WO2018094867A1 - 一种柔性量子点发光二极管及其制备方法 - Google Patents

一种柔性量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2018094867A1
WO2018094867A1 PCT/CN2017/071634 CN2017071634W WO2018094867A1 WO 2018094867 A1 WO2018094867 A1 WO 2018094867A1 CN 2017071634 W CN2017071634 W CN 2017071634W WO 2018094867 A1 WO2018094867 A1 WO 2018094867A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal nanoparticles
light emitting
emitting diode
substrate
Prior art date
Application number
PCT/CN2017/071634
Other languages
English (en)
French (fr)
Inventor
徐超
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/500,187 priority Critical patent/US20180219167A1/en
Publication of WO2018094867A1 publication Critical patent/WO2018094867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the invention belongs to the field of light-emitting devices, and relates to a flexible quantum dot light-emitting diode and a preparation method thereof.
  • QLEDs quantum dot light-emitting diodes
  • OLEDs organic light-emitting diodes
  • the quantum dot luminescent layer of the QLED device is usually formed by a solution method, so the QLED has obvious advantages in flexible display.
  • the main material of the conductive anode currently used is ITO, which has the advantages of low price, high transmittance, low resistivity, and the like.
  • ITO In is a rare element, the world has a small amount of storage, and the content of In203 in the film is relatively high, so the cost is relatively large.
  • it since it is relatively brittle, it is prone to cracks after periodic bending or compression, causing the display conductivity to fail, and exhibiting relatively high surface resistance and roughness when deposited at a low temperature on a matched substrate. Therefore, it is necessary to find a new anode conductive material instead of the ITO electrode.
  • the development of other highly conductive anode materials is immature, thus limiting the development of QLED flexible display devices.
  • the present invention provides a novel flexible quantum dot light emitting diode using PEDOT:PSS as an anode material, and a metal nanoparticle layer is disposed between the anode layer and the substrate, thereby effectively solving the existing flexible anode.
  • the problem of low electrical conductivity greatly improves the luminous efficiency and light extraction rate of QLED.
  • a flexible quantum dot light emitting diode comprising: a substrate, an anode layer, a hole transport layer, a quantum light emitting layer, an electron generating layer, and a cathode layer disposed in this order from bottom to top, wherein
  • the anode layer It is a PEDOT:PSS material, and metal nanoparticles are disposed between the anode layer and the substrate.
  • the substrate material is selected from the group consisting of polyetherketone PET, polyetheretherketone PEEK, polycarbonate PC, polyethersulfone resin PES, polyarylate PAR or polyimide PI Kind or more.
  • the substrate material is selected from the group consisting of polyether ketone PET, polyimide PI, or a combination thereof.
  • the metal nanoparticles are selected from one or more of the group consisting of Au, Ag and Al particles. It is preferably one or more selected from the group consisting of Au and Ag particles.
  • the metal nanoparticles are dispersed in a single layer between the anode layer and the substrate.
  • the metal nanoparticles have a size of 5-20 nm, a shape of a sphere or a rectangle, and the metal nanoparticles are provided with a certain interval, and a gap between each two metal nanoparticles is 10-40 nm.
  • the metal nanoparticles are arranged neatly and discontinuously to ensure good light transmission.
  • the anode layer has a thickness of 40-60 nm.
  • the anode layer is of PEDOT:PSS material comprising a modified or doped PEDOT:PSS material.
  • Doping is to add some highly conductive materials such as graphene in PEDOT:PSS; modification is to improve the conductivity by changing the kind of functional groups in the polymer structure.
  • PEDOT: PSS is an aqueous solution of a polymer, and the product is composed of PEDOT and PSS.
  • PEDOT is a polymer of EDOT (3,4-ethylenedioxythiophene monomer), and PSS is a polystyrene sulfonate.
  • a method of fabricating a flexible quantum dot light emitting diode comprising:
  • Step 1 providing a substrate, preparing a layer of moderately-sized metal nanoparticles on the substrate;
  • Step 2 preparing an anode layer on the metal nanoparticle
  • Step 3 sequentially preparing a hole transport layer, a quantum dot light emitting layer, an electron generating layer on the anode layer, and finally vapor-depositing the metal cathode.
  • the anode layer is made of PEDOT:PSS material.
  • the metal nanoparticle layer in the first step is prepared by evaporation, sputtering, spin coating or inkjet printing.
  • the anode layer is prepared by spin coating
  • the hole transport layer, the quantum dot light emitting layer and the electron generating layer are prepared by spin coating.
  • the invention adopts PEDOT:PSS as the anode material of the flexible QLED, which ensures the display device has good flexibility.
  • adding metal nanoparticles between the flexible substrate and the anode layer PEDOT:PSS can not only greatly improve the electrical conductivity of the PEDOT:PSS anode layer, but also greatly improve the luminous efficiency of the device by utilizing the plasmon resonance effect and surface scattering effect of the heavy metal surface.
  • the heavy metal nanoparticles in the present invention have a moderate thickness and are arranged neatly. It is discontinuous to ensure it has good light transmission.
  • FIG. 1 is a schematic view showing the structure of a flexible quantum dot light emitting diode of the present invention.
  • a flexible quantum dot light emitting diode comprising: a substrate 1 disposed from bottom to top, an anode layer 2, a hole transport layer 3, a quantum light emitting layer 4, an electron generating layer 5, and a cathode layer 6, wherein the anode Layer 2 is a PEDOT:PSS material containing a modified or doped PEDOT:PSS material, which is made of PET.
  • Metal nanoparticles 7 are provided between the anode layer and the substrate to increase the conductivity and luminous efficiency of the anode.
  • the metal nanoparticle 7 is Au, and the metal nanoparticle is distributed in a single layer between the substrate and the anode layer.
  • the size of the metal nanoparticle is 5-20 nm, the shape is spherical or rectangular, and the metal nanoparticle has one to two nanometers between the nanometer particles. The interval between them is about 10-40 nm, and the metal nanoparticles are arranged neatly and discontinuously to ensure good light transmittance.
  • the anode layer 2 has a thickness of 40 to 60 nm.
  • the preparation method of the flexible quantum dot light-emitting diode is as follows: firstly, a layer of moderately-sized metal nanoparticles 7 and metal nanoparticles 7 are prepared on the substrate by evaporation, sputtering, spin coating or inkjet printing. The size is 5-20 nm. Then, a layer of PEDOT:PSS anode layer is prepared on the metal nanoparticle layer by spin coating, and the thickness of the PEDOT:PSS anode layer is 40-60 nm. Then, the hole transport layer 3, the quantum dot light-emitting layer 4, and the electron-generating layer 5 are sequentially prepared on the PETOD:PSS anode layer by spin coating or the like, and finally the metal cathode is vapor-deposited.
  • a flexible quantum dot light emitting diode comprising: a substrate 1 disposed from bottom to top, an anode layer 2, a hole transport layer 3, a quantum light emitting layer 4, an electron generating layer 5, and a cathode layer 6, wherein the anode
  • the layer is a PEDOT:PSS material containing a modified or doped PEDOT:PSS material
  • the substrate 1 is a PI material.
  • Metal nanoparticles 7 are disposed between the anode layer 2 and the substrate 1 for improving the conductivity and luminous efficiency of the anode.
  • the metal nanoparticles 7 are selected from Ag, and the metal nanoparticles 7 are distributed in a single layer between the substrate 1 and the anode layer 2.
  • the metal nanoparticles 7 have a size of 5-20 nm and are spherical or rectangular in shape.
  • the metal nanoparticles 7 have a spacing between one and two nanometers, about 10-40 nm, and the metal nanoparticles are arranged neatly and discontinuously to ensure good light transmittance. Said The thickness of the anode layer is 40-60 nm.
  • the flexible quantum dot light emitting diode is prepared in the same manner as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性量子点发光二极管,包括从下向上依次设置的衬底(1)、阳极层(2)、空穴传输层(3)、量子发光层(4)、电子产出层(5)和阴极层(6),其中,所述阳极层(2)为PEDOT:PSS材质,所述阳极层(2)与衬底(1)之间设有金属纳米粒子(7)。该方案可以大大提高器件的发光效率和出光效率。

Description

一种柔性量子点发光二极管及其制备方法
本申请要求享有2016年11月28日提交的名称为“一种柔性量子点发光二极管及其制备方法”的中国专利申请CN201611077586.7的优先权,其全部内容通过引用并入本文中。
技术领域
本发明属于发光器件领域,涉及一种柔性量子点发光二极管及其制备方法。
背景技术
量子点发光二极管(QLED)由于可藉由不同颗粒大小与电压表现出RGB三原色,理论上较有机发光二极管(OLED)有较长的使用寿命、更优异的色彩表现,同时QLED最高甚至可以节能50%,和液晶面板相比,更是只有目前耗电量的十分之一左右。QLED电子转化为光子的效率更高,同等的屏幕亮度,QLED耗能更少。QLED的这些优势,使其被誉为继OLED之后新一代照明显示技术。
通常制备QLED器件的量子点发光层都是采用溶液法成膜,因此QLED在柔性显示方面具有明显的优势。但是,目前使用的导电阳极的主要材料为ITO,其优势是价格便宜,透过率高、电阻率低等。但是对于ITO而言,In是稀有元素,世界储存量较少,而且薄膜中In203的含量比较高,所以成本也比较大。另外,由于比较脆,在经过周期性多次弯曲或者压缩后容易产生裂缝,使显示的导电性失败,再加上低温沉积在相匹配的衬底时表现出相对高的表面电阻和粗糙度,因此有必要寻找一种新的阳极导电材料替代ITO电极。而其他高导的阳极材料开发不成熟,因此限制了QLED柔性显示器件的发展。
发明内容
为解决上述问题,本发明提供了一种新型的柔性量子点发光二极管,使用PEDOT:PSS作为阳极材料,并且阳极层与衬底之间设有金属纳米粒子层,有效地解决了现有柔性阳极电导率不高的问题,大大提高了QLED的发光效率和出光率。
根据本发明的一个方面,提供了一种柔性量子点发光二极管,包括:从下向上依次设置的衬底、阳极层、空穴传输层、量子发光层、电子产出层和阴极层,其中,所述阳极层 为PEDOT:PSS材质,所述阳极层与衬底之间设有金属纳米粒子。
根据本发明的优选实施例,所述衬底材料选自聚醚酮PET、聚醚醚酮PEEK、聚碳酸酯PC、聚醚砜树脂PES、聚芳酯PAR或聚酰亚胺PI中的一种或多种。优选地,所述衬底材料选自聚醚酮PET、聚酰亚胺PI或其组合。
根据本发明的优选实施例,所述金属纳米粒子选自Au、Ag和Al粒子中的一种或多种。优选选自Au和Ag粒子中的一种或多种。
根据本发明的优选实施例,所述金属纳米粒子以单层形式分散在阳极层和衬底之间。
根据本发明的优选实施例,所述金属纳米粒子的尺寸为5-20nm,形状为球形或长方形,所述金属纳米粒子之间设有一定的间隔,每两个金属纳米粒子之间的间隙为10-40nm。金属纳米粒子排列整齐且不连续,确保其具有较好的透光性。
根据本发明的优选实施例,所述阳极层的厚度为40-60nm。
根据本发明的优选实施例,所述阳极层为PEDOT:PSS材质,包含改性或掺杂的PEDOT:PSS材质。掺杂是在PEDOT:PSS中加入一些高导的材料,例如石墨烯等;改性是通过改变高分子结构中官能团的种类,来提高导电性。PEDOT:PSS是一种高分子聚合物的水溶液,产品是由PEDOT和PSS两种物质构成。PEDOT是EDOT(3,4-乙撑二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐。
根据本发明的另一个方面,提供了一种柔性量子点发光二极管的制备方法,包括:
步骤一、提供衬底,在衬底上制备一层密度适中的金属纳米粒子;
步骤二、在所述金属纳米粒子上制备阳极层;
步骤三、在所述阳极层上依次制备空穴传输层、量子点发光层、电子产出层,最后再蒸镀上金属阴极。
其中,所述阳极层为PEDOT:PSS材质。
根据本发明的优选实施例,所述步骤一中金属纳米粒子层采用蒸镀、溅射、旋涂或喷墨打印等方式制备。
根据本发明的优选实施例,所述步骤二中阳极层采用旋涂的方式制备,所述步骤三中空穴传输层、量子点发光层和电子产出层采用旋涂的方式制备。
本发明的有益效果:
本发明采用PEDOT:PSS作为柔性QLED的阳极材料,确保了显示器件具有很好的柔韧性。同时在柔性衬底和阳极层PEDOT:PSS之间加入金属纳米粒子,不仅可以大大提高PEDOT:PSS阳极层的电导率,并且利用重金属表面等离子共振效应和表面散射效应,大大提高器件的发光效率和出光效率。本发明中的重金属纳米粒子的厚度适中,排列整齐且 不连续,确保其具有较好的透光性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明柔性量子点发光二极管结构示意图。
具体实施方式
以下结合实施例对本发明进行详细说明,但本发明并不受下述实施例限定。
实施例1
一种柔性量子点发光二极管,包括:从下向上依次设置的衬底1、阳极层2、空穴传输层3、量子发光层4、电子产出层5和阴极层6,其中,所述阳极层2为PEDOT:PSS材质,包含改性或掺杂的PEDOT:PSS材质,所述衬底为PET材质。在阳极层与衬底之间设有金属纳米粒子7,用以提高所述阳极的导电率及发光效率。金属纳米粒子7为Au,金属纳米粒子以单层形态分布在衬底和阳极层之间,金属纳米粒子的尺寸为5-20nm,形状为球形或长方形,金属纳米粒子之间具有一至两个纳米之间的间隔,约为10-40nm,金属纳米粒子排列整齐且不连续,确保其具有较好的透光性。所述阳极层2的厚度为40-60nm。
所述一种柔性量子点发光二极管的制备方法为:首先采用蒸镀、溅射、旋涂或喷墨打印等方式,在衬底上制备一层密度适中的金属纳米粒子7,金属纳米粒子7的尺寸为5-20nm。之后采用旋涂等方式,在金属纳米粒子层上制备一层PEDOT:PSS阳极层,PEDOT:PSS阳极层的厚度为40-60nm。然后采用旋涂等方法,在PETOD:PSS阳极层上依次制备空穴传输层3、量子点发光层4和电子产出层5,最后再蒸镀上金属阴极。
实施例2
一种柔性量子点发光二极管,包括:从下向上依次设置的衬底1、阳极层2、空穴传输层3、量子发光层4、电子产出层5和阴极层6,其中,所述阳极层为PEDOT:PSS材质,包含改性或掺杂的PEDOT:PSS材质,所述衬底1为PI材质。所述阳极层2与衬底1之间设有金属纳米粒子7,用以提高所述阳极的导电率及发光效率。所述金属纳米粒子7选自Ag,金属纳米粒子7以单层形态分布在衬底1和阳极层2之间,所述金属纳米粒子7的尺寸为5-20nm,形状为球形或长方形。金属纳米粒子7之间具有一至两个纳米之间的间隔,约为10-40nm,金属纳米粒子排列整齐且不连续,确保其具有较好的透光性。所述 阳极层的厚度为40-60nm。
所述柔性量子点发光二极管的制备方法同实施例1。
虽然在上文中已经参考了一些实施例对本发明进行了描述,然而在不脱离本发范围的情况下,可以对其进行各种改进。本发明并不局限于文中公开的特定实施例,而是落入权利要求的范围的所有技术方案。
附图标记说明
1         衬底
2         阳极层
3         空穴传输层
4         量子点发光层
5         电子产出层
6         阴极层
7         金属纳米粒子

Claims (19)

  1. 一种柔性量子点发光二极管,包括从下向上依次设置的衬底、阳极层、空穴传输层、量子发光层、电子产出层和阴极层,其中,所述阳极层为PEDOT:PSS材质,所述阳极层与衬底之间设有金属纳米粒子。
  2. 根据权利要求1所述的发光二极管,其中,所述金属纳米粒子选自Au、Ag和Al粒子中的一种或多种。
  3. 根据权利要求1所述的发光二极管,其中,所述金属纳米粒子以单层形式分散在阳极层和衬底之间。
  4. 根据权利要求2所述的发光二极管,其中,所述金属纳米粒子以单层形式分散在阳极层和衬底之间。
  5. 根据权利要求1所述的发光二极管,其中,所述金属纳米粒子的尺寸为5-20nm,形状为球形或长方形。
  6. 根据权利要求2所述的发光二极管,其中,所述金属纳米粒子的尺寸为5-20nm,形状为球形或长方形。
  7. 根据权利要求1所述的发光二极管,其中,所述金属纳米粒子之间具有一定的间隔,每两个金属纳米粒子之间的间隔为10-40nm。
  8. 根据权利要求2所述的发光二极管,其中,所述金属纳米粒子之间具有一定的间隔,每两个金属纳米粒子之间的间隔为10-40nm。
  9. 根据权利要求1所述的发光二极管,其中,所述衬底材料选自聚醚酮、聚醚醚酮、聚碳酸酯、聚醚砜树脂、聚芳酯或聚酰亚胺中的一种或多种。
  10. 根据权利要求1所述的发光二极管,其中,所述阳极层的厚度为40-60nm。
  11. 一种柔性量子点发光二极管的制备方法,包括:
    步骤一、提供衬底,在衬底上制备一层密度适中的金属纳米粒子;
    步骤二、在所述金属纳米粒子上制备阳极层;
    步骤三、在所述阳极层上依次制备空穴传输层、量子点发光层、电子产出层,最后再蒸镀上金属阴极;
    其中,所述阳极层为PEDOT:PSS材质。
  12. 根据权利要求11所述的制备方法,其中,所述金属纳米粒子选自Au、Ag和Al粒子中的一种或多种。
  13. 根据权利要求11所述的制备方法,其中,所述金属纳米粒子以单层形式分散在阳极层和衬底之间。
  14. 根据权利要求11所述的制备方法,其中,所述金属纳米粒子的尺寸为5-20nm,形状为球形或长方形。
  15. 根据权利要求11所述的制备方法,其中,所述金属纳米粒子之间具有一定的间隔,每两个金属纳米粒子之间的间隔为10-40nm。
  16. 根据权利要求11所述的制备方法,其中,所述衬底材料选自聚醚酮、聚醚醚酮、聚碳酸酯、聚醚砜树脂、聚芳酯或聚酰亚胺中的一种或多种。
  17. 根据权利要求11所述的制备方法,其中,所述阳极层的厚度为40-60nm。
  18. 根据权利要求11所述的制备方法,其中,所述步骤一中金属纳米粒子采用蒸镀、溅射、旋涂或喷墨打印的方式制备。
  19. 根据权利要求11所述的制备方法,其中,所述阳极层、空穴传输层、量子点发光层和电子产出层采用旋涂的方式制备。
PCT/CN2017/071634 2016-11-28 2017-01-19 一种柔性量子点发光二极管及其制备方法 WO2018094867A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/500,187 US20180219167A1 (en) 2016-11-28 2017-01-19 Flexible quantum dot light-emitting diode and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611077586.7 2016-11-28
CN201611077586.7A CN106450037A (zh) 2016-11-28 2016-11-28 一种柔性量子点发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
WO2018094867A1 true WO2018094867A1 (zh) 2018-05-31

Family

ID=58223555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071634 WO2018094867A1 (zh) 2016-11-28 2017-01-19 一种柔性量子点发光二极管及其制备方法

Country Status (3)

Country Link
US (1) US20180219167A1 (zh)
CN (1) CN106450037A (zh)
WO (1) WO2018094867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599030A (zh) * 2017-09-30 2019-04-09 昆山国显光电有限公司 显示屏及电子产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096080A1 (en) * 2003-07-02 2007-05-03 Cain Paul A Rectifying diodes
CN101587941A (zh) * 2009-06-25 2009-11-25 彩虹集团公司 一种有机电致发光显示器件
CN104993055A (zh) * 2015-05-25 2015-10-21 中国科学院半导体研究所 基于表面等离激元效应的有机太阳电池结构及制备方法
CN105140411A (zh) * 2015-08-17 2015-12-09 Tcl集团股份有限公司 不含ito的qled及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675109B1 (ko) * 2010-08-06 2016-11-11 삼성전자주식회사 표면 플라즈몬 공명을 이용하여 발광 특성이 향상된 발광 소자 및 그 제조 방법
WO2017059444A1 (en) * 2015-10-01 2017-04-06 The Regents Of The University Of California Thermally stable silver nanowire transparent electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096080A1 (en) * 2003-07-02 2007-05-03 Cain Paul A Rectifying diodes
CN101587941A (zh) * 2009-06-25 2009-11-25 彩虹集团公司 一种有机电致发光显示器件
CN104993055A (zh) * 2015-05-25 2015-10-21 中国科学院半导体研究所 基于表面等离激元效应的有机太阳电池结构及制备方法
CN105140411A (zh) * 2015-08-17 2015-12-09 Tcl集团股份有限公司 不含ito的qled及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, S.H.: "Light Enhancement of Plasmonic Nanostructures", APPLIED PHYSICS EXPRESS, vol. 5, no. 6, 29 May 2012 (2012-05-29), pages 062001, XP001576658, DOI: 10.1143/APEX.5.062001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599030A (zh) * 2017-09-30 2019-04-09 昆山国显光电有限公司 显示屏及电子产品

Also Published As

Publication number Publication date
CN106450037A (zh) 2017-02-22
US20180219167A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
Liu et al. Recent developments in flexible organic light‐emitting devices
US9978972B2 (en) Quantum dot light emitting device and manufacture method thereof and liquid crystal display device
Liang et al. Highly flexible and bright electroluminescent devices based on ag nanowire electrodes and top‐emission structure
US9241411B2 (en) Substrate having transparent electrode for flexible display and method of fabricating the same
CN103000817B (zh) 一种柔性有机发光二极管
Zhu et al. Recent advances in flexible and wearable organic optoelectronic devices
CN105789260B (zh) 一种透明显示面板及其制备方法
WO2011162080A1 (ja) 有機エレクトロルミネッセンス素子
Wang et al. Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode
US20180301657A1 (en) Organic electroluminescent device structure and manufacturing for the same
WO2016082338A1 (zh) 导电柔性基板及其制作方法与oled显示装置及其制作方法
CN109065757B (zh) 用于oled照明器件的基板及照明器件
CN108963057B (zh) 一种柔性透明led显示器件结构及其制备方法
Yao et al. High‐efficiency stretchable organic light‐emitting diodes based on ultra‐flexible printed embedded metal composite electrodes
CN105161585A (zh) 一种纤维状量子点发光二极管及其制备方法
KR20120001684A (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
CN110957434A (zh) 一种电致发光元件、透明显示装置和电致发光元件的制作方法
CN105609538B (zh) 一种顶发射型显示面板及制作方法
WO2018094867A1 (zh) 一种柔性量子点发光二极管及其制备方法
KR101650541B1 (ko) 플렉서블 기판 및 그 제조방법
WO2020215882A1 (zh) 发光结构、显示面板和显示装置
KR100805270B1 (ko) 유기투명전극을 적용한 플렉시블 유기 발광 소자, 이를이용한 디스플레이 패널 및 그 제조 방법
JP2007080541A (ja) 有機透明導電体、その製造方法及び電流駆動型素子
US20180331323A1 (en) Top-emitting oled and a manufacturing method thereof
US20130149803A1 (en) Method of fabricating organic light emitting diode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15500187

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873513

Country of ref document: EP

Kind code of ref document: A1