TW201212327A - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
TW201212327A
TW201212327A TW100121285A TW100121285A TW201212327A TW 201212327 A TW201212327 A TW 201212327A TW 100121285 A TW100121285 A TW 100121285A TW 100121285 A TW100121285 A TW 100121285A TW 201212327 A TW201212327 A TW 201212327A
Authority
TW
Taiwan
Prior art keywords
layer
transparent conductive
conductive layer
organic
electrode
Prior art date
Application number
TW100121285A
Other languages
Chinese (zh)
Inventor
Masahiro Nakamura
Ryozo Fukuzaki
Masahito Yamana
Takeyuki Yamaki
Original Assignee
Panasonic Elec Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Elec Works Co Ltd filed Critical Panasonic Elec Works Co Ltd
Publication of TW201212327A publication Critical patent/TW201212327A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides an organic electroluminescence device capable of increasing light extraction efficiency and decreasing occurrence of short circuit, as well as having both high light extraction efficiency and enhancing electrical characteristics. The organic electroluminescence device comprises a substrate 1, a first electrode 2 formed on a surface of the substrate 1 having optical transparency, a organic layer 3 including at least one organic luminescent layer, and a second electrode 4 formed on opposite side of the organic layer 3 and the first electrode 2. The first electrode 2 is formed on the surface of the substrate 1 by a first transparent conductive layer 5 and a second transparent conductive layer 6 in turn, wherein the first transparent conductive layer 5 is made from a conductive nanoparticles or a conductive nanowire and an adhesive, and the second transparent conductive layer 6 is made from a conductive polymer.

Description

4 4201212327 、發明說明: 【發明所屬之技術頜域】 發日㈣'關於可⑽㈣H具、液晶背光、各種顯示 益,.,、員示裝置等之有機電致發光元件。 【先前技術】 射右光體之代表例而言,先前已知有機電致發光元 仵(有機EL元件)。 在圖3中顯示先前之有機電致發光元件之一談 機電致發光it件係藉由在透光性之基板丨之表面設置^光 性之第1電極2,在該第1電極2上設置含有 光材料構成之有機魏層之有機層3,在該有機層^設^ ,反射性第2電極4而形成。而且,藉由在第^電極^與 弟2電極4之間施加電壓,在有機層發出之光通過第1電 極2及基板1而取出至外部。 一般而言,透光性之第i電極2係使用仃〇、iz〇、 M0、GZQ、FTq、ATq料·氧化物作騎明導電材 料,以錢射法、真空蒸鐘法等氣相成膜法等形成。此 =法,要高價的裝置及大量的能量,因此期求減低製ς 、本及壞境負荷之麟。又,由於用此等方法製膜 透明導電膜之折射率比玻璃基板高,所以在形成有機電致 發光元件之情況,容㈣基板丨與第丨電極2之間之折射 造經反狀發生。心,該全反射損失成為取 光效率降低之主要原因。 近年,提出藉线用含有導電性奈錄子之黏合劑、容 ,進行塗布、印刷等’形成透明導電膜之方法(專利文獻小 若使用該方法’料選擇㈣導電性奈練子之黏合劑材 4/22 201212327 料’可控崎料電 成利於光學之’可形 粒子分散性供曰、Γ 件構造。但是,另一方面, =件高。二二電 有人鈥出在含有奈米粒子之透明導雷胺μ A ^ 不含粒子或粗子含旦,卜W人w 心—電蔣上面塗 法(專利文獻))。m㈣料等而改善平坦性之手 而,此寺方法雖然改善平坦性,伯士执 主曰之導電性比透明導 : 電特性降低之問題。 乂有所明作為電極時 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2_•⑻856 【發二利】文獻2]日本特開2_-5。5358號公報4 4201212327, invention description: [Technology of the jaw region of the invention] The Japanese (4) 'organic electroluminescence device for the (10) (four) H, liquid crystal backlight, various display benefits, and other devices. [Prior Art] For the representative example of the right-right light body, an organic electroluminescence element (organic EL element) has been previously known. In Fig. 3, one of the prior organic electroluminescent elements is shown in the electroluminescence element. The first electrode 2 is provided on the surface of the light-transmissive substrate, and the first electrode 2 is provided on the first electrode 2. An organic layer 3 containing an organic Wei layer composed of a light material is formed on the organic layer and is reflective from the second electrode 4. Further, by applying a voltage between the electrode 2 and the electrode 2, the light emitted from the organic layer is taken out to the outside through the first electrode 2 and the substrate 1. In general, the light-transmitting i-th electrode 2 is made of ruthenium, iz〇, M0, GZQ, FTq, ATq material and oxide as a conductive material, and is formed by a gas phase method or a vacuum vaporization method. A film method or the like is formed. This = method requires high-priced devices and a large amount of energy, so it is expected to reduce the burden of the system, the original and the environmental load. Further, since the refractive index of the transparent conductive film formed by these methods is higher than that of the glass substrate, in the case of forming the organic electroluminescent element, the refraction between the substrate (substrate) and the second electrode 2 occurs. The total reflection loss is the main cause of the decrease in light extraction efficiency. In recent years, it has been proposed to use a method of forming a transparent conductive film by using a binder containing an electrically conductive label, a capacity, coating, printing, etc. (Patent Literature: If the method is used, the material is selected (4) Conductive Nylon binder) Material 4/22 201212327 Material 'controllable raw material electricity to facilitate the optical 'visible particle dispersion supply, Γ piece construction. However, on the other hand, = high. Two or two electricity is found in the containing nanoparticles The transparent guide amine A A contains no particles or coarse inclusions, and the W-man-heart-electric coating method (patent literature)). m (four) material and the like to improve the flatness of the hand. Although this temple method improves the flatness, the electrical conductivity of the Boss is better than the transparent conductivity: the electrical characteristics are reduced. [Previous Technical Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2_•(8)856 [Fei Erli] Document 2] Japanese Patent Laid-Open No. 2_-5. 5358

[發明所欲解決之問題J 效率=#於上述而完成者,其係以提供可提高取光 弋,同時減低短路之發生,而兼具高 之電特性之有機電致發光元件為目的。 ^ [用於解決問題之手段] 本發明之有機電致發光元件包含: 板表面之具有透光性之第1電極、包括L、形成於該基 第9tr 之與該第1電極相反之側上之 電極,該有機電致發光元件之特徵 第1透明導電層及第2透明導電層以=总弟1電極係由 面者,巾# @X丨頁序形成於基板表 性太乎電層係由導電性奈米粒子或導電 不未線舆黏&劑所構成,該第2透明導電層係由導電性 5/22 • 4 201212327 高分子所構成。 率二述元件中,當將有機發光層之折射 ° 苐1透明V電層之折射率設為η2 ,第 電層之折射率設為„3時,成立nls == 之關係。 4 n2 = n3^nl 在上述有機電致發光元件中, =導電層相反之側之表面粗糙4Ra係以、m層以二: 係以=!=發光元件第1透明導電層之霧度 在上述有機電致發光元件中,第 透明導電層側之表面具有由導雷性太¥電層,以於第2 線所形成之凹凸為雛。上τ南好轉電性奈米 [發明之效果] 根據本發明,藉著為透紐 ,之第1透明導電層與第2透明導電極係由如上 月‘電層包含導電性微細物質,可^ 4 ’且第1透 光效率提高,· X,藉著第2透明,低電特性下使取 形成,該層有作為具抖導·高分子 :表面平坦化且減少短路,所以可力能’而使電極 電特性提高之有機紐發光元件。镇喊率取光及 【實施方式】 [用於實施發明之形態] =下,說_於實施本翻之形態。 下,稱】/有: 6/22 構成之一例。該有機EL元 201212327 件’係藉由在透光性基板1之表面上設置透光性之第i電 極2’在該第1電極2之表面上設置包含由有機電致發光材 枓所構成之有機發光層之有機層3,然後藉由在該有機層3 之,面上設置光反射性之第2電極4而形成。而且,藉著 在第1電極2與第2電極4之間施加電屡 所發出之光,係通過第1電極2及基板1而取出至外料中 由基板1取出光之所謂底部發光構造之有 ===與第2電極中之任-電極為正極時另 + 之職中,第1電極為正極,第2 電極為陰極。 72 將益絲之剌縣,其只要可使光透過 3科而r例如可使用納破璃或無驗玻璃等剛性透明反破 璃基板,4碳酸酯或聚對苯 破 板:。就基板i而言’通常使用第‘ 坦者。基板〗之折射率可在,例如,8=面為平 而且’在本發明中第i電第:圍。 及第2透明導電層6所構成者 ^ 1翻導電層5 透明導制6係關_躺㈣成5及第2 可提高取紐,同時使第丨電極 基板1表面。藉此, 止短路。 表面成為平坦者而防 第1透明導電層5係 線及黏合劑所形成。亦即,第i粒子或導電性奈米 性微細物質之樹脂層之形式形成。4 v電層係以包含導電 性下,提高取光效率。7 鳍此,可在不降低電特 说導電性奈米粒子而言,可 由銀、銦-錫氧化物 7/22 201212327 στο)、銦-鋅氧化物(IZ0)、錫氧化物、金等導電性金屬或 合金微粒子、導電性高分子所構成之粒子;由導電性有機 材料所構成之粒子;含有摻雜劑(供體或受體)之有機粒子; 由導電體與導電性有機材料(包含高分子)之混合物所構成 之粒子。導電性奈米粒子之粒徑,在球狀粒子之情況,粒 徑可在1〜IGGnm之範圍。若_範圍大有減損透明性之 虞:若比該範圍小則有導電性降低之虞。粒徑,可用例如 動態光散射光度計(DLS-8GGG,大塚電子公賴)來測定。 又,就上述導電性奈米線而言,可使用以與上述導電 性奈米粒子_之材㈣絲米尺寸之綠者。導電性奈 = 良之尺寸可在直徑1〜l〇〇nm,縱橫比1〜⑽之範圍内。 若直徑或縱橫比大於該範圍則有減損透明性之虞。‘若直护 或縱橫比小於該範圍則有導電性降低之虞。導電性奈米線 2徑及赌tb,例如,可藉由朗㈣子賴鏡(TEM) 翁而測定。又,粒徑係用動態光散射光度計(DLS__, 大塚電子公司製)來測定。 就在第1透明導電層5中所用之黏合劑而言,可使用 5有之適當樹脂。該樹脂可列舉例如丙烯酸系樹 月曰4乙細、聚_、聚對苯二甲 酸甲醋(PMMA)、聚笼膝互… 取T悉円邓 ^ 烯、聚醚砜、聚芳酯、聚碳酸酯樹 月曰、聚胺基曱酸酯、聚丙嫌眸 聚醯亞胺、鄰笨二甲酸乙醜祕、聚_、 取&甲·夂一丙烯酸酯樹脂、纖維素系樹脂、 ::2種乙烯、聚乙酸乙_、其他熱可塑性 冓成此等樹脂之單體之共聚物。 米線與黏合劑之含ϋ 5:性奈米粒子或導電性奈 里比砘形成電極時之體積比而言,可 8/22 201212327 ^在,例如’導電性物質:樹脂=l: w : 3〇之範圍 範圍中’可成為兼具導電性及透明性,“ 电特性及取光性提高者。 之 叙早明導電層5 ’可藉由’例如’將包含導電性奈米 印奈米線之樹脂等材料,以旋轉式塗布、網版 1、d式塗布、模具式塗布、麟式 布:凹印塗布形成在基板,表面上。因此,可在 订亂相法等下’藉由塗布簡單地形成第1透明導電層5。 將中’將第1透明導電層5之折射率1^為112。可 定為約h4〜u。藉由使折射率η2在該範 易減低王反射損失,並更為提高取光效率。 使第電層5之霧度係以30%以上為較佳。藉由 透月¥電層5之霧度成為30%以上,可使隔絕在基 :部::!或ί1電極2之内部之光散射’而增大取出至 減,可進—錢成高效率取光之提高£ 又—(可達約99%。可用,例如,霧度計測定霧度。 =_導電層6储由導電性高分子形成,藉此 9、料電層6具有作為面塗層之功能,並可使第 雷^之表面平坦。而且,由於第2透明導電層6具有盖 〜’故而不會使電特性降低。因此,可減低短路,並名 又,苐2透明導電層6,由於以透明高分子U <形式形成’所以可使取光性提高。 赌2透明導1層6之導·高分子而言,雖巧 J 、聚苯胺、聚轉、聚伸苯基㈣、 2本基伸乙婦基、聚乙块、聚十坐、聚乙快等導電性高 刀,但不限於此等。又,可單獨使用此等,也可將此等 9/22 201212327 組合使用。X,為了提高 ‘ 雜。作為摻雜劑者,雖可列舉確酸摻雜劑之摻 鹼金屬、驗土類金屬等,但不限於此等。‘文、質子駿、 第2透明導電層6, 、 ° =料,轉式塗布、;版印:將:c分散 ;:=布、噴灑式塗布、凹=== 遌料电層5之表面。因此 4在弟1 藉由塗布簡單地形成第2透明導電^;要進仃氣相法等下, 以下透明導電層6而$,表二糙度⑹係以· 以下為較佳。亦即,與第i透明導雷以 即第1電極2本身之表面之 ^ /目反之側之表面, 較佳。藉由第2透明導電層以300随以下為 以下,可確實達成在作為i機Ra成為300聰 之平坦性,而可進一步兼力能所需 若第2透料電層6之表取絲及電特性提高。 生短路之危險性變高之虞。f 南於上述值,則有發 例丄之下限沒有特殊限制,可視作, 例如觸針式表面形朗定器^定表面粗糙度⑸可藉由, 圍lit: u〜u °藉由使折射率μ在該範 圍全反射損失,並更為提純級^ 又,;、=2之膜厚可在,例如,2〇〜i〇〇〇nm之範圍。 m 3冷電層5之膜厚可在,例如,20〜500nm之範 之1 /透明導電層6之臈厚可在,例如,10〜!〇〇_ 之粑圍。精由使此等層之膜厚在上述範圍,可兼具取光性 10/22 201212327 之提之提高。 第1透明導電屛s也— 雖然可為平電層6之間之層界面 以為由導電性奈米:1凸7之面。該凹凸? 即,第1透明導電層4=線形成者為較佳。亦 凹凸:係藉由導電性奈之方式形成者,該 出於第2透明導電層6側之=¾性奈米線之—部分突 導電性奈餘子或導電、=形成。再者,突出的 ,亦可為導電粒以黏合劑之樹脂 露出。 飞導书性奈米線本身之表面 在圖2中,展現在第丨透明 之形態之-例。凹凸7可任意 日,之表面具有凹凸7 又,凹凸7可在整個尺 ^ 7 ,也可規則地形成。 如此,藉著在第 奈米粒子或導電性奈米線之J凸:導電性 層5與第2透明導電層6之界面之全:=1Ϊ明導電 善第1透料電層5在第2透日㈣政。又’可改 =,更可兼具高效率之料及電^提特: ^以1成HI第2透明導電層6之表面平坦性,突出幅 度以4成第2透明導電層6之厚度以下為較佳。 在有機層+3中’可以形成有機發光層之有機乱材料可 列舉例如為蒽、萘、i£(P}Tene;)、 (coronene)、茈(perylene)、酞茈(phthal〇peryiene)、芡茈 (naphthai〇perylene)、二苯基丁二烯、四笨基丁二烯、^豆 素(cumarin)、噁二唑、雙笨并噁唑啉、雙(苯乙烯)(Bis styryl)、環戊二烯、喹啉金屬錯合物、參(8_羥基喹啉)鋁錯 11/22 3 201212327 合物、參(4-曱基-8-喹啉)紹錯合物、参(5_苯基冬喧啉)紹錯 合物、胺基噎淋金屬錯合物、苯并喹琳金屬錯合物、三_(對 聯三苯-4-基)胺、哌喃、喹吖酮(quiacrid〇ne)、紅螢烯 (mbrene)、及此等之衍生物;或者丨_芳基_2,5_二(2_噻吩基) °比σ各衍生物、二苯乙烯基苯衍生物、苯乙烯基伸芳基 (distyrylarylene)衍生物、苯乙烯基胺衍生物;以及在分子之 一部分中具有由此等發光性化合物構成之基之化合物或高 分子等。又,除了適合使用以上述化合物為代表之來自螢 光色素之化合物之外,亦適合使用所謂的磷光發光材料, 例如Ir錯合物、0s錯合物、Pt錯合物、銪錯合物等發光材 料,或者在分子内具有此等之化合物或高分子。如需要, 可適當選擇此等材料來使用。 一人,隹有機層3中,可在有機發光層以外,適時設置 電洞注入層(hole injection iayer)、電洞輸送層 transporting layer)、電子輸送層、電子注入層等各層。再者, 就電子注人層而言,雖然此等層當然非由有機物質製作, 但在本文中仍在有機層3中說明。 f本文中’將存在於有機層3中之有機發光層之折射 率设為nl。有機發光層之折射率nl可設定為約^ 8。 折射率nl在該範圍内,可更為提高取光效率。且說, 柃發光層甲,可含有中空矽石微粒 允 光層一降低,二:整 =:中空微粒子之粒徑可設定成,例如,約 畜接有機層3之構成而言,雖然有機發光層有時亦 雜於弟1電極2’但在第i電極2與有機發光層之間, 12/22 201212327 在單數錢數狀制以層或f洞輸送層等 2 M 、。而且,在該情況,可將第1電極2與有機發 機之雜錢㈣錢狀折射率難成射 之“ ^目Γ之程度。若在第1電極2與有機發光層之間 内之折二:?::!機:光層為相同程度,則在有機層3 ·,又有區奴差異,而可更為提高取光效率。 將第 折射率% μ , 將第2透明導電層之 ^ U 況 mnlSn3sn2 < η2&3 成為第日°猎此’第2透明導電層6之折射率η3 nl之間之 1 之折射率η2與有機發光層之折射率 反射所Di。此可減低在各層之表面菲涅耳(Fresnel) 而I藉此可達成高效率取光性之進 之反射,_可提高義,亦可減低外部光 桎4 3《㈣1電極2減之侧上設置第2電 極4。就弟2電極4夕枓姓二丄 , Λ1 . ^ 之材枓而吕,雖然可使用Α1等,作也 材料組合,以積層構造等之形式構: 之組合而言’可列舉鹼金屬與A1之積 ^於全屬g、X之積層體、驗金屬之鹵化物與A1之積層 ί ΑΓ之積;與Al之積層體、驗土金屬或稀土金屬 鎂銀此』I鋼混合物、銘_ 層體、删细合物等作 ^ 或形態為-例’但非限定於此等。從第 13/22 201212327 之情況,贼料反雜之㈣為錄。再者,可從兩表 面(★第1電極2側及第2電極4側二者)取出光,在該情況, 於第2電極4使用透光性材料為較佳。 ,有機EL元件之製造方法沒有特殊限定,可藉由通常之 方法衣作。亦即’在基板!之表面可藉由適當之塗布法 或蒸鑛法等依次積層各層而形成。最後,可用密封蓋等密 封。 [實施例] 以下,藉由實施例具體說明本發明。 [元件之製作] (實施例1) 使用無鹼玻璃板(Corning公司製「Ν〇·ΐ737」)作為基板 1。該基板1於波長5〇〇nm之折射率為15〇〜153。 _首先’在1το奈米粒子溶液(粒徑約40nm,C.I.化成公 司製之NanoTek(註冊商標)’ ITCWI5重量%-G30)中,將分 散有聚笨乙烯(PS,Aldrieh公司製)之1〇重量%丙酮溶液以 使ITO奈米粒子與PS之體積比成為丨:8之方式混入,而 调製成混合溶液。 藉由旋轉式塗布法,將該混合溶液以使膜厚成為100 之方式塗布在基板1上,並於12〇。〇加熱。藉此,形成 第1透明導電層5。用SCI公司製之FilmTek測定折射率時 該第1透明導電膜層5(PS膜)之折射率(n2),於波長65〇nm 為I.6。又,該第1透明導電膜層5之霧度為約80%。又, 藉由掃描型探針顯微鏡(SPM-9600,島津製作所公司製)觀 察第1透料電關5之表糾,見到在層表面形成有由 ΓΓΟ奈米粒子所造成之凹凸7。再者,在折射率之測定方 14/22 201212327 面’若沒有其他記載,則以下同樣係藉由sci公司製之 FilmTek來測定。 接著,在第1透明導電層5之上,藉由旋轉式塗布法, 二使膜厚絲2〇〇nm之方式,塗布質量比為1:2.5之聚(Μ-[Problem to be Solved by the Invention J Efficiency = # Completed above, it is intended to provide an organic electroluminescence device having high electrical characteristics while providing an increase in light extraction while reducing the occurrence of a short circuit. [Means for Solving the Problem] The organic electroluminescence device of the present invention comprises: a first electrode having a light transmissive property on the surface of the plate, comprising L, and a side opposite to the first electrode formed on the ninth of the substrate The electrode, the characteristic of the organic electroluminescent device, the first transparent conductive layer and the second transparent conductive layer are formed by the surface of the total electrode 1 and the surface of the substrate is formed by the surface of the substrate. It consists of conductive nanoparticles or conductive non-wire-bonding agents, and the second transparent conductive layer is made of a conductive polymer of 5/22 • 4 201212327. In the element of the second dimension, when the refractive index of the organic light-emitting layer is η1, the refractive index of the transparent V-electrode layer is η2, and the refractive index of the electric layer is set to „3, the relationship of nls== is established. 4 n2 = n3 ^nl In the above organic electroluminescence device, the surface roughness of the opposite side of the conductive layer is 4Ra, and the m layer is two:: =! = haze of the first transparent conductive layer of the light-emitting element in the above organic electroluminescence In the element, the surface on the side of the transparent conductive layer has a conductive layer that is electrically conductive, and the unevenness formed by the second line is abrupt. The upper surface of the conductive layer is good. [Effect of the invention] According to the present invention, In the first transparent conductive layer and the second transparent conductive electrode, the first transparent conductive layer and the second transparent conductive electrode are made of the conductive layer containing the conductive fine substance as described above, and the first light transmission efficiency is improved, and X is transparent. Under the low-electric characteristics, the layer is formed as an organic neon light-emitting element having a dimming and polymer: the surface is flattened and the short-circuit is reduced, so that the electric properties of the electrode can be improved. [Embodiment] [Formation for carrying out the invention] = Next, say _ in the form of the implementation of the present. 】/Yes: 6/22 is an example. The organic EL element 201212327 is provided on the surface of the first electrode 2 by providing a translucent ith electrode 2' on the surface of the light-transmitting substrate 1. The organic layer 3 including the organic light-emitting layer composed of the organic electroluminescent material is formed by providing the second electrode 4 having light reflectivity on the surface of the organic layer 3. Further, by the first The light that is repeatedly emitted between the electrode 2 and the second electrode 4 is extracted by the first electrode 2 and the substrate 1 and is taken out into the external material. The so-called bottom emission structure in which the light is taken out from the substrate 1 is === and the second When the electrode is the positive electrode and the positive electrode is the positive electrode, the first electrode is the positive electrode and the second electrode is the cathode. 72 The Yixian County can be used to pass light through 3 families, for example, Rigid transparent anti-glass substrate such as glass or non-test glass, 4 carbonate or poly-p-phenyl broken board: For the substrate i, 'usually the first' is used. The refractive index of the substrate can be, for example, 8=face It is flat and 'in the present invention, the i-th electric: the circumference and the second transparent conductive layer 6 constitute a ^1 conductive layer 5 transparent guide 6 _ lie (4) into 5 and 2 to increase the pick-up and simultaneously make the surface of the second electrode substrate 1. Therefore, the short circuit is formed. The surface is flat and the first transparent conductive layer 5 is prevented from being formed by the line and the adhesive. That is, the i-th particle or the resin layer of the conductive nano-fine substance is formed. The electric layer of the 4v electric layer is included in the conductivity, and the light-receiving efficiency is improved. 7 Fin, the conductivity can be improved without lowering the electric conductivity. The rice particles may be composed of silver, indium-tin oxide 7/22 201212327 στο), indium-zinc oxide (IZ0), tin oxide, gold or other conductive metal or alloy fine particles, and conductive polymer. a particle composed of a conductive organic material; an organic particle containing a dopant (donor or acceptor); and a particle composed of a mixture of a conductive material and a conductive organic material (including a polymer). The particle diameter of the conductive nanoparticles may be in the range of 1 to IGGnm in the case of spherical particles. If the _ range is large, it will reduce the transparency. If it is smaller than this range, there is a decrease in conductivity. The particle diameter can be measured, for example, by a dynamic light scattering photometer (DLS-8GGG, Otsuka Electronics Co., Ltd.). Further, in the above-mentioned conductive nanowire, it is possible to use a green color which is the same as the material of the above-mentioned conductive nanoparticle. Conductive Nai = Good size can be in the range of 1 to l 〇〇 nm in diameter and 1 to (10) in aspect ratio. If the diameter or aspect ratio is larger than the range, the transparency is impaired. ‘If the direct protection or aspect ratio is less than this range, there is a decrease in conductivity. The conductive nanowire 2 and the gambling tb can be measured, for example, by a ray (TEM). Further, the particle size was measured by a dynamic light scattering photometer (DLS__, manufactured by Otsuka Electronics Co., Ltd.). As the binder used in the first transparent conductive layer 5, a suitable resin of 5 may be used. The resin may, for example, be an acrylic tree, a fluorene, a poly-, a poly-m-butyl phthalate (PMMA), a poly-cage, a stalk, a smectite, a polyether sulfone, a polyarylate, a poly Carbonate tree sorghum, polyamino phthalate, polyacrylamide, smectic acid, smectic acid, poly-, s- & s- acrylate resin, cellulose resin, :: Two kinds of ethylene, polyacetic acid, and other thermoplastics are copolymerized into monomers of these resins. The bismuth of the rice noodles and the binder 5: the volume ratio of the nano-particles or the conductive nalibene to the electrode, can be 8/22 201212327 ^, for example, 'conductive substance: resin = l: w : 3 In the range of 〇, it can be both conductive and transparent, and those with improved electrical properties and light extraction. The conductive layer 5' can be made of 'negative' to contain conductive nano-nanowires. The resin and the like are formed by spin coating, screen printing, d-type coating, mold coating, and lining: gravure coating on the surface of the substrate. Therefore, it can be coated by a random phase method or the like. The first transparent conductive layer 5 is simply formed. The refractive index of the first transparent conductive layer 5 is set to 112. It can be determined to be about h4 to u. By making the refractive index η2 in the Fan easy to reduce the reflection loss of the king Moreover, the light extraction efficiency is further improved. The haze of the electric layer 5 is preferably 30% or more. The haze of the electric layer 5 is 30% or more, so that the base can be isolated: :! or ί1 The light scattering inside the electrode 2 is increased and taken out to minus, and the increase can be made into a high efficiency light gain. Also - (up to about 99%) For example, a haze meter can be used to measure the haze. = The conductive layer 6 is formed of a conductive polymer, whereby the material layer 6 has a function as a top coat layer and can flatten the surface of the first layer. Further, since the second transparent conductive layer 6 has a cover ~, the electrical characteristics are not lowered. Therefore, the short circuit can be reduced, and the transparent conductive layer 6 is formed in the form of a transparent polymer U < It can improve the light-receiving property. Gaming 2 Transparent Conductor 1 layer 6 Guide · Polymer, although J, polyaniline, poly-transfer, poly-phenylene (4), 2 base-stretching, poly-b-block, poly Conductive high-knives such as ten-seat, poly-b-fast, etc., but not limited to this. Also, you can use these separately, or you can use these 9/22 201212327 in combination. X, in order to improve 'mixed. As a dopant Although it is possible to exemplify an alkali metal doped with an acid dopant, a soil for a soil test, etc., it is not limited thereto. 'Text, proton, second transparent conductive layer 6, , ° = material, transfer coating, version Printing: will: c dispersion;: = cloth, spray coating, concave == = the surface of the electric layer 5 of the coating. Therefore 4 in the brother 1 by coating simply The second transparent conductive material; the following transparent conductive layer 6 and the like, and the second roughness (6) is preferably the following. The surface of the surface of the electrode 2 itself is preferably the surface of the surface of the electrode 2, and the surface of the second transparent conductive layer is 300 or less, and the flatness of the device can be achieved. If the force energy is required, the wire drawing and electrical characteristics of the second dielectric layer 6 are improved. The risk of the short circuit is high. f South is above the above value, and there is no special limitation on the lower limit of the case, which can be regarded as For example, the stylus-type surface-shaped sizing device can determine the surface roughness (5) by using a circle: u~u ° by causing the refractive index μ to be totally reflected in the range, and purifying the level again; The film thickness of =2 can be, for example, in the range of 2 〇 to i 〇〇〇 nm. The film thickness of the m 3 cold electric layer 5 may be, for example, a thickness of 1 to 20 nm / 1 of the transparent conductive layer 6 may be, for example, 10 to 〇〇 。. Since the film thickness of these layers is in the above range, it is possible to improve the light-receiving property 10/22 201212327. The first transparent conductive crucible s is also - although it may be the layer interface between the flat electric layers 6 to be the surface of the conductive nano: 1 convex 7. This unevenness, that is, the first transparent conductive layer 4 = line formation is preferable. Also, the unevenness is formed by a conductive type, which is formed by the =3⁄4 nanowire of the side of the second transparent conductive layer 6 and is partially conductive or negatively conductive. Furthermore, it is also possible that the conductive particles are exposed by the resin of the adhesive. The surface of the flying guide nanowire itself is shown in Fig. 2, in the form of the third transparent form. The unevenness 7 can be any day, and the surface has irregularities 7 and the unevenness 7 can be formed regularly over the entire ruler. Thus, by the J-thickness of the first nanoparticle or the conductive nanowire: the interface between the conductive layer 5 and the second transparent conductive layer 6: Ϊ 导电 导电 导电 导电 第 第 第 第 第 第 第 第Through the day (four) politics. Moreover, it can be changed to a higher efficiency material and electricity. The surface flatness of the second transparent conductive layer 6 is 1%, and the thickness of the second transparent conductive layer 6 is less than 4%. Preferably. Examples of the organic disorder material in which the organic light-emitting layer can be formed in the organic layer +3 include, for example, anthracene, naphthalene, iP(T}Tene;), (coronene), perylene, phthalocyanine, Naphthai〇perylene, diphenylbutadiene, tetraphenylbutadiene, cumarin, oxadiazole, bisoxazoline, bis(styrene), Bis styryl, Cyclopentadiene, quinoline metal complex, ginseng (8-hydroxyquinoline) aluminum wrong 11/22 3 201212327, ginseng (4-mercapto-8-quinoline), and ginseng (5) _Phenylprotoporphyrin), complex amine ruthenium metal complex, benzoquinolin metal complex, tris-(p-triphenyl-4-yl)amine, piperazine, quinophthalone ( Quiacrid〇ne), brene, and derivatives thereof; or 丨_aryl-2,5_bis(2_thienyl) ° ratio σ derivatives, distyrylbenzene derivatives And a styryl styrylarylene derivative, a styrylamine derivative; and a compound or a polymer having a group consisting of such a luminescent compound in one part of the molecule. Further, in addition to a compound derived from a fluorescent pigment represented by the above compound, a so-called phosphorescent material such as an Ir complex, a 0s complex, a Pt complex, a ruthenium complex, or the like is suitably used. A luminescent material or a compound or polymer having such a molecule. If necessary, these materials can be appropriately selected for use. In one person, in the organic layer 3, a layer such as a hole injection iayer, a transport layer, an electron transport layer, and an electron injection layer may be provided in addition to the organic light-emitting layer. Furthermore, in the case of an electron-injecting layer, although these layers are of course not made of organic substances, they are still described in the organic layer 3 herein. f The refractive index of the organic light-emitting layer present in the organic layer 3 is set to n1 herein. The refractive index n1 of the organic light-emitting layer can be set to about VIII. When the refractive index nl is within this range, the light extraction efficiency can be further improved. In addition, the luminescent layer A may contain hollow smectite particles to reduce the light-receiving layer, and the size of the hollow granules may be set to, for example, the composition of the organic layer 3, although the organic luminescent layer Sometimes it is also mixed with the first electrode 2' but between the ith electrode 2 and the organic light-emitting layer, and 12/22 201212327 is a layer or a f-hole transport layer of 2 M in a single number. Further, in this case, it is possible to make the money of the first electrode 2 and the organic machine (4) difficult to form a refractive index. If it is between the first electrode 2 and the organic light-emitting layer, Two:?::! Machine: If the light layer is the same level, then in the organic layer 3 ·, there is a difference in the area of the slave, and the light extraction efficiency can be further improved. The first refractive index % μ, the second transparent conductive layer ^ U condition mnlSn3sn2 <η2&3 becomes the refractive index η2 of 1 between the refractive index η3 nl of the second transparent conductive layer 6 and the refractive index reflection of the organic light-emitting layer Di. This can be reduced in The surface of each layer is Fresnel and I can achieve high efficiency light-receiving reflection, _ can improve the sense, can also reduce the external light 桎 4 3 (4) 1 electrode 2 minus the side of the second electrode 4. The brother 2 electrode 4 枓 枓 枓 丄 丄 Λ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The product with A1 is a product of all the layers of g and X, the product of the metal halide and the layer of A1; the layer with Al, the soil of the soil or Soil metal, magnesium, silver, 』I steel mixture, Ming _ layer body, deletion of the composition, etc. or form - for example - but not limited to this. From the 13/22 201212327 situation, the thief material is mixed (4) In addition, light can be taken out from both surfaces (the first electrode 2 side and the second electrode 4 side). In this case, it is preferable to use a light-transmitting material for the second electrode 4. The method for producing the element is not particularly limited, and it can be formed by a usual method. That is, the surface of the substrate can be formed by sequentially laminating the layers by a suitable coating method or a steaming method. Finally, it can be sealed with a sealing cap or the like. [Examples] Hereinafter, the present invention will be specifically described by way of examples. [Production of the device] (Example 1) An alkali-free glass plate ("Ν〇·ΐ737" manufactured by Corning Co., Ltd.) was used as the substrate 1. The substrate 1 has a refractive index of 15 〇 to 153 at a wavelength of 5 〇〇 nm. _ First of all, in a 1το nanoparticle solution (a particle size of about 40 nm, NanoTek (registered trademark) 'ITCWI 5 wt%-G30 manufactured by CI Kasei Co., Ltd.), 1 聚 of polystyrene (PS, manufactured by Aldrieh Co., Ltd.) was dispersed. The weight% acetone solution was mixed so that the volume ratio of the ITO nanoparticle to the PS became 丨:8, and the mixed solution was prepared. The mixed solution was applied onto the substrate 1 by a spin coating method so as to have a film thickness of 100, and was applied at 12 Torr. 〇 heating. Thereby, the first transparent conductive layer 5 is formed. When the refractive index was measured by FilmTek manufactured by SCI Co., the refractive index (n2) of the first transparent conductive film layer 5 (PS film) was 1.6 at a wavelength of 65 〇 nm. Further, the first transparent conductive film layer 5 has a haze of about 80%. Further, the scanning probe microscope (SPM-9600, manufactured by Shimadzu Corporation) was observed to observe the first dielectric switch 5, and it was found that irregularities 7 caused by the nanoparticles were formed on the surface of the layer. In addition, in the measurement of the refractive index 14/22 201212327, unless otherwise stated, the following is also measured by FilmTek manufactured by Sci Corporation. Next, on the first transparent conductive layer 5, by applying a film thickness of 2 〇〇 nm by a spin coating method, a coating mass ratio of 1:2.5 is applied.

料吩)·聚麟子(笨㈣魏鹽)隸(以下簡稱為 DOT : PSS ’ clevi〇s(註冊商標)pHi_,h c屬砂公 ^’組成紐膽:卩制:…水糊’並於職 ^熱。藉此,形成第2透明導電層6。再者,PED0T:PSS 4丁'具有導電性之高分子0第7、系Material ))·Ju Linzi (stupid (four) Wei salt) Li (hereinafter referred to as DOT: PSS ' clevi〇s (registered trademark) pHi_, hc is a sand public ^ 'combination: 卩 system: ... water paste 'and The second transparent conductive layer 6 is formed by this. Further, PED0T: PSS 4 is a conductive polymer.

卞弟2透明導電層6(PED〇T : PSS =之折射率㈣於波長65〇nm為155。又,第2透明導電 ==粗糙度Ra為·_以下。藉此,形成為正極之 然後,在第2透明導電層6之上,藉由用 法,以使膜厚成為約65nm之方式塗布 = 觸τ: PSS(a_s(註冊商標)p vp 3加之 並於20(TC燒結15分鐘,形成 H.S.Starck) 之折射率於波長㈣nm為約注入層 PEDOT : PSS,與用於第2透 ^射入層之卞2 2 transparent conductive layer 6 (PED 〇 T: PSS = refractive index (four) at a wavelength of 65 〇 nm is 155. Further, the second transparent conductive == roughness Ra is _ or less. Thereby, it is formed as a positive electrode and then On the second transparent conductive layer 6, by using a film thickness of about 65 nm, it is applied as a touch: τ: PSS (a_s (registered trademark) p vp 3 and formed at 20 (TC sintering for 15 minutes). HSStarck) has a refractive index at the wavelength (four) nm of about the injection layer PEDOT: PSS, and is used for the second permeable layer.

在導雪柹太而π门义心 V電層6之PEDOT : PSS 後者則為具有作為電極之功能之高導電性 由使用旋轉式塗布機,以賴厚成為12再者’錯 TFB(聚二辛基g_27__ A二_之方式,將 笨其)- I其脸(4,4,供(4_第二-丁基 本基)一本基私贿ican Dye s〇⑽ePEDOT: PSS in the lead 柹 而 义 V V 电 电 电 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者 后者辛基 g_27__ A two way, will be stupid) - I its face (4, 4, for (4_ second-butyl base) a base private bribe ican Dye s〇 (10)e

Transp〇rtPolymerADS25舰」溶於溶劑 ^衣触 布於電洞注入層之上,形成TFB膜’並將2成之溶液塗 電〇輸运層。该電;同輪送層之折射率於波The Transp〇rtPolymer ADS25 ship is dissolved in a solvent coating on the hole injection layer to form a TFB film' and the 20% solution is applied to the electrode layer. The electric power; the refractive index of the same polling layer is in the wave

15/22 S 201212327 長 650nm 為 1.7。 ς接者,藉由將具有發光性之紅色高分子(American Dye 而占夕二、司裝發光聚合物ATS111RE」」)溶於溶劑THF f 錢、,料賊塗布機贿膜厚成為7()11111之方式塗 菸朵禺'同輸达層之上’並於1〇〇°C燒結10分鐘,形成有機 -€。该有機發光層之折射率(nl)於波長65〇nm為17 〇 再f在有機發光層之上,藉由真空蒸鑛形成膜厚恤 之a(高純度化學公司製)作為電子注入層。最後,在電子 ^入層之上,藉由真空蒸鍍形成膜厚80nm之A1(高純度化 子Λ司製)’作為成為陰極之第2電極4。 尽真玉条鍍之後,將形成有各層之基板1在未暴露於大 乳下,運送至含有露點_8〇。〇以下之乾燥氣氛圍氣之手套箱 (Jove box)中。另一方面,準備以吸水劑公司製)貼 附在玻璃製之密封蓋上,同時在密封蓋之外周部塗布紫外 線硬化性樹脂製之密封劑者。然後,藉由在手套箱内用密 封劑將岔封盍以環繞各層之方式緊密地貼在基板丨上,並 照射紫外線使密封劑硬化,而將各層用密封蓋密封。藉此, 得到具有如第一或二圖所示之層構成之有機電致發光元 件。 (實施例2) 使用在ITO奈米粒子溶液(粒徑約4〇nm ’ c.;[.化成公司 製之NanoTek(註冊商標)ITCW 15重量%-〇30)中,將分散 有聚甲基丙烯酸甲酯(PMMA’Aldrich公司製)之10重量% 丙鲷溶液以使ιτο奈米粒子與PMMA之體積比成為丨:8 之方式混入而調製成之混合溶液,作為第1透明導電層5 之材料。將第1透明導電層5之膜厚做成l〇〇nm。所製作 16/22 201212327 之第1透明導電層5之折射率(n2)於波長65〇11111為15。第 1透明導電層5之霧度為約80%。又,在第1透明導電層5 之表面形成由ITO粒子所造成之凹凸7。此外,以與實施 . 例1同樣之方式,得到具有如第一或二圖所示之層構成之 有機電致發光元件。 (實施例3) 使用分散有紅色高分子(American Dye Source公司製之 t 「發光聚合物ATS111RE」)及異丙醇之多孔質中空矽石微 粒子(觸媒化成工業製之「SURURIACS6〇_IpA漿液」,固體 ,分20重量%,平均一次粒徑6〇nm,外殼厚約1〇nm)以質 量比1:1溶解及分散於溶劑THF而成之溶液作為有機發光 層之材料。藉由使用旋轉式塗布機,以使膜厚成為7〇nm之 方式,將该溶液塗布在電洞輸送層之上,並於燒結 a刀^,而得到有機發光層。該有機發光層之折射率(M) 於波長650nm為1.45 ^此外,以與實施例丨同樣之方式, 得到具有如第一或二圖所示之層構成之有機電致發光元 件。 (實施例4) 、使用銀奈米線(直徑約5〇nm,長度約5哗,反射率9〇% 以上)及ΡΜΜΑ以與實施例2相同的體積比分散於丙明而 成之銀奈米線:ΡΜΜΑ溶液作為第!透明導電層5之材料。 銀奈米線鮮照公知論文「Matei1als ehemi_ _ ph_ vol.114 p333_338 n由多元醇製程以高產率製備銀奈米棒 (Preparation of Ag na_ds with _ yidd by p〇㈣ process)”」作成者,平均直徑為約5〇nm,平均長度為約 5μιη所衣作之第1透明導電層5之折射率㈤)於波長㈣腹 17/22 201212327 為50。第i透明導雷屏 透明導電層5之表面形;由銀。又,在第! 外,以與實施例2同樣之方式Γ得之凹凸7。此 不之層構成之有機電致發光元件。〃弟一或二圖所 (比較例1) 在基板1之表面濺射IT〇 形成第1電極2。接著,在該第i電極2上折射::1.9), 1相同之材料及方法形成電洞注^ ^由與實施例 光層、電子注入層,然後在其上形;層、有機發 用密封蓋進行宓封,而成弟笔極4,最後藉由 ⑽;—有機電致發光元件。 在藉由與貫施例1相同之方法所得到 層5之上,於未設置第2透明導電層下 ,明導電 相同之材料及方法形成電洞注 曰由^貫施例1 光層、電子注人層,紐在其上形成第有機發 導電層5之表面粗糙度Ra為彻脑以上。 透明 [測定] 藉由規定之方法將電堡施加至各有機 測定量子效率(取光效率),並算出以比較例 率為基準(1.0)之外部量子效率 复子效 時之電流值。 躲測疋施加2V電壓 [結果] 將結果示於表1中。 如表i所示,確認實施例K4之元件,相較 ™臈之比較例卜取光效率提高。又,確認第2透^為 等電 18/22 201212327 層6之折射率在第〗透明導電層5之折射率與有機發光層 之折射間之實施例2〜4之元件,與實施例1相比,^ 光效率提高。另-方面,在未形成第2透料電層之比較 例2中,施加2V電壓時之電流值比實施们〜4 g,而發生 電極間之⑽,亦無法確認發光。藉此,可確認在各實施 例中之第2透明導電層6有防止電極間之短路之效果。 [表1] 第1透明 導電層 (折射率η2) 第2透明 導電層 _ (折射率n3) 有機発光層 (折射率nl ) 電流値 (施加2V) 外部量 .子效率 實施例 1 ΙΤΟ奈米粒子:PS (n2 与 1.60) PEDOT : PSS (n3 与 1.55) Ra200nm 以下 紅色南分子 (nl = 1.70) 1〇ΛηΑ PG 1.1倍 實施例 2 ITO奈米粒子: PMMA (n2=1.51) PEDOT : PSS (n3 = 1.55) Ra200nm 以下 紅色南分子 (nl 1.70) 10'8mA 1.2倍 實施例 .3 ITO奈米粒子:PS (π2~ 1.60 ) PEDOT : PSS (n3 == 1.55) Ra200nm 以下 紅色1¾分子 +中空矽石 (nl ^ 1.45) 10'8mA 1.3倍 實施例 4 銀奈米線:PMMA (n2= 1.50) PEDOT : PSS (n3 = 1.55) Ra200nm 以下 紅色高分子 (nl == 1.70) 10_8mA 1.3倍 比較例 1 ITO膜 (n2=1.9) 無 紅色高分子 (nl = 1.70) 10'8mA 1.0倍 比較例 1 ITO奈米粒子:PS (n2= 1.60) Ra400nm 以上 無 紅色南分子 (nl = 1.70) 10'3mA — [圖式簡單說明】 圖1係展現本發明之有機電致發光元件之實施形態之 一例之概略斷面圖。 圖2係展現本發明之有機電致發光元件之實施形態之 另一例之概略斷面圖。 19/22 201212327 圖3係展現先前之有機電致發光元件之實施形態之一 例之概略斷面圖。 【主要元件符號說明】 1 基板 2 第1電極 3 有機層 4 第2電極 5 第1透明導電層 6 第2透明導電層 7 凹凸 20/2215/22 S 201212327 Length 650nm is 1.7. In the splicer, by dissolving the red polymer (American Dye, the luminescent polymer ATS111RE), which is luminescent, in the solvent THF f, the thickness of the thief coating machine becomes 7 () In the way of 11111, the smoked 禺 禺 'above the transport layer' and sintered at 1 ° ° C for 10 minutes to form organic - €. The refractive index (nl) of the organic light-emitting layer was 17 〇 at a wavelength of 65 〇 nm, and f was formed on the organic light-emitting layer by vacuum evaporation to form a film (manufactured by High Purity Chemical Co., Ltd.) as an electron injection layer. Finally, on the electron-input layer, A1 (manufactured by High Purity Chemicals) having a thickness of 80 nm was formed by vacuum deposition as the second electrode 4 serving as a cathode. After the true jade strip is plated, the substrate 1 on which the layers are formed is transported to a dew point of _8 在 without being exposed to the large milk. 〇The following dry gas atmosphere in the glove box (Jove box). On the other hand, it is prepared to be attached to a sealing cap made of glass by a water absorbing agent, and a sealant made of an ultraviolet curable resin is applied to the outer periphery of the sealing cap. Then, the crucible was tightly attached to the substrate by a sealing agent in a glove box so as to surround the respective layers, and the sealing agent was hardened by irradiation with ultraviolet rays, and the layers were sealed with a sealing cap. Thereby, an organic electroluminescence element having a layer constitution as shown in the first or second figure is obtained. (Example 2) A polymethyl group was dispersed in an ITO nanoparticle solution (particle size of about 4 〇 nm 'c.; [NanoTek (registered trademark) ITCW 15% by weight - 〇30 manufactured by Chemical Co., Ltd.) A 10% by weight propylene carbonate solution of a methyl acrylate (manufactured by PMMA 'Aldrich Co., Ltd.) is a mixed solution prepared by mixing a mixture of ιτο nanoparticles and PMMA so that the volume ratio of ιτο nanoparticles to PMMA is 8:8, as the first transparent conductive layer 5 material. The film thickness of the first transparent conductive layer 5 was made 10 nm. The refractive index (n2) of the first transparent conductive layer 5 of 16/22 201212327 was 15 at a wavelength of 65 〇 11111. The first transparent conductive layer 5 has a haze of about 80%. Further, irregularities 7 caused by ITO particles are formed on the surface of the first transparent conductive layer 5. Further, in the same manner as in the first embodiment, an organic electroluminescence device having a layer structure as shown in the first or second embodiment was obtained. (Example 3) A porous hollow vermiculite fine particle in which a red polymer (a "light-emitting polymer ATS111RE" manufactured by American Dye Source Co., Ltd.) and isopropyl alcohol were dispersed ("SURURIACS6〇_IpA slurry" manufactured by Catalyst Chemicals Co., Ltd. A solid solution of 20% by weight, an average primary particle diameter of 6 〇 nm, and a shell thickness of about 1 〇 nm was dissolved in a mass ratio of 1:1 and dispersed in a solvent of THF as a material of the organic light-emitting layer. This solution was applied onto the hole transport layer by using a spin coater so that the film thickness became 7 Å, and the film was sintered to obtain an organic light-emitting layer. The refractive index (M) of the organic light-emitting layer was 1.45 Ω at a wavelength of 650 nm. Further, in the same manner as in Example 有机, an organic electroluminescence element having a layer structure as shown in the first or second embodiment was obtained. (Example 4) A silver nanowire (having a diameter of about 5 Å, a length of about 5 Å, a reflectance of 9% by weight or more) and a silver-base dispersed in the same volume ratio as in Example 2 were used. Rice noodles: ΡΜΜΑ solution as the first! The material of the transparent conductive layer 5. The silver neat line is well known in the paper "Matei1als ehemi_ _ ph_ vol.114 p333_338 n Preparation of Ag na_ds with _ yidd by p〇 (4) process)", average The refractive index (f) of the first transparent conductive layer 5 having a diameter of about 5 〇 nm and an average length of about 5 μm is 50 at a wavelength (four) abdomen 17/22 201212327. The i-th transparent guide screen has a surface shape of the transparent conductive layer 5; Further, in the same manner as in the second embodiment, the unevenness 7 was obtained in the same manner as in the second embodiment. An organic electroluminescent device composed of such a layer. In the first or second figure (Comparative Example 1), the first electrode 2 was formed by sputtering IT on the surface of the substrate 1. Next, the ith electrode 2 is refracted:: 1.9), 1 the same material and method are used to form a hole injection hole and the electron injection layer, and then formed thereon; the layer, the organic hair seal The cover is sealed, and the pen is 4, and finally by (10); the organic electroluminescent element. On the layer 5 obtained by the same method as in the first embodiment, under the second transparent conductive layer, the materials and methods having the same conductivity are formed into a hole, and the light layer and electrons are applied. In the injection layer, the surface roughness Ra of the organic conductive layer 5 formed thereon is above the brain. Transparency [Measurement] The electric bar is applied to each organic measurement quantum efficiency (light extraction efficiency) by a predetermined method, and the current value of the external quantum efficiency complex effect at the comparative example rate (1.0) is calculated. Do not apply a voltage of 2V [Results] The results are shown in Table 1. As shown in Table i, the components of Example K4 were confirmed to have improved light extraction efficiency compared to the comparative example of TM. Further, it is confirmed that the second transparent electrode is an element of the second embodiment, and the refractive index of the layer 6 of the 201212327 layer is between the refractive index of the first transparent conductive layer 5 and the refraction of the organic light-emitting layer. Than, ^ light efficiency is improved. On the other hand, in Comparative Example 2 in which the second dielectric layer was not formed, the current value when a voltage of 2 V was applied was less than 4 g of the electrode, and (10) between the electrodes occurred, and light emission could not be confirmed. Thereby, it was confirmed that the second transparent conductive layer 6 in each of the examples has an effect of preventing a short circuit between the electrodes. [Table 1] First transparent conductive layer (refractive index η2) Second transparent conductive layer _ (refractive index n3) Organic luminescent layer (refractive index nl) Current 値 (applied 2V) External amount. Sub-efficiency Example 1 ΙΤΟ Nano Particles: PS (n2 and 1.60) PEDOT: PSS (n3 and 1.55) Ra200nm red south molecular (nl = 1.70) 1〇ΛηΑ PG 1.1 times Example 2 ITO nanoparticle: PMMA (n2=1.51) PEDOT : PSS ( N3 = 1.55) Red South molecule below Ra200nm (nl 1.70) 10'8mA 1.2 times Example. 3 ITO nanoparticle: PS (π2~ 1.60) PEDOT : PSS (n3 == 1.55) Ra200nm red 13⁄4 molecule + hollow 矽Stone (nl ^ 1.45) 10'8 mA 1.3 times Example 4 Silver nanowire: PMMA (n2 = 1.50) PEDOT : PSS (n3 = 1.55) Red polymer below Ra200nm (nl == 1.70) 10_8mA 1.3 times Comparative Example 1 ITO film (n2=1.9) No red polymer (nl = 1.70) 10'8mA 1.0 times Comparative Example 1 ITO nanoparticle: PS (n2 = 1.60) No red south molecule above Ra400nm (nl = 1.70) 10'3mA — BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an example of an embodiment of an organic electroluminescence device of the present invention. Fig. 2 is a schematic cross-sectional view showing another example of the embodiment of the organic electroluminescence device of the present invention. 19/22 201212327 Fig. 3 is a schematic cross-sectional view showing an example of an embodiment of a conventional organic electroluminescence device. [Description of main component symbols] 1 Substrate 2 First electrode 3 Organic layer 4 Second electrode 5 First transparent conductive layer 6 Second transparent conductive layer 7 Bump 20/22

Claims (1)

201212327 七 1. 、申請專利範圍: :==!光元件,其包含:基板、形成於該基板 之第1電極、包括至少-有機發光層 有機層之與該第1電極相反之側上 之第2電極,树機發光元狀特 係由第1透明導電;乃筮。 ’、’、第包才。 基板表面者,以=明導電層以該順序形成於 子或導電性奈米線與 S弋未拉 係由導電性高分子所構成4構成’料2透明導電層 =料鄕圍第i項之有機電致發光 層第之Π率設為n1,第1透明導電層= 第2透明導電層之折射率設為n3時,成1 nl地n2或n2祕nl之關係。 成立 I ==範Γ有機電致發光元件,其中第2 以為30二下物層相反之側之表面粗键度 4· 機電致發光树,其中第2 Ra:3:=透明物相反之側之表面赌度 其中該 其中該 5. ^請專利範圍第1項之有機電致發光元件 1透明導電層之霧度為3〇%以上。 6. ^申請專利範圍第2項之有機電致發光元件 1透明導電層之霧度為3〇%以上。 7·广、申請專利範圍第3項之有機電致發光元件 透明導電層之霧度為30%以上。 8.如申請翻_第4項之有機電致發光元件 21/22 201212327 1透明導電層之霧度為30%以上。 9.如申請專利範圍第1至8項中任一項之有機電致發光元 件,其中第1透明導電層於第2透明導電層側之表面具 有由導電性奈米粒子或導電性奈米線所形成之凹凸。 22/22201212327 VII. Patent application scope: :==! An optical element comprising: a substrate, a first electrode formed on the substrate, and a surface including at least an organic layer of the organic light-emitting layer opposite to the first electrode 2 electrodes, the tree machine illuminating element is made of the first transparent conductive; ‘,’, the first package. In the case of the surface of the substrate, the conductive layer is formed in the order, or the conductive nanowire is formed in the order, and the conductive layer is formed by the conductive polymer. 4: The transparent conductive layer of the material 2 is the first conductive material. The first conductivity of the organic electroluminescent layer is set to n1, and the relationship between the first transparent conductive layer = the refractive index of the second transparent conductive layer is n3, which is 1 nl or n2 or n2. Establishing I == Fan Yi organic electroluminescent device, wherein the second is the surface roughness of the opposite side of the lower layer of the lower layer of the lower layer 4 · electroluminescent tree, wherein the second Ra: 3: = the opposite side of the transparent The surface gambling degree of the transparent electroconductive element of the organic electroluminescent element 1 of the patent range of claim 1 has a haze of 3% or more. 6. ^Application of the organic electroluminescent device of claim 2 The transparent conductive layer has a haze of 3% or more. 7. The organic electroluminescent device of the third application patent scope is transparent. The haze of the transparent conductive layer is 30% or more. 8. For example, the organic electroluminescent device of the fourth item is applied. 21/22 201212327 1 The transparent conductive layer has a haze of 30% or more. The organic electroluminescence device according to any one of claims 1 to 8, wherein the first transparent conductive layer has conductive nano particles or conductive nanowires on the surface of the second transparent conductive layer side. The unevenness formed. 22/22
TW100121285A 2010-06-25 2011-06-17 Organic electroluminescence device TW201212327A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145671A JP2012009359A (en) 2010-06-25 2010-06-25 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
TW201212327A true TW201212327A (en) 2012-03-16

Family

ID=45371276

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121285A TW201212327A (en) 2010-06-25 2011-06-17 Organic electroluminescence device

Country Status (3)

Country Link
JP (1) JP2012009359A (en)
TW (1) TW201212327A (en)
WO (1) WO2011162080A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513078B (en) * 2013-12-26 2015-12-11 Univ Nat Chiao Tung Method for improving light extraction efficiency of organic light emitting diodes and the structure thereof
TWI613849B (en) * 2016-12-16 2018-02-01 財團法人工業技術研究院 Light emitting device
CN109390478A (en) * 2017-08-07 2019-02-26 固安翌光科技有限公司 A kind of organic electroluminescence device
WO2020192364A1 (en) * 2019-03-22 2020-10-01 京东方科技集团股份有限公司 Array substrate, preparation method therefor, and display device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161639A1 (en) * 2012-04-23 2013-10-31 コニカミノルタ株式会社 Transparent electrode, method for manufacturing transparent electrode, electronic device, and organic electroluminescence element
JP6042103B2 (en) 2012-05-30 2016-12-14 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5990049B2 (en) 2012-07-05 2016-09-07 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5973811B2 (en) 2012-07-05 2016-08-23 ユー・ディー・シー アイルランド リミテッド Organic electroluminescent device, surface light source, and lighting device
US9711748B2 (en) 2012-08-29 2017-07-18 Boe Technology Group Co., Ltd. OLED devices with internal outcoupling
FR2996359B1 (en) * 2012-10-03 2015-12-11 Hutchinson CONDUCTIVE TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
FR2996358B1 (en) * 2012-10-03 2016-01-08 Hutchinson TRANSPARENT ELECTRODE AND METHOD FOR MANUFACTURING THE SAME
JP6074851B2 (en) * 2013-03-29 2017-02-08 パナソニックIpマネジメント株式会社 Conductive optical member
JP6147542B2 (en) 2013-04-01 2017-06-14 株式会社東芝 Transparent conductive film and electric element
KR102116067B1 (en) * 2018-09-12 2020-05-27 계명대학교 산학협력단 Semi transparent organic photovoltaic cell using conductive polymer and method thereof
CN111261792B (en) * 2020-01-13 2023-03-14 采埃孚汽车科技(上海)有限公司 Electroluminescent device
CN112447932B (en) * 2020-11-24 2022-11-29 合肥京东方卓印科技有限公司 Organic electroluminescent display panel, preparation method thereof and display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758889B2 (en) * 2004-03-26 2011-08-31 パナソニック電工株式会社 Organic light emitting device
JP4736348B2 (en) * 2004-04-28 2011-07-27 日本ゼオン株式会社 Manufacturing method of organic EL element
WO2005112513A1 (en) * 2004-05-17 2005-11-24 Zeon Corporation Electroluminescent device, illuminator and display
JP2009129882A (en) * 2007-11-28 2009-06-11 Konica Minolta Holdings Inc Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
JP2009181856A (en) * 2008-01-31 2009-08-13 Sumitomo Chemical Co Ltd Transparent plate with transparent conductive film, and organic electroluminescent element
JP2010118165A (en) * 2008-11-11 2010-05-27 Konica Minolta Holdings Inc Transparent electrode, its manufacturing method, and organic electroluminescent element using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513078B (en) * 2013-12-26 2015-12-11 Univ Nat Chiao Tung Method for improving light extraction efficiency of organic light emitting diodes and the structure thereof
TWI613849B (en) * 2016-12-16 2018-02-01 財團法人工業技術研究院 Light emitting device
CN109390478A (en) * 2017-08-07 2019-02-26 固安翌光科技有限公司 A kind of organic electroluminescence device
WO2020192364A1 (en) * 2019-03-22 2020-10-01 京东方科技集团股份有限公司 Array substrate, preparation method therefor, and display device
US11469394B2 (en) 2019-03-22 2022-10-11 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Array substrate having enhanced light extraction efficiency, preparation method therefor, and display device

Also Published As

Publication number Publication date
WO2011162080A1 (en) 2011-12-29
JP2012009359A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
TW201212327A (en) Organic electroluminescence device
Xu et al. High‐performance colorful semitransparent polymer solar cells with ultrathin hybrid‐metal electrodes and fine‐tuned dielectric mirrors
Coskun et al. Optimization of silver nanowire networks for polymer light emitting diode electrodes
US10379267B2 (en) Metal-based particle assembly
Li et al. A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes
Liang et al. Highly flexible and bright electroluminescent devices based on ag nanowire electrodes and top‐emission structure
US9401497B2 (en) Metal-based particle assembly
Liang et al. Fully solution-based fabrication of flexible light-emitting device at ambient conditions
US9241411B2 (en) Substrate having transparent electrode for flexible display and method of fabricating the same
US9017807B2 (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescence element using the same
KR102375891B1 (en) Transparent electrodes and electronic decives including the same
WO2010018733A1 (en) Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
TW201543701A (en) Composite transparent conductors and methods of forming the same
Gao et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes
Meng et al. Direct-writing large-area cross-aligned Ag nanowires network: toward high-performance transparent quantum dot light-emitting diodes
EP2793281A1 (en) Organic electroluminescent element
TW201201622A (en) Organic EL device
Wang et al. Highly efficient and foldable top-emission organic light-emitting diodes based on Ag-nanoparticles modified graphite electrode
Jhuang et al. Localized surface plasmon resonance of copper nanoparticles improves the performance of quasi-two-dimensional perovskite light-emitting diodes
KR20120001684A (en) Transparent conducting film, preparing method for the same, and transparent electrode and devices using the same
Wu et al. Efficiency improvement in polymer light‐emitting diodes by “far‐field” effect of gold nanoparticles
Auroux et al. Solution-based fabrication of the top electrode in light-emitting electrochemical cells
Wan et al. High-Efficiency Semitransparent Light-Emitting Diodes with Perovskite Nanocrystals
Li et al. Highly-flexible, ultra-thin, and transparent single-layer graphene/silver composite electrodes for organic light emitting diodes
JP2007080541A (en) Organic transparent conductor, its manufacturing method, and current drive type element