WO2011162080A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011162080A1
WO2011162080A1 PCT/JP2011/062650 JP2011062650W WO2011162080A1 WO 2011162080 A1 WO2011162080 A1 WO 2011162080A1 JP 2011062650 W JP2011062650 W JP 2011062650W WO 2011162080 A1 WO2011162080 A1 WO 2011162080A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
conductive layer
organic
electrode
Prior art date
Application number
PCT/JP2011/062650
Other languages
English (en)
French (fr)
Inventor
将啓 中村
僚三 福崎
正人 山名
健之 山木
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011162080A1 publication Critical patent/WO2011162080A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Definitions

  • the present invention relates to an organic electroluminescence element used for lighting fixtures, liquid crystal backlights, various displays, display devices, and the like.
  • organic electroluminescence element organic electroluminescence element
  • typical surface light emitter an organic electroluminescence element
  • FIG. 3 shows an example of a conventional organic electroluminescence element.
  • a light transmissive first electrode 2 is provided on the surface of a light transmissive substrate 1, and an organic layer 3 including an organic light emitting layer made of an organic electroluminescent material is formed on the first electrode 2.
  • a light-reflective second electrode 4 is provided on the organic layer 3. The light emitted from the organic layer 3 by applying a voltage between the first electrode 2 and the second electrode 4 passes through the first electrode 2 and the substrate 1 and is extracted outside.
  • the light transmissive first electrode 2 uses a conductive oxide such as ITO, IZO, AZO, GZO, FTO, and ATO as a transparent conductive material, and uses a vapor deposition method such as a sputtering method or a vacuum evaporation method. Etc. are formed. These film forming methods require expensive equipment and a large amount of energy, and techniques for reducing manufacturing costs and environmental burdens are required. Moreover, since the refractive index of the transparent conductive film formed by these methods is higher than that of the glass substrate, when an organic electroluminescence element is formed, the total difference due to the refractive index difference between the substrate 1 and the first electrode 2 is all. Reflection is likely to occur. This total reflection loss is a factor that reduces the light extraction efficiency.
  • a conductive oxide such as ITO, IZO, AZO, GZO, FTO, and ATO
  • a vapor deposition method such as a sputtering method or a vacuum evaporation method
  • Patent Document 1 a method for forming a transparent conductive film by coating or printing using a binder solution containing conductive nanoparticles has been proposed (Patent Document 1).
  • the refractive index of the transparent conductive film can be controlled by selecting a binder material that holds the conductive nanoparticles.
  • an optically advantageous organic electroluminescence element structure can be formed.
  • the particle dispersibility is low, the surface roughness of the transparent conductive film increases, and the risk of short-circuiting in the organic electroluminescence element increases.
  • Patent Document 2 a method for improving flatness by overcoating a binder material containing no particles or a low content on a transparent conductive film containing nanoparticles.
  • Patent Document 2 a method for improving flatness by overcoating a binder material containing no particles or a low content on a transparent conductive film containing nanoparticles.
  • the present invention has been made in view of the above, and provides an organic electroluminescence device that improves light extraction efficiency, reduces the occurrence of short circuits, and achieves both high-efficiency light extraction and improved electrical characteristics. It is the purpose.
  • the organic electroluminescence device of the present invention includes a substrate, a first electrode formed on the substrate surface and having light transparency, an organic layer including at least one organic light emitting layer, and the first electrode of the organic layer.
  • An organic electroluminescence element including a second electrode formed on the opposite side, wherein the first electrode includes a first transparent conductive layer made of conductive nanoparticles or conductive nanowires and a binder, and a conductive high
  • the second transparent conductive layer made of molecules is formed on the surface of the substrate in this order.
  • the refractive index of the organic light emitting layer is n1
  • the refractive index of the first transparent conductive layer is n2
  • the refractive index of the second transparent conductive layer is n3, n1 ⁇ n3 It is preferable that the relationship of ⁇ n2 or n2 ⁇ n3 ⁇ n1 holds.
  • the second transparent conductive layer preferably has a surface roughness Ra on the side opposite to the first transparent conductive layer of 300 nm or less.
  • the haze of the first transparent conductive layer is preferably 30% or more.
  • the first transparent conductive layer preferably has irregularities formed by conductive nanoparticles or conductive nanowires on the surface of the second transparent conductive layer.
  • the first transparent conductive layer is formed of the first transparent conductive layer and the second transparent conductive layer as described above, so that the first transparent conductive layer is conductive.
  • the light extraction efficiency can be improved without degrading the electrical characteristics by including the fine substance
  • the second transparent conductive layer is made of a conductive polymer, so that the layer can be made conductive. Since it can function as an overcoat layer and can reduce the short circuit by flattening the surface of the electrode, it is possible to obtain an organic electroluminescence device that achieves both high-efficiency light extraction and improved electrical characteristics.
  • FIG. 1 shows an example of a layer structure of an organic electroluminescence element (hereinafter also referred to as “organic EL element”) according to the present invention.
  • organic EL element a light transmissive first electrode 2 is provided on the surface of a light transmissive substrate 1, and an organic layer 3 including an organic light emitting layer made of an organic electroluminescence material is provided on the surface of the first electrode 2. Furthermore, it is formed by providing a light-reflective second electrode 4 on the surface of the organic layer 3. The light emitted from the organic layer 3 by applying a voltage between the first electrode 2 and the second electrode 4 is extracted outside through the first electrode 2 and the substrate 1.
  • One form is an organic EL element called a bottom emission structure in which light is extracted through the substrate 1.
  • One of the first electrode 2 and the second electrode 4 is a positive electrode and the other is a cathode.
  • the first electrode 2 is a positive electrode and the second electrode 4 is a cathode.
  • the substrate 1 is a transparent substrate having light permeability, and is not particularly limited as long as it transmits light, and a substrate formed of an appropriate substrate material can be used.
  • a rigid transparent glass plate such as soda glass or non-alkali glass
  • a flexible transparent plastic plate such as polycarbonate or polyethylene terephthalate, or the like can be used.
  • a substrate having a flat surface on the first electrode 2 side is usually used.
  • the refractive index of the substrate 1 can be in the range of 1.2 to 1.8, for example.
  • the first electrode 2 is constituted by the first transparent conductive layer 5 and the second transparent conductive layer 6.
  • the first transparent conductive layer 5 and the second transparent conductive layer 6 are formed by being laminated on the surface of the substrate 1 in this order. Thereby, the light extraction property can be improved, and the surface of the first electrode 2 can be made flat to prevent a short circuit.
  • the first transparent conductive layer 5 is formed of conductive nanoparticles or conductive nanowires and a binder. That is, the first transparent conductive layer is formed as a resin layer containing a conductive fine substance. Thereby, the light extraction efficiency can be improved without deteriorating the electrical characteristics.
  • the conductive nanoparticles include silver, indium-tin oxide (ITO), indium-zinc oxide (IZO), tin oxide, fine particles of a conductive metal or alloy such as Au, particles made of a conductive polymer, Examples thereof include particles made of a conductive organic material, organic particles containing a dopant (donor or acceptor), and particles made of a mixture of a conductor and a conductive organic material (including a polymer).
  • the particle diameter of the conductive nanoparticles can be in the range of 1 to 100 nm in the case of spherical particles. If it is larger than this range, transparency may be impaired. If it is smaller than this range, the conductivity may be lowered.
  • the particle diameter can be measured using, for example, a dynamic light scattering photometer (DLS-8000, manufactured by Otsuka Electronics Co., Ltd.).
  • a nanowire formed of the same material as the conductive nanoparticle can be used as the conductive nanowire.
  • the size of the conductive nanowire can be in the range of 1 to 100 nm in diameter and 1 to 100 in aspect ratio. If the diameter or aspect ratio is larger than this range, transparency may be impaired. If the diameter or aspect ratio is smaller than this range, the conductivity may be lowered.
  • the diameter and aspect ratio of the conductive nanowire can be measured, for example, by observation with a transmission electron microscope (TEM).
  • the particle diameter can be measured using a measurement dynamic light scattering photometer (DLS-8000, manufactured by Otsuka Electronics Co., Ltd.).
  • an appropriate transparent resin is used as the binder used for the first transparent conductive layer 5.
  • this resin for example, acrylic resin, polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate (PMMA), polystyrene, polyethersulfone, polyarylate, polycarbonate resin, polyurethane, polyacrylonitrile, polyvinyl acetal, polyamide, polyimide, diester
  • acrylic phthalate resins acrylic phthalate resins, cellulose resins, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, other thermoplastic resins, and two or more copolymers of monomers constituting these resins.
  • the content ratio of the conductive nanoparticles or conductive nanowires to the binder is a volume ratio when the electrodes are formed.
  • conductive material: resin 1: 1 to 1 : 30 can be set.
  • the content ratio falls within this range, both electrical conductivity and transparency can be made more compatible, and electrical characteristics and light extraction properties can be improved.
  • the first transparent conductive layer 5 is made of, for example, a material such as a resin containing conductive nanoparticles or conductive nanowires on the surface of the substrate 1 by spin coating, screen printing, dip coating, die coating, casting, spray coating, gravure coating. By doing so, it can be formed. Therefore, it is not necessary to perform a vapor phase method or the like, and the first transparent conductive layer 5 can be easily formed by coating.
  • the refractive index of the first transparent conductive layer 5 is n2.
  • This refractive index n2 can be set to about 1.4 to 1.8. When the refractive index n2 is within this range, the total reflection loss is easily reduced, and the light extraction efficiency is further improved.
  • the first transparent conductive layer 5 preferably has a haze of 30% or more.
  • the haze of the first transparent conductive layer 5 is 30% or more, the light confined in the substrate 1 or the first electrode 2 can be scattered, and the amount of light taken out can be increased. Thereby, it is possible to further improve the light extraction efficiency.
  • the upper limit of haze can be about 99%.
  • the haze can be measured by, for example, a haze meter.
  • the second transparent conductive layer 6 is made of a conductive polymer. Thereby, the second transparent conductive layer 6 functions as an overcoat layer, and the surface of the first electrode 2 can be flattened. And since the 2nd transparent conductive layer 6 has electroconductivity, an electrical property is not deteriorated. Therefore, short circuit is reduced and electrical characteristics are improved. Further, since the second transparent conductive layer 6 is formed as a transparent polymer layer, the light extraction property can be improved.
  • Examples of the conductive polymer used in the second transparent conductive layer 6 include, but are not limited to, conductive polymers such as polythiophene, polyaniline, polypyrrole, polyphenylene, polyphenylene vinylene, polyacetylene, polycarbazole, and polyacetylene. is not. These may be used alone or in combination. In order to improve conductivity, doping using a dopant may be performed. Examples of the dopant include, but are not limited to, sulfonic acid, Lewis acid, proton acid, alkali metal, alkaline earth metal, and the like.
  • the second transparent conductive layer 6 is made of, for example, a material such as a conductive polymer dispersion on the surface of the first transparent conductive layer 5 by spin coating, screen printing, dip coating, die coating, casting, spray coating, gravure coating. By doing so, it can be formed. Therefore, it is not necessary to perform a vapor phase method or the like, and the second transparent conductive layer 6 can be easily formed by coating.
  • the second transparent conductive layer 6 preferably has a surface roughness Ra of 300 nm or less. That is, it is preferable that the surface roughness of the surface of the first electrode 2 itself, which is the surface opposite to the first transparent conductive layer 6, is 300 nm or less. When the surface roughness Ra of the second transparent conductive layer 6 is 300 nm or less, flatness sufficient to function as an organic EL element can be reliably achieved, and high-efficiency light extraction and electrical characteristics are improved. And can be further balanced. If the surface roughness Ra of the second transparent conductive layer 6 is rougher than this, the risk of short circuit may be increased.
  • the surface roughness Ra can more preferably be 200 nm or less. There is no restriction
  • the refractive index of the second transparent conductive layer 6 is n3.
  • This refractive index n3 can be set to about 1.4 to 1.8. When the refractive index n3 is within this range, the total reflection loss is easily reduced, and the light extraction efficiency is further improved.
  • the film thickness of the first electrode 2 can be in the range of 20 to 1000 nm, for example.
  • the film thickness of the first transparent conductive layer 5 can be set in the range of 20 to 500 nm, for example.
  • the film thickness of the second transparent conductive layer 6 can be set in the range of 10 to 1000 nm, for example. When the film thicknesses of these layers are in the above range, it is possible to improve both the light extraction performance and the electrical characteristics.
  • the layer interface between the first transparent conductive layer 5 and the second transparent conductive layer 6 may be a flat surface or a surface having irregularities 7.
  • the unevenness 7 is preferably formed of conductive nanoparticles or conductive nanowires. That is, the first transparent conductive layer 5 is formed so as to have irregularities 7 formed by protruding a part of conductive nanoparticles or conductive nanowires on the surface on the second transparent conductive layer 6 side. It is.
  • the surface of the protruding conductive nanoparticle or conductive nanowire may be coated with a binder resin, or the surface of the conductive nanoparticle or conductive nanowire itself may be exposed.
  • FIG. 2 shows an example of a form having irregularities 7 on the surface of the first transparent conductive layer 5.
  • the irregularities 7 may be formed randomly or regularly.
  • corrugation 7 may be uniformly formed in the whole interface, and may be formed partially.
  • corrugation 7 resulting from electroconductive nanoparticle or electroconductive nanowire in the surface of the 1st transparent conductive layer 5, in the interface of the 1st transparent conductive layer 5 and the 2nd transparent conductive layer 6 The total reflection loss can be reduced.
  • the electrical characteristics of the first transparent conductive layer 5 in the vicinity of the second transparent conductive layer 6 can be improved. Therefore, it is possible to achieve both high-efficiency light extraction and improved electrical characteristics.
  • the projections and recesses 7 are provided with a protruding width equal to or less than the thickness of the second transparent conductive layer 6 so as not to impair the surface flatness of the second transparent conductive layer 6.
  • Examples of the organic EL material for forming the organic light emitting layer in the organic layer 3 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, and bisbenzo.
  • Xazoline bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, Aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, pyran, quinacridone, rubrene, and derivatives thereof, or 1-aryl-2,5-di 2-thienyl) pyrrole derivative, distyryl benzene derivative, styryl arylene derivatives, styrylamine derivatives, and compounds or polymers such having a group consisting of luminescent compounds in a part of molecules.
  • phosphorescent materials for example, luminescent materials such as Ir complexes, Os complexes, Pt complexes, and europium complexes, or compounds or polymers having these in the molecule It can be used suitably. These materials can be appropriately selected and used as necessary.
  • the organic layer 3 may be provided with layers such as a hole injection layer (hole injection layer), a hole transport layer (hole transport layer), an electron transport layer, and an electron injection layer, as appropriate. Good. Note that these layers as well as the electron injection layer need not be made of an organic material, but will be described as the organic layer 3 here.
  • the refractive index of the organic light emitting layer existing in the organic layer 3 is n1.
  • the refractive index n1 of the organic light emitting layer can be set to about 1.4 to 1.8. When the refractive index n1 is within this range, the light extraction efficiency is further improved.
  • the organic light emitting layer may contain hollow fine particles such as hollow silica fine particles. Thereby, the refractive index n1 of an organic light emitting layer can be reduced, and it can adjust so that a refractive index may become a preferable value.
  • the particle diameter of the hollow fine particles can be set to about 10 to 1000 nm, for example.
  • the organic layer 3 may have a structure in which an organic light emitting layer is directly adjacent to the first electrode 2, but a hole injection layer, a hole transport layer, or the like may be provided between the first electrode 2 and the organic light emitting layer. In some cases, one or more organic layers may be interposed. In this case, the refractive index of the organic layer or layers sandwiched between the first electrode 2 and the organic light emitting layer can be made the same as that of the organic light emitting layer. If the refractive index of the organic layer between the first electrode 2 and the organic light emitting layer is approximately the same as that of the organic light emitting layer, the refractive index step in the organic layer 3 is eliminated and the light extraction efficiency is further improved. .
  • the refractive index of the organic light emitting layer is n1
  • the refractive index of the first transparent conductive layer is n2
  • the refractive index of the second transparent conductive layer is n3.
  • the refractive index n3 of the second transparent conductive layer 6 becomes an intermediate value between the refractive index n1 of the first transparent conductive layer 5 and the refractive index n1 of the organic light emitting layer. Loss due to Fresnel reflection can be reduced. As a result, it is possible to achieve further improved light extraction performance with high efficiency. Further, when the refractive index has such a relationship, reflection of external light can be reduced, and visibility of emitted light can be improved.
  • a second electrode 4 is provided on the side of the organic layer 3 opposite to the first electrode 2.
  • Al or the like can be used as the material of the second electrode 4.
  • a layered structure or the like may be configured by combining Al and another electrode material.
  • Such electrode material combinations include alkali metal and Al laminates, alkali metal and silver laminates, alkali metal halides and Al laminates, and alkali metal oxides and Al laminates. Bodies, laminates of alkaline earth metals and rare earth metals and Al, and alloys of these metal species with other metals, such as sodium, sodium-potassium alloy, lithium, magnesium, etc.
  • a laminate with Al, a magnesium-silver mixture, a magnesium-indium mixture, an aluminum-lithium alloy, a LiF / Al mixture / laminate, an Al / Al 2 O 3 mixture, and the like can be given as examples.
  • the materials and forms listed above are examples, and are not limited to these.
  • the method for producing the organic EL element is not particularly limited, and can be produced by a usual method. That is, it can be formed by sequentially laminating each layer on the surface of the substrate 1 by an appropriate coating method or vapor deposition method. Finally, you may seal with a sealing cap etc.
  • Example 1 As the substrate 1, an alkali-free glass plate (“No. 1737” manufactured by Corning) was used.
  • the refractive index of the substrate 1 at a wavelength of 500 nm is 1.50 to 1.53.
  • This mixed solution was applied on the substrate 1 by spin coating so as to have a film thickness of 100 nm and heated to 120 ° C. Thereby, the first transparent conductive layer 5 was formed.
  • the refractive index was measured by FilmTek manufactured by SCI
  • the refractive index (n2) of the first transparent conductive layer 5 (PS film) was 1.6 at a wavelength of 650 nm.
  • the haze of the first transparent conductive layer 5 was about 80%.
  • SPM-9600 scanning probe microscope
  • irregularities 7 formed of ITO nanoparticles were formed on the layer surface.
  • the refractive index unless otherwise indicated, it measured similarly by FilmTek by SCI.
  • PEDOT polyanion poly (styrenesulfonate) solution
  • PEDOT polyanion poly (styrenesulfonate) solution
  • PH1000 Clevios (registered trademark) PH1000, manufactured by HC Starck Co., Ltd.
  • composition ratio PEDOT: PSS 1: 2.5, aqueous solution
  • PEDOT: PSS is a conductive polymer.
  • the refractive index (n3) of the second transparent conductive layer 6 (PEDOT: PSS film) was 1.55 at a wavelength of 650 nm. Further, the surface roughness Ra of the second transparent conductive layer 6 was 200 nm or less. Thereby, the 1st electrode 2 used as a positive electrode was formed.
  • PEDOT: PSS (Clevios (registered trademark) P VP AI4083, HS Starck) with a mass ratio of 1: 6 is formed on the second transparent conductive layer 6 with a spin coater so that the film thickness becomes about 65 nm.
  • the hole injection layer was formed by applying and baking at 200 ° C. for 15 minutes.
  • the refractive index of this hole injection layer was about 1.5 at a wavelength of 650 nm.
  • PEDOT: PSS used for the hole injection layer is different from PEDOT: PSS used for the second transparent conductive layer 6 in terms of conductivity.
  • the former is a material that functions as hole injection, and the latter. Is a highly conductive material that functions as an electrode.
  • TFB poly [(9,9-dioctylfuluorenyl-2,7-diyl) -co- (4,4 ′-(N- (4-sec-butylphenyl)) diphenylamine)]
  • ADS259BE American Dice Source HoleTransport
  • a spin coater is prepared by dissolving a solution of red light emitting polymer ("Light Emitting Polymer” ATS111RE "manufactured by American Dye Source) in THF as a solvent so that the film thickness becomes 70 nm on the hole transport layer.
  • the organic light emitting layer was formed by applying and baking at 100 ° C. for 10 minutes.
  • the refractive index (n1) of this organic light emitting layer was 1.7 at a wavelength of 650 nm.
  • Ba manufactured by High-Purity Chemical Co., Ltd.
  • Al manufactured by High-Purity Chemical Co., Ltd.
  • the substrate 1 on which each layer was formed was transported to a glove box in a dry nitrogen atmosphere having a dew point of ⁇ 80 ° C. or less without being exposed to the air.
  • a water absorbing agent manufactured by Dynic
  • an ultraviolet curable resin sealing agent was applied to the outer periphery of the sealing cap in advance.
  • each layer was sealed with the sealing cap by sticking the sealing cap on the board
  • an organic electroluminescence element having a layer structure as shown in FIG. 1 or 2 was obtained.
  • n2 refractive index
  • the haze of the first transparent conductive layer 5 was about 80%. Further, irregularities 7 made of ITO particles were formed on the surface of the first transparent conductive layer 5. Other than that was carried out similarly to Example 1, and obtained the organic electroluminescent element of a layer structure like FIG.
  • Example 3 As a material for the organic light emitting layer, a red polymer ("Light Emitting polymer ATS111RE” manufactured by American Dice Source) and an isopropanol-dispersed porous hollow silica fine particle ("Suluria CS60-IPA” manufactured by Catalytic Chemical Industry, solid content 20% by mass, average primary A solution having a particle size of 60 nm and an outer shell thickness of about 10 nm) dissolved and dispersed in THF as a solvent at a mass ratio of 1: 1 was used. This solution was applied onto the hole transport layer with a spin coater so as to have a film thickness of 70 nm, and baked at 100 ° C. for 10 minutes to obtain an organic light emitting layer. The refractive index (n3) of this organic light emitting layer was 1.45 at a wavelength of 650 nm. Other than that was carried out similarly to Example 1, and obtained the organic electroluminescent element of a layer structure like FIG.
  • Example 4 As a material for the first transparent conductive layer 5, a silver nanowire in which silver nanowire (diameter: about 50 nm, length: about 5 ⁇ m, reflectance: 90% or more) and PMMA are dispersed in acetone at the same volume ratio as in Example 2 : PMMA solution was used.
  • the silver nanowire is prepared according to a known paper “Materials Chemistry and Physics vol. 114 p333-338“ Preparation of Ag nanorods with high yield by polyol process ””, and has an average diameter of 50 nm and an average length of 5 ⁇ m.
  • the manufactured first transparent conductive layer 5 had a refractive index (n2) of 1.50 at a wavelength of 650 nm.
  • the haze of the first transparent conductive layer 5 was about 80%. Further, irregularities 7 made of silver nanowires were formed on the surface of the first transparent conductive layer 5. Other than that was carried out similarly to Example 2, and obtained the organic electroluminescent element of a layer structure like FIG.
  • Example 1 An ITO film (100 nm, refractive index about 1.9) was sputtered on the surface of the substrate 1 to form the first electrode 2. Then, a hole injection layer, a hole transport layer, an organic light emitting layer, and an electron injection layer are formed on the first electrode 2 by the same material and method as in Example 1, and the second electrode 4 is further formed thereon. And finally, the organic electroluminescent element was obtained by sealing with a sealing cap.
  • Example 2 On the first transparent conductive layer 5 obtained by the same method as in Example 1, a hole injection layer, a hole transport layer, and an organic light emitting layer were formed by the same material and method as in Example 1 without providing a second transparent conductive layer.
  • An organic electroluminescence element was obtained by forming a layer and an electron injection layer, forming a second electrode 4 thereon, and finally sealing with a sealing cap.
  • the surface roughness Ra of the first transparent conductive layer 5 was 400 nm or more.
  • Example 1 As shown in Table 1, it was confirmed that the devices of Examples 1 to 4 had improved light extraction efficiency compared to Comparative Example 1 in which the electrode was an ITO film. Further, the elements of Examples 2 to 4 in which the refractive index of the second transparent conductive layer 6 is between the refractive index of the first transparent conductive layer 5 and the refractive index of the organic light emitting layer are compared with those of Example 1. It was confirmed that the light extraction efficiency was improved. On the other hand, in Comparative Example 2 in which the second transparent conductive layer 6 was not formed, the current value when 2 V was applied was higher than in Examples 1 to 4, a short circuit occurred between the electrodes, and light emission could not be confirmed. Thereby, it was confirmed that the 2nd transparent conductive layer 6 in each Example has an effect which prevents the short circuit between electrodes.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 光取り出し効率を向上するとともに、短絡の発生を低減し、高効率の光取り出しと電気特性向上とを両立した有機エレクトロルミネッセンス素子を提供する。 有機エレクトロルミネッセンス素子は、基板1と、前記基板1表面に形成され光透過性を有する第1電極2と、少なくとも一つの有機発光層を含む有機層3と、前記有機層3の前記第1電極2とは反対側に形成された第2電極4とを含む。第1電極2は、導電性ナノ粒子又は導電性ナノワイヤーとバインダーとからなる第1透明導電層5、及び、導電性高分子からなる第2透明導電層6がこの順で基板1表面に形成されたものである。

Description

有機エレクトロルミネッセンス素子
 本発明は、照明器具、液晶バックライト、各種ディスプレイ、表示装置などに用いられる有機エレクトロルミネッセンス素子に関する。
 従来、面発光体の代表的なものとして、有機エレクトロルミネッセンス素子(有機EL素子)が知られている。
 図3に、従来の有機エレクトロルミネッセンス素子の一例を示す。この有機エレクトロルミネッセンス素子は、光透過性の基板1の表面に光透過性の第1電極2を設け、この第1電極2の上に、有機エレクトロルミネッセンス材料からなる有機発光層を含む有機層3を設け、この有機層3の上に光反射性の第2電極4を設けることによって形成されている。そして、第1電極2と第2電極4との間に電圧を印加することによって有機層3で発光した光が、第1電極2及び基板1を通過して外部に取り出される。
 一般的に光透過性の第1電極2は、ITO、IZO、AZO、GZO、FTO、ATOなどの導電性酸化物を透明導電材料として用い、スパッタ法や真空蒸着法などの気相成膜法などで形成されている。これらの製膜方法は高価な装置や多量のエネルギーが必要であり、製造コストや環境負荷を低減する技術が求められている。また、これらの方法で製膜した透明導電膜の屈折率はガラス基板に比べて高いため、有機エレクトロルミネッセンス素子を形成した場合、基板1と第1電極2との間での屈折率差による全反射が生じやすい。そして、この全反射ロスが、光取り出し効率を低下させる要因になっている。
 近年、導電性のナノ粒子を含有するバインダー溶液を用いて塗布や印刷などにより、透明導電膜を形成する方法が提案されている(特許文献1)。この方法を用いると、導電性のナノ粒子を保持するバインダー材料の選択により、透明導電膜の屈折率を制御することができる。屈折率を制御することにより、光学的に有利な有機エレクトロルミネッセンス素子構造を形成することができる。しかしながら、その一方で、粒子分散性が低いと透明導電膜の表面粗さが大きくなり、有機エレクトロルミネッセンス素子に短絡が生じる危険性が高くなる。このような短絡を回避する方法として、ナノ粒子を含有した透明導電膜上に粒子を含有しない、または、含有量の少ないバインダー材料をオーバーコートするなどして平坦性を改善する手法が提案されている(特許文献2)。ところが、このような方法では平坦性は改善されるものの、透明導電膜に比べオーバーコート層の導電性が低いため、電極としての電気特性は低下してしまうという問題があった。
特開2009-181856号公報 特開2009-505358号公報
 本発明は上記について鑑みてなされたものであり、光取り出し効率を向上するとともに、短絡の発生を低減し、高効率の光取り出しと電気特性向上とを両立した有機エレクトロルミネッセンス素子を提供することを目的とするものである。
 本発明の有機エレクトロルミネッセンス素子は、基板と、前記基板表面に形成され光透過性を有する第1電極と、少なくとも一つの有機発光層を含む有機層と、前記有機層の前記第1電極とは反対側に形成された第2電極とを含む有機エレクトロルミネッセンス素子であって、第1電極は、導電性ナノ粒子又は導電性ナノワイヤーとバインダーとからなる第1透明導電層、及び、導電性高分子からなる第2透明導電層がこの順で基板表面に形成されたものであることを特徴とする。
 上記有機エレクトロルミネッセンス素子にあっては、有機発光層の屈折率をn1とし、第1透明導電層の屈折率をn2とし、第2透明導電層の屈折率をn3とした場合に、n1≦n3≦n2、又は、n2≦n3≦n1の関係が成り立つことが好ましい。
 上記有機エレクトロルミネッセンス素子にあっては、第2透明導電層は、第1透明導電層とは反対側の表面粗さRaが300nm以下であることが好ましい。
 上記有機エレクトロルミネッセンス素子にあっては、第1透明導電層のヘイズが30%以上であることが好ましい。
 上記有機エレクトロルミネッセンス素子にあっては、第1透明導電層は、第2透明導電層側の表面に導電性ナノ粒子又は導電性ナノワイヤーによって形成された凹凸を有することが好ましい。
 本発明によれば、光透過性の電極である第1電極が、上記のような第1透明導電層と第2透明導電層とにより形成されていることにより、第1透明導電層が導電性の微細物質を含むことによって、電気特性を低下させることなく光取り出し効率を向上することができ、また、第2透明導電層が導電性高分子により形成されることによって、この層が導電性を有するオーバーコート層として機能し、電極の表面を平坦にして短絡を低減することができるので、高効率の光取り出しと電気特性向上とを両立した有機エレクトロルミネッセンス素子を得ることができるものである。
本発明の有機エレクトロルミネッセンス素子の実施の形態の一例を示す概略断面図である。 本発明の有機エレクトロルミネッセンス素子の実施の形態の他の一例を示す概略断面図である。 従来の有機エレクトロルミネッセンス素子の一例を示す概略断面図である。
 以下、本発明を実施するための形態について説明する。
 図1に、本発明に係る有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう)の層構成の一例を示す。この有機EL素子は、光透過性の基板1の表面に光透過性の第1電極2を設け、この第1電極2の表面に、有機エレクトロルミネッセンス材料からなる有機発光層を含む有機層3を設け、さらにこの有機層3の表面に光反射性の第2電極4を設けることによって形成されている。そして、第1電極2と第2電極4との間に電圧を印加することによって有機層3で発光した光が、第1電極2及び基板1を通過して外部に取り出されるものであり、図1の形態は、基板1を介して光が取り出されるボトムエミッション構造と呼ばれる有機EL素子である。第1電極2と第2電極4のうち一方の電極が正極となり他方が陰極となるが、図示の形態では、第1電極2が正極、第2電極4が陰極となっている。
 基板1は、光透過性を有する透明基板であり、光を透過させるものであれば特に制限されることはなく適宜の基板材料によって形成されたものを使用することができる。基板1の材料としては、例えば、ソーダガラスや無アルカリガラス等のリジッドな透明ガラス板、ポリカーボネートやポリエチレンテレフタレート等のフレキシブルな透明プラスチック板などを用いることができる。基板1は、通常、第1電極2側の表面が平坦なものが用いられる。基板1の屈折率としては、例えば、1.2~1.8の範囲にすることができる。
 そして、本発明では、第1電極2を第1透明導電層5と第2透明導電層6とにより構成するものである。第1透明導電層5及び第2透明導電層6は、この順で基板1表面に積層されて形成されている。それにより、光取り出し性を向上させるとともに、第1電極2の表面を平坦なものにして短絡を防止することができる。
 第1透明導電層5は、導電性ナノ粒子又は導電性ナノワイヤーとバインダーとにより形成されている。すなわち、第1透明導電層は導電性の微細物質を含む樹脂層として形成されるものである。それにより、電気特性を低下させることなく光取り出し効率を向上することができる。
 導電性ナノ粒子としては、銀、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、錫酸化物、Au等の導電性の金属又は合金微粒子、導電性高分子からなる粒子、導電性の有機材料からなる粒子、ドーパント(ドナーまたはアクセプタ)含有有機粒子、導電体と導電性有機材料(高分子含む)の混合物からなる粒子を挙げることができる。導電性ナノ粒子の粒子径は、球状粒子の場合、粒子径1~100nmの範囲にすることができる。この範囲より大きいと透明性を損なうおそれがある。この範囲より小さいと導電性が低下するおそれがある。粒子径は、例えば、ダイナミック光散乱光度計(DLS-8000、大塚電子社製)を用いて測定することができる。
 また、導電性ナノワイヤーとしては、前記導電性ナノ粒子と同様の材料によってナノサイズのワイヤー状に形成されたものを用いることができる。導電性ナノワイヤーのサイズは、直径1~100nm、アスペクト比1~100の範囲にすることができる。直径やアスペクト比がこの範囲より大きいと透明性を損なうおそれがある。直径やアスペクト比がこの範囲より小さいと導電性が低下するおそれがある。導電性ナノワイヤーの直径やアスペクト比は、例えば、透過型電子顕微鏡(TEM)観察により測定することができる。また、粒子径は、測定ダイナミック光散乱光度計(DLS-8000、大塚電子社製)を用いて測定することができる。
 第1透明導電層5に用いられるバインダーとしては、透明性のある適宜の樹脂が用いられる。この樹脂としては、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリエーテルスルホン、ポリアリレート、ポリカーボネート樹脂、ポリウレタン、ポリアクリルニトリル、ポリビニルアセタール、ポリアミド、ポリイミド、ジアクリルフタレート樹脂、セルロース系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、その他の熱可塑性樹脂や、これらの樹脂を構成する単量体の2種以上の共重合体が挙げられる。
 第1透明導電層5において、導電性ナノ粒子又は導電性ナノワイヤーと、バインダーとの含有量比は、電極を形成した際の体積比で、例えば、導電性物質:樹脂=1:1~1:30の範囲に設定することができる。含有量比がこの範囲になることにより、導電性と透明性とをより両立させて、電気特性と光取り出し性とを向上させることができるものである。
 第1透明導電層5は、例えば、導電性ナノ粒子又は導電性ナノワイヤーを含む樹脂などの材料を、基板1表面に、スピンコート、スクリーン印刷、ディップコート、ダイコート、キャスト、スプレーコート、グラビアコートすることで形成することができる。したがって、気相法などを行う必要がなく、コーティングによって簡単に第1透明導電層5を形成することができるものである。
 ここで、第1透明導電層5の屈折率をn2とする。この屈折率n2は、1.4~1.8程度に設定することができる。屈折率n2がこの範囲になることにより、全反射ロスが低減しやすくなり、光取り出し効率がより向上するものである。
 第1透明導電層5は、ヘイズが30%以上であることが好ましい。第1透明導電層5のヘイズが30%以上になることにより、基板1の内部または第1電極2の内部に閉じ篭る光を散乱させることができ、外部へ取り出す光量を増大させることができる。これにより高効率の光取り出し向上をさらに達成できるものである。ヘイズの上限は99%程度にすることができる。ヘイズは、例えば、ヘイズメーターにより測定することができる。
 第2透明導電層6は導電性高分子により形成されている。それにより、この第2透明導電層6がオーバーコート層として機能して、第1電極2の表面を平坦にすることができるものである。そして、第2透明導電層6は導電性を有するので、電気特性を低下させることがない。したがって、短絡を低減し、電気特性を向上させるものである。また、第2透明導電層6は、透明な高分子の層として形成されているので、光取り出し性を向上させることができるものである。
 第2透明導電層6に用いられる導電性高分子としては、ポリチオフェン、ポリアニリン、ポリピロール、ポリフェニレン、ポリフェニレンビニレン、ポリアセチレン、ポリカルバゾール、ポリアセチレンなどの導電性高分子が挙げられるが、これらに限定されるものではない。また、これらを単独で用いてもよいし、組み合わせて用いてもよい。また、導電性を高めるために、ドーパントを用いたドーピングを行っても良い。ドーパントとしては、スルホン酸、ルイス酸、プロトン酸、アルカリ金属、アルカリ土類金属などが挙げられるが、これらに限定されるものではない。
 第2透明導電層6は、例えば、導電性高分子の分散液などの材料を、第1透明導電層5の表面に、スピンコート、スクリーン印刷、ディップコート、ダイコート、キャスト、スプレーコート、グラビアコートすることで形成することができる。したがって、気相法などを行う必要がなく、コーティングによって簡単に第2透明導電層6を形成することができるものである。
 第2透明導電層6は表面粗さRaが300nm以下であることが好ましい。すなわち、第1透明導電層6とは反対側の表面である第1電極2自体の表面の表面粗さが300nm以下となることが好ましいものである。第2透明導電層6の表面粗さRaが300nm以下になることによって、有機EL素子として機能するのに十分な平坦性を確実に達成することができ、高効率の光取り出し性と電気特性向上とをさらに両立できるものである。第2透明導電層6の表面粗さRaがこれ以上粗いと、短絡の危険性が高まるおそれがある。表面粗さRaはさらに好ましくは200nm以下にすることができる。表面粗さRaの下限としては特に制限がなく、例えば、測定器により測定される最小値とすることができる。表面粗さRaは、例えば、触針式表面形状測定器により測定することができる。
 ここで、第2透明導電層6の屈折率をn3とする。この屈折率n3は、1.4~1.8程度に設定することができる。屈折率n3がこの範囲になることにより、全反射ロスが低減しやすくなり、光取り出し効率がより向上するものである。
 第1電極2の膜厚としては、例えば、20~1000nmの範囲にすることができる。また第1透明導電層5の膜厚としては、例えば、20~500nmの範囲にすることができる。また第2透明導電層6の膜厚としては、例えば、10~1000nmの範囲にすることができる。これらの層の膜厚が上記範囲になることにより、より光取り出し性の向上と電気特性の向上とを両立させることができるものである。
 第1透明導電層5と第2透明導電層6との間の層界面は、平坦な面であってもよいが、凹凸7を有するような面にしてもよい。この凹凸7は導電性ナノ粒子又は導電性ナノワイヤーによって形成されたものであることが好ましい。すなわち、第1透明導電層5が、第2透明導電層6側の表面に導電性ナノ粒子又は導電性ナノワイヤーの一部が突出するなどによって形成された凹凸7を有するように形成されるものである。なお、突出した導電性ナノ粒子又は導電性ナノワイヤーの表面は、バインダーの樹脂が被覆されていてもよいし、導電性ナノ粒子又は導電性ナノワイヤー自体の表面が露出していてもよい。
 図2に、第1透明導電層5の表面に凹凸7を有する形態の一例を示す。凹凸7はランダムに形成されてもよいし、規則的に形成されていてもよい。また、凹凸7は界面全体に均等に形成されていてもよいし、部分的に形成されていてもよい。このように、導電性ナノ粒子又は導電性ナノワイヤーに起因する凹凸7を第1透明導電層5の表面に形成することで、第1透明導電層5と第2透明導電層6との界面での全反射ロスを低減することができる。また、第1透明導電層5の第2透明導電層6近傍での電気特性を改善することができる。したがって、高効率の光取り出しと電気特性向上とをより両立することが可能になるものである。なお、この凹凸7は第2透明導電層6の表面平坦性を損ねないように、突出幅が第2透明導電層6の厚み以下で設けられることが好ましい。
 有機層3において、有機発光層を形成する有機EL材料としては、例えば、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、及びこれらの誘導体、あるいは、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、及びこれらの発光性化合物からなる基を分子の一部分に有する化合物あるいは高分子等が挙げられる。また上記化合物に代表される蛍光色素由来の化合物のみならず、いわゆる燐光発光材料、例えばIr錯体、Os錯体、Pt錯体、ユーロピウム錯体等々の発光材料、又はそれらを分子内に有する化合物若しくは高分子も好適に用いることができる。これらの材料は、必要に応じて、適宜選択して用いることができる。
 また、有機層3には、有機発光層以外に、正孔注入層(ホール注入層)、正孔輸送層(ホール輸送層)、電子輸送層、電子注入層などの各層を適時、設けてもよい。なお、電子注入層はもとよりこれらの層は有機物質で作製されなくてもよいが、ここでは有機層3として説明する。
 ここで、有機層3の中に存在する有機発光層の屈折率をn1とする。有機発光層の屈折率n1は、1.4~1.8程度に設定することができる。屈折率n1がこの範囲になることにより、光取り出し効率がより向上するものである。ところで、有機発光層には、中空シリカ微粒子などの中空の微粒子を含有させてもよい。それにより、有機発光層の屈折率n1を低下させることができ、屈折率が好ましい値になるよう調整することができる。中空の微粒子の粒子径は、例えば、10~1000nm程度に設定することができる。
 また、有機層3の構成としては、第1電極2に有機発光層が直接隣接する場合もあるが、第1電極2と有機発光層との間に、ホール注入層やホール輸送層など、他の有機層が単数又は複数で介在する場合がある。そして、この場合において、第1電極2と有機発光層とに挟まれる単数又は複数の有機層の屈折率は、有機発光層と同程度のものにすることができる。第1電極2と有機発光層との間の有機層の屈折率が有機発光層と同程度になれば、有機層3内での屈折率段差がなくなり、光取り出し効率がより向上するものである。
 上記のように、本形態では、有機発光層の屈折率をn1とし、第1透明導電層の屈折率をn2とし、第2透明導電層の屈折率をn3としている。そして、このようにした場合に、n1≦n3≦n2、又は、n2≦n3≦n1の関係が成り立つことが好ましい。それにより、第2透明導電層6の屈折率n3が、第1透明導電層5の屈折率n1と有機発光層の屈折率n1との間の中間的な値になることによって、各層の面でのフレネル反射によるロスを低減できる。そして、これによりさらなる高効率の光取り出し性の向上を達成できるものである。また、屈折率がこのような関係になれば、外光の反射も低減することができ、発光の視認性も向上することができるものである。
 有機層3の第1電極2とは反対側には、第2電極4が設けられる。第2電極4の材料としては、Alなどを用いることができるが、Alと他の電極材料を組み合わせて積層構造などとして構成するものであってもよい。このような電極材料の組み合わせとしては、アルカリ金属とAlとの積層体、アルカリ金属と銀との積層体、アルカリ金属のハロゲン化物とAlとの積層体、アルカリ金属の酸化物とAlとの積層体、アルカリ土類金属や希土類金属とAlとの積層体、これらの金属種と他の金属との合金などが挙げられ、具体的には、例えばナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウムなどとAlとの積層体、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、LiF/Al混合物/積層体、Al/Al混合物などを例として挙げることができる。上記に挙げた材料や形態は一例であり、これらに限定されるものではない。光を第1電極2側から取り出す場合は反射性のよい材料を用いることが好ましい。なお、光を両面(第1電極2側及び第2電極4側の両方)から取り出すようにしてもよく、その場合、第2電極4に光透過性の材料を用いることが好ましい。
 有機EL素子の製造方法としては、特に限定されるものではなく、通常の方法により作製することができる。すなわち、基板1の表面に、適宜のコーティング法や蒸着法などによって、各層を順次積層することにより形成することができる。最後に、封止キャップ等で封止してもよい。
 次に、本発明を実施例によって具体的に説明する。
 [素子の作製]
 (実施例1)
 基板1として、無アルカリガラス板(コーニング社製「No.1737」)を用いた。この基板1の波長500nmでの屈折率は、1.50~1.53である。
 まず、ITOナノ粒子溶液(粒子径約40nm、シーアイ化成社製NanoTek(登録商標)ITCW15wt%-G30)に、ポリスチレン(PS、Aldrich社製)を分散した10wt%アセトン溶液を、体積比でITOナノ粒子:PMMA=1:8になるように混合し、混合溶液を調製した。
 この混合溶液を、基板1上にスピンコート法により、膜厚100nmになるように塗布し、120℃に加熱した。これにより、第1透明導電層5を形成した。屈折率をSCI社製FilmTekで測定したところ、この第1透明導電層5(PS膜)の屈折率(n2)は、波長650nmにおいて1.6であった。また、この第1透明導電層5のヘイズは約80%であった。また、第1透明導電層5の表面を走査型プローブ顕微鏡(SPM-9600、島津製作所社製)により観察したところ、ITOナノ粒子による凹凸7が層表面に形成されていた。なお、屈折率の測定については、別の記載がない限り、以下同様に、SCI社製FilmTekにより測定した。
 次に、第1透明導電層5の上に、質量比1:2.5のポリ(3,4-エチレンジオキシチオフェン):ポリアニオンポリ(スチレンスルホン酸塩)溶液(以下、PEDOT:PSSと略称、Clevios(登録商標)PH1000、H.C.Starck社製、組成比PEDOT:PSS=1:2.5、水溶液)をスピンコート法により塗布し、膜厚200nmになるように塗布し、120℃に加熱した。これにより、第2透明導電層6を形成した。なお、PEDOT:PSSは、導電性を有する高分子である。第2透明導電層6(PEDOT:PSS膜)の屈折率(n3)は、波長650nmにおいて1.55であった。また、第2透明導電層6の表面粗さRaは200nm以下だった。これにより正極となる第1電極2が形成された。
 そして、第2透明導電層6の上に、質量比1:6のPEDOT:PSS(Clevios(登録商標)P VP AI4083、H.S.Starck)を膜厚が約65nmになるようにスピンコーターで塗布して、200℃15分間焼成することによりホール注入層を形成した。このホール注入層の屈折率は、波長650nmにおいて約1.5であった。なお、ホール注入層に用いたPEDOT:PSSは、第2透明導電層6に用いたPEDOT:PSSとは、導電性の点で相違するものであり、前者は正孔注入として機能する材料、後者は電極として機能する高導電性材料である。さらに、TFB(poly[(9,9-dioctylfuluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)])(アメリカンダイソース社製「HoleTransport Polymer ADS259BE」)を溶媒であるTHFに溶解した溶液をホール注入層の上に膜厚12nmになるようにスピンコーターで塗布してTFB膜を形成し、これを200℃で10分間焼成することによって、ホール輸送層を得た。このホール輸送層の屈折率は、波長650nmにおいて1.7であった。
 次に、発光性を有する赤色高分子(アメリカンダイソース社製「Light Emittingpolymer ATS111RE」)を溶媒であるTHFに溶解した溶液を、ホール輸送層の上に膜厚が70nmになるように、スピンコーターで塗布し、100℃で10分間焼成することによって、有機発光層を形成した。この有機発光層の屈折率(n1)は、波長650nmにおいて1.7であった。
 さらに、有機発光層の上に電子注入層として、真空蒸着により、Ba(高純度化学社製)を5nmの膜厚で形成した。そして最後に、電子注入層の上に陰極となる第2電極4として、真空蒸着により、Al(高純度化学社製)を80nmの膜厚で形成した。
 真空蒸着の後、各層が形成された基板1を露点-80℃以下のドライ窒素雰囲気のグローブボックスに大気に暴露することなく搬送した。一方、硝子製の封止キャップに吸水剤(ダイニック社製)を貼り付けると共に、封止キャップの外周部に紫外線硬化樹脂製のシール剤を塗布したものを予め用意した。そして、グローブボックス内で各層を囲むように封止キャップを基板1にシール剤で張り合わせ、紫外線照射してシール剤を硬化させることによって、各層を封止キャップで封止した。これにより、図1又は2のような層構成の有機エレクトロルミネッセンス素子を得た。
 (実施例2)
 第1透明導電層5の材料として、ITOナノ粒子溶液(粒子径約40nm、シーアイ化成社製NanoTek(登録商標)ITCW15wt%-G30)に、ポリメチルメタクリレート(PMMA、Aldrich社製)を分散した10wt%アセトン溶液を、体積比でITOナノ粒子:PMMA=1:8になるように混合して調製した混合溶液を使用した。第1透明導電層5の膜厚は100nmとした。作製した第1透明導電層5の屈折率(n2)は、波長650nmにおいて1.51だった。第1透明導電層5のヘイズは約80%であった。また、第1透明導電層5の表面にはITO粒子による凹凸7が形成されていた。それ以外は、実施例1と同様にして、図1又は2のような層構成の有機エレクトロルミネッセンス素子を得た。
 (実施例3)
 有機発光層の材料として、赤色高分子(アメリカンダイソース社製「Light Emittingpolymer ATS111RE」)とイソプロパノール分散多孔質中空シリカ微粒子(触媒化成工業製「スルーリアCS60-IPA」、固形分20質量%、平均一次粒径60nm、外殻厚み約10nm)とを質量比1:1で溶媒であるTHFに溶解・分散した溶液を用いた。この溶液をホール輸送層の上に膜厚が70nmになるようにスピンコーターで塗布し、100℃で10分間焼成して有機発光層を得た。この有機発光層の屈折率(n3)は、波長650nmにおいて1.45だった。それ以外は、実施例1と同様にして、図1又は2のような層構成の有機エレクトロルミネッセンス素子を得た。
 (実施例4)
 第1透明導電層5の材料として、銀ナノワイヤー(直径約50nm、長さ約5μm、反射率90%以上)とPMMAとを、実施例2と同じ体積比率でアセトンに分散させた銀ナノワイヤー:PMMA溶液を使用した。銀ナノワイヤーは、公知論文「MaterialsChemistry and Physics vol.114 p333-338 “Preparation of Ag nanorods with highyield by polyol process”」に準じて作成したものであり、平均直径50nm、平均長さ5μmである。作製した第1透明導電層5の屈折率(n2)は、波長650nmにおいて1.50だった。第1透明導電層5のヘイズは約80%であった。また、第1透明導電層5の表面には銀ナノワイヤーによる凹凸7が形成されていた。それ以外は、実施例2と同様にして、図1又は2のような層構成の有機エレクトロルミネッセンス素子を得た。
 (比較例1)
 基板1の表面に、ITO膜(100nm、屈折率約1.9)をスパッタし、第1電極2を形成した。そしてこの第1電極2の上に、実施例1と同様の材料・方法により、ホール注入層、ホール輸送層、有機発光層、電子注入層を形成し、さらにその上に第2電極4を形成し、最後に封止キャップで封止することにより、有機エレクトロルミネッセンス素子を得た。
 (比較例2)
 実施例1と同じ方法によって得た第1透明導電層5の上に、第2透明導電層を設けることなく、実施例1と同様の材料・方法により、ホール注入層、ホール輸送層、有機発光層、電子注入層を形成し、さらにその上に第2電極4を形成し、最後に封止キャップで封止することにより、有機エレクトロルミネッセンス素子を得た。第1透明導電層5の表面粗さRaは400nm以上であった。
 [測定]
 各有機エレクトロルミネッセンス素子に電圧を印加して定法により量子効率(光の取り出し効率)を測定し、比較例1の外部量子効率を基準(1.0)とした場合の外部量子効率比を算出した。なお、2Vの電圧印加時の電流値を測定した。
 [結果]
 結果を表1に示す。
 表1に示すように、実施例1~4の素子は、電極がITO膜である比較例1に対して、光の取り出し効率が向上していることが確認された。また、第2透明導電層6の屈折率が、第1透明導電層5の屈折率と有機発光層の屈折率との間にある実施例2~4の素子は、実施例1に比べて、光の取り出し効率が向上していることが確認された。一方、第2透明導電層6を形成しなかった比較例2では、2V印加時の電流値が実施例1~4よりも高く、電極間の短絡が生じており発光も確認できなかった。これにより、各実施例における第2透明導電層6は、電極間の短絡を防止する効果があることが確認された。
Figure JPOXMLDOC01-appb-T000001
 
 1   基板
 2   第1電極
 3   有機層
 4   第2電極
 5   第1透明導電層
 6   第2透明導電層
 7   凹凸

Claims (5)

  1.  基板と、前記基板表面に形成され光透過性を有する第1電極と、少なくとも一つの有機発光層を含む有機層と、前記有機層の前記第1電極とは反対側に形成された第2電極とを含む有機エレクトロルミネッセンス素子であって、第1電極は、導電性ナノ粒子又は導電性ナノワイヤーとバインダーとからなる第1透明導電層、及び、導電性高分子からなる第2透明導電層がこの順で基板表面に形成されたものであることを特徴とする有機エレクトロルミネッセンス素子。
  2.  有機発光層の屈折率をn1とし、第1透明導電層の屈折率をn2とし、第2透明導電層の屈折率をn3とした場合に、n1≦n3≦n2、又は、n2≦n3≦n1の関係が成り立つことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  第2透明導電層は、第1透明導電層とは反対側の表面粗さRaが300nm以下であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4.  第1透明導電層のヘイズが30%以上であることを特徴とする請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  5.  第1透明導電層は、第2透明導電層側の表面に導電性ナノ粒子又は導電性ナノワイヤーによって形成された凹凸を有することを特徴とする請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
PCT/JP2011/062650 2010-06-25 2011-06-02 有機エレクトロルミネッセンス素子 WO2011162080A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-145671 2010-06-25
JP2010145671A JP2012009359A (ja) 2010-06-25 2010-06-25 有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2011162080A1 true WO2011162080A1 (ja) 2011-12-29

Family

ID=45371276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062650 WO2011162080A1 (ja) 2010-06-25 2011-06-02 有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
JP (1) JP2012009359A (ja)
TW (1) TW201212327A (ja)
WO (1) WO2011162080A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969856B2 (en) 2012-08-29 2015-03-03 General Electric Company OLED devices with internal outcoupling
CN111261792A (zh) * 2020-01-13 2020-06-09 采埃孚汽车科技(上海)有限公司 电致发光器件
CN112447932A (zh) * 2020-11-24 2021-03-05 合肥京东方卓印科技有限公司 一种有机电致发光显示面板及其制备方法、显示装置
US11469394B2 (en) 2019-03-22 2022-10-11 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Array substrate having enhanced light extraction efficiency, preparation method therefor, and display device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161639A1 (ja) * 2012-04-23 2013-10-31 コニカミノルタ株式会社 透明電極、透明電極の製造方法、電子デバイス、および有機電界発光素子
JP6042103B2 (ja) 2012-05-30 2016-12-14 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP5990049B2 (ja) 2012-07-05 2016-09-07 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP5973811B2 (ja) 2012-07-05 2016-08-23 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、面光源、及び照明装置
FR2996358B1 (fr) * 2012-10-03 2016-01-08 Hutchinson Electrode transparente et procede de fabrication associe
FR2996359B1 (fr) * 2012-10-03 2015-12-11 Hutchinson Electrode transparente conductrice et procede de fabrication associe
JP6074851B2 (ja) * 2013-03-29 2017-02-08 パナソニックIpマネジメント株式会社 導電性光学部材
JP6147542B2 (ja) 2013-04-01 2017-06-14 株式会社東芝 透明導電フィルムおよび電気素子
TWI513078B (zh) * 2013-12-26 2015-12-11 Univ Nat Chiao Tung 提高有機發光二極體之光萃取率之方法及其結構
TWI613849B (zh) * 2016-12-16 2018-02-01 財團法人工業技術研究院 發光裝置
CN109390478A (zh) * 2017-08-07 2019-02-26 固安翌光科技有限公司 一种有机电致发光器件
KR102116067B1 (ko) * 2018-09-12 2020-05-27 계명대학교 산학협력단 전도성 고분자를 활용한 반투명 유기태양광전지 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094130A1 (ja) * 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. 有機発光素子
JP2005317302A (ja) * 2004-04-28 2005-11-10 Nippon Zeon Co Ltd 有機el表示素子及びその製造方法
WO2005112513A1 (ja) * 2004-05-17 2005-11-24 Zeon Corporation エレクトロルミネッセンス素子、照明装置、および表示装置
JP2009129882A (ja) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極
JP2009181856A (ja) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd 透明導電膜付き透明板および有機エレクトロルミネッセンス素子
JP2010118165A (ja) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc 透明電極とその製造方法及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094130A1 (ja) * 2004-03-26 2005-10-06 Matsushita Electric Works, Ltd. 有機発光素子
JP2005317302A (ja) * 2004-04-28 2005-11-10 Nippon Zeon Co Ltd 有機el表示素子及びその製造方法
WO2005112513A1 (ja) * 2004-05-17 2005-11-24 Zeon Corporation エレクトロルミネッセンス素子、照明装置、および表示装置
JP2009129882A (ja) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極
JP2009181856A (ja) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd 透明導電膜付き透明板および有機エレクトロルミネッセンス素子
JP2010118165A (ja) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc 透明電極とその製造方法及びそれを用いた有機エレクトロルミネッセンス素子

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969856B2 (en) 2012-08-29 2015-03-03 General Electric Company OLED devices with internal outcoupling
US9515283B2 (en) 2012-08-29 2016-12-06 Boe Technology Group Co., Ltd. OLED devices with internal outcoupling
US9711748B2 (en) 2012-08-29 2017-07-18 Boe Technology Group Co., Ltd. OLED devices with internal outcoupling
US11469394B2 (en) 2019-03-22 2022-10-11 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Array substrate having enhanced light extraction efficiency, preparation method therefor, and display device
CN111261792A (zh) * 2020-01-13 2020-06-09 采埃孚汽车科技(上海)有限公司 电致发光器件
CN111261792B (zh) * 2020-01-13 2023-03-14 采埃孚汽车科技(上海)有限公司 电致发光器件
CN112447932A (zh) * 2020-11-24 2021-03-05 合肥京东方卓印科技有限公司 一种有机电致发光显示面板及其制备方法、显示装置
US11925048B2 (en) 2020-11-24 2024-03-05 Hefei Boe Joint Technology Co., Ltd. Display panel, method for manufacturing same, and display device

Also Published As

Publication number Publication date
JP2012009359A (ja) 2012-01-12
TW201212327A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
WO2011162080A1 (ja) 有機エレクトロルミネッセンス素子
CN103000817B (zh) 一种柔性有机发光二极管
CN102576168B (zh) 用于显示器、照明装置和太阳能电池的具有改善的光学性能和电性能的导电膜或电极
WO2012127746A1 (ja) 有機エレクトロルミネッセンス素子
US20150102307A1 (en) Electroluminescent element, method for manufacturing electroluminescent element, display device, and illumination device
WO2010018733A1 (ja) 透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法
WO2011161998A1 (ja) 有機el素子
EP2592672B1 (en) Organic light-emitting device and method for manufacturing same
WO2012120949A1 (ja) 透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子
JP6573160B2 (ja) 発光素子
EP2793281A1 (en) Organic electroluminescent element
JP2011014534A (ja) 有機エレクトロルミネッセンス素子
KR101654360B1 (ko) 유기 발광소자용 기판 및 그 제조방법
WO2013108618A1 (ja) 有機el素子及びその製造方法
US20050162071A1 (en) Electrode for organic light emitting device and organic light emitting device comprising the same
KR101650541B1 (ko) 플렉서블 기판 및 그 제조방법
JP2012009225A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2014229397A (ja) 導電膜の製造方法、導電膜、有機電子素子及びタッチパネル
JP2007080541A (ja) 有機透明導電体、その製造方法及び電流駆動型素子
TW201824299A (zh) 透明導電結構及具有該透明導電結構的光電元件
JP2012009336A (ja) 有機エレクトロルミネッセンス素子
JP2013089501A (ja) 有機エレクトロルミネッセンス素子
JP2015118863A (ja) 発光素子及びそれを用いた照明装置
JP2010118165A (ja) 透明電極とその製造方法及びそれを用いた有機エレクトロルミネッセンス素子
WO2012176692A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797966

Country of ref document: EP

Kind code of ref document: A1