schematic structural view (top view) of a flexible substrate in the present invention
  • FIG. 3 is a schematic view (main cross-sectional view) showing a method of manufacturing a flexible substrate in the present invention
  • FIG. 4 is a schematic view showing a step of manufacturing a flexible substrate in the present invention (main cross-sectional view)
  • FIG. Figure 6 is a schematic view showing the steps of the method for manufacturing a flexible substrate of the present invention (main cross-sectional view)
  • Fig. 7 is a schematic structural view (main sectional view) of an OLED display device of the present invention.
  • a flexible substrate includes a flexible substrate 1 on which a meshed recessed layer 20 is disposed, and a mesh is embedded in the meshed recessed layer 20.
  • the mesh current collecting layer 2 can improve the conductivity of the flexible substrate.
  • the mesh current collecting layer 2 may be a thin mesh layer made of a metal material having good electrical conductivity such as silver or copper; the metal material is preferably silver.
  • the flexible substrate in this embodiment is, for example, an OLED flexible substrate, that is, a flexible substrate for an OLED.
  • a mesh current collecting layer may be embedded in the mesh current collecting layer as a whole in the mesh recessed layer, which effectively improves the conductivity of the flexible substrate. If the substrate is applied to an OLED display device, the conductivity of the anode in the OLED display device can be improved.
  • the top surface of the mesh current collecting layer is flush with the upper surface of the flexible substrate, so that the mesh current collecting layer is in sufficient contact with the anode disposed thereon, thereby realizing the mesh current.
  • the collection layer sufficiently enhances the conductivity of the anode.
  • the mesh recessed layer in this embodiment may include a plurality of channels arranged in a staggered manner, and the channels may communicate with each other.
  • the mesh-shaped recessed layer may be disposed in a mesh shape of any shape, for example, may be a mesh shape having a mesh shape, and the corresponding mesh current collecting layer embedded therein also has the shape.
  • the mesh-shaped recessed layer in this embodiment may also be arranged in a rectangular hole-shaped mesh shape, and the corresponding mesh current collecting layer embedded therein is also arranged in a rectangular hole-shaped mesh shape, and the rectangular hole mesh shape refers to the mesh thereof.
  • the shape of the hole is a rectangular mesh structure.
  • the mesh-shaped recessed layer may also be arranged in a ring-shaped mesh shape, and the corresponding mesh current collecting layer embedded therein is also arranged in a ring-shaped mesh shape.
  • the mesh-shaped concave layer may also be arranged in a regular polygonal hole-shaped mesh shape
  • the regular polygonal hole-shaped mesh shape refers to a mesh structure whose mesh shape is a regular polygon, correspondingly embedded in the mesh shape.
  • the current collecting layer is also a regular polygonal hole type Mesh settings. Referring to Figure 2, the illustrated embodiment utilizes a rectangular apertured mesh structure for reasons of cost savings in design and manufacturing.
  • the flexible substrate in this embodiment may be made of a photopolymer material.
  • the photopolymer material used in the flexible substrate in the embodiment of the present invention is a material such as styrene, acrylic, acrylate, epoxy resin, unsaturated polyester, amide or vinyl acetate.
  • each of the above materials may include a monomer, a prepolymer, and a photoinitiator; the polymerization type of the above materials may be a free radical type, an anionic type or a cationic type.
  • the mesh current collecting layer is a semi-transparent film-like mesh layer made of silver metal, and has a thickness of 5-30 nm, preferably 10 nm-20 nm.
  • the thickness of the mesh concave layer is also selected according to the thickness of the mesh current collecting layer between 5-30 nm. .
  • the conductivity of the current collecting layer can be ensured, and the light transmittance of the current collecting layer can be ensured, and the light transmittance is too low due to the excessive thickness.
  • the transmittance of the entire device is not affected.
  • An embodiment of the present invention also provides a method of manufacturing a flexible substrate as described above, comprising the steps as described below.
  • a current collecting film layer 4 is disposed on the film forming substrate 3.
  • the film forming substrate 3 in this embodiment may be a clean planar substrate made of a silicon material provided with a silicon dioxide insulating layer.
  • other materials can be selected according to specific conditions to make a planar substrate, such as a glass material, polyvinyl chloride, etc.; the current collecting film layer in this embodiment can be deposited on a film forming substrate by a vapor deposition process, and the current collecting film layer can be It is a metal film made of a metal material having good electrical conductivity such as silver or copper; the metal material is preferably silver.
  • the current collecting film layer is formed into a mesh current collecting layer by a patterning process according to the design requirements of the mesh current collecting layer.
  • the patterning process generally includes steps of photoresist coating, exposure, development, etching, and photoresist removal.
  • a vapor deposition method is used, a part of the substrate may be directly shielded by a mask in the vapor deposition process, thereby directly depositing a mesh current collecting layer on the substrate.
  • the steps of exposure, development, etching, etc. can be omitted, and the process steps of making the mesh current collecting layer can be reduced, and the cost can be reduced.
  • a flexible substrate substrate 5 is coated on one surface of a film formation substrate provided with a mesh current collecting layer, for example, by spin coating, thereby forming a substrate having a flexible substrate substrate;
  • the substrate formed with the flexible substrate substrate 5 includes a film formation substrate, a mesh current collection layer disposed on the film formation substrate, and a flexible substrate substrate coated on the mesh current collection layer; a mesh current collecting layer is integrally embedded in the lower end surface of the flexible substrate substrate corresponding to the upper end surface of the film forming substrate, and the mesh current is formed on the lower end surface of the flexible substrate substrate.
  • the layer-compatible mesh-shaped recessed layer; in this embodiment, the flexible substrate substrate may be a photopolymer material; the photopolymer material may be styrene, acrylic, acrylate, epoxy resin, unsaturated Materials such as polyesters, amides or vinyl acetate; each of the above materials includes a monomer, a prepolymer and a photoinitiator; the polymerization type of the above materials may be
  • the flexible substrate substrate in the embodiment may have a thickness of between 0.3 and 0.8 mm (mm), preferably between 0.5 mm and 0.7 mm; and the flexible substrate substrate may have a spin coating speed of 800 to 2000 rpm ( The number of turns per minute), preferably 1000 rpm, the spin-coating time may be 10-30 s (seconds), preferably 20 s; the flexible substrate substrate may be provided on the film-forming substrate by a spin coating process to improve the flexible substrate substrate.
  • the uniformity of the material makes it more fully coated on the mesh current collecting layer, and at the same time, the mesh current collecting layer is more closely connected with the flexible substrate substrate, thereby ensuring the smoothing of the subsequent stripping process.
  • the substrate having the flexible substrate substrate is subjected to ultraviolet curing by an ultraviolet curing device (for example, any existing ultraviolet curing device), and the flexible substrate substrate and the mesh current collecting layer are solidified into one body;
  • the curing time can be from 2 to 5 minutes (minutes), preferably 3 minutes.
  • the cured substrate having the flexible substrate substrate forms a flexible substrate composed of a flexible substrate substrate provided with a mesh-shaped recessed layer and a mesh current collecting layer on the film-forming substrate.
  • the flexible substrate is subjected to a stripping process; the film-forming substrate is removed to form a flexible substrate.
  • the release film refers to a process of peeling a flexible substrate into a film substrate. Thereby, a complete flexible substrate is produced. Since the adhesion between the mesh current collecting layer and the flexible substrate substrate is greater than the adhesion between the mesh current collecting layer and the film forming substrate; therefore, during the peeling process of the flexible substrate, the mesh current is not collected. The layer is adhered to the film-formed substrate to be detached from the flexible substrate substrate.
  • the embodiment of the present invention adopts a step of directly curing the mesh current collecting layer by ultraviolet rays in the flexible substrate substrate; using the fluid property of the flexible substrate substrate in the uncured state, it can be more fully natural and meshed.
  • the current collecting layer is combined to make the matching degree between the two higher; the flexible substrate thus formed is provided with a flat surface of one end of the mesh current collecting layer, so that the anode surface coated on the flat surface is flattened higher.
  • an embodiment of the present invention further provides an OLED display device including an anode. And a flexible substrate 101 as described above; the cathode is disposed on the organic light-emitting layer, and an anode 102, an organic light-emitting layer 103, and a cathode 104 are sequentially disposed on the flexible substrate from bottom to top.
  • An anode is disposed on the flexible substrate; an organic light emitting layer is disposed on the anode, and the cathode is disposed on the organic light emitting layer; and an anode current conductivity is solved because a mesh current collecting layer is disposed on the flexible substrate If the problem is not high, and the in-line structure is adopted, and the top surface of the mesh current collecting layer is flush with the upper surface of the flexible substrate, the flatness of the flexible substrate can be improved, and the anode of the flexible substrate can be prepared. The properties are also improved, and the flatness of the anode surface directly affects the effect of carrier injection, and the flatness is improved, and the effect of carrier injection is correspondingly improved.
  • the anode material in the embodiment of the present invention may be one or a mixture of polyethylene dioxythiophene and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid).
  • the OLED display device of the embodiment of the present invention adopts the design of the flexible substrate described above, and not only has the corresponding function of the flexible substrate, but also the OLED display device can be reduced because the flexible substrate embeds the mesh current collecting layer in the mesh concave layer. The thickness; make it more beautiful, thin and light.
  • Embodiments of the present invention also provide a method of fabricating the above OLED display device, comprising the steps described below.
  • anode substrate on one side of the flexible substrate provided with a mesh current collecting layer; in this embodiment, the anode substrate may be coated by spin coating; using the coating form to make the anode substrate and the substrate
  • the mesh current collecting layer of the flexible substrate is sufficiently contacted and bonded and fixed, which effectively ensures carrier transportability between the two.
  • the thickness of the anode may be 20-60 nm, preferably 40 nm.
  • the cathode substrate described in this embodiment is made of a metal film or a conductive polymer material having good electrical conductivity; in this embodiment, the anode substrate can be made of PEDOT (3,4-ethylenedioxythiophene monomer).
  • the polymer is made of PEDOT/PSS conductive polymer material made of PSS (water-soluble polymer electrolyte polystyrene oxide).
  • the flexible substrate provided with the anode may be dried by a vacuum oven; in the embodiment, the drying temperature of the vacuum oven may be 60-100 ° C, preferably 80 ° C, and the drying time may be 7-10 hours. It is preferably 8 hours.
  • the selection of the drying temperature and the drying time described in this embodiment is set according to the manufacturing requirements of flexible substrates of different specifications.
  • the organic light-emitting layer is coated on the anode; for example, transferring the flexible substrate provided with the anode to the vacuum operation chamber for vapor deposition of the organic light-emitting layer; in the embodiment, the organic light-emitting layer may be PVK molecule (polyvinylcarbazole), PBD molecule (phenylbiphenyl oxadiazole) passed
  • the chlorobenzene solution is dissolved and doped with a layer of polymeric material made of heavy metal ruthenium and a layer of TPBI (1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene); PVK molecules,
  • the weight fraction ratio of the PBD molecule to the ruthenium may be (60-80): (20-40): 1; the thickness of the polymeric material layer of the organic light-emitting layer in this embodiment may be between 60-80 nm, preferably 70 nm, and the TPBI layer. The thickness is between 20
  • the vacuum substrate is vapor-deposited on the organic light-emitting layer; the vacuum state described in the embodiment refers to a vacuum environment of less than 3 ⁇ 10 ⁇ 4 Pa atmospheric pressure; and the cathode substrate is deposited by an evaporation process. The form is placed on the organic light-emitting layer, and the cathode is formed thereby. So far, the OLED display device has been completed.
  • the mesh recessed layer can be used to embed the mesh current collecting layer, so that the mesh current collecting layer is entirely disposed in the mesh recessed layer, thereby effectively improving the conductivity of the flexible substrate; for example, applying the flexible substrate to the OLED display In the device, the problem that the conductivity of the anode in the OLED display device is not high can be solved.
  • the top surface of the mesh current layer can be flush with the upper surface of the flexible substrate, thereby improving the conductivity of the flexible substrate and improving the flatness of the flexible substrate; for example, applying the flexible substrate to an OLED display device
  • the flatness of the anode surface can be improved, and the flatter the anode surface, the stronger the carrier injection capability of the surface; therefore, the conductivity of the anode can be improved.
  • the mesh current collecting layer is directly solidified in the flexible substrate substrate by ultraviolet rays, the fluid characteristics of the flexible substrate substrate in the uncured state can be utilized, so that it can be more fully and naturally combined with the mesh current collecting layer.
  • the degree of matching between the two is higher; the end surface of the flexible substrate thus formed with the mesh-shaped recessed layer can be made flatter, so that the surface of the anode coated thereon is flatter.
  • the anode substrate can be coated by spin coating, thereby allowing the anode substrate to fully contact and adhere to the mesh current collecting layer of the flexible substrate, thereby effectively ensuring carrier transport between the two. .

Abstract

一种柔性基板、柔性基板的制造方法以及包括柔性基板的OLED显示装置。柔性基板包括柔性衬底(1),柔性衬底(1)上设有网状凹陷层(20),在网状凹陷层(20)内嵌设有网状电流汇集层(2)。通过网状凹陷层(20),网状电流汇集层(2)嵌入在柔性基板内,有效地提高了柔性基板的导电性。

Description

柔性基板及制造方法、 OLED显示装置 技术领域
本发明的实施例涉及柔性基板、 该柔性基板的制造方法以及包括该柔性 基板的 OLED显示装置。 背景技术
到目前为止, 透入实际应用的显示装置主要包括阴极射线管 (CRT ) , 液晶显示器(LCD ) 、 真空荧光器件(VFD ) 、 等离子显示器(PDP ) 、 有 机发光二极管 (OLED ) 、 场发射显示器(FED )和电致发光显示器(ELD ) 等。
OLED ( Organic Light-Emitting Diode )显示装置包括阳极、 有机发光层 和阴极。 OLED显示装置与 LCD显示装置相比, 具有薄、 轻、 宽视角、 主动 发光、 发光颜色连续可调、 成本低、 响应速度快、 能耗小、 驱动电压低、 工 作温度范围宽、 生产工艺筒单、 发光效率高及可柔性显示等优点。 OLED正 是由于具有其他显示器不可比拟的优势以及美好的应用前景而得到了产业界 和科学界的极大关注。
在制作 OLED显示器时, 由于阴极一般采用低功函数金属, 因此阳极需 要高功函数的材料去与之配合。 目前通常采用的阳极材料为导电的聚合物材 料, 但聚合物材料的导电性能相比于金属和氧化铟锡(ITO )材料还有一定 差距。 发明内容
本发明的实施例提供了一种柔性基板及制造方法、 OLED显示装置, 该 柔性基板通过网状凹陷层将网状电流汇集层嵌入其内, 以实现提高柔性基板 导电性的目的。
本发明的一个方面提供了一种柔性基板, 其包括柔性村底, 所述柔性村 底上设有网状凹陷层, 在该网状凹陷层内嵌设有网状电流汇集层。
例如, 所述柔性基板中, 所述网状电流汇集层的顶面可以与所述柔性基 板的上表面齐平。
例如, 所述柔性基板可以为 OLED柔性基板。
例如, 所述柔性基板中, 所述网状凹陷层可以呈矩形孔型网状设置。 例如, 所述柔性基板中, 所述网状电流汇集层可以采用金属材料制成。 例如, 所述柔性基板中, 所述柔性基板可以采用光敏聚合物材料制成。 例如, 所述柔性基板中, 所述网状电流汇集层厚度可以在 5-30nm之间。 本发明的另一个方面提供了一种用于上述任一柔性基板的制造方法, 其 包括: 在成膜基板上设置电流汇集膜层; 将电流汇集膜层制作成网状电流汇 集层; 在网状电流汇集层上设置柔性村底基材; 对形成有柔性村底基材的基 板进行固化; 除去成膜基板, 形成柔性基板。
例如, 所述方法中, 可以采用构图工艺将电流汇集膜层基材制作成网状 电流汇集层。
本发明的再一个方面提供了一种 OLED显示装置, 其包括阳极和上述任 一柔性基板; 所述阳极设置于所述柔性基板上。
例如, 所述显示装置中, 所述阳极材料可以为聚乙撑二氧噻喻和聚 (3,4- 亚乙二氧基噻吩) -聚 (苯乙烯磺酸)中的一种或两种混合。
例如, 所述显示装置中, 所述显示装置还可以包括有机发光层和阴极。 例如, 所述显示装置中, 所述有机发光层可以设置在所述阳极上, 所述 阴极可以设置在所述有机发光层上。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1是本发明中柔性基板的结构示意图 (主视图) ;
图 2是本发明中柔性基板的结构示意图 (俯视图) ;
图 3是本发明中柔性基板制造方法的步骤示意图 (主剖视图) ; 图 4是本发明中柔性基板制造方法的步骤示意图 (主剖视图) ; 图 5是本发明中柔性基板制造方法的步骤示意图 (主剖视图) ; 图 6是本发明中柔性基板制造方法的步骤示意图 (主剖视图) ; 图 7是本发明中 OLED显示装置的结构示意图 (主剖视图) 。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 下面所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于 所描述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
参见图 1、 图 2所示,根据本发明实施例的柔性基板包括柔性村底 1 , 所 述柔性村底 1上设有网状凹陷层 20, 在该网状凹陷层 20内嵌设有网状电流 汇集层 2。 所述网状电流汇集层 2可以提高柔性基板的导电性。 本实施例中 所述网状电流汇集层 2可以是由银、 铜等导电性能好的金属材料制成的呈薄 膜状的网层; 该金属材料优选为银。 本实施例中所述柔性基板例如为 OLED 柔性基板, 即用于 OLED的柔性基板。
本发明实施例的柔性基板的网状凹陷层中可嵌入网状电流汇集层, 以使 网状电流汇集层整体设置在网状凹陷层内, 这有效地提高了柔性基板的导电 性。如果将该基板应用于 OLED显示装置中, 则可以提高 OLED显示装置中 阳极的导电性。
例如, 本实施例中所述网状电流汇集层的顶面与所述柔性基板的上表面 齐平, 以使网状电流汇集层与设置在其上的阳极充分接触, 从而实现通过网 状电流汇集层充分提高阳极的导电性的目的。 本实施例中所述网状凹陷层可 以包括多条呈交错设置的槽道, 这些槽道可以彼此相通。
本实施例中所述网状凹陷层可呈任意形状的网状设置, 例如可以为网孔 为圓形的网状, 相对应的嵌设在其内的网状电流汇集层也呈该形状。 本实施 例中的网状凹陷层也可呈矩形孔型网状设置, 相对应的嵌设在其内的网状电 流汇集层也呈矩形孔型网状设置, 矩形孔网状是指其网孔形状呈矩形的网状 结构。 本实施例中所述网状凹陷层还可呈圓环孔型网状设置, 相对应的嵌设 在其内的网状电流汇集层也呈圓环孔型网状设置。 本实施例中所述网状凹陷 层还可呈正多边形孔型网状设置, 正多边形孔型网状是指其网孔形状呈正多 边形的网状结构, 相对应的嵌设在其内的网状电流汇集层也呈正多边形孔型 网状设置。 参见图 2所示, 出于节约设计和制造成本的考虑, 所示出的实施 例采用矩形孔型网状结构。
本实施例中所述柔性基板可以采用光敏聚合物材料制成。 本发明实施例 中的柔性基板所采用的光敏聚合物材料是苯乙烯类、丙烯酸类、丙烯酸酯类、 环氧树脂类、 不饱和聚酯类、 酰胺类或醋酸乙烯类等材料。 例如, 上述每一 种材料均可以包括单体、 预聚物和光引发剂; 上述材料的聚合类型可以是自 由基型、 阴离子型或阳离子型。
本实施例中所述网状电流汇集层为银金属制成的呈半透明薄膜状的网 层, 其厚度可在 5-30nm之间, 优选为 10nm-20nm。 为保证所述网状电流汇 集层的顶面与所述柔性基板的上表面齐平, 因此所述网状凹陷层的厚度也随 网状电流汇集层的厚度相应的在 5-30nm之间选取。采用 10nm-20nm的厚度, 既可以保证电流汇集层的导电性, 同时又可以保证电流汇集层的透光率, 不 至于由于厚度过大而导致透光率过低。 而且, 在后续采用此柔性基板制作器 件, 例如 OLED器件时, 整个器件的透过率也不会受到影响。
本发明的实施例还提供一种如上述中所述柔性基板的制造方法, 包括如 下所述的步骤。
参见图 3所示, 在成膜基板 3上设置电流汇集膜层 4; 本实施例中所述 成膜基板 3可为清洗干净的设有二氧化硅绝缘层的硅材料制成的平面基板。 当然也可以根据具体情况选择其他材料制作平面基板, 例如玻璃材料、 聚氯 乙烯等; 本实施例中的电流汇集膜层可采用蒸镀等工艺沉积在成膜基板上, 该电流汇集膜层可以是由银、 铜等导电性能好的金属材料制成的金属薄膜; 该金属材料优选为银。
参见图 4所示, 根据网状电流汇集层的设计要求, 通过构图工艺将电流 汇集膜层制作成网状电流汇集层。 该构图工艺一般包括光刻胶涂覆、 曝光、 显影、 蚀刻和光刻胶去除等步骤。 在制作网状电流汇集层时, 如采用蒸镀的 方式, 也可以直接在蒸镀过程中采用掩膜板对基板的部分区域进行遮挡, 从 而直接在基板上沉积形成网状电流汇集层。采用此步骤可以省去曝光、显影、 刻蚀等步骤, 筒化了制作网状电流汇集层的工艺步骤, 降低成本。
参见图 5所示, 在设有网状电流汇集层的成膜基板一面上, 例如通过旋 涂的方式涂布柔性村底基材 5 , 从而形成有柔性村底基材的基板; 本实施例 中所述形成有柔性村底基材 5的基板包括成膜基板、 置于成膜基板上的网状 电流汇集层和包覆在该网状电流汇集层外的柔性村底基材; 此时, 网状电流 汇集层整体嵌入柔性村底基材与所述成膜基板的上端面相对应的下端面内, 并以此在该柔性村底基材的下端面上形成与所述网状电流汇集层相适应的网 状凹陷层; 本实施例中柔性村底基材可为光敏聚合物材料; 该光敏聚合物材 料可以是苯乙烯类、 丙烯酸类、 丙烯酸酯类、 环氧树脂类、 不饱和聚酯类、 酰胺类或醋酸乙烯类等材料; 上述每一种材料均包括单体、 预聚物和光引发 剂; 上述材料的聚合类型可以是自由基型、 阴离子型或阳离子型。 本实施例 中所述柔性村底基材的厚度可在 0.3-0.8mm (毫米) 之间, 优选为 0.5mm-0.7mm; 所述柔性村底基材的旋涂速度可为 800-2000rpm (每分钟所 转圏数), 优选 lOOOrpm, 旋涂时间可以为 10-30s (秒), 优选 20s; 采用旋 涂的工艺在成膜基板上设置柔性村底基材,可提高该柔性村底基材的均匀性, 使其对所述网状电流汇集层的包覆更加充分, 同时使网状电流汇集层与柔性 村底基材的连接更加紧密, 从而确保之后的脱膜工艺顺利进行。
例如, 通过紫外线固化设备(例如现有的任何紫外线固化设备)对有柔 性村底基材的基板进行紫外线固化, 将柔性村底基材与网状电流汇集层固化 成一体; 本实施例中紫外线固化时间可为 2-5min (分钟) , 优选 3min。
经固化后的有柔性村底基材的基板, 在其成膜基板上形成结构相对稳定 的由设有网状凹陷层的柔性村底基材与网状电流汇集层组成的柔性基板。
参见图 6所示, 对柔性基板进行脱膜工艺; 除去成膜基板, 形成柔性基 板。脱膜是指将柔性基板剥离成膜基板的工艺。 由此, 制得完整的柔性基板。 由于网状电流汇集层与柔性村底基材之间的粘着性大于网状电流汇集层与成 膜基板之间粘着性; 因此, 在柔性基板的剥离过程中, 不会出现因网状电流 汇集层被成膜基板粘连而与柔性村底基材脱离的情况。
本发明的实施例采用将网状电流汇集层通过紫外线直接固化在柔性村底 基材内的步骤; 利用柔性村底基材在未固化时的流体特性, 使其能够更加充 分自然的与网状电流汇集层结合, 使两者之间的匹配度更高; 以此制作出的 柔性基板, 其设有网状电流汇集层的一端表面更加平整, 从而使涂布在其上 的阳极表面平整度更高。
参见图 7所示, 本发明的实施例还提供一种 OLED显示装置, 包括阳极 以及如上述任一柔性基板 101; 所述阴极设置在所述有机发光层上在所述柔 性基板上由下至上依次设有阳极 102、有机发光层 103和阴极 104。将阳极设 置在所述柔性基板上; 有机发光层设置在所述阳极上, 所述阴极设置于所述 有机发光层上; 由于柔性基板上设置有网状电流汇集层, 因此可以解决阳极 导电性不高的问题, 而采用内嵌式的结构, 且网状电流汇集层的顶面与柔性 基板的上表面齐平, 可以提高柔性基板的平整性, 进而制备在该柔性基板上 的阳极的平整性也会得到提高, 而阳极表面的平整性直接影响载流子注入效 果, 其平整性提高, 载流子的注入效果也相应的得到提高。
本发明的实施例中阳极材料可为聚乙撑二氧噻吩和聚 (3,4-亚乙二氧基噻 吩) -聚 (苯乙烯磺酸)中的一种或两种混合。
本发明的实施例的 OLED显示装置采用上述柔性基板的设计, 不仅具有 该柔性基板的相应功能, 而且由于柔性基板将网状电流汇集层嵌于网状凹陷 层内, 因此还可以降低 OLED显示装置的厚度; 使其更加美观、 轻薄。
本发明的实施例还提供一种上述 OLED显示装置的制造方法, 包括如下 所述步骤。
在所述柔性基板设有网状电流汇集层的一面上涂布阳极基材; 本实施例 中阳极基材可以采用旋涂的方式涂布; 采用该种涂布形式可使阳极基材与所 述柔性基板的网状电流汇集层充分接触并粘和固定, 这有效保证了两者之间 的载流子传递性。 阳极的厚度可为 20-60nm, 优选 40nm。
本实施例中所述的阴极基材采用导电性能好的金属薄膜或导电高分子材 料制成; 本实施例中阳极基材可以采用由 PEDOT ( 3,4-乙撑二氧噻喻单体的 聚合物)掺杂 PSS(水溶性的高分子电解质聚苯乙婦磺酸)制成的 PEDOT/PSS 导电高分子材料制成。
例如, 可将设有阳极的柔性基板通过真空烘箱进行干燥处理; 本实施例 中所述真空烘箱的干燥温度可以为 60-100°C , 优选 80°C , 干燥时长可以为 7-10小时, 优选 8小时。 本实施例中所述的干燥温度和干燥时长的选取要根 据不同规格的柔性基板的制造要求设定。
经干燥处理后, 在所述阳极上涂布有机发光层; 例如, 将设有阳极的柔 性基板转移至真空操作间中进行有机发光层的蒸镀; 本实施例中所述有机发 光层可以由 PVK分子 (聚乙烯基咔唑)、 PBD分子(苯基联苯基呃二唑)通过 氯苯溶液溶解并掺杂重金属铱制成的聚合材料层和 TPBI ( 1,3,5-三 (1-苯基 -1H-苯并咪唑 -2-基)苯)层制成; PVK分子、 PBD分子和铱的重量分数比可以 为 (60-80 ) : ( 20-40 ) :1; 本实施例中有机发光层的聚合材料层厚度可以在 60-80nm之间, 优选为 70nm, TPBI层厚度为 20-50nm之间, 优选为 30nm。
在真空状态下, 在所述有机发光层上蒸镀阴极基材; 本实施例中所述的 真空状态是指小于 3xlO—4 Pa大气压的真空环境;并通过蒸镀工艺将阴极基材 以沉积的形式设置在有机发光层上, 并以此制成阴极。 至此, OLED显示装 置制作完成。
本发明的实施例可以具有以下的优点之一或全部:
1、 网状凹陷层可用于嵌入网状电流汇集层, 以使网状电流汇集层整体设 置在网状凹陷层内, 有效地提高了柔性基板的导电性; 如将该柔性基板应用 于 OLED显示装置中,可以解决 OLED显示装置中阳极的导电性不高的问题。
2、 网状电流层的顶面可以与柔性基板的上表面齐平, 由此在提高柔性基 板导电性的同时,也提高了柔性基板的平整性;如将该柔性基板应用在 OLED 显示装置中, 可以提高阳极表面的平整度, 而阳极表面越平坦, 其表面的载 流子注入能力就越强; 因此可以提高阳极的导电性能。
3、如果将网状电流汇集层通过紫外线直接固化在柔性村底基材内,可利 用柔性村底基材在未固化时的流体特性, 使其能够更加充分自然的与网状电 流汇集层结合, 使两者之间的匹配度更高; 以此制作出的柔性基板的设有网 状凹陷层的一端表面可更加平整,从而使涂布在其上的阳极表面平整度更高。
4、阳极基材可以采用旋涂的方式涂布, 由此可使阳极基材与柔性基板的 网状电流汇集层充分接触并粘和固定 ,有效保证了两者之间的载流子传递性。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种柔性基板, 包括柔性村底, 其中, 所述柔性村底上设有网状凹 陷层, 在该网状凹陷层内嵌设有网状电流汇集层。
2、 如权利要求 1所述的柔性基板, 其中, 所述网状电流汇集层的顶面 与所述柔性基板的上表面齐平。
3、 如权利要求 1或 2所述的柔性基板, 其中, 所述柔性基板为 OLED 柔性基板。
4、 如权利要求 1-3任一所述的柔性基板, 其中, 所述网状凹陷层呈矩 形孔型网状设置。
5、 如权利要求 1-4任一所述的柔性基板, 其中, 所述网状电流汇集层采 用金属材料制成。
6、 如权利要求 1-5任一所述的柔性基板, 其中, 所述柔性基板采用光 敏聚合物材料制成。
7、 如权利要求 1-6任一所述的柔性基板, 其中, 所述网状电流汇集层 厚度在 5-30nm之间。
8、 一种如权利要求 1-7中任一所述柔性基板的制造方法, 包括: 在成膜基板上设置电流汇集膜层;
将电流汇集膜层制作成网状电流汇集层;
在网状电流汇集层上设置柔性村底基材;
对形成有柔性村底基材的基板进行固化;
除去成膜基板, 形成柔性基板。
9、如权利要求 8所述的柔性基板的制造方法, 其中, 采用构图工艺将电 流汇集膜层制作成网状电流汇集层。
10、 一种 OLED显示装置, 包括阳极以及如权利要求 1-7中任一所述柔 性基板; 所述阳极设置于所述柔性基板上。
11、 如权利要求 10所述的 OLED显示装置, 其中, 所述阳极材料为聚 乙撑二氧噻吩和聚 (3,4-亚乙二氧基噻吩) -聚 (苯乙烯磺酸)中的一种或二者的 混合。
12、 如权利要求 11所述的 OLED显示装置, 还包括有机发光层和阴极。
13、 如权利要求 12所述的 OLED显示装置, 其中, 所述有机发光层设 置在所述阳极上, 所述阴极设置在所述有机发光层上。
PCT/CN2013/082311 2013-05-10 2013-08-26 柔性基板及制造方法、oled显示装置 WO2014180077A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016512193A JP2016520975A (ja) 2013-05-10 2013-08-26 フレキシブル基板及び製造方法、oled表示装置
EP13828968.1A EP2996167B1 (en) 2013-05-10 2013-08-26 Flexible substrate, manufacturing method for same, and oled display apparatus
US14/344,202 US9281493B2 (en) 2013-05-10 2013-08-26 Flexible substrate and manufacturing method thereof, OLED display device
KR1020147005599A KR20140143131A (ko) 2013-05-10 2013-08-26 플렉시블 기판 및 그 제조 방법, oled 디스플레이 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310172698.0 2013-05-10
CN2013101726980A CN103236504A (zh) 2013-05-10 2013-05-10 柔性基板及制造方法、oled显示装置

Publications (1)

Publication Number Publication Date
WO2014180077A1 true WO2014180077A1 (zh) 2014-11-13

Family

ID=48884532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082311 WO2014180077A1 (zh) 2013-05-10 2013-08-26 柔性基板及制造方法、oled显示装置

Country Status (6)

Country Link
US (1) US9281493B2 (zh)
EP (1) EP2996167B1 (zh)
JP (1) JP2016520975A (zh)
KR (1) KR20140143131A (zh)
CN (1) CN103236504A (zh)
WO (1) WO2014180077A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236504A (zh) * 2013-05-10 2013-08-07 合肥京东方光电科技有限公司 柔性基板及制造方法、oled显示装置
KR20160025152A (ko) * 2014-08-26 2016-03-08 삼성디스플레이 주식회사 보호 구조물 및 보호 구조물을 포함하는 유기 발광 표시 장치
CN104392901B (zh) * 2014-10-28 2017-08-25 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
CN104576692B (zh) * 2014-11-24 2018-01-30 深圳市华星光电技术有限公司 导电柔性基板及其制作方法与oled显示装置及其制作方法
CN105761617A (zh) * 2014-12-17 2016-07-13 昆山工研院新型平板显示技术中心有限公司 柔性显示屏的变形控制方法和系统
CN105789242A (zh) * 2014-12-23 2016-07-20 深圳Tcl工业研究院有限公司 高温tft复合柔性基板和制备方法及柔性显示器件制备方法
CN105633003B (zh) * 2016-01-26 2019-06-14 京东方科技集团股份有限公司 显示基板及形成方法、载体基板、显示装置
KR102535208B1 (ko) 2016-03-10 2023-05-22 삼성디스플레이 주식회사 표시 장치
KR20180062195A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 커버 플레이트 및 이를 포함하는 폴더블 표시장치
US20190229299A1 (en) * 2018-01-24 2019-07-25 Wuhan China Star Optoelecronics Semiconductor Display Technology Co., LTd. Thin-film packaging method for an oled device and oled device
CN112968144B (zh) * 2021-03-09 2022-05-20 华中科技大学 基于丝网状衬底层的pi柔性基板剥离方法、柔性基板和oled

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790770A (zh) * 2004-09-21 2006-06-21 三星Sdi株式会社 发光元件用基材和电极、包含它们的发光元件及基材制造方法
WO2007145390A1 (en) * 2006-06-12 2007-12-21 Doo-Ill Kim Method of manufacturing polymer light-emitting sheet
US20080314626A1 (en) * 2005-12-12 2008-12-25 Moore Chad B ELECTRODED SHEET (eSheet) PRODUCTS
CN101427377A (zh) * 2006-04-18 2009-05-06 皇家飞利浦电子股份有限公司 电光器件及其制造方法
CN102063951A (zh) * 2010-11-05 2011-05-18 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
US20120211739A1 (en) * 2009-10-28 2012-08-23 Konica Minolta Holdings, Inc. Organic electronic device
CN103098255A (zh) * 2010-09-06 2013-05-08 皇家飞利浦电子股份有限公司 衬底片
CN103236504A (zh) * 2013-05-10 2013-08-07 合肥京东方光电科技有限公司 柔性基板及制造方法、oled显示装置
CN203218338U (zh) * 2013-05-10 2013-09-25 合肥京东方光电科技有限公司 柔性基板及oled显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732084B2 (ja) 2004-09-21 2011-07-27 三星モバイルディスプレイ株式會社 発光素子用の基板、その製造方法、発光素子用の電極、及びこれを備えた発光素子
JPWO2007013249A1 (ja) 2005-07-25 2009-02-05 シャープ株式会社 視差バリア、多重表示装置、及び視差バリアの製造方法
JP2008047355A (ja) * 2006-08-11 2008-02-28 Toyota Industries Corp 有機エレクトロルミネッセンス素子用樹脂基板及び有機エレクトロルミネッセンス素子並びに有機エレクトロルミネッセンス素子用樹脂基板の製造方法
JP5136039B2 (ja) * 2007-12-12 2013-02-06 コニカミノルタホールディングス株式会社 導電性材料の製造方法、透明導電膜、有機エレクトロルミネッセンス素子
JP5332252B2 (ja) * 2008-03-25 2013-11-06 コニカミノルタ株式会社 透明導電性フィルム、有機エレクトロルミネッセンス素子及び透明導電性フィルムの製造方法
KR20110016641A (ko) 2009-08-12 2011-02-18 송성진 디지털액자가 구비된 속옷 건조 살균기
CN101615594A (zh) 2009-08-14 2009-12-30 上海广电光电子有限公司 薄膜晶体管阵列基板的制造方法
JP2012018867A (ja) * 2010-07-09 2012-01-26 Seiko Epson Corp 照明装置およびその製造方法
KR101818033B1 (ko) * 2011-11-01 2018-01-16 한국전자통신연구원 플렉시블 전극 기판의 제조방법
KR20140077624A (ko) * 2012-12-14 2014-06-24 삼성디스플레이 주식회사 롤투롤 공정용 플렉서블 기판 및 이의 제조 방법
CN103035568B (zh) 2012-12-21 2014-12-31 北京京东方光电科技有限公司 一种tft阵列基板及制作方法、显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790770A (zh) * 2004-09-21 2006-06-21 三星Sdi株式会社 发光元件用基材和电极、包含它们的发光元件及基材制造方法
US20080314626A1 (en) * 2005-12-12 2008-12-25 Moore Chad B ELECTRODED SHEET (eSheet) PRODUCTS
CN101427377A (zh) * 2006-04-18 2009-05-06 皇家飞利浦电子股份有限公司 电光器件及其制造方法
WO2007145390A1 (en) * 2006-06-12 2007-12-21 Doo-Ill Kim Method of manufacturing polymer light-emitting sheet
US20120211739A1 (en) * 2009-10-28 2012-08-23 Konica Minolta Holdings, Inc. Organic electronic device
CN103098255A (zh) * 2010-09-06 2013-05-08 皇家飞利浦电子股份有限公司 衬底片
CN102063951A (zh) * 2010-11-05 2011-05-18 苏州苏大维格光电科技股份有限公司 一种透明导电膜及其制作方法
CN103236504A (zh) * 2013-05-10 2013-08-07 合肥京东方光电科技有限公司 柔性基板及制造方法、oled显示装置
CN203218338U (zh) * 2013-05-10 2013-09-25 合肥京东方光电科技有限公司 柔性基板及oled显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996167A4 *

Also Published As

Publication number Publication date
JP2016520975A (ja) 2016-07-14
EP2996167B1 (en) 2023-04-19
EP2996167A4 (en) 2016-12-28
US20150171363A1 (en) 2015-06-18
CN103236504A (zh) 2013-08-07
US9281493B2 (en) 2016-03-08
KR20140143131A (ko) 2014-12-15
EP2996167A1 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2014180077A1 (zh) 柔性基板及制造方法、oled显示装置
Jung et al. Roll-to-roll preparation of silver-nanowire transparent electrode and its application to large-area organic light-emitting diodes
US9634269B2 (en) Conductive flexible substrate and manufacture thereof, and OLED display device and manufacture method thereof
CN103872085B (zh) 用于柔性显示器的具有透明电极的基板及其制造方法
WO2020082592A1 (zh) Oled 显示面板及其制作方法、 oled 显示装置
WO2019061753A1 (zh) 全溶液oled器件及其制作方法
US10038159B2 (en) Organic electroluminescent device structure and manufacturing for the same
TW201301600A (zh) 有機電致發光元件
US9594193B2 (en) Printing plate, scattering layer, method for fabricating the same, and display apparatus
CN103928626A (zh) Oled发光装置及其制造方法
CN110416269A (zh) 一种显示面板和显示面板的制作方法
US9748513B2 (en) Light emitting device and manufacturing method thereof, and display device
WO2020172929A1 (zh) 一种柔性oled器件及其制备方法
WO2015096318A1 (zh) 阵列基板及其制作方法、显示装置
KR20120001684A (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
CN111653678B (zh) 量子点发光二极管及其制作方法、显示面板、显示装置
CN109119450B (zh) 显示基板及其制作方法、显示面板、显示装置
US11708499B2 (en) Method of manufacturing highly conductive polymer thin film including plurality of conductive treatments
CN101740726A (zh) 有机电致发光器件及其制造方法
CN203218338U (zh) 柔性基板及oled显示装置
WO2021103061A1 (zh) 发光器件的制备方法
JP2013089501A (ja) 有機エレクトロルミネッセンス素子
JP3893774B2 (ja) 電界発光素子およびその製造方法
WO2018094867A1 (zh) 一种柔性量子点发光二极管及其制备方法
CN115207261B (zh) 一种柔性织物顶发射聚合物发光二极管及其制备方法与应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013828968

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147005599

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344202

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016512193

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE