WO2005112513A1 - Electroluminescent device, illuminator and display - Google Patents

Electroluminescent device, illuminator and display Download PDF

Info

Publication number
WO2005112513A1
WO2005112513A1 PCT/JP2005/008878 JP2005008878W WO2005112513A1 WO 2005112513 A1 WO2005112513 A1 WO 2005112513A1 JP 2005008878 W JP2005008878 W JP 2005008878W WO 2005112513 A1 WO2005112513 A1 WO 2005112513A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
transparent substrate
layer
light
electrode layer
Prior art date
Application number
PCT/JP2005/008878
Other languages
French (fr)
Japanese (ja)
Inventor
Yasumi Yamada
Motofumi Kashiwagi
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004147077A external-priority patent/JP2005327687A/en
Priority claimed from JP2004147076A external-priority patent/JP2005327686A/en
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2005112513A1 publication Critical patent/WO2005112513A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an electorifice luminescence element, a lighting device, and a display device, and more particularly, to an electoral port luminescence element, a lighting device, and a display device that have high luminance and consume less power.
  • a general electore luminescent element is provided on a flat transparent substrate 1 and a lower portion of the transparent substrate 1 in the drawing, and is also called an anode or a transparent electrode.
  • One electrode layer 2 a light emitting layer 3 provided on the lower side of the first electrode layer 2 in the figure, and a second electrode layer 4 provided on the lower side of the light emitting layer 3 in the figure and also referred to as a cathode or a metal electrode. It is configured with.
  • the light generated in the light emitting layer 3 is emitted upward through the first electrode layer 2 and is emitted from the transparent substrate 1 to the outside of the electroluminescent device (usually in the air).
  • Patent Literatures 1 and 2 disclose a method for reducing reflection loss at an interface between a transparent substrate 1 and the outside of an electroluminescent device.
  • Patent Document 2 discloses that as shown in FIG. 13, light extraction efficiency can be increased by forming a minute unevenness group, that is, a minute lens array 11, on the surface of the transparent substrate 1 which is in contact with the outside. I have. According to such a configuration, the radiated light emitted from the light emitting layer 3 in various directions has its incident angle changed by the microlens array 11 formed on the surface of the transparent substrate 1. As a result, the reflection loss due to the total reflection of the emitted light at the interface is suppressed, so that the light extraction efficiency is improved as compared with the case where the surface of the transparent substrate 1 is flat. However, while such a method can reduce the reflection loss at the interface between the transparent substrate 1 and the outside of the electroluminescent device to some extent, sufficient light emission luminance is still obtained.
  • Patent Document 3 discloses a method for reducing reflection loss at the interface between the first electrode layer 2 and the transparent substrate 1.
  • a transparent material layer having a lower refractive index than the transparent substrate 1 is formed at the interface between the first electrode layer 2 and the transparent substrate 1 so that the light emitting layer 3 at the interface between the transparent material layer and the transparent substrate 1 is formed.
  • Total reflection of light emitted from In this case, at the interface between the first electrode layer 2 and the transparent material layer, a refractive index difference larger than the refractive index difference between the first electrode layer 2 and the transparent substrate 1 occurs. There is a problem that the reflection loss of the light from the light emitting layer 3 due to the total reflection at the portion increases.
  • Patent Document 1 JP-A-973983
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-59641
  • Patent Document 3 JP 2003-142262 A (US2003116719 (A1), EP1309017 (A3))
  • a first invention provides an elector luminescence having an intermediate refractive index layer, a first electrode layer, a light emitting layer, and a second electrode layer in this order on a transparent substrate.
  • the difference in the refractive index between the first electrode layer and the intermediate refractive index layer, and the difference in the refractive index between the intermediate refractive index layer and the transparent substrate are electorific luminescence elements each having a value of 0.5 or less.
  • the intermediate refractive index layer is composed of two or more layers, and the refractive index of each layer constituting the intermediate refractive index layer is close to that of the first electrode layer.
  • Sense element The principle of this invention is the same as that of the first invention, but the difference in the refractive index at the interface between the first electrode layer, the adjacent intermediate refractive index layers, and the transparent substrate is reduced to gradually increase the refractive index. By changing it, the reflection loss of light is further reduced.
  • a fourth invention is the electroluminescent device according to the third invention, wherein a difference in refractive index between adjacent layers constituting the intermediate refractive index layer is 0.3 or less.
  • the elect structure wherein at least one surface of the transparent substrate, that is, at least one of the upper surface and the lower surface of the transparent substrate, is provided with a plurality of uneven structures. It is an oral luminescence element.
  • the boundary of the concavo-convex structure is such that the angle of incidence of the light changes more than the flat boundary surface.
  • the reflection loss of light is smaller on the surface, the reflection loss of light is further reduced by utilizing the principle.
  • a sixth invention is the electorific luminescence device according to the first invention, wherein a reflection structure is provided on a side surface of the transparent substrate.
  • Light from the light-emitting layer of the electoran luminescence element is radiated in all directions without directivity. Only the light directly directed to the upper surface of the transparent substrate is used. Light directed in other directions is reflected or refracted Unless it is directed to the upper surface of the transparent substrate in some way, it cannot be used.
  • the invention is to increase the light extraction efficiency by providing a scattered light reflection structure on the side surface of the transparent substrate.
  • the side surface is an end surface other than the front surface (upper surface or lower surface of the transparent substrate), that is, an end surface along the thickness direction of the transparent substrate.
  • a seventh invention is the electroluminescent device according to the sixth invention, wherein the reflection structure portion has an uneven structure.
  • the uneven structure on the side surface increases the incident angle of scattered light entering the side surface from the light emitting layer side to facilitate total reflection, thereby directing light emitted to the outside to the transparent substrate side, As a result, the side surface functions as a reflection structure.
  • a specific concave-convex structure described later fulfills a suitable light reflection function on the side surface.
  • An eighth invention is the electroluminescent device according to the sixth invention, wherein the reflection structure is a mirror surface.
  • the reflection structure is a mirror surface.
  • a ninth invention is the electroluminescence device according to the first invention, further comprising a gas noria layer having a water vapor transmission rate of 0.1 lg / m 2 day or less between the transparent substrate and the first electrode layer.
  • the electorophore luminescent element often uses an organic substance which is susceptible to gas such as water vapor and oxygen as a luminescent layer material, and an invention for preventing these gases from entering the luminescent layer. It is.
  • a tenth invention is the electroluminescent device according to the first invention, wherein the transparent substrate has a water absorption of 0.1% or less and a linear thermal expansion coefficient of 0 to 80 ppm / K.
  • the present invention suppresses the influence of water vapor and the like on the light emitting layer of the electroluminescent device, thereby preventing the electroluminescent device from being deformed or destroyed in a use environment.
  • An eleventh invention is the electroluminescent device according to the first invention, wherein the transparent substrate is made of a resin having an alicyclic structure. It utilizes that the resin having an alicyclic structure effectively exhibits the function of the tenth invention.
  • a twelfth invention is a lighting device provided with the elect-opening luminescence element according to any one of the first inventions.
  • a thirteenth invention is a display device provided with the electorifice luminescence element according to any one of the first inventions.
  • the above-mentioned electoran luminescence element is excellent in light extraction efficiency and the like, and the twelfth and thirteenth inventions provide a suitable lighting device, display device or backlight device for the display device using the same. ! / Puru.
  • the electoran luminescence element of the present invention suppresses light transmission loss at the interface between the transparent substrate and the first electrode layer, and has extremely excellent light extraction efficiency. Further, according to the ninth to eleventh inventions, it is possible to provide an electroluminescent device having excellent light extraction efficiency, stable performance, and a long lifetime. Further, in the twelfth and thirteenth inventions, it is possible to provide a high-performance lighting device and display device using such a high-performance elector emission luminescence element.
  • FIG. 1 is a configuration diagram showing an electorifice luminescence device according to a first embodiment of the present invention.
  • FIG. 2 is an example showing a configuration diagram of an electorifice luminescence element of the present invention.
  • FIG. 3 is a configuration diagram showing an electorifice luminescence device of Example 2 of the present invention.
  • the lower part shows an enlarged plan view of the microlens array.
  • FIG. 4 is a conceptual diagram showing another embodiment of the electorophore luminescent device of the present invention.
  • FIG. 5 is a conceptual diagram showing another embodiment of the electorophore luminescent device of the present invention.
  • the lower part shows an enlarged plan view of the microlens array.
  • FIG. 6 is an explanatory diagram of the behavior of light rays in the transparent substrate of the electoran luminescence element shown in FIG.
  • FIG. 7 is a conceptual diagram of an electorifice luminescence element of Example 4. The lower part shows an enlarged plan view of the micro lens array.
  • FIG. 8 is an explanatory diagram of the behavior of light rays in the transparent substrate of the electoran luminescence element of FIG.
  • FIG. 9 is a configuration diagram illustrating an electorescence luminescent element with a mirror surface according to a fifth embodiment.
  • FIG. 10 is a configuration diagram showing an electorifice luminescence element according to Example 3 of the present invention.
  • the The lower part shows an enlarged plan view of the microlens array.
  • FIG. 11 is a configuration diagram showing an electorifice luminescence element of Comparative Example 3. The lower part shows an enlarged plan view of the microlens array.
  • FIG. 12 is a configuration diagram showing an electorifice luminescence element of Comparative Example 1.
  • FIG. 13 is a configuration diagram showing an electorifice luminescence element of Comparative Example 2.
  • FIG. 1 shows a configuration of a first embodiment of an electorifice luminescence element according to the present invention.
  • the electroluminescent element 10 includes a transparent substrate 1, an intermediate refractive index layer 5 provided on the lower surface side of the transparent substrate 1 in the drawing, and a first electrode provided on the lower surface side of the intermediate refractive index layer 5.
  • the light emitting device includes a layer 2, a light emitting layer 3 provided on the lower surface side of the first electrode layer 2, and a second electrode layer 4 provided on the lower surface side of the light emitting layer 3.
  • the electoran luminescent element 10 emits light by an electoran luminescence effect by applying a predetermined driving voltage from a driving power supply (not shown) between the first electrode layer 2 and the second electrode layer 4. Then, the light passes through the transparent first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate 1, and is emitted to the outside (usually in the atmosphere) above the transparent substrate 1.
  • Various illumination devices and display devices can be provided using the emitted light.
  • the transparent substrate 1 is usually configured as a square or rectangular light-transmitting flat plate.
  • the intermediate refractive index layer 5 is a layer formed in close contact with the lower surface of the transparent substrate 1.
  • the intermediate refractive index layer 5 is made of a material having a refractive index between the refractive index of the transparent substrate 1 and the refractive index of the first electrode layer 2. Assuming that a medium layer with a large refractive index has a refractive index of Nl and a medium layer with a small refractive index has a refractive index of N2, generally, incident light from various directions is transmitted from a medium layer having a refractive index of N1 to a medium layer having a refractive index of N2.
  • the reflection loss of the incident light on the planar interface is expressed by the equation (N1 ⁇ N2) 2 / (N1 + N2) 2 (JD Rancourt, Sciety of Photo Optical (UK, 1996/07/07) / 31), "Optical Thin Films; Users H andbookj,” (translated by Shigetaro Ogura, Nikkan Kogyo Shimbun, 1996, “Optical Thin Film Users'Book”)).
  • the layer structure is made so as to reduce the refractive index difference between the two medium layers, the reflection loss can be reduced.
  • a medium layer having a refractive index intermediate between the two medium layers referred to as a refractive index N3
  • the reflection loss of the light as a whole is determined by the reflection at each interface.
  • the reflection loss at the glass-boundary surface is about 2%, but the interface between the ⁇ -intermediate refractive index layer and the intermediate refractive index layer Refractive index power at the interface
  • the sum of the calculated reflection losses is about 1%, which is reduced to about half. It is understood that it is.
  • the reflection loss of light passing between the two medium layers can be reduced by introducing a medium layer having an intermediate refractive index between the two medium layers, that is, an intermediate refractive index layer. Will decrease.
  • the present invention utilizes this effect.
  • the intermediate refractive index layer 5 may be an inorganic material or an organic material as long as it is transparent or translucent.
  • a transparent conductive film such as ITO, IZO, or ZnO having a refractive index of about 2.0 is used as the first electrode layer 2, and the transparent substrate 1 has a refractive index of about 1.5. Since a glass or transparent resin of a certain degree is used, as the intermediate refractive index layer 5, a material having an intermediate refractive index between these refractive indexes, that is, about 1.5 to 2.0 may be selected. .
  • the difference in the refractive index between the first electrode layer 2 and the intermediate refractive index layer 5 and the difference in the refractive index between the intermediate refractive index layer 5 and the transparent substrate 1 are each preferably 0.5 or less. Preferably, each is 0.3 or less.
  • n indicates a refractive index (the same applies hereinafter).
  • Other examples include linear polyolefin resins such as polyethylene and polypropylene; polyether sulfide; triacetyl cellulose; polycarbonate resins; polystyrene resins; resins having an alicyclic structure;
  • an inorganic film or an organic film in which pores are formed to control the refractive index may be used.
  • an evaporation method, a sputtering method, and a CVD method are generally used.
  • the electorescence luminescent element 20 of the second embodiment corresponding to the third invention is different from the first embodiment in that the intermediate refractive index layer 5 includes a plurality of layers 5M1 to 5Mk.
  • the difference is in the configuration.
  • the following description focuses on this difference.
  • n be the refractive index of the first electrode layer 2 and n be the refractive index of the transparent substrate 1, and sequentially from the first electrode layer 2 to the transparent substrate 1.
  • the refractive indices of the layers 5Ml to 5Mk constituting the laminated intermediate refractive index layer 5 are denoted by n, n,... ⁇ in order from the one closer to the first electrode layer 2.
  • the refractive index of each layer 5Ml to 5Mk is n
  • Such multiple layers 5Ml ⁇ 5Mk By inserting, a larger reflection loss reduction effect can be obtained as compared with the case where the intermediate refractive index layer 5 is not composed of a plurality of layers 5Ml to 5Mk.
  • the difference between the refractive indices of the adjacent layers 5 Ml to 5 Mk is preferably 0.3 or less, more preferably 0.2 or less.
  • the plurality of layers 5Ml to 5Mk are in an extreme state where they are infinitely increased, the change in the refractive index can be made closer to a continuous change, so that the reflection loss can be further suppressed.
  • such an extreme state means that the refractive index of the intermediate refractive index layer 5 is directed from the first electrode layer 2 to the transparent substrate 1 to the refractive index of the first electrode layer 2 to the refractive index of the transparent substrate 1. It corresponds to the case where it continuously changes.
  • the present invention includes such a case.
  • the intermediate refractive index layer 5 may also have a part of the function of another layer, for example, the first electrode layer 2 or the transparent substrate 1, or may have a function of a gas nolia layer or the like.
  • Each of the layers 5Ml to 5Mk may be used by appropriately combining the above-mentioned inorganic materials and organic materials.
  • the elector luminescent device 30 of the third embodiment corresponding to the fifth invention is different from the first embodiment in that a plurality of uneven structures are provided on at least one surface of the transparent substrate 1. Is different. That is, in the electorum luminescence element 30, a plurality of uneven structures 30A are formed on the upper surface of the transparent substrate 1 in the drawing. In this embodiment, the same effect of improving the light extraction efficiency as in the first embodiment and the effect of improving the light extraction efficiency at the interface of the concavo-convex structure described in Patent Document 2 are utilized. That is, by providing the uneven structure 30A, when the light from the light emitting layer 3 passes through the first electrode layer 2 and the transparent substrate 1 and is emitted to the outside of the transparent substrate 1, the incident angle is changed.
  • the shape of the concavo-convex structure 30A may be, for example, a hexagonal pyramid, a quadrangular pyramid, a triangular pyramid, a circular cone, a triangular prism, a lens dome, or a concave-convex lens shape. It is formed as a cone and is formed integrally with the transparent substrate 1. Yes.
  • the quadrangular pyramid-shaped uneven structure 30A is arranged along the long side direction and the short side direction of the transparent substrate 1 at a predetermined arrangement pitch 7, for example, 0.01 to Lmm. It is preferable that the height difference of the concavo-convex structure 30A is selected in the range of 0.01 m to 100 m in that the light extraction efficiency can be improved.
  • a conical convex portion protruding upward is formed instead of the quadrangular pyramid.
  • the bottom surface of the conical convex portion is formed so as to be a rectangular circumscribed circle of the bottom surface of the quadrangular pyramid.
  • the portions protruding in the long side direction and the short side direction from the rectangular shape near the bottom surface of the conical convex portion are cut off, so that mutually adjacent cones do not interfere with each other.
  • these conical projections are arranged along the long side and the short side of the transparent substrate 1 at a predetermined arrangement pitch, for example, 0.01 to Lmm, and have a height of 0.01 to LOO. Preferably, it is selected within the range of / zm.
  • the uneven structure When the uneven structure is present at the interface between the high-refractive index layer and the relatively low-refractive index layer, it enters the low-refractive index layer from the high-refractive index layer from various directions and transmits while partially reflecting.
  • the scattered light can be emitted to the low-refractive-index layer side while suppressing the reflection loss of the light and increasing the transmission efficiency. From such a point of view, the effect can be exerted as long as there is a difference in the refractive index of the layer interface between the upper and lower surfaces of the transparent substrate 1 and the upper and lower surfaces.
  • the uneven structure of the same shape may be arranged on the surface of the transparent substrate 1 without any gap, the uneven structure is not particularly required.
  • the light emitted from the light emitting layer 3 is uniformly concave from all directions below through the first electrode layer 2 and the intermediate refractive index layer 5.
  • the light enters the convex structure 30A. Since the uneven structure 30A is formed, for example, in the shape of a quadrangular pyramid having an apex on the top, reflection, particularly loss of light downward due to total reflection is reduced, and most of the light from all directions is assured. It can be guided upward. That is, the reflection loss of the light emitted from the light emitting layer 3 is reduced, and the light extraction efficiency is improved.
  • the refractive index decreases in the order of the intermediate refractive index layer 5, the transparent substrate 1, and the atmosphere (upper side of the transparent substrate 1). Therefore, the effect of improving light extraction efficiency by the uneven structure 30A can be exerted between the intermediate refractive index layer 5 and the transparent substrate 1 or between the transparent substrate 1 and the atmosphere.
  • the interface having the concavo-convex structure has a suitable light directivity providing effect when light is transmitted from the high refractive index medium to the low refractive index medium.
  • the high-refractive-index transparent substrate 1 in order to efficiently transmit light from the high-refractive-index transparent substrate 1 to the relatively low-refractive-index atmosphere, it is necessary to suppress reflection loss due to reflection at the interface of the transparent substrate 1, especially loss due to total reflection. No.
  • light incident on the upper (atmospheric side) surface of the transparent substrate 1 from the lower side of the transparent substrate may be changed to light in a direction in which the incident angle with respect to this surface decreases.
  • the light of various directions emitted from the light emitting layer 3 is incident on the upper surface of the transparent substrate 1 at the interface between the intermediate refractive index layer 5 and the transparent substrate 1 at a small incident angle, that is, near vertical.
  • This can be realized by forming an uneven structure at the interface between the intermediate refractive index layer 5 and the transparent substrate 1.
  • an uneven structure is provided at the interface between the intermediate refractive index layer 5 and the transparent substrate 1 as described above, a further improvement in light extraction efficiency can be expected.
  • the uneven structure in the present invention has a height of 0.01 to: LOO / zm, more preferably 1-1 to 100 / zm, and a pitch of 10 111 to 1111111 in the vertical and horizontal directions of the transparent substrate 1, more preferably It is desirable that a plurality of concave / convex structures, that is, a plurality of microlens elements are arranged in the range of 10 / ⁇ to 0.1 mm.
  • the concavo-convex structure may be arranged on a part of the electorifice luminescent element, but is preferably arranged on at least the entirety of one surface of the transparent substrate in order to exhibit the function of the electorate luminescent element as a whole.
  • any structure may be used as long as the uneven structure exhibits the above-described function.
  • Normal manufacturing methods include melt molding, injection molding, casting, embossing, and electron beam microscopy.
  • a fine working method, a roll forming method, an inflation method, or the like may be used.
  • the electroluminescent element 40 of a fourth embodiment corresponding to the eighth invention is different from the first embodiment in that reflective structure portion X is provided on the side surface of transparent substrate 1 as shown in FIG. It is different in that it is.
  • the difference will be mainly described.
  • the electroluminescent element 40 is configured by laminating a transparent substrate 1, an intermediate refractive index layer 5, a first electrode layer 2, a light emitting layer 3, and a second electrode layer 4 in order from the top. I have.
  • the electroluminescent element 40 is configured such that the light emitting layer 3 emits light by an electroluminescent effect by applying a predetermined driving voltage to a driving power source (not shown) between the first electrode layer 2 and the second electrode layer 4.
  • the light passes through the transparent first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate 1, and is emitted outside the electroluminescent element 40 above the transparent substrate 1.
  • Various lighting devices and display devices can be provided by using such an electorifice luminescence element 40.
  • the reflection structure portion has a function of, for example, reflecting light emitted directly from the side surface of the transparent substrate 1 to the outside of the electroluminescent element 40 and emitting the light toward the inside of the transparent substrate 1. It is the structural part that has.
  • the reflective structure portion X is formed on the side surface of the transparent substrate 1 in such a shape that the downward force is also directed upward and spread. In this case, of the light directed to the side surface of the transparent substrate 1, more light changes its direction to the inside of the transparent substrate 1 due to total reflection at the side surface. Therefore, if the side structure as shown in FIG.
  • the light emitted from one point of the light-emitting layer 3, for example, the light source 9 becomes large on the side surface of the transparent substrate 1 and totally reflected, and Come back inside. Then, the light is emitted upward to the surface force of the transparent substrate 1 and is effectively used.
  • light has a relatively high refractive index. ⁇ Low refractive index from a medium! ⁇ When passing through a medium, all light incident above the critical angle has the property of being totally reflected.
  • the critical angle is 0 c.
  • 0 c is represented by the equation sin _1 (n / n).
  • the light beam from the light source 9 is totally reflected and is emitted upward as a light beam la.
  • the reflective structure portion X on the side surface of the transparent substrate 1 is transparent without transmitting the light from the light emitting layer 3 below the transparent substrate 1 without transmitting the side force of the transparent substrate 1. What is necessary is just to have a function of emitting light to the upper surface of the substrate 1.
  • the reflective structure of the present invention may have a substantially trapezoidal shape in which the cross-sectional structure of the side surface of the transparent substrate 1 spreads upward as shown in FIG. 5 and FIG.
  • the upper surface of the transparent substrate 1 is emphasized with irregularities, but the irregularities are very small, and the actual appearance of the upper surface looks almost flat.
  • only one side surface may be extended upward, but preferably a trapezoidal shape in which both side surfaces are extended upward so as to increase the angle of incidence.
  • the cross-sectional structure of the side surface of the transparent substrate 1 is such that a plurality of thin transparent substrates having the above-described cross-sectional structure of an upwardly convex curve are overlapped.
  • a structure of the state Of course, a structure in which a plurality of the trapezoidal transparent substrates are stacked may be used.
  • the size of the upper surface and the lower surface of the transparent substrate 1 is made substantially the same, thereby facilitating manufacturing and handling.
  • the rightmost ray from the light source 9 is totally internally reflected at the side and changes its direction upward.
  • the present invention can be easily implemented by forming a groove having the above shape on a side surface of a transparent substrate in parallel with a plane.
  • the reflection structure of the present invention can also be implemented by forming an uneven structure on the side surface of the transparent substrate.
  • the above-described side surface structure is also a kind of uneven structure. For example, it is only necessary to form unevenness in a shape such as a quadrangular pyramid, a triangular pyramid, a hexagonal pyramid, a cone, and a dome.
  • the apex force is also directed to the bottom surface.
  • the vertical axis is inclined such that the apex side (outside of the substrate) is higher than the bottom side (inside of the substrate). . This is because incident light from the light emitting layer to the side surface is easily reflected, and the structure is obtained.
  • the side surface is a mirror surface as shown in Fig. 9.
  • a glossy substance 8 such as a metal is added to the side surface of the transparent substrate 1 and the side surface is made a mirror surface, the light incident on the side surface from the light emitting layer 3 is almost completely reflected and returns to the inside of the transparent substrate 1. It is used effectively.
  • a metal thin film is formed on the side surface, and the side surface is surrounded by a plate having a mirror surface.
  • Such a reflective structure is located on the side of the transparent substrate 1. Even if it is formed partially, it is effective to form the entire four side surfaces from the viewpoint of improving the light extraction efficiency of the electroluminescent device.
  • a mirror surface is provided on the lower surface of the electorescence luminescent element, that is, the lower surface of the second electrode layer 4, or the lower surface of the second electrode layer 4 itself has a mirror surface function, and Output efficiency can be improved.
  • this can be realized by forming the second electrode layer 4 with a glossy metal such as aluminum.
  • a fifth embodiment corresponding to the ninth invention will be described with reference to FIG.
  • a gas noria layer 5 having a water vapor transmission rate of 0.1 lg'm 2 Z days or less is provided between the transparent substrate 1 and the first electrode layer 2. It has been done.
  • the transparent substrate 1 is usually made of a transparent inorganic material such as glass having strength and gas-nolia force. However, in order to obtain an electroluminescent device having a thin and excellent flexibility, it is suitable to use a thin and flexible resin as a transparent substrate. When a resinous material is used as the transparent substrate 1, it is preferable to have a gas nolia layer 5 '.
  • the gas barrier layer 5 ' is provided between the transparent substrate 1 and the first electrode layer 2, and is preferably made of a material having a water vapor transmission rate of 0.1 lg'm 2 Z days or less.
  • the measurement of the water vapor transmission rate was carried out at 40 ° C using a commercially available water vapor transmission rate measuring instrument such as “PERMATRAN-W” manufactured by MOCON, based on the infrared sensor method of IS K7129 B method. This is performed in an atmosphere with a humidity of 90% RH.
  • the positional relationship with the intermediate refractive index layer 5 does not need to be particularly limited. In FIG. 4, the intermediate refractive index layer 5 is located on the upper side.
  • the refractive index of the gas barrier layer 5 ' is set to an intermediate value between the refractive indices of the layers on both sides sandwiching this layer. In this way, the gas barrier layer 5 'is a force that also functions as an intermediate refractive index layer.
  • the function of the gas nolia layer 5 ' is to prevent the light emitting layer 3 or the electrode layer from deteriorating. If the light emitting layer 3 is an organic material or the electrode layer is a metal material, these may be deteriorated by water vapor in the air atmosphere. In the case where the water vapor permeability of the transparent substrate 1 is low, it is effective to insert a gas nolia layer having a high gas noria property between the transparent substrate 1 and the first electrode layer 2. In this case, the oxygen permeability is generally low. Gas Noria layer the water vapor permeability 0. lg'm 2 Zday less, preferably 0. 08g'm 2 Z date than Must be below.
  • the material of the gas barrier layer 5 ' is, for example, SiOx, AlO, AIO, Si
  • the refractive index of the gas nolia layer 5 is preferably the refractive index between the transparent substrate 1 and the first electrode layer 2.
  • a manufacturing method of the gas barrier layer 5 ' a vapor deposition method, a sputtering method, and a CVD method are generally used.
  • the gas noria layer 5 ′ can also serve as the intermediate refractive index layer 5 as described above.
  • the thickness of the gas nolia layer 5 is usually 0.02 to 1 / ⁇ , preferably 0.05 to 0.
  • the water absorption of the transparent substrate is preferably 0.1% or less, and the linear thermal expansion coefficient is preferably from ⁇ to 80 pp mZK. More preferably, the water absorption is 0.05% or less, and the thermal expansion coefficient is Power is ⁇ 70ppmZK.
  • the transparent substrate 1 is usually made of a transparent inorganic material such as glass having strength and gas-nolia force.
  • Other examples include linear polyolefin resins such as polyethylene and polypropylene; polyether sulfide; polycarbonate resins; polystyrene resins; resins having an alicyclic structure; Among them, a resin having an alicyclic structure is suitable because it has excellent light transmittance, heat stability, water absorption properties, mechanical properties and the like.
  • the alicyclic structure may have a deviation of! / ° between the main chain and the side chain.
  • the resin having an alicyclic structure include a cycloalkane structure and a cycloalkene structure.
  • the number of carbon atoms forming the alicyclic structure is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15. When the number of carbon atoms constituting the alicyclic structure is in this range, excellent heat resistance and flexibility are obtained.
  • the proportion of the repeating unit having an alicyclic structure in the resin having an alicyclic structure may be appropriately selected depending on the purpose of use.
  • the resin having an alicyclic structure include a norbornene-based polymer, a monocyclic cyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, Examples thereof include hydrides thereof, and mixtures thereof.
  • norbornene-based polymers and their hydrides, vinyl alicyclic hydrocarbon polymers and their hydrides, and the like are preferred from the viewpoints of light transmittance, thermal stability, water absorption properties, heat resistance, and mechanical strength.
  • Examples of the norbornene-based polymer used in the present invention include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerizing the same, a hydride thereof, and a norbornene-based polymer.
  • Examples include an addition polymer of a monomer, and an addition copolymer of a norbornene-based monomer and another monomer copolymerizable therewith.
  • a hydrogenated ring-opened polymer of a norbornene-based monomer is most preferred.
  • norbornene-based monomer examples include bicyclo [2.2.1] 1-hept-2-ene (common name: norbornene) and a derivative having a substituent on the ring, and tricyclo [4. 3. 0. I 2 ' 5 ] deca- 3,7-Gen (common name: dicyclopentadiene) and its derivatives, 7,8-Benzotricyclo [4.3.0. I 2 ' 5 ] deca-one (common name: methanotetrahydrofluorene) and its derivatives , tetracyclo [4. 4. 0.
  • de de force - 3 E down (inertia for name: tetracyclododecene), and the like, and derivatives thereof.
  • substituents include an alkyl group, an alkylene group, a butyl group, an alkoxycarbol group, and the like.
  • the norbornene-based monomer may have two or more of these. These norbornene monomers may be used alone or in combination of two or more.
  • the ring-opening polymer of these norbornene-based monomers or the ring-opening copolymer of a nonolevonorenene-based monomer and another monomer can be obtained by polymerization in the presence of a known ring-opening polymerization catalyst.
  • examples of other monomers include, for example, monocyclic cyclic olefin monomers such as cyclohexene, cycloheptene, and cyclootaten.
  • the hydrogenated ring-opening polymer of a norbornene-based monomer is usually prepared by adding a known hydrogenation catalyst containing a transition metal such as nickel or radium to a polymerization solution of the above-mentioned ring-opening polymer to obtain a carbon-carbon unsaturated polymer. It can be obtained by hydrogenating the bond.
  • An addition polymer of a norbornene-based monomer or an addition polymer or copolymer of a norbornene-based monomer and another monomer is obtained by polymerizing these monomers using a known polymerization catalyst. be able to.
  • Examples of other monomers that can be copolymerized with norbornene-based monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, — ⁇ -olefins having 2 to 20 carbon atoms, such as tetradecene, 1-hexadecene, 1-octadecene, 1 eicosene, and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, cyclootaten, 3a, 5, 6, 7a— Cycloolefins such as tetrahydro-4,7-methano 1H-indene and derivatives thereof; 1,4-hexanegen, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, etc. And the like. Of these, a-olefin
  • these other monomers copolymerizable with the norbornene-based monomer can be used alone or in combination of two or more.
  • the structural unit derived from the norbornene-based monomer in the addition copolymer and the structural unit derived from the other copolymerizable monomer may be used. Is appropriately selected so as to be in the range of 30:70 to 99: 1 by weight.
  • bur alicyclic hydrocarbon polymer examples include butyl alicyclic hydrocarbon monomers such as bulcyclohexene and bursik hexane and hydrides thereof; and vinyl aromatic monomers such as styrene and a- methylstyrene. Hydrides of the aromatic ring portion of the solid polymer; and other polymers that can be copolymerized with vinyl alicyclic hydrocarbon monomers and vinyl aromatic monomers and these monomers. And copolymers such as random copolymers and block copolymers with the above-mentioned monomers, and hydrides thereof.
  • block copolymer examples include diblock, triblock, and higher multiblock and inclined block copolymers, but there is no particular limitation! /.
  • the monocyclic cyclic olefin polymer for example, an addition polymer of a monocyclic cyclic olefin monomer such as cyclohexene, cycloheptene, and cyclootaten can be used.
  • the cyclic conjugated polymer include cyclopentadiene and cyclohexadiene. Polymers obtained by addition polymerization of cyclic conjugated monomers such as 1,2 or 1,4, and hydrides thereof can be used.
  • the molecular weight of the resin having an alicyclic structure suitably used in the present invention can be appropriately selected depending on the purpose of use. Gel “permeation" chromatograph of cyclohexane solution and toluene solution It can be measured by the method.
  • the molecular weight of the resin having an alicyclic structure is usually 5,000 to 500,000, preferably 8,000 to 200,000, more preferably ⁇ 000, 100 to 100, in terms of polystyrene equivalent weight average molecular weight. , 000 range. By setting the molecular weight in the above range, the mechanical strength of the resin and the moldability are improved.
  • the glass transition temperature of the resin having an alicyclic structure suitably used in the present invention is a force appropriately selected according to the purpose of use, preferably from 80 to 350 ° C, more preferably from 130 to 250 ° C. It is. By setting the glass transition temperature within the above range, even when used at a high temperature, deformation and stress concentration do not occur and durability is improved.
  • the thickness of the transparent substrate 1 used in the present invention is preferably from 0.03 to: LOmm, and more preferably from 0.1 to 3 mm. In addition, since the uneven structure on the surface of the transparent substrate 1 is smaller than the thickness, the thickness may be measured based on the convex portions or the concave portions.
  • the first electrode layer 2, the light emitting layer 3, and the second electrode layer 4 may have the same configuration as that of a normal electroluminescent device. That is, the first electrode layer 2, the light-emitting layer 3, and the second electrode layer 4 are sequentially stacked below in FIG.
  • the first electrode layer 2 may be a normal transparent electrode for an electroluminescent device, but needs to have an adhesive property with the adjacent intermediate refractive index layer 5 or gas barrier layer 5 '. For example, even when the surface of the intermediate refractive index layer 5 is not flat, the junction between the first electrode layer 2 and the intermediate refractive index layer 5 needs to be in close contact.
  • the first electrode layer 2 which is usually used, zinc-added indium oxide called IZO or indium stannic oxide called ITO is adhered to the intermediate refractive index layer side by a sputtering method or the like.
  • the thickness of the first electrode layer 2 usually ranges from 0.01 to 10111, preferably from 0.1 to 0.5 m.
  • the light-emitting layer 3 is formed by laminating a layer of an arylamine-based material such as TPD and an aluminum complex such as Alq3, or a single layer or a plurality of layers of an inorganic compound such as zinc sulfate and an organic compound such as Alq3. Are laminated. Usually, the light emitting layer can be formed by using a vacuum evaporation method. Wear. The thickness of the light-emitting layer 3 is usually 0.01 to 2111, preferably 0.1 to 0.1. Since the second electrode layer 4 may have a role of reflecting emitted light to the transparent substrate side, the second electrode layer 4 is also referred to as a back electrode, and is formed of, for example, an aluminum vapor-deposited film.
  • the second electrode layer 4 can be formed by using an evaporation method.
  • the thickness of the second electrode layer 4 is usually 0.01 to: L0 m, and preferably 0.1 to 0.5 m.
  • the light emitting layer 3 emits light by electroluminescence, and the light is emitted from the first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate.
  • Light emitted through 1 or reflected on the second electrode layer 4 is emitted to the outside of the electroluminescent element, that is, usually to the atmosphere, through the first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate 1. It is.
  • the electroluminescent device of the present invention may have another layer in addition to the transparent substrate, the first electrode layer, the light emitting layer, and the second electrode layer.
  • Other layers include a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a sealing layer.
  • a material forming these layers a material known as a material forming each layer in the conventional electroluminescent device can be used.
  • the electroluminescent element 50 is configured as described above.
  • the light-emitting layer 3 emits light due to the electroluminescence effect, and the light is transmitted to the transparent first electrode layer 2, gas nolia layer 5 ', intermediate refractive index layer 5, transparent
  • the light passes through the substrate 1 and is emitted above the transparent substrate 1.
  • Various types of lighting devices can be provided using the emitted light.
  • the electoran luminescence element it can also be used as a lighting device as a surface light emitter. Further, it can be used directly as a display device, and can be various suitable display devices instead of liquid crystal.
  • the electroluminescent element has a suitable function as a backlight device for a liquid crystal or the like, and a suitable display device can be provided by combining with the liquid crystal display device.
  • An electorifice luminescence device 10 having the configuration shown in FIG. 1 was produced.
  • the transparent substrate 1 has a length of 40 mm, a width of 40 mm, and a thickness of lmm.
  • the film was formed as follows.
  • the water vapor transmission rate of the intermediate refractive index layer 5 of alumina was 0.1 lgZm 2 days, and it could also function as a gas nolia layer.
  • the zinc-added indium oxide (IZO) of No. 2 was formed by DC sputtering so as to have a thickness of 100 nm.
  • the light-emitting layer 3 was formed by using a laminated body of an arylamine-based material, TPD, and an aluminum complex, Alq3, to a thickness of about 100 nm by a vacuum evaporation method.
  • the second electrode layer 4 was formed by vacuum deposition of aluminum to a thickness of 100 nm.
  • a voltage of 5 V was applied between the first electrode layer 2 and the second electrode layer 4 of the electroluminescent device to emit electroluminescent light.
  • the light emitted from the upper surface of the electroluminescent element was measured with a luminance meter manufactured by Prometric.
  • the light extraction efficiency was expressed as a ratio based on Comparative Example 1 described later.
  • the half-life was expressed in days as the emission time until the luminance measured by a luminance meter was reduced by half. The measurement results are shown in Table 1.
  • An electroluminescent device 30 having a transparent substrate having a structure shown in FIG. 3 instead of the transparent substrate 1 of Example 1 was produced.
  • the difference from the first embodiment is that the upper surface of the transparent substrate 1 has a quadrangular pyramid-shaped uneven structure that is continuous vertically and horizontally.
  • Each of the concavities and convexities was a quadrangular pyramid having an apex on the upper side, that is, on the opposite side to the light emitting layer, with a base of 50 m and a height of 25 / z m.
  • the base of the quadrangular pyramid corresponds to the arrangement pitch 7 of the microlenses of the microlens array.
  • the lower part of FIG. 3 shows an enlarged plan view of a part of the microlens array.
  • the transparent substrate 1 was manufactured by injection molding into a mold having a resin uneven structure.
  • the configuration and manufacturing method of the other parts are the same as in the first embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
  • Example 2 an electoral luminescent element 50 having a configuration shown in FIG. 10 was produced.
  • the thickness of each intermediate refractive index layer is 50 nm.
  • the water vapor transmission rate of the intermediate refractive index layer is 0.08 gZm for 2 days in total.
  • the configuration and manufacturing method of the other parts are the same as in the second embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
  • the side surface structure of the transparent substrate 1 has a cross-sectional structure in which small convex arcs are stacked on all four sides.
  • the concavo-convex structure provided on the upper surface of the transparent substrate 1 was a quadrangular pyramid having an apex at an upper side, a base 50 m, and a height 25 m.
  • the small arc provided on the side of the transparent substrate has a radius of curvature of about 20 mm and a height of about 25 / z m.
  • Other configurations and manufacturing methods are the same as those of the third embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
  • an electroluminescent device having the structure shown in FIG. 9 was produced.
  • the difference from the first embodiment is that a glossy 0.2 mm thick aluminum foil 8 is provided on the four side surfaces of the electorifice luminescence element, and the side surface of the transparent substrate has a mirror surface structure.
  • Other configurations and manufacturing methods are the same as those of the first embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
  • Example 1 an electroluminescent device having the structure shown in FIG. 12 was manufactured.
  • the difference from Example 1 is that only the intermediate refractive index layer 5 is provided, and the configuration and manufacturing method of the other parts are the same as in Example 1. That is, it has the same structure as a normal electroluminescent device.
  • the measurement of light extraction efficiency, half-life and the like were performed in the same manner as in Example 1, and the measurement results are shown in Table 1.
  • electroluminescent element 30 having the configuration of Example 2
  • an electroluminescent element having the configuration shown in FIG. 13 was manufactured.
  • the difference from the second embodiment is only the absence of the intermediate refractive index layer 5, and the configuration of the other parts and the manufacturing method are the same as those of the second embodiment.
  • Extraction efficiency, half-life The measurement was performed in the same manner as in Example 1, and the measurement results are shown in Table 1.
  • An electorescence luminescence element having a configuration shown in FIG. 11 was produced instead of the electoration luminescence element 30 having the configuration of Example 2.
  • Example 2 the structure and manufacturing method of the other parts are the same as in Example 2 except that the film was formed to have a thickness of 100 nm.
  • the water vapor transmission rate of the intermediate refractive index layer 5 is 0.1 lgZm 2 days.
  • the extraction efficiency and half-life were measured in the same manner as in Example 1, and the measurement results are shown in Table 1.
  • the electorophore luminescent device of the present invention has a high half-life in which emission luminance and light extraction efficiency are high.
  • the half-life power S of the electorophore luminescent element of the comparative example is low because the luminous efficiency and the light extraction efficiency are low.
  • the present invention it is possible to provide a high-brightness, power-saving electorifice luminescence element.
  • the light emission efficiency of the electoran luminescent element of the present invention is improved, the electoral luminescent element is suitable for use in various high-luminance lighting devices and display devices.
  • the electoral luminescent element is suitable for use in various high-luminance lighting devices and display devices.
  • when used as a backlight of a display device such as a liquid crystal display it is possible to easily cope with higher luminance and power saving of the display device.

Abstract

Increase in emission intensity and reduction in power consumption of an electroluminescent device are demanded intensely and various efforts have been made to effectively take out light emitted from the light-emitting layer, but further enhancement of light taking-out efficiency is still required. A novel or high performance illuminator or display can be obtained by developing such a device. Disclosed is an electroluminescent device comprising a medium refractive index layer, a first electrode layer, a light-emitting layer and a second electrode layer formed sequentially in this order on a transparent substrate. This electroluminescent device satisfies the relation: nS < nM < nE where nS is the refractive index of the transparent substrate, nM is the refractive index of the medium refractive index layer, and nE is the refractive index of the first electrode layer. Also disclosed are a high performance illuminator and display employing such an electroluminescent device.

Description

エレクト口ルミネッセンス素子、照明装置、および表示装置  Elect port luminescence element, lighting device, and display device
技術分野  Technical field
[0001] 本発明は、エレクト口ルミネッセンス素子、照明装置、および表示装置に関し、詳し くは、高輝度で電力消費の少ないエレクト口ルミネッセンス素子、照明装置、および表 示装置に関する。  The present invention relates to an electorifice luminescence element, a lighting device, and a display device, and more particularly, to an electoral port luminescence element, a lighting device, and a display device that have high luminance and consume less power.
背景技術  Background art
[0002] 一般的なエレクト口ルミネッセンス素子は、例えば図 12に示すように、平面状の透 明基板 1と、透明基板 1の図中下部側に設けられ、陽極または透明電極とも称される 第一電極層 2と、第一電極層 2の図中下部側に設けられる発光層 3と、発光層 3の図 中下部側に設けられ、陰極または金属電極とも称される第二電極層 4とを備えて構成 されている。発光層 3で発生した光は、第一電極層 2を介して上方へ射出され、透明 基板 1からエレクト口ルミネッセンス素子外部(通常、大気中)へと射出される。この際 、発光層 3で発生した光を透明基板 1からエレクト口ルミネッセンス素子外部へ射出で きる効率、すなわち光取出効率は、通常 20%以下であり、エレクト口ルミネッセンス素 子の開発では、この光取出効率の向上が大きな課題となっている。このような課題を 解決する手段としては、透明基板 1とエレクト口ルミネッセンス素子外部との界面や、 第一電極層 2と透明基板 1との界面での反射損失を低減させること等が考えられる。 たとえば、特許文献 1, 2には、透明基板 1とエレクト口ルミネッセンス素子外部との界 面での反射損失低減法が開示されている。この反射損失低減法では、光が透明基 板 1から外部に射出される際、透明基板 1とエレクト口ルミネッセンス素子外部との屈 折率の違いにより界面にて全反射してしまう光を透明基板 1の界面形状を工夫して 透過させている。  As shown in FIG. 12, for example, a general electore luminescent element is provided on a flat transparent substrate 1 and a lower portion of the transparent substrate 1 in the drawing, and is also called an anode or a transparent electrode. One electrode layer 2, a light emitting layer 3 provided on the lower side of the first electrode layer 2 in the figure, and a second electrode layer 4 provided on the lower side of the light emitting layer 3 in the figure and also referred to as a cathode or a metal electrode. It is configured with. The light generated in the light emitting layer 3 is emitted upward through the first electrode layer 2 and is emitted from the transparent substrate 1 to the outside of the electroluminescent device (usually in the air). At this time, the efficiency with which light generated in the light emitting layer 3 can be emitted from the transparent substrate 1 to the outside of the electorescence luminescent element, that is, the light extraction efficiency is usually 20% or less. Improving extraction efficiency is a major issue. As a means for solving such a problem, reduction of reflection loss at the interface between the transparent substrate 1 and the outside of the electroluminescent device or the interface between the first electrode layer 2 and the transparent substrate 1 can be considered. For example, Patent Literatures 1 and 2 disclose a method for reducing reflection loss at an interface between a transparent substrate 1 and the outside of an electroluminescent device. In this reflection loss reduction method, when light is emitted from the transparent substrate 1 to the outside, light that is totally reflected at the interface due to the difference in the refractive index between the transparent substrate 1 and the outside of the electora luminescent element is removed. The interface shape in 1 is devised for transmission.
[0003] 特許文献 2には、図 13に示すように、透明基板 1における外部と接する表面に微小 な凹凸群すなわち微小レンズアレイ 11を形成することで光取出効率を高め得ること が開示されている。このような構成によれば、発光層 3からさまざまな方向へ射出され た放射光は、透明基板 1の表面に形成された微小レンズアレイ 11により入射角が変 化して、この界面での射出光の全反射による反射損失が抑えられるため、透明基板 1 の表面が平坦である場合に比べて、光取出効率が向上する。し力しながら、このよう な方法では、透明基板 1とエレクト口ルミネッセンス素子外部との界面での反射損失を ある程度低減できるものの、依然として充分な発光輝度が得られて ヽな 、。 [0003] Patent Document 2 discloses that as shown in FIG. 13, light extraction efficiency can be increased by forming a minute unevenness group, that is, a minute lens array 11, on the surface of the transparent substrate 1 which is in contact with the outside. I have. According to such a configuration, the radiated light emitted from the light emitting layer 3 in various directions has its incident angle changed by the microlens array 11 formed on the surface of the transparent substrate 1. As a result, the reflection loss due to the total reflection of the emitted light at the interface is suppressed, so that the light extraction efficiency is improved as compared with the case where the surface of the transparent substrate 1 is flat. However, while such a method can reduce the reflection loss at the interface between the transparent substrate 1 and the outside of the electroluminescent device to some extent, sufficient light emission luminance is still obtained.
[0004] 特許文献 3には、第一電極層 2と透明基板 1との界面における反射損失の低減法 が開示されている。この文献では、第一電極層 2と透明基板 1との界面に透明基板 1 より低屈折率の透明材料層を形成することにより、この透明材料層と透明基板 1との 界面での発光層 3からの放射光の全反射を抑えている。し力しながら、この場合には 、第一電極層 2と透明材料層との界面において、第一電極層 2と透明基板 1との屈折 率の差よりも大きな屈折率の差が生じ、この部分での全反射による発光層 3からの光 の反射損失が大きくなつてしまう問題がある。  [0004] Patent Document 3 discloses a method for reducing reflection loss at the interface between the first electrode layer 2 and the transparent substrate 1. In this document, a transparent material layer having a lower refractive index than the transparent substrate 1 is formed at the interface between the first electrode layer 2 and the transparent substrate 1 so that the light emitting layer 3 at the interface between the transparent material layer and the transparent substrate 1 is formed. Total reflection of light emitted from In this case, at the interface between the first electrode layer 2 and the transparent material layer, a refractive index difference larger than the refractive index difference between the first electrode layer 2 and the transparent substrate 1 occurs. There is a problem that the reflection loss of the light from the light emitting layer 3 due to the total reflection at the portion increases.
[0005] 特許文献 1 :特開平 9 73983号公報  Patent Document 1: JP-A-973983
特許文献 2:特開 2003 - 59641号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-59641
特許文献 3 :特開 2003— 142262号公報(US2003116719 (A1) , EP1309017 ( A3) )  Patent Document 3: JP 2003-142262 A (US2003116719 (A1), EP1309017 (A3))
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] エレクト口ルミネッセンス素子の発光強度の増加や消費電力の低減の要求は大きく 、上述のように発光層力 の射出光を有効に取り出すための色々な工夫がなされて いる。しかし、まだ十分な反射損失低減技術はなぐ満足する光取出効率とはなって いない。第一電極層と透明基板との界面における光反射損失や、透明基板中の反 射損失などを改善し、エレクト口ルミネッセンス素子全体としての更なる光取出効率の 向上が望まれている。また、このような素子の開発により新しい、あるいは高性能の照 明装置や表示装置の開発が待たれている。 [0006] There is a great demand for an increase in the emission intensity and a reduction in power consumption of the electoran luminescence element, and various devices have been devised for effectively extracting the light emitted from the light emitting layer as described above. However, a sufficient reflection loss reduction technology has not yet achieved satisfactory light extraction efficiency. It is desired that the light reflection loss at the interface between the first electrode layer and the transparent substrate, the reflection loss in the transparent substrate, and the like be improved to further improve the light extraction efficiency of the entire electroluminescent device. Development of new or high-performance lighting devices and display devices has been awaited due to the development of such devices.
課題を解決するための手段  Means for solving the problem
[0007] 上述の課題を解決するために、第一の発明は、透明基板上に中間屈折率層、第一 電極層、発光層、第二電極層を、この順に有してなるエレクト口ルミネッセンス素子で あって、前記透明基板の屈折率を n、前記中間屈折率層の屈折率を n 、前記第一 電極層の屈折率を nとした時、 n <n <nであることを特徴とするエレクト口ルミネッ [0007] In order to solve the above-mentioned problems, a first invention provides an elector luminescence having an intermediate refractive index layer, a first electrode layer, a light emitting layer, and a second electrode layer in this order on a transparent substrate. An element, wherein the refractive index of the transparent substrate is n, the refractive index of the intermediate refractive index layer is n, Where n is the refractive index of the electrode layer, n <n <n.
E S M E  E S M E
センス素子である。一般に屈折率の大き!、媒体から小さ!、媒体へと散乱光が透過す る場合には、境界面での光の反射損失は、両媒体間の屈折率の差に大きく依存する 。それ故、これらの媒体の間に、両媒体の中間の屈折率を持つ媒体を挿入すること により、全体としての光の反射損失が減少する。本発明は、このような効果を利用した 発明である。  It is a sense element. Generally, when scattered light is transmitted from a medium to a medium with a large refractive index !, the reflection loss of light at the interface greatly depends on the difference in refractive index between the two media. Therefore, by inserting a medium having an index of refraction intermediate between these media, the reflection loss of light as a whole is reduced. The present invention is an invention utilizing such effects.
[0008] 第二の発明は、第一の発明において、前記第一電極層と前記中間屈折率層との 屈折率の差、及び、前記中間屈折率層と前記透明基板との屈折率の差がそれぞれ 0. 5以下であるエレクト口ルミネッセンス素子である。  [0008] In a second aspect based on the first aspect, the difference in the refractive index between the first electrode layer and the intermediate refractive index layer, and the difference in the refractive index between the intermediate refractive index layer and the transparent substrate. Are electorific luminescence elements each having a value of 0.5 or less.
[0009] 第三の発明は、第一の発明において、前記中間屈折率層が 2層以上の層からなり 、当該中間屈折率層を構成する各層の屈折率を、前記第一電極層に近い層から順 に η 、η 、 · · ·η としたとき、 η >η >η > · · >η >ηであるエレクトロルミネ [0009] In a third aspect based on the first aspect, the intermediate refractive index layer is composed of two or more layers, and the refractive index of each layer constituting the intermediate refractive index layer is close to that of the first electrode layer. Η, η, ··· η in order from the layer, and electroluminescence with η> η> η>
Ml M2 Mk E Ml M2 Mk S Ml M2 Mk E Ml M2 Mk S
ッセンス素子である。この発明も原理は第一の発明と同じであるが、第一電極層、隣 り合う中間屈折率層同士および透明基板のそれぞれの界面における屈折率の差を 小さくして、徐々に屈折率を変化させることにより光の反射損失をさらに減少させてい る。  Sense element. The principle of this invention is the same as that of the first invention, but the difference in the refractive index at the interface between the first electrode layer, the adjacent intermediate refractive index layers, and the transparent substrate is reduced to gradually increase the refractive index. By changing it, the reflection loss of light is further reduced.
[0010] 第四の発明は、第三の発明において、前記中間屈折率層を構成する隣接する各 層の屈折率の差が 0. 3以下であるエレクト口ルミネッセンス素子である。  [0010] A fourth invention is the electroluminescent device according to the third invention, wherein a difference in refractive index between adjacent layers constituting the intermediate refractive index layer is 0.3 or less.
[0011] 第五の発明は、第一の発明において、前記透明基板の少なくとも片方の表面、す なわち前記透明基板の上面又は下面の少なくともいずれか一方に複数の凹凸構造 が設けられているエレクト口ルミネッセンス素子である。上述のように、さまざまな方向 力 の光は、高屈折率媒体から低屈折率媒体に透過していく際、平面状の境界面よ りも光の入射角が変化するような凹凸構造の境界面の方が光の反射損失が少なくな ると 、う原理を利用して、より一層の光の反射損失低減を図って 、る。  [0011] In a fifth aspect based on the first aspect, the elect structure wherein at least one surface of the transparent substrate, that is, at least one of the upper surface and the lower surface of the transparent substrate, is provided with a plurality of uneven structures. It is an oral luminescence element. As described above, when light of various directional forces is transmitted from a high-refractive index medium to a low-refractive index medium, the boundary of the concavo-convex structure is such that the angle of incidence of the light changes more than the flat boundary surface. When the reflection loss of light is smaller on the surface, the reflection loss of light is further reduced by utilizing the principle.
[0012] 第六の発明は、第一の発明において、前記透明基板の側面に反射構造部が設け られて 、るエレクト口ルミネッセンス素子である。エレクト口ルミネッセンス素子の発光 層からの光は指向性がなく全方向へ放射される。そのうち直接利用されるのは、透明 基板上部表面に向力つた光のみである。その他の方向へ向力つた光は反射や屈折 など何らかの方法で透明基板上部表面に向けてやらなければ利用できな 、。この観 点から透明基板側面に散乱光の反射構造部を設けて光の取出効率を上げる発明で ある。ここで、前記側面とは、前記表面 (透明基板の上面又は下面)以外の端面、つ まり透明基板の厚み方向に沿った端面のことである。 [0012] A sixth invention is the electorific luminescence device according to the first invention, wherein a reflection structure is provided on a side surface of the transparent substrate. Light from the light-emitting layer of the electoran luminescence element is radiated in all directions without directivity. Only the light directly directed to the upper surface of the transparent substrate is used. Light directed in other directions is reflected or refracted Unless it is directed to the upper surface of the transparent substrate in some way, it cannot be used. From this point of view, the invention is to increase the light extraction efficiency by providing a scattered light reflection structure on the side surface of the transparent substrate. Here, the side surface is an end surface other than the front surface (upper surface or lower surface of the transparent substrate), that is, an end surface along the thickness direction of the transparent substrate.
[0013] 第七の発明は、第六の発明において、前記反射構造部が凹凸構造であるエレクト 口ルミネッセンス素子である。この発明は、側面の凹凸構造が発光層側から側面に入 射してくる散乱光の入射角を大きくし全反射し易くすることにより、外部に射出される 光を透明基板側へ向けさせ、結果として側面が反射構造部として機能することを利 用している。特に、後述する特定の凹凸構造は側面での好適な光の反射機能を果た している。  [0013] A seventh invention is the electroluminescent device according to the sixth invention, wherein the reflection structure portion has an uneven structure. According to the present invention, the uneven structure on the side surface increases the incident angle of scattered light entering the side surface from the light emitting layer side to facilitate total reflection, thereby directing light emitted to the outside to the transparent substrate side, As a result, the side surface functions as a reflection structure. In particular, a specific concave-convex structure described later fulfills a suitable light reflection function on the side surface.
[0014] 第八の発明は、第六の発明において、前記反射構造部が鏡面であるエレクト口ルミ ネッセンス素子である。側面を鏡面とすることにより、側面力も射出されようとするほと んどすべての散乱光を透明基板側へ反射させることができ、さらなる光取出効率向 上を図ることができる。  [0014] An eighth invention is the electroluminescent device according to the sixth invention, wherein the reflection structure is a mirror surface. By making the side surface a mirror surface, almost all of the scattered light that also tends to emit a side force can be reflected to the transparent substrate side, and the light extraction efficiency can be further improved.
[0015] 第九の発明は、第一の発明において、前記透明基板と前記第一電極層との間に、 水蒸気透過速度が 0. lg/m2日以下のガスノリア層をさらに有するエレクトロルミネ ッセンス素子である。通常、エレクト口ルミネッセンス素子は、発光層材料として水蒸 気、酸素等のガスに影響されやすい有機物が用いられている場合が多ぐこれらのガ スが発光層に侵入するのを防ぐための発明である。 [0015] A ninth invention is the electroluminescence device according to the first invention, further comprising a gas noria layer having a water vapor transmission rate of 0.1 lg / m 2 day or less between the transparent substrate and the first electrode layer. Element. In general, the electorophore luminescent element often uses an organic substance which is susceptible to gas such as water vapor and oxygen as a luminescent layer material, and an invention for preventing these gases from entering the luminescent layer. It is.
[0016] 第十の発明は、第一の発明において、前記透明基板の、吸水率が 0. 1%以下、熱 線膨張係数が 0〜80ppm/Kであるエレクト口ルミネッセンス素子である。この発明は エレクト口ルミネッセンス素子の発光層への水蒸気等の影響を抑え、エレクトロルミネ ッセンス素子の使用環境下での変形や破壊を防止している。  [0016] A tenth invention is the electroluminescent device according to the first invention, wherein the transparent substrate has a water absorption of 0.1% or less and a linear thermal expansion coefficient of 0 to 80 ppm / K. The present invention suppresses the influence of water vapor and the like on the light emitting layer of the electroluminescent device, thereby preventing the electroluminescent device from being deformed or destroyed in a use environment.
[0017] 第十一の発明は、第一の発明において、前記透明基板が脂環式構造を有する榭 脂からなるエレクト口ルミネッセンス素子である。脂環式構造を有する榭脂が第十の 発明の有する機能を効果的に発揮することを利用している。 [0017] An eleventh invention is the electroluminescent device according to the first invention, wherein the transparent substrate is made of a resin having an alicyclic structure. It utilizes that the resin having an alicyclic structure effectively exhibits the function of the tenth invention.
[0018] 第十二の発明は、第一の発明のいずれかのエレクト口ルミネッセンス素子を備えた 照明装置である。 [0019] 第十三の発明は、第一の発明のいずれかのエレクト口ルミネッセンス素子を備えた 表示装置である。上記エレクト口ルミネッセンス素子は光取出効率等が優れており、 第十二、第十三の発明は、これを利用して好適な照明装置や、表示装置または表示 装置用バックライト装置を提供して!/ヽる。 [0018] A twelfth invention is a lighting device provided with the elect-opening luminescence element according to any one of the first inventions. [0019] A thirteenth invention is a display device provided with the electorifice luminescence element according to any one of the first inventions. The above-mentioned electoran luminescence element is excellent in light extraction efficiency and the like, and the twelfth and thirteenth inventions provide a suitable lighting device, display device or backlight device for the display device using the same. ! / Puru.
発明の効果  The invention's effect
[0020] 本発明のエレクト口ルミネッセンス素子は、透明基板と第一電極層との界面での光 透過損失を抑制し、非常に光取出効率が優れている。さらに、第九から第十一の発 明では、優れた光取出効率を奏することができるうえ、その性能の安定した寿命の長 いエレクト口ルミネッセンス素子を提供できる。また、第十二、第十三の発明では、こ のような高性能なエレクト口ルミネッセンス素子を用いた高機能の照明装置および表 示装置などを提供できる。  [0020] The electoran luminescence element of the present invention suppresses light transmission loss at the interface between the transparent substrate and the first electrode layer, and has extremely excellent light extraction efficiency. Further, according to the ninth to eleventh inventions, it is possible to provide an electroluminescent device having excellent light extraction efficiency, stable performance, and a long lifetime. Further, in the twelfth and thirteenth inventions, it is possible to provide a high-performance lighting device and display device using such a high-performance elector emission luminescence element.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、本発明の実施例 1のエレクト口ルミネッセンス素子を示す構成図である。  FIG. 1 is a configuration diagram showing an electorifice luminescence device according to a first embodiment of the present invention.
[図 2]図 2は、本発明のエレクト口ルミネッセンス素子の構成図を示す例である。  FIG. 2 is an example showing a configuration diagram of an electorifice luminescence element of the present invention.
[図 3]図 3は、本発明の実施例 2のエレクト口ルミネッセンス素子を示す構成図である。 下部にはマイクロレンズアレイの拡大平面図を示す。  FIG. 3 is a configuration diagram showing an electorifice luminescence device of Example 2 of the present invention. The lower part shows an enlarged plan view of the microlens array.
[図 4]図 4は、本発明のエレクト口ルミネッセンス素子の他の態様を示す概念図である  FIG. 4 is a conceptual diagram showing another embodiment of the electorophore luminescent device of the present invention.
[図 5]図 5は、本発明のエレクト口ルミネッセンス素子の他の態様を示す概念図である 。下部にはマイクロレンズアレイの拡大平面図を示す。 FIG. 5 is a conceptual diagram showing another embodiment of the electorophore luminescent device of the present invention. The lower part shows an enlarged plan view of the microlens array.
[図 6]図 6は、図 5に示すエレクト口ルミネッセンス素子の透明基板内の光線の挙動の 説明図である。  FIG. 6 is an explanatory diagram of the behavior of light rays in the transparent substrate of the electoran luminescence element shown in FIG.
[図 7]図 7は、実施例 4のエレクト口ルミネッセンス素子の概念図である。下部にはマイ クロレンズアレイの拡大平面図を示す。  FIG. 7 is a conceptual diagram of an electorifice luminescence element of Example 4. The lower part shows an enlarged plan view of the micro lens array.
[図 8]図 8は、図 7のエレクト口ルミネッセンス素子の透明基板内の光線の挙動の説明 図である。  [FIG. 8] FIG. 8 is an explanatory diagram of the behavior of light rays in the transparent substrate of the electoran luminescence element of FIG.
[図 9]図 9は、実施例 5の鏡面付きエレクト口ルミネッセンス素子を示す構成図である。  FIG. 9 is a configuration diagram illustrating an electorescence luminescent element with a mirror surface according to a fifth embodiment.
[図 10]図 10は、本発明の実施例 3のエレクト口ルミネッセンス素子を示す構成図であ る。下部にはマイクロレンズアレイの拡大平面図を示す。 FIG. 10 is a configuration diagram showing an electorifice luminescence element according to Example 3 of the present invention. The The lower part shows an enlarged plan view of the microlens array.
[図 11]図 11は、比較例 3のエレクト口ルミネッセンス素子を示す構成図である。下部に はマイクロレンズアレイの拡大平面図を示す。  FIG. 11 is a configuration diagram showing an electorifice luminescence element of Comparative Example 3. The lower part shows an enlarged plan view of the microlens array.
[図 12]図 12は、比較例 1のエレクト口ルミネッセンス素子を示す構成図である。  FIG. 12 is a configuration diagram showing an electorifice luminescence element of Comparative Example 1.
[図 13]図 13は、比較例 2のエレクト口ルミネッセンス素子を示す構成図である。  FIG. 13 is a configuration diagram showing an electorifice luminescence element of Comparative Example 2.
符号の説明  Explanation of symbols
[0022] 1 透明基板 [0022] 1 transparent substrate
la, lb 透明基板側面での全反射し、透明基板表面から射出された光線  la, lb Light rays totally reflected on the side of the transparent substrate and emitted from the transparent substrate surface
2 第一電極層  2 First electrode layer
3 発光層  3 Light-emitting layer
4 第二電極層  4 Second electrode layer
5, 5' 中間屈折率層  5, 5 'Intermediate refractive index layer
5 (5Ml〜5Mk) 中間屈折率層  5 (5Ml-5Mk) Intermediate refractive index layer
6 ガスバリア層  6 Gas barrier layer
7 マイクロレンズアレイのマイクロレンズの配列ピッチ  7 Microlens array pitch of microlens array
8 鏡面、例えばアルミ箔  8 Mirror surface, for example, aluminum foil
9 発光層中のひとつの光源  9 One light source in the light emitting layer
10, 20, 30, 40, 50 エレクト口ルミネッセンス素子  10, 20, 30, 40, 50 Elect-opening luminescence element
11 微小レンズアレイ  11 Micro lens array
30A 凹凸構造  30A uneven structure
X 反射構造部  X reflective structure
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明の好適な実施形態を、図 1から図 13を参照しながら詳細に説明する。尚、以 下に述べる実施形態は、本発明の好適な具体例であり技術的に好ましい種々の限 定が付されている力 本発明の範囲は、以下の説明において特に本発明を限定する 旨の記載がない限り、これらの態様に限られない。 A preferred embodiment of the present invention will be described in detail with reference to FIGS. The embodiments described below are preferred specific examples of the present invention, and various technically preferred limits are applied. The scope of the present invention particularly limits the present invention in the following description. Are not limited to these embodiments unless otherwise described.
[0024] <第一の態様 > [0024] <First aspect>
図 1は、本発明によるエレクト口ルミネッセンス素子の、第一の態様の構成を示して いる。図 1において、エレクト口ルミネッセンス素子 10は、透明基板 1と、透明基板 1の 図中下面側に設けられた中間屈折率層 5と、中間屈折率層 5の下面側に設けられた 第一電極層 2と、第一電極層 2の下面側に設けられた発光層 3と、発光層 3の下面側 に設けられた第二電極層 4とを備えて構成されて ヽる。エレクト口ルミネッセンス素子 1 0は、第一電極層 2と第二電極層 4との間に、図示しない駆動電源から所定の駆動電 圧を印加することにより、発光層 3がエレクト口ルミネッセンス効果により発光し、その 光は、透明な第一電極層 2、中間屈折率層 5、および透明基板 1を通過して、透明基 板 1の上方側の外部(通常、大気中)に射出される。この射出光を利用して、各種の 照明装置、表示装置を提供できる。 FIG. 1 shows a configuration of a first embodiment of an electorifice luminescence element according to the present invention. Yes. In FIG. 1, the electroluminescent element 10 includes a transparent substrate 1, an intermediate refractive index layer 5 provided on the lower surface side of the transparent substrate 1 in the drawing, and a first electrode provided on the lower surface side of the intermediate refractive index layer 5. The light emitting device includes a layer 2, a light emitting layer 3 provided on the lower surface side of the first electrode layer 2, and a second electrode layer 4 provided on the lower surface side of the light emitting layer 3. The electoran luminescent element 10 emits light by an electoran luminescence effect by applying a predetermined driving voltage from a driving power supply (not shown) between the first electrode layer 2 and the second electrode layer 4. Then, the light passes through the transparent first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate 1, and is emitted to the outside (usually in the atmosphere) above the transparent substrate 1. Various illumination devices and display devices can be provided using the emitted light.
[0025] 透明基板 1は、通常は正方形または長方形状の透光性平板として構成されている 。中間屈折率層 5は、透明基板 1の下表面に密着する形で形成された層である。中 間屈折率層 5は、透明基板 1の屈折率と第一電極層 2の屈折率との間の屈折率を有 する材料により構成されている。屈折率の大きい媒体層を屈折率 Nl、屈折率の小さ い媒体層を屈折率 N2とすると、一般に屈折率 N1の媒体層から屈折率 N2の媒体層 へとさまざまな方向からの入射光が透過する際、平面状の境界面への入射光の反射 損失は、式(N1—N2) 2/ (N1 +N2) 2として表される(J. D. Rancourt著、 Sciety of Photo Optical (UK, 1996/07/31) ,「Optical Thin Films ; Users H andbookj , (小倉繁太郎訳、日刊工業新聞社 1996「光学薄膜ユーザーズノヽンドブ ック」)参照)。 The transparent substrate 1 is usually configured as a square or rectangular light-transmitting flat plate. The intermediate refractive index layer 5 is a layer formed in close contact with the lower surface of the transparent substrate 1. The intermediate refractive index layer 5 is made of a material having a refractive index between the refractive index of the transparent substrate 1 and the refractive index of the first electrode layer 2. Assuming that a medium layer with a large refractive index has a refractive index of Nl and a medium layer with a small refractive index has a refractive index of N2, generally, incident light from various directions is transmitted from a medium layer having a refractive index of N1 to a medium layer having a refractive index of N2. In this case, the reflection loss of the incident light on the planar interface is expressed by the equation (N1−N2) 2 / (N1 + N2) 2 (JD Rancourt, Sciety of Photo Optical (UK, 1996/07/07) / 31), "Optical Thin Films; Users H andbookj," (translated by Shigetaro Ogura, Nikkan Kogyo Shimbun, 1996, "Optical Thin Film Users'Book")).
[0026] すなわち、両媒体層間の屈折率差を小さくするような層構成とすれば反射損失を低 減できる。また、これらの媒体層の間に両媒体層の中間の屈折率を持つ媒体層 (屈 折率 N3とする)を挿入した場合、全体としての光の反射損失は、それぞれの境界面 での反射損失の和とすることにより、式 { (N1 -N3) V (N1 +N3) 2} + { (N3— N2) 2Z(N3+N2) 2}で表すことができる。例えば、透明基板 1を屈折率 Nl = l. 5のガラ ス、第一電極層 2を N2 = 2. 0のインジウム錫酸ィ匕物(以下、適宜、「ITO」と記す)とし 、その間に中間屈折率層 5として N3 = l. 6の層を形成したとすると、ガラス—ΙΤΟ界 面での反射損失は約 2%だが、 ΙΤΟ—中間屈折率層の界面、及び中間屈折率層 ガラスの界面での屈折率力 算出した反射損失の和は約 1%となり約半分に低減さ れることがわかる。この二つの式を比較すればわ力るように、両媒体層間を通過する 光の反射損失は、両媒体層の中間の屈折率を持つ媒体層つまり中間屈折率層を揷 入することにより、減少することになる。本発明はこの効果を利用している。 That is, if the layer structure is made so as to reduce the refractive index difference between the two medium layers, the reflection loss can be reduced. In addition, when a medium layer having a refractive index intermediate between the two medium layers (referred to as a refractive index N3) is inserted between these medium layers, the reflection loss of the light as a whole is determined by the reflection at each interface. By taking the sum of the losses, it can be expressed by the formula {(N1-N3) V (N1 + N3) 2 } + {(N3-N2) 2Z (N3 + N2) 2 }. For example, the transparent substrate 1 is made of glass having a refractive index Nl = l.5, and the first electrode layer 2 is made of indium tin oxide having an N2 = 2.0 (hereinafter, appropriately referred to as “ITO”). If a layer of N3 = l.6 is formed as the intermediate refractive index layer 5, the reflection loss at the glass-boundary surface is about 2%, but the interface between the ΙΤΟ-intermediate refractive index layer and the intermediate refractive index layer Refractive index power at the interface The sum of the calculated reflection losses is about 1%, which is reduced to about half. It is understood that it is. As can be seen from the comparison between the two equations, the reflection loss of light passing between the two medium layers can be reduced by introducing a medium layer having an intermediate refractive index between the two medium layers, that is, an intermediate refractive index layer. Will decrease. The present invention utilizes this effect.
[0027] 中間屈折率層 5は、無機質材料でも、有機材料でも透明あるいは半透明であれば 良い。一般的には、第一電極層 2として、屈折率が約 2. 0である ITOや、 IZO、 ZnO などの透明導電膜が用いられ、また、透明基板 1として、屈折率が約 1. 5程度のガラ スゃ、透明榭脂等が用いられることから、中間屈折率層 5としては、これらの屈折率の 中間の屈折率、すなわち約 1. 5〜2. 0を有する材料を選べばよい。なお、第一電極 層 2と中間屈折率層 5との屈折率の差、および中間屈折率層 5と透明基板 1との屈折 率の差はそれぞれ 0. 5以下であることが好ましぐより好ましくは、それぞれ 0. 3以下 である。具体的な透明無機質材料としては、化学式で示せば例えば、 n= l. 7の Si 0、 n= l. 6の Al O、 n= l. 9の Y O、 n= l. 9の Nb O、 n= l. 9の Ta O、組成  [0027] The intermediate refractive index layer 5 may be an inorganic material or an organic material as long as it is transparent or translucent. Generally, a transparent conductive film such as ITO, IZO, or ZnO having a refractive index of about 2.0 is used as the first electrode layer 2, and the transparent substrate 1 has a refractive index of about 1.5. Since a glass or transparent resin of a certain degree is used, as the intermediate refractive index layer 5, a material having an intermediate refractive index between these refractive indexes, that is, about 1.5 to 2.0 may be selected. . The difference in the refractive index between the first electrode layer 2 and the intermediate refractive index layer 5 and the difference in the refractive index between the intermediate refractive index layer 5 and the transparent substrate 1 are each preferably 0.5 or less. Preferably, each is 0.3 or less. Specific examples of the transparent inorganic material can be represented by chemical formulas, for example, n = l.7 Si 0, n = l.6 Al O, n = l.9 YO, n = l.9 Nb O, n = l. 9 Ta O, composition
2 3 2 3 2 5 2 5 2 3 2 3 2 5 2 5
【こより n= l. 6〜1. 8の AIO、糸且成【こより n= l. 5〜1. 9の SiO Nのような無機膜の 単層、積層あるいは混合体層がある。透明榭脂としては、 n= l. 7のアクリル系榭脂, n= l. 6の不飽和ポリエステル榭脂のような重合体があげられる。なお、 nは屈折率を 示す (以下、同様である)。その他にもポリエチレン、ポリプロピレンような鎖状ポリオレ フィン榭脂;ポリエーテルサルファイド;トリァセチルセルロース;ポリカーボネート榭脂 ;ポリスチレン榭脂;脂環式構造を有する榭脂;などがあげられる。また、空孔を形成し て屈折率を制御して ヽる無機膜あるいは有機膜でもよ ヽ。これらの製法としては特に 制限はないが蒸着法、スパッタリング法、 CVD法が一般的に用いられる。 [AIO from n = l. 6 to 1.8; Ito] [Single layer of inorganic film such as SiON from n = l. 5 to 1.9. Examples of the transparent resin include polymers such as acrylic resin with n = l.7 and unsaturated polyester resin with n = l.6. Here, n indicates a refractive index (the same applies hereinafter). Other examples include linear polyolefin resins such as polyethylene and polypropylene; polyether sulfide; triacetyl cellulose; polycarbonate resins; polystyrene resins; resins having an alicyclic structure; Further, an inorganic film or an organic film in which pores are formed to control the refractive index may be used. Although there is no particular limitation on these production methods, an evaporation method, a sputtering method, and a CVD method are generally used.
[0028] <第二の態様 > [0028] <Second embodiment>
第三の発明に対応する第二の態様のエレクト口ルミネッセンス素子 20は、図 2に示 すように、上記第一の態様とは、中間屈折率層 5が複数の層 5Ml〜5Mkを含んで 構成されている点で相違している。この相違点を中心に以下説明する。第一電極層 2の屈折率を n、透明基板 1の屈折率を nとし、第一電極層 2から透明基板 1へ順次  As shown in FIG. 2, the electorescence luminescent element 20 of the second embodiment corresponding to the third invention is different from the first embodiment in that the intermediate refractive index layer 5 includes a plurality of layers 5M1 to 5Mk. The difference is in the configuration. The following description focuses on this difference. Let n be the refractive index of the first electrode layer 2 and n be the refractive index of the transparent substrate 1, and sequentially from the first electrode layer 2 to the transparent substrate 1.
E S  E S
積層された中間屈折率層 5を構成する各層 5Ml〜5Mkの屈折率を、第一電極層 2 に近い方から順に n 、 n 、 · · ·η とする。ここで、各層 5Ml〜5Mkの屈折率は、 n  The refractive indices of the layers 5Ml to 5Mk constituting the laminated intermediate refractive index layer 5 are denoted by n, n,... Η in order from the one closer to the first electrode layer 2. Here, the refractive index of each layer 5Ml to 5Mk is n
Ml M2 Mk  Ml M2 Mk
>n >n > · · >η >nの関係となっている。このような複数の層 5Ml〜5Mk を挿入することにより、その中間屈折率層 5が複数の層 5Ml〜5Mkで構成されてい ない場合に比べ、より大きな反射損失低減効果が得られる。それぞれ隣接する層 5 Ml〜5Mkの屈折率の差は、好ましくは 0. 3以下、さらに好ましく 0. 2以下である。な お、複数の層 5Ml〜5Mkを無限に増やしたような極限の状態とすれば、屈折率の 変化を連続的な変化に近づけることができるので、反射損失をより一層抑えることが できる。つまり、このような極限の状態とは、中間屈折率層 5の屈折率が、第一電極層 2から透明基板 1に向力つて第一電極層 2の屈折率力 透明基板 1の屈折率へと連 続的に変化する場合に相当する。本発明には、このような場合も含まれる。また、この 中間屈折率層 5は、他の層、例えば第一電極層 2や透明基板 1の機能の一部を兼ね てもよく、また、ガスノリア層などの機能を兼ねても良い。各層 5Ml〜5Mkは、上述 した無機質材料、有機材料を適宜組み合わせて使用すればよい。各層 5Ml〜5Mk は、例えば n= l. 6の Al O、 n= l. 7の SiO、 n= l. 9の Y Ο製の膜を順に透明基 >n>n> · ·>η> n. Such multiple layers 5Ml ~ 5Mk By inserting, a larger reflection loss reduction effect can be obtained as compared with the case where the intermediate refractive index layer 5 is not composed of a plurality of layers 5Ml to 5Mk. The difference between the refractive indices of the adjacent layers 5 Ml to 5 Mk is preferably 0.3 or less, more preferably 0.2 or less. In addition, if the plurality of layers 5Ml to 5Mk are in an extreme state where they are infinitely increased, the change in the refractive index can be made closer to a continuous change, so that the reflection loss can be further suppressed. In other words, such an extreme state means that the refractive index of the intermediate refractive index layer 5 is directed from the first electrode layer 2 to the transparent substrate 1 to the refractive index of the first electrode layer 2 to the refractive index of the transparent substrate 1. It corresponds to the case where it continuously changes. The present invention includes such a case. Further, the intermediate refractive index layer 5 may also have a part of the function of another layer, for example, the first electrode layer 2 or the transparent substrate 1, or may have a function of a gas nolia layer or the like. Each of the layers 5Ml to 5Mk may be used by appropriately combining the above-mentioned inorganic materials and organic materials. Each layer 5Ml to 5Mk is, for example, a film made of Al O of n = l.6, SiO of n = l.7, and YΟ of n = l.
2 3 2 3  2 3 2 3
板上に積層して使用できる。また、これらの材料の混合体でも力まわない。あるいは、 組成により η= 1. 6〜1. 8である AIOや組成により η= 1. 5〜1. 9である SiO Nの ような無機膜の組成を変化させながら積層し、膜の屈折率を連続的または断続的に 変化させた膜でも良い。 It can be used by being laminated on a board. Also, a mixture of these materials does not work. Alternatively, lamination is performed while changing the composition of an inorganic film such as AIO in which η = 1.6 to 1.8 depending on the composition or SiON in which η = 1.5 to 1.9 depending on the composition, and the refractive index of the film. May be a film in which is changed continuously or intermittently.
<第三の態様 > <Third aspect>
第五の発明に対応する第三の態様のエレクト口ルミネッセンス素子 30は、図 3に示 すように、第 1の態様とは、透明基板 1の少なくとも片方の表面に複数の凹凸構造が 設けられている点で相違する。すなわち、エレクト口ルミネッセンス素子 30において、 透明基板 1の図中上面には、複数の凹凸構造 30Aが形成されている。なお、本態様 では、第一の態様と同様の光取出効率向上効果、および前記特許文献 2に記載され ているような凹凸構造の界面の光取出効率向上効果を利用している。つまり、凹凸構 造 30Aを設けることにより、発光層 3からの光が第一電極層 2および透明基板 1を通 過し、透明基板 1の外部へ射出される際に、入射角を変化させて全反射による損失 を抑えている。凹凸構造 30Aの形状としては、例えば六角錐、四角錐、三角錐、円 錐、三角柱、レンズドームあるいは凹ゃ凸のレンズ形状等とすることができ、本態様で は、上方に頂点を持つ四角錘状として形成され、透明基板 1と一体的に形成されて いる。この四角錐状の凹凸構造 30Aは、透明基板 1の長辺方向及び短辺方向に沿 つて、凹凸構造 30A力 所定の配列ピッチ 7、例えば 0. 01〜: Lmmで並んでおり、こ の際、凹凸構造 30Aの高低差が 0. 01 m〜 100 mの範囲内に選定されているこ とが光取出効率向上効果が得られる点で好ましい。なお、前記凹凸構造を円錐状と した場合には、上記四角錐の代わりに上方に向力つて突出する円錐状の凸部が形 成される。この際、円錐状の凸部の底面が、四角錘の底面の矩形形状の外接円とな るように形成されることが好ましい。円錐状の凸部の底面近傍の、上記矩形形状から 上記長辺方向及び短辺方向に突出する部分が切除されることにより、互いに隣接す る円錐同士が干渉しないようになっている。さらに、これらの円錐状の凸部は、透明基 板 1の長辺方向及び短辺方向に沿つて所定の配列ピッチ例えば 0. 01〜: Lmmで並 んで、高さが 0. 01〜: LOO /z mの範囲内に選定されていることが好適である。 As shown in FIG. 3, the elector luminescent device 30 of the third embodiment corresponding to the fifth invention is different from the first embodiment in that a plurality of uneven structures are provided on at least one surface of the transparent substrate 1. Is different. That is, in the electorum luminescence element 30, a plurality of uneven structures 30A are formed on the upper surface of the transparent substrate 1 in the drawing. In this embodiment, the same effect of improving the light extraction efficiency as in the first embodiment and the effect of improving the light extraction efficiency at the interface of the concavo-convex structure described in Patent Document 2 are utilized. That is, by providing the uneven structure 30A, when the light from the light emitting layer 3 passes through the first electrode layer 2 and the transparent substrate 1 and is emitted to the outside of the transparent substrate 1, the incident angle is changed. The loss due to total reflection is suppressed. The shape of the concavo-convex structure 30A may be, for example, a hexagonal pyramid, a quadrangular pyramid, a triangular pyramid, a circular cone, a triangular prism, a lens dome, or a concave-convex lens shape. It is formed as a cone and is formed integrally with the transparent substrate 1. Yes. The quadrangular pyramid-shaped uneven structure 30A is arranged along the long side direction and the short side direction of the transparent substrate 1 at a predetermined arrangement pitch 7, for example, 0.01 to Lmm. It is preferable that the height difference of the concavo-convex structure 30A is selected in the range of 0.01 m to 100 m in that the light extraction efficiency can be improved. When the concavo-convex structure is formed in a conical shape, a conical convex portion protruding upward is formed instead of the quadrangular pyramid. In this case, it is preferable that the bottom surface of the conical convex portion is formed so as to be a rectangular circumscribed circle of the bottom surface of the quadrangular pyramid. The portions protruding in the long side direction and the short side direction from the rectangular shape near the bottom surface of the conical convex portion are cut off, so that mutually adjacent cones do not interfere with each other. Further, these conical projections are arranged along the long side and the short side of the transparent substrate 1 at a predetermined arrangement pitch, for example, 0.01 to Lmm, and have a height of 0.01 to LOO. Preferably, it is selected within the range of / zm.
[0030] 前記凹凸構造は、高屈折率層と相対的に低屈折率層との界面に存在すると高屈 折率層から低屈折率層へさまざまな方向から入射して一部反射しながら透過していく 光の反射損失を抑え、透過効率を上げ、また散乱光に指向性を持たせて低屈折率 層側に射出することが出来る。このような観点から、凹凸構造を設ける位置は、透明 基板 1の上面でも下面でもまた上下両面でもよぐ層界面の屈折率に差がありさえす れば効果が発揮できる。なお、前記凹凸構造は、同じ形状の凹凸構造を透明基板 1 の表面に隙間なく配置しても良いが、とくにその必要はない。異なった形状、例えば 角錐と円錐、さらには大きさの異なる角錐、円錐などが密にまたはまばらに配置され ていても問題はない。製造上は、例えば同形の四角錐を隙間なく縦横に連続的に配 置した凹凸構造などが便利である。  When the uneven structure is present at the interface between the high-refractive index layer and the relatively low-refractive index layer, it enters the low-refractive index layer from the high-refractive index layer from various directions and transmits while partially reflecting. The scattered light can be emitted to the low-refractive-index layer side while suppressing the reflection loss of the light and increasing the transmission efficiency. From such a point of view, the effect can be exerted as long as there is a difference in the refractive index of the layer interface between the upper and lower surfaces of the transparent substrate 1 and the upper and lower surfaces. In addition, although the uneven structure of the same shape may be arranged on the surface of the transparent substrate 1 without any gap, the uneven structure is not particularly required. It does not matter if different shapes, for example pyramids and cones, or even differently sized pyramids, cones, etc., are densely or sparsely arranged. For manufacturing, for example, a concavo-convex structure in which quadrangular pyramids of the same shape are continuously arranged vertically and horizontally without gaps is convenient.
[0031] 次に、凹凸構造の機能について説明する。高屈折率の媒体層から相対的に低屈 折率の媒体層へと両層の界面を光が透過する際、高屈折率媒体層側の全方向から の光線の透過効率は、平面的な界面に比べその界面に四角錐のような凹凸構造が あることにより向上する事が知られている。さらに、これらの凹凸構造にはこれらの全 方向からの光すなわち散乱光の指向性付与効果があることが知られている (特許文 献 1, 2)。透明基板 1表面のひとつ一つの凹凸構造 30Aをとつてみると、発光層 3か ら射出する光は、第一電極層 2、中間屈折率層 5を介して下部全方向から均等に凹 凸構造 30Aに入射する。凹凸構造 30Aが、例えば上に頂点を持つ四角錐状に形成 されていることにより、反射、特に全反射による下方への光の損失が少なくなり、全方 向からの光の大部分を確実に上方に向力つて導くことができる。すなわち、発光層 3 から出射する光の反射損失が減少し、光取出効率が向上することになる。一般に、中 間屈折率層 5、透明基板 1、大気 (透明基板 1の上部側)の順に屈折率が小さくなつ ている。それゆえ、凹凸構造 30Aによる光取出効率向上効果は、中間屈折率層 5と 透明基板 1との間でも、透明基板 1と大気との間でも発揮できる。 Next, the function of the concavo-convex structure will be described. When light passes through the interface between both layers from a medium layer with a high refractive index to a medium layer with a relatively low refractive index, the transmission efficiency of light rays from all directions on the medium layer side with a high refractive index is flat. It is known that it is improved by having an uneven structure such as a quadrangular pyramid at the interface compared to the interface. Furthermore, it is known that these concavo-convex structures have the effect of providing directivity of light from all directions, that is, scattered light (Patent Documents 1 and 2). Looking at each of the uneven structures 30A on the surface of the transparent substrate 1, the light emitted from the light emitting layer 3 is uniformly concave from all directions below through the first electrode layer 2 and the intermediate refractive index layer 5. The light enters the convex structure 30A. Since the uneven structure 30A is formed, for example, in the shape of a quadrangular pyramid having an apex on the top, reflection, particularly loss of light downward due to total reflection is reduced, and most of the light from all directions is assured. It can be guided upward. That is, the reflection loss of the light emitted from the light emitting layer 3 is reduced, and the light extraction efficiency is improved. Generally, the refractive index decreases in the order of the intermediate refractive index layer 5, the transparent substrate 1, and the atmosphere (upper side of the transparent substrate 1). Therefore, the effect of improving light extraction efficiency by the uneven structure 30A can be exerted between the intermediate refractive index layer 5 and the transparent substrate 1 or between the transparent substrate 1 and the atmosphere.
[0032] ここで、中間屈折率層 5と透明基板 1との界面に凹凸構造を設けた場合の、もうひと つの光取出効率向上機能を説明する。上述のように凹凸構造をもった界面は、高屈 折率媒体から低屈折率媒体へ光が透過する際に好適な光の指向性付与効果を持 つている。一方、高屈折率の透明基板 1から相対的に低屈折率の大気中へ光を効率 よく透過させるには、透明基板 1の界面での反射による反射損失、特に全反射による 損失を抑えなければならない。そのためには透明基板 1の上部(大気側)表面に透明 基板下側から入射してくる光を、この面に対し入射角が小さくなる方向の光に変えて やればよい。すなわち、発光層 3から放射されてくるいろいろな方角の光を、中間屈 折率層 5と透明基板 1との界面で、透明基板 1の上側表面に対し入射角が小さくなる 、すなわち垂直に近い方向に変えることである。これは中間屈折率層 5と透明基板 1 との界面に凹凸構造を形成することで実現できる。このように中間屈折率層 5と透明 基板 1との界面に凹凸構造を設けた場合は、さらなる光取出効率向上効果が期待で きる。 Here, another function of improving light extraction efficiency when an uneven structure is provided at the interface between the intermediate refractive index layer 5 and the transparent substrate 1 will be described. As described above, the interface having the concavo-convex structure has a suitable light directivity providing effect when light is transmitted from the high refractive index medium to the low refractive index medium. On the other hand, in order to efficiently transmit light from the high-refractive-index transparent substrate 1 to the relatively low-refractive-index atmosphere, it is necessary to suppress reflection loss due to reflection at the interface of the transparent substrate 1, especially loss due to total reflection. No. For this purpose, light incident on the upper (atmospheric side) surface of the transparent substrate 1 from the lower side of the transparent substrate may be changed to light in a direction in which the incident angle with respect to this surface decreases. In other words, the light of various directions emitted from the light emitting layer 3 is incident on the upper surface of the transparent substrate 1 at the interface between the intermediate refractive index layer 5 and the transparent substrate 1 at a small incident angle, that is, near vertical. To change the direction. This can be realized by forming an uneven structure at the interface between the intermediate refractive index layer 5 and the transparent substrate 1. When an uneven structure is provided at the interface between the intermediate refractive index layer 5 and the transparent substrate 1 as described above, a further improvement in light extraction efficiency can be expected.
[0033] 本発明における凹凸構造としては、高さが 0. 01〜: LOO /z m さらに好ましくは 1〜1 OO /z m でぁり透明基板1の縦横方向にピッチ10 111〜1111111、さらに好ましくは 10 /ζ πι〜0. lmm、の範囲で凹凸構造すなわちマイクロレンズ素子が複数配置されて いることが望ましい。凹凸構造は、エレクト口ルミネッセンス素子の一部に配置されて いてもよいが、エレクト口ルミネッセンス素子全体としての機能発揮には少なくとも透 明基板片側表面全体に配置されていることが好ましい。凹凸構造はどのような方法 で製造しようと上述の機能を発揮する凹凸構造になっていれば良い。通常の製造法 としては、溶融成型法、射出成型法、キャスティング法、エンボス加工法、電子線微 細加工法、ロール成型法、インフレーション法などを利用すればよい。 The uneven structure in the present invention has a height of 0.01 to: LOO / zm, more preferably 1-1 to 100 / zm, and a pitch of 10 111 to 1111111 in the vertical and horizontal directions of the transparent substrate 1, more preferably It is desirable that a plurality of concave / convex structures, that is, a plurality of microlens elements are arranged in the range of 10 / ζπι to 0.1 mm. The concavo-convex structure may be arranged on a part of the electorifice luminescent element, but is preferably arranged on at least the entirety of one surface of the transparent substrate in order to exhibit the function of the electorate luminescent element as a whole. Regardless of the method of manufacturing the uneven structure, any structure may be used as long as the uneven structure exhibits the above-described function. Normal manufacturing methods include melt molding, injection molding, casting, embossing, and electron beam microscopy. A fine working method, a roll forming method, an inflation method, or the like may be used.
[0034] <第四の態様 >  <Fourth embodiment>
第六力 第八の発明に対応する第四の態様のエレクト口ルミネッセンス素子 40は、 図 4に示すように、前記第一の態様とは、透明基板 1の側面に反射構造部 Xが設けら れている点で相違している。以下、この相違点を中心に説明する。図 4に示すように、 エレクトロルミネセンス素子 40は、上力も順に透明基板 1、中間屈折率層 5、第一電 極層 2、発光層 3、第二電極層 4を積層して構成されている。エレクトロルミネセンス素 子 40は、第一電極層 2と第二電極層 4との間に、図示しない駆動電源力も所定の駆 動電圧を印加することにより、発光層 3がエレクトロルミネセンス効果により発光し、そ の光が透明な第一電極層 2、中間屈折率層 5、透明基板 1を通過して、透明基板 1の 上方のエレクトロルミネセンス素子 40の外部に射出する。このようなエレクト口ルミネセ ンス素子 40を利用すれば、各種の照明装置、表示装置を提供することが出来る。  Sixth force Elect-port luminescent element 40 of a fourth embodiment corresponding to the eighth invention is different from the first embodiment in that reflective structure portion X is provided on the side surface of transparent substrate 1 as shown in FIG. It is different in that it is. Hereinafter, the difference will be mainly described. As shown in FIG. 4, the electroluminescent element 40 is configured by laminating a transparent substrate 1, an intermediate refractive index layer 5, a first electrode layer 2, a light emitting layer 3, and a second electrode layer 4 in order from the top. I have. The electroluminescent element 40 is configured such that the light emitting layer 3 emits light by an electroluminescent effect by applying a predetermined driving voltage to a driving power source (not shown) between the first electrode layer 2 and the second electrode layer 4. Then, the light passes through the transparent first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate 1, and is emitted outside the electroluminescent element 40 above the transparent substrate 1. Various lighting devices and display devices can be provided by using such an electorifice luminescence element 40.
[0035] 本発明において、反射構造部とは、例えば透明基板 1の側面から直接エレクトロル ミネッセンス素子 40の外部へ射出される光を反射させ、透明基板 1の内部に向かつ て射出させる機能をもつ構造部のことである。本態様では、図 4に示すように、反射構 造部 Xは、透明基板 1の側面において、下力も上に向力つて広がった形状として構成 されている。この場合、透明基板 1の側面に向かった光のうち側面で全反射により透 明基板 1の内側へ向きが変わる光が多くなる。そこで、図 4のような側面構造をしてい ると、発光層 3の一点、例えば光源 9から発した光線は、透明基板 1の側面への入射 角が大きくなり全反射して透明基板 1の内部へ戻ってくる。そして透明基板 1の表面 力 上方へ射出される光となって有効に利用される。一般に光は相対的に屈折率が 高 ヽ媒体から屈折率が低!ヽ媒体へ通過する場合、臨界角以上で入射する光は全て 全反射する性質をもっている。すなわち、屈折率が高い媒体つまり透明基板の屈折 率を n 屈折率が低い媒体つまり大気の屈折率を n 臨界角を 0 cとすると、臨界角 In the present invention, the reflection structure portion has a function of, for example, reflecting light emitted directly from the side surface of the transparent substrate 1 to the outside of the electroluminescent element 40 and emitting the light toward the inside of the transparent substrate 1. It is the structural part that has. In this embodiment, as shown in FIG. 4, the reflective structure portion X is formed on the side surface of the transparent substrate 1 in such a shape that the downward force is also directed upward and spread. In this case, of the light directed to the side surface of the transparent substrate 1, more light changes its direction to the inside of the transparent substrate 1 due to total reflection at the side surface. Therefore, if the side structure as shown in FIG. 4 is used, the light emitted from one point of the light-emitting layer 3, for example, the light source 9 becomes large on the side surface of the transparent substrate 1 and totally reflected, and Come back inside. Then, the light is emitted upward to the surface force of the transparent substrate 1 and is effectively used. In general, light has a relatively high refractive index. 屈折 Low refractive index from a medium! ヽ When passing through a medium, all light incident above the critical angle has the property of being totally reflected. That is, assuming that the medium with a high refractive index, that is, the refractive index of the transparent substrate is n, and the medium with a low refractive index, that is, the refractive index of the atmosphere is n, the critical angle is 0 c.
H、 し、 H, then,
0 cは式 sin_1 (n /n )で表される。 0 c is represented by the equation sin _1 (n / n).
L H  L H
[0036] この態様では光線のこのような性質を利用している。図 4では光源 9からの光線が全 反射して光線 laとなって上方へ射出される。透明基板 1の側面の反射構造部 Xは、 透明基板 1の下側の発光層 3からの光を透明基板 1の側面力も透過させないで透明 基板 1の上部表面に射出させる機能を有していればよい。 [0036] In this embodiment, such a property of the light beam is used. In FIG. 4, the light beam from the light source 9 is totally reflected and is emitted upward as a light beam la. The reflective structure portion X on the side surface of the transparent substrate 1 is transparent without transmitting the light from the light emitting layer 3 below the transparent substrate 1 without transmitting the side force of the transparent substrate 1. What is necessary is just to have a function of emitting light to the upper surface of the substrate 1.
[0037] また、本発明の反射構造部は、透明基板 1の側面の断面構造が図 5及び図 6に示 すように上に広がったほぼ台形状となっていてもよい。図 5及び図 6では、透明基板 1 の上面は凹凸状が強調されているが、凹凸は非常に小さく上面の現実の外観はほ ぼ平面状に見える。なお、この場合、片側側面のみ上に広がっていても良いが、入 射角が大きくなるように両側側面が上に広がった台形状であることが好ま 、。さらに は、 4つの側面がすべて該構造であることが好ましい。これらの構造としては、例えば 図 7及び図 8に示すように、透明基板 1の側面の断面構造が、上記のような上に凸な 曲線の断面構造を持つ薄い透明基板が複数枚重なったような状態の構造がある。も ちろん、上記台形構造の透明基板が複数枚重なった状態の構造でも良い。これによ り、側面からの透過損失防止効果は同じであるが、透明基板 1の上部表面と下部表 面の大きさをほぼ同じとして製造上、取扱い上の便宜を図っている。図 8において、 光源 9から最も右に示した光線は、まず側面で全反射し上向きに方向を変える。この 光線は一度透明基板 1の外へ出るが方向転換により上方に近い方向を向いているの で、すぐに上部の透明基板 1部分に入射し最後は透明基板 1の上部表面力 光線 1 bとなって有効利用される。このような構造を形成するには、例えば、透明基板の側面 に平面と平行に上記形状の溝を形成すれば簡単に本発明を実施することができる。  In addition, the reflective structure of the present invention may have a substantially trapezoidal shape in which the cross-sectional structure of the side surface of the transparent substrate 1 spreads upward as shown in FIG. 5 and FIG. In FIGS. 5 and 6, the upper surface of the transparent substrate 1 is emphasized with irregularities, but the irregularities are very small, and the actual appearance of the upper surface looks almost flat. In this case, only one side surface may be extended upward, but preferably a trapezoidal shape in which both side surfaces are extended upward so as to increase the angle of incidence. Further, it is preferable that all four sides have such a structure. For example, as shown in FIGS. 7 and 8, the cross-sectional structure of the side surface of the transparent substrate 1 is such that a plurality of thin transparent substrates having the above-described cross-sectional structure of an upwardly convex curve are overlapped. There is a structure of the state. Of course, a structure in which a plurality of the trapezoidal transparent substrates are stacked may be used. Thereby, although the effect of preventing transmission loss from the side surface is the same, the size of the upper surface and the lower surface of the transparent substrate 1 is made substantially the same, thereby facilitating manufacturing and handling. In FIG. 8, the rightmost ray from the light source 9 is totally internally reflected at the side and changes its direction upward. This light ray goes out of the transparent substrate 1 once, but it is directed to the upper direction due to the change of direction, so it is immediately incident on the upper transparent substrate 1 part and finally the upper surface force of the transparent substrate 1 Be used effectively. In order to form such a structure, for example, the present invention can be easily implemented by forming a groove having the above shape on a side surface of a transparent substrate in parallel with a plane.
[0038] 本発明の反射構造部は、透明基板側面に凹凸構造を形成することでも実施するこ とが出来る。上述の側面の構造も一種の凹凸構造であるが、例えば四角錐、三角錐 、六角錐、円錐、ドーム状などの形状の凹凸を側面に形成すればよい。四角錐等の 錐状の場合、頂点力も底面へ向力 垂線軸が、底面側 (基板内部側)より頂点側 (基 板外部側)が上になるように傾 、て 、ることが好ま 、。発光層から側面への入射光 が反射し易 、構造となるからである。  [0038] The reflection structure of the present invention can also be implemented by forming an uneven structure on the side surface of the transparent substrate. The above-described side surface structure is also a kind of uneven structure. For example, it is only necessary to form unevenness in a shape such as a quadrangular pyramid, a triangular pyramid, a hexagonal pyramid, a cone, and a dome. In the case of a pyramid such as a quadrangular pyramid, the apex force is also directed to the bottom surface. It is preferable that the vertical axis is inclined such that the apex side (outside of the substrate) is higher than the bottom side (inside of the substrate). . This is because incident light from the light emitting layer to the side surface is easily reflected, and the structure is obtained.
[0039] さらに、反射構造部の機能を発揮する構造として、図 9に示されるような側面を鏡面 とする態様がある。透明基板 1の側面に金属等の光沢のある物質 8を付加して側面を 鏡面とすれば、発光層 3からの側面への入射光はほぼすベて反射して透明基板 1内 部へ戻っていき有効に利用される。例えば側面に金属薄膜を成膜する、鏡面を有す る板により側面を囲むなどが挙げられる。このような反射構造部は透明基板 1側面の 一部に形成しても効果はある力 エレクト口ルミネッセンス素子の光取出効率向上と いう観点からは、 4つの側面の全体に形成することが好ましい。なお、さらに好ましい 本発明の態様としてエレクト口ルミネッセンス素子下面、すなわち第二電極層 4の下 面にも鏡面を設けて、または第二電極層 4自身の下面に鏡面機能を持たせて、光取 出効率を向上できる。例えば、第二電極層 4をアルミニウム等の光沢のある金属で形 成すれば実現できる。 [0039] Further, as a structure exhibiting the function of the reflection structure, there is a mode in which the side surface is a mirror surface as shown in Fig. 9. If a glossy substance 8 such as a metal is added to the side surface of the transparent substrate 1 and the side surface is made a mirror surface, the light incident on the side surface from the light emitting layer 3 is almost completely reflected and returns to the inside of the transparent substrate 1. It is used effectively. For example, a metal thin film is formed on the side surface, and the side surface is surrounded by a plate having a mirror surface. Such a reflective structure is located on the side of the transparent substrate 1. Even if it is formed partially, it is effective to form the entire four side surfaces from the viewpoint of improving the light extraction efficiency of the electroluminescent device. As a further preferred embodiment of the present invention, a mirror surface is provided on the lower surface of the electorescence luminescent element, that is, the lower surface of the second electrode layer 4, or the lower surface of the second electrode layer 4 itself has a mirror surface function, and Output efficiency can be improved. For example, this can be realized by forming the second electrode layer 4 with a glossy metal such as aluminum.
[0040] <第五の態様 >  [0040] <Fifth aspect>
第九の発明に対応する第五の態様について図 10を参照しながら説明する。図 10 に示した発明の態様のエレクト口ルミネッセンス素子 50は、透明基板 1と第一電極層 2との間に、水蒸気透過速度が 0. lg'm2Z日以下のガスノリア層 5,が設けられてい る。透明基板 1は、通常、強度やガスノリア性力もガラス等の透明な無機材料を用い ている。しかし、薄くし力も柔軟性に優れたエレクト口ルミネッセンス素子を得るには、 透明基板としても薄ぐ柔軟性に優れた榭脂製が適している。透明基板 1として榭脂 製のものを用いる場合には、ガスノリア層 5'を有することが好ましいことになる。ガス バリア層 5'は前記透明基板 1と第一電極層 2との間に設置し、水蒸気透過速度が 0. lg'm2Z日以下であるような材料が好適である。なお、水蒸気透過速度の測定 ίお IS K7129 B法の赤外センサー法に準拠して、市販の水蒸気透過速度測定器、例え ば、 MOCON社製の「PERMATRAN— W」を用いて温度 40°C、湿度 90%RHの 雰囲気下で行う。中間屈折率層 5との位置関係は、特にこだわる必要はない。なお、 図 4では中間屈折率層 5を上部としている。ただし、ガスバリア層 5 'の屈折率が、この 層を挟んでいる両側の層の屈折率の中間の値となるようにすることが好ましい。このよ うにすればガスバリア層 5 'は中間屈折率層の機能も果たす力 である。 A fifth embodiment corresponding to the ninth invention will be described with reference to FIG. In the electoral luminescence device 50 of the embodiment of the invention shown in FIG. 10, a gas noria layer 5 having a water vapor transmission rate of 0.1 lg'm 2 Z days or less is provided between the transparent substrate 1 and the first electrode layer 2. It has been done. The transparent substrate 1 is usually made of a transparent inorganic material such as glass having strength and gas-nolia force. However, in order to obtain an electroluminescent device having a thin and excellent flexibility, it is suitable to use a thin and flexible resin as a transparent substrate. When a resinous material is used as the transparent substrate 1, it is preferable to have a gas nolia layer 5 '. The gas barrier layer 5 'is provided between the transparent substrate 1 and the first electrode layer 2, and is preferably made of a material having a water vapor transmission rate of 0.1 lg'm 2 Z days or less. The measurement of the water vapor transmission rate was carried out at 40 ° C using a commercially available water vapor transmission rate measuring instrument such as “PERMATRAN-W” manufactured by MOCON, based on the infrared sensor method of IS K7129 B method. This is performed in an atmosphere with a humidity of 90% RH. The positional relationship with the intermediate refractive index layer 5 does not need to be particularly limited. In FIG. 4, the intermediate refractive index layer 5 is located on the upper side. However, it is preferable that the refractive index of the gas barrier layer 5 'is set to an intermediate value between the refractive indices of the layers on both sides sandwiching this layer. In this way, the gas barrier layer 5 'is a force that also functions as an intermediate refractive index layer.
[0041] ガスノリア層 5'の機能は、発光層 3あるいは電極層の劣化することを防ぐことである 。発光層 3が有機材料であったり、電極層が金属材料であったりすると、これらが大気 雰囲気中の水蒸気により劣化するおそれがあるからである。透明基板 1の水蒸気透 過性が低 、場合、透明基板 1と第一電極層 2との間に高 、ガスノリア性を有するガス ノリア層を挿入することが有効となる。この場合、一般には酸素透過性も低い。ガス ノリア層はその水蒸気透過性を 0. lg'm2Zday以下、好ましくは 0. 08g'm2Z日以 下とする必要がある。このガスバリア層 5'の材質は、例えば SiOx, Al O、 AIO , Si [0041] The function of the gas nolia layer 5 'is to prevent the light emitting layer 3 or the electrode layer from deteriorating. If the light emitting layer 3 is an organic material or the electrode layer is a metal material, these may be deteriorated by water vapor in the air atmosphere. In the case where the water vapor permeability of the transparent substrate 1 is low, it is effective to insert a gas nolia layer having a high gas noria property between the transparent substrate 1 and the first electrode layer 2. In this case, the oxygen permeability is generally low. Gas Noria layer the water vapor permeability 0. lg'm 2 Zday less, preferably 0. 08g'm 2 Z date than Must be below. The material of the gas barrier layer 5 'is, for example, SiOx, AlO, AIO, Si
2 3 x 2 3 x
O N、 SiNxなどがある。このガスノリア層 5,の屈折率は透明基板 1と第一電極層 2 との間の屈折率であることが好ましい。ガスバリア層 5'の製法としては蒸着法、スパッ タリング法、 CVD法が一般的である。なお、ガスノリア層 5'は上述のように中間屈折 率層 5と兼ねることもできる。ガスノリア層 5,の厚さは、通常 0. 02〜1 /ζ πιであり、好 ましくは 0. 05〜0. である。 ON and SiNx. The refractive index of the gas nolia layer 5 is preferably the refractive index between the transparent substrate 1 and the first electrode layer 2. As a manufacturing method of the gas barrier layer 5 ', a vapor deposition method, a sputtering method, and a CVD method are generally used. Note that the gas noria layer 5 ′ can also serve as the intermediate refractive index layer 5 as described above. The thickness of the gas nolia layer 5 is usually 0.02 to 1 / ζπι, preferably 0.05 to 0.
[0042] 本発明においては、透明基板の吸水率が 0. 1%以下、熱線膨張係数力^〜 80pp mZKであることが望ましぐさらに好ましくは吸水率が 0. 05%以下、熱線膨張係数 カ^〜 70ppmZKである。これにより、エレクト口ルミネッセンス素子の通常の使用環 境下での変形による性能劣化はほとんどなくなる。また、吸水率が低くなればそれに したがって基板の水蒸気透過性も低下することが予想さる。透明基板 1は、通常、強 度やガスノリア性力もガラス等の透明な無機材料を用いている。しかし、薄くし力も柔 軟性に優れたエレクト口ルミネッセンス素子を得るには、透明基板としても薄ぐ柔軟 性に優れた榭脂製が適している。透明基板としては、 n= l. 7のアクリル系榭脂, n= 1. 6の不飽和ポリエステル榭脂のような重合体があげられる。その他にもポリエチレ ン、ポリプロピレンような鎖状ポリオレフイン榭脂;ポリエーテルサルファイド;ポリカー ボネート榭脂;ポリスチレン榭脂;脂環式構造を有する榭脂;などがあげられる。その 中でも脂環式構造を有する樹脂は光透過性、熱安定性、吸水特性、機械特性など に優れ好適である。 [0042] In the present invention, the water absorption of the transparent substrate is preferably 0.1% or less, and the linear thermal expansion coefficient is preferably from ^ to 80 pp mZK. More preferably, the water absorption is 0.05% or less, and the thermal expansion coefficient is Power is ~ 70ppmZK. As a result, there is almost no performance degradation due to deformation of the electoran luminescence element under normal use environment. It is also expected that the lower the water absorption, the lower the water vapor permeability of the substrate. The transparent substrate 1 is usually made of a transparent inorganic material such as glass having strength and gas-nolia force. However, in order to obtain an electorescence luminescent element which is thin and has excellent flexibility, it is suitable to use a thin and flexible resin as a transparent substrate. Examples of the transparent substrate include polymers such as acrylic resin with n = l.7 and unsaturated polyester resin with n = 1.6. Other examples include linear polyolefin resins such as polyethylene and polypropylene; polyether sulfide; polycarbonate resins; polystyrene resins; resins having an alicyclic structure; Among them, a resin having an alicyclic structure is suitable because it has excellent light transmittance, heat stability, water absorption properties, mechanical properties and the like.
[0043] 脂環式構造を有する榭脂にお!ヽては、脂環式構造は主鎖及び側鎖の!/ヽずれにあ つても良い。脂環式構造を有する榭脂としては、シクロアルカン構造、シクロアルケン 構造などが挙げられる力 熱安定性の観点力 シクロアルカン構造が好ましい。脂環 式構造を形成する炭素原子数は通常 4〜30個、好ましくは 5〜20個、より好ましくは 5〜15個である。脂環式構造を構成する炭素原子数がこの範囲にあると、耐熱性及 び柔軟性に優れている。脂環式構造を有する榭脂中の脂環式構造を有する繰り返し 単位の割合は、使用目的に応じて適宜選択すればよい。  In a resin having an alicyclic structure, the alicyclic structure may have a deviation of! / ° between the main chain and the side chain. Examples of the resin having an alicyclic structure include a cycloalkane structure and a cycloalkene structure. The number of carbon atoms forming the alicyclic structure is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15. When the number of carbon atoms constituting the alicyclic structure is in this range, excellent heat resistance and flexibility are obtained. The proportion of the repeating unit having an alicyclic structure in the resin having an alicyclic structure may be appropriately selected depending on the purpose of use.
[0044] 脂環式構造を有する榭脂の具体例としては、ノルボルネン系重合体、単環の環状 ォレフィンの重合体、環状共役ジェンの重合体、ビニル脂環式炭化水素重合体、こ れらの水素化物、及びこれらの混合物などが挙げられる。これらの中でも、光透過性 、熱安定性、吸水特性、耐熱性、機械的強度の観点から、ノルボルネン系重合体及 びその水素化物、ビニル脂環式炭化水素重合体及びその水素化物などが好まし 、 [0044] Specific examples of the resin having an alicyclic structure include a norbornene-based polymer, a monocyclic cyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, Examples thereof include hydrides thereof, and mixtures thereof. Among these, norbornene-based polymers and their hydrides, vinyl alicyclic hydrocarbon polymers and their hydrides, and the like are preferred from the viewpoints of light transmittance, thermal stability, water absorption properties, heat resistance, and mechanical strength. ,
[0045] (1)ノルボルネン系重合体 (1) Norbornene-based polymer
本発明に用いるノルボルネン系重合体としては、ノルボルネン系モノマーの開環重 合体、ノルボルネン系モノマーとこれを開環共重合可能なその他のモノマーとの開環 共重合体、これらの水素化物、ノルボルネン系モノマーの付加重合体、ノルボルネン 系モノマーとこれと共重合可能なその他のモノマーとの付加共重合体などが挙げら れる。これらの中でも、耐熱性、機械的強度の観点から、ノルボルネン系モノマーの 開環重合体水素化物が最も好ましい。ノルボルネン系モノマーとしては、ビシクロ〔2. 2. 1〕一ヘプトー 2—ェン (慣用名:ノルボルネン)及び環に置換基を有する誘導体、 トリシクロ [4. 3. 0. I2' 5]デカ一 3, 7 ジェン(慣用名:ジシクロペンタジェン)及びそ の誘導体、 7, 8 ベンゾトリシクロ [4. 3. 0. I2' 5]デカ一(慣用名:メタノテトラヒドロフ ルオレン)及びその誘導体、テトラシクロ [4. 4. 0. I2' 5. l7' 10]ドデ力— 3 ェン (慣 用名:テトラシクロドデセン)及びその誘導体などが挙げられる。置換基としては、アル キル基、アルキレン基、ビュル基、アルコキシカルボ-ル基などが例示でき、上記ノル ボルネン系モノマーはこれらを 2種以上有してもよ!、。これらのノルボルネン系モノマ 一はそれぞれ単独であるいは 2種以上を組み合わせて用いられる。これらノルボルネ ン系モノマーの開環重合体、またはノノレボノレネン系モノマーとその他のモノマーとの 開環共重合体は公知の開環重合触媒の存在下で重合して得ることができる。その他 のモノマーとしては、例えば、シクロへキセン、シクロヘプテン、シクロオタテンなどの 単環の環状ォレフィン系単量体などを挙げることができる。 Examples of the norbornene-based polymer used in the present invention include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerizing the same, a hydride thereof, and a norbornene-based polymer. Examples include an addition polymer of a monomer, and an addition copolymer of a norbornene-based monomer and another monomer copolymerizable therewith. Among these, from the viewpoints of heat resistance and mechanical strength, a hydrogenated ring-opened polymer of a norbornene-based monomer is most preferred. Examples of the norbornene-based monomer include bicyclo [2.2.1] 1-hept-2-ene (common name: norbornene) and a derivative having a substituent on the ring, and tricyclo [4. 3. 0. I 2 ' 5 ] deca- 3,7-Gen (common name: dicyclopentadiene) and its derivatives, 7,8-Benzotricyclo [4.3.0. I 2 ' 5 ] deca-one (common name: methanotetrahydrofluorene) and its derivatives , tetracyclo [4. 4. 0. I 2 '5 l 7.' 10] de de force - 3 E down (inertia for name: tetracyclododecene), and the like, and derivatives thereof. Examples of the substituent include an alkyl group, an alkylene group, a butyl group, an alkoxycarbol group, and the like. The norbornene-based monomer may have two or more of these. These norbornene monomers may be used alone or in combination of two or more. The ring-opening polymer of these norbornene-based monomers or the ring-opening copolymer of a nonolevonorenene-based monomer and another monomer can be obtained by polymerization in the presence of a known ring-opening polymerization catalyst. Examples of other monomers include, for example, monocyclic cyclic olefin monomers such as cyclohexene, cycloheptene, and cyclootaten.
[0046] ノルボルネン系モノマーの開環重合体水素化物は、通常上記開環重合体の重合 溶液に、ニッケル、ノ ラジウムなどの遷移金属を含む公知の水素化触媒を添加し、炭 素 炭素不飽和結合を水素化することにより得ることができる。ノルボルネン系モノマ 一の付加重合体、またはノルボルネン系モノマーとその他のモノマーとの付加重合 体または共重合体は、これらのモノマーを公知の重合触媒を用いて重合させて得る ことができる。ノルボルネン系モノマーと付カ卩共重合可能なその他のモノマーとしては 、例えば、エチレン、プロピレン、 1—ブテン、 1—ペンテン、 1—へキセン、 1—ォクテ ン、 1—デセン、 1—ドデセン、 1—テトラデセン、 1—へキサデセン、 1—ォクタデセン 、 1 エイコセンなどの炭素数 2〜20の α—ォレフイン、及びこれらの誘導体;シクロ ブテン、シクロペンテン、シクロへキセン、シクロオタテン、 3a, 5, 6, 7a—テトラヒドロ -4, 7 メタノー 1H—インデンなどのシクロォレフイン、及びこれらの誘導体; 1, 4 へキサンジェン、 4ーメチルー 1, 4一へキサジェン、 5—メチルー 1, 4一へキサジェ ン、 1, 7—ォクタジェンなどの非共役ジェン;などが用いられる。これらの中でも、 a ーォレフイン、特にエチレンが好ましい。 [0046] The hydrogenated ring-opening polymer of a norbornene-based monomer is usually prepared by adding a known hydrogenation catalyst containing a transition metal such as nickel or radium to a polymerization solution of the above-mentioned ring-opening polymer to obtain a carbon-carbon unsaturated polymer. It can be obtained by hydrogenating the bond. An addition polymer of a norbornene-based monomer or an addition polymer or copolymer of a norbornene-based monomer and another monomer is obtained by polymerizing these monomers using a known polymerization catalyst. be able to. Examples of other monomers that can be copolymerized with norbornene-based monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, —Α-olefins having 2 to 20 carbon atoms, such as tetradecene, 1-hexadecene, 1-octadecene, 1 eicosene, and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, cyclootaten, 3a, 5, 6, 7a— Cycloolefins such as tetrahydro-4,7-methano 1H-indene and derivatives thereof; 1,4-hexanegen, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, etc. And the like. Of these, a-olefins, particularly ethylene, are preferred.
これらのノルボルネン系モノマーと共重合可能なその他のモノマーは、それぞれ単 独で、あるいは 2種以上を組み合わせて使用することができる。ノルボルネン系モノマ 一とこれと共重合可能なその他のモノマーとを付加共重合する場合は、付加共重合 体中のノルボルネン系モノマー由来の構造単位と共重合可能なその他のモノマー由 来の構造単位との割合力 重量比で 30 : 70〜99: 1の範囲となるように適宜選択され る。  These other monomers copolymerizable with the norbornene-based monomer can be used alone or in combination of two or more. When the addition of a norbornene-based monomer and another monomer copolymerizable therewith is carried out, the structural unit derived from the norbornene-based monomer in the addition copolymer and the structural unit derived from the other copolymerizable monomer may be used. Is appropriately selected so as to be in the range of 30:70 to 99: 1 by weight.
[0047] (2)ビニル脂環式炭化水素重合体  (2) Vinyl alicyclic hydrocarbon polymer
ビュル脂環式炭化水素重合体としては、例えば、ビュルシクロへキセン、ビュルシク 口へキサンなどのビュル脂環式炭化水素系単量体及びその水素化物;スチレン、 a ーメチルスチレンなどのビニル芳香族系単量体の重合体の芳香族環部分の水素化 物;などが挙げられ、ビニル脂環式炭化水素単量体やビニル芳香族系単量体と、こ れら単量体と共重合可能な他の単量体とのランダム共重合体、ブロック共重合体な どの共重合体及びその水素化物などが挙げられる。ブロック共重合体としては、ジブ ロック、トリブロック、またはそれ以上のマルチブロックや傾斜ブロック共重合体などが 挙げられるが特に制限はな!/、。 Examples of the bur alicyclic hydrocarbon polymer include butyl alicyclic hydrocarbon monomers such as bulcyclohexene and bursik hexane and hydrides thereof; and vinyl aromatic monomers such as styrene and a- methylstyrene. Hydrides of the aromatic ring portion of the solid polymer; and other polymers that can be copolymerized with vinyl alicyclic hydrocarbon monomers and vinyl aromatic monomers and these monomers. And copolymers such as random copolymers and block copolymers with the above-mentioned monomers, and hydrides thereof. Examples of the block copolymer include diblock, triblock, and higher multiblock and inclined block copolymers, but there is no particular limitation! /.
[0048] (3)単環の環状ォレフィンの重合体、環状共役ジェン系重合体 (3) Monocyclic Cyclic Olefin Polymer, Cyclic Conjugated Gen-Based Polymer
単環の環状ォレフィン系重合体としては、例えば、シクロへキセン、シクロヘプテン、 シクロオタテンなど単環環状ォレフィン系単量体の付加重合体を用いることができる。 環状共役ジェン系重合体としては、例えば、シクロペンタジェン、シクロへキサジェン などの環状共役ジェン系単量体を 1, 2 または 1, 4 付加重合した重合体及びそ の水素化物などを用いることができる。 As the monocyclic cyclic olefin polymer, for example, an addition polymer of a monocyclic cyclic olefin monomer such as cyclohexene, cycloheptene, and cyclootaten can be used. Examples of the cyclic conjugated polymer include cyclopentadiene and cyclohexadiene. Polymers obtained by addition polymerization of cyclic conjugated monomers such as 1,2 or 1,4, and hydrides thereof can be used.
[0049] 本発明で好適に使用される脂環式構造を有する榭脂の分子量は、使用目的に応 じて適宜選択される力 シクロへキサン溶液、トルエン溶液のゲル'パーミエーシヨン' クロマトグラフ法により測定することができる。前記脂環式構造を有する榭脂の分子量 は、ポリスチレン換算の重量平均分子量で、通常 5, 000〜500, 000、好ましくは 8, 000〜200, 000、より好まし <は 10, 000〜100, 000の範囲である。分子量を前記 範囲にすることにより、榭脂の機械的強度、及び成形加工性が良好となる。本発明で 好適に使用される脂環式構造を有する榭脂のガラス転移温度は、使用目的に応じて 適宜選択される力 好ましくは 80〜350°C、より好ましくは 130〜250°Cの範囲であ る。ガラス転移温度を前記範囲にすることにより、高温下の使用においても変形ゃ応 力集中が生じる事がなく耐久性が良好となる。本発明で用いる透明基板 1の厚さは、 好ましくは 0. 03〜: LOmmであり、さらに好ましくは 0. l〜3mmである。なお、透明基 板 1の表面の凹凸構造は厚さに比べ小さいので、厚さは凸部を基準としても凹部を 基準として測定してもよい。  [0049] The molecular weight of the resin having an alicyclic structure suitably used in the present invention can be appropriately selected depending on the purpose of use. Gel "permeation" chromatograph of cyclohexane solution and toluene solution It can be measured by the method. The molecular weight of the resin having an alicyclic structure is usually 5,000 to 500,000, preferably 8,000 to 200,000, more preferably <000, 100 to 100, in terms of polystyrene equivalent weight average molecular weight. , 000 range. By setting the molecular weight in the above range, the mechanical strength of the resin and the moldability are improved. The glass transition temperature of the resin having an alicyclic structure suitably used in the present invention is a force appropriately selected according to the purpose of use, preferably from 80 to 350 ° C, more preferably from 130 to 250 ° C. It is. By setting the glass transition temperature within the above range, even when used at a high temperature, deformation and stress concentration do not occur and durability is improved. The thickness of the transparent substrate 1 used in the present invention is preferably from 0.03 to: LOmm, and more preferably from 0.1 to 3 mm. In addition, since the uneven structure on the surface of the transparent substrate 1 is smaller than the thickness, the thickness may be measured based on the convex portions or the concave portions.
[0050] 第一電極層 2、発光層 3および第二電極層 4は通常のエレクト口ルミネッセンス素子 と同様の構成となっておればよい。すなわち、第一電極層 2、発光層 3、第二電極層 4が図 1では下方に、順次積層されている。第一電極層 2は通常のエレクト口ルミネッ センス素子用の透明電極を用いればよいが、隣接する中間屈折率層 5またはガスバ リア層 5'との密着性を持つ必要がある。例えば、中間屈折率層 5の表面が平坦でな い場合も第一電極層 2と中間屈折率層 5との接合部は密着させることを要する。通常 用いられる第一電極層 2は IZOと称される亜鉛添加酸化インジウムや ITOと称される インジウム'スズ酸ィ匕物などをスパッタリング法などで中間屈折率層側に付着させてい る。第一電極層 2の厚さは、通常 0. 01〜10 111でぁり、好ましくは0. 1〜0. 5 m である。  [0050] The first electrode layer 2, the light emitting layer 3, and the second electrode layer 4 may have the same configuration as that of a normal electroluminescent device. That is, the first electrode layer 2, the light-emitting layer 3, and the second electrode layer 4 are sequentially stacked below in FIG. The first electrode layer 2 may be a normal transparent electrode for an electroluminescent device, but needs to have an adhesive property with the adjacent intermediate refractive index layer 5 or gas barrier layer 5 '. For example, even when the surface of the intermediate refractive index layer 5 is not flat, the junction between the first electrode layer 2 and the intermediate refractive index layer 5 needs to be in close contact. In the first electrode layer 2 which is usually used, zinc-added indium oxide called IZO or indium stannic oxide called ITO is adhered to the intermediate refractive index layer side by a sputtering method or the like. The thickness of the first electrode layer 2 usually ranges from 0.01 to 10111, preferably from 0.1 to 0.5 m.
[0051] 発光層 3は、例えば TPDなどのァリルアミン系材料と Alq3などのアルミニウム錯体 の層を積層、あるいは硫ィ匕亜鉛等の無機化合物、 Alq3等の有機化合物の単層もし くは複数の層を積層して構成される。通常、発光層は真空蒸着法を用いれば形成で きる。発光層 3の厚さは、通常 0. 01〜2 111でぁり、好ましくは0. 1〜0. である 。第二電極層 4は発光した光を透明基板側へ反射させる役割を有することがあるため 、裏面電極とも言われ、例えばアルミニウム蒸着膜等力 構成されている。第二電極 層 4は蒸着法を用いれば形成できる。第二電極層 4の厚さは、通常 0. 01〜: L0 m であり、好ましくは 0. 1〜0. 5 mである。第一電極層 2と第二電極層 4との間に電圧 を印加することにより、発光層 3がエレクトロルミネセンスにより発光し、その光が第一 電極層 2、中間屈折率層 5、透明基板 1を通って、あるいは第二電極層 4で反射した 光が第一電極層 2、中間屈折率層 5、透明基板 1を通ってエレクト口ルミネッセンス素 子外部すなわち通常、大気中へ射出される仕組みである。 The light-emitting layer 3 is formed by laminating a layer of an arylamine-based material such as TPD and an aluminum complex such as Alq3, or a single layer or a plurality of layers of an inorganic compound such as zinc sulfate and an organic compound such as Alq3. Are laminated. Usually, the light emitting layer can be formed by using a vacuum evaporation method. Wear. The thickness of the light-emitting layer 3 is usually 0.01 to 2111, preferably 0.1 to 0.1. Since the second electrode layer 4 may have a role of reflecting emitted light to the transparent substrate side, the second electrode layer 4 is also referred to as a back electrode, and is formed of, for example, an aluminum vapor-deposited film. The second electrode layer 4 can be formed by using an evaporation method. The thickness of the second electrode layer 4 is usually 0.01 to: L0 m, and preferably 0.1 to 0.5 m. When a voltage is applied between the first electrode layer 2 and the second electrode layer 4, the light emitting layer 3 emits light by electroluminescence, and the light is emitted from the first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate. Light emitted through 1 or reflected on the second electrode layer 4 is emitted to the outside of the electroluminescent element, that is, usually to the atmosphere, through the first electrode layer 2, the intermediate refractive index layer 5, and the transparent substrate 1. It is.
[0052] 本発明のエレクト口ルミネッセンス素子においては、透明基板、第一電極層、発光 層、第二電極層の他に、他の層を有していてもよい。他の層としては、正孔注入層、 正孔輸送層、電子輸送層、電子注入層、封止層が挙げられる。これらの層を構成す る材料は、従来エレクト口ルミネッセンス素子における各層を構成する材料として公知 の素材を用いることができる。  [0052] The electroluminescent device of the present invention may have another layer in addition to the transparent substrate, the first electrode layer, the light emitting layer, and the second electrode layer. Other layers include a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and a sealing layer. As a material forming these layers, a material known as a material forming each layer in the conventional electroluminescent device can be used.
[0053] 本発明の実施態様によるエレクトロルミネセンス素子 50は、上述のように構成され ており、例えば図 10では、第一電極層 2と第二電極層 4との間に、図示していないが 駆動電源力 所定の駆動電圧を印加することにより、発光層 3がエレクトロルミネセン ス効果により発光し、その光が透明な第一電極層 2、ガスノリア層 5'、中間屈折率層 5、透明基板 1を通過して、透明基板 1の上方に射出する。この射出光を利用して各 種の照明装置を提供することが出来る。エレクト口ルミネッセンス素子の特性として、 面発光体としての照明装置としても利用できる。また、直接表示装置として使用する ことも可能であり、液晶に変わる好適な各種表示機器とすることも出来る。さらに、この エレクトロルミネセンス素子は液晶等のバックライト装置としても好適な機能を備え、 液晶表示装置と組み合わせることにより好適な表示装置を提供出来る。  The electroluminescent element 50 according to the embodiment of the present invention is configured as described above. For example, in FIG. 10, between the first electrode layer 2 and the second electrode layer 4, When a predetermined driving voltage is applied, the light-emitting layer 3 emits light due to the electroluminescence effect, and the light is transmitted to the transparent first electrode layer 2, gas nolia layer 5 ', intermediate refractive index layer 5, transparent The light passes through the substrate 1 and is emitted above the transparent substrate 1. Various types of lighting devices can be provided using the emitted light. As a characteristic of the electoran luminescence element, it can also be used as a lighting device as a surface light emitter. Further, it can be used directly as a display device, and can be various suitable display devices instead of liquid crystal. Further, the electroluminescent element has a suitable function as a backlight device for a liquid crystal or the like, and a suitable display device can be provided by combining with the liquid crystal display device.
実施例  Example
[0054] (実施例 1) (Example 1)
図 1に示す構成のエレクト口ルミネッセンス素子 10を作製した。透明基板 1の材質は 屈折率 n = 1. 5,吸水率 0. 05%,熱線膨張係数 70ppmZKのノルボルネン系榭 脂を用いた。透明基板 1は縦 40mm、横 40mm、厚さは lmmである。中間屈折率層 5は屈折率 n = 1. 6のアルミナであり、 DCスパッタリング法により膜厚が lOOnmとな An electorifice luminescence device 10 having the configuration shown in FIG. 1 was produced. The material of the transparent substrate 1 is norbornene based with a refractive index of n = 1.5, a water absorption of 0.05%, and a linear thermal expansion coefficient of 70 ppm ZK. Fat was used. The transparent substrate 1 has a length of 40 mm, a width of 40 mm, and a thickness of lmm. The intermediate refractive index layer 5 is made of alumina having a refractive index of n = 1.6, and has a thickness of 100 nm by DC sputtering.
M  M
るように製膜した。このアルミナの中間屈折率層 5の水蒸気透過速度は 0. lgZm2日 であり、ガスノリア層としての機能も兼ねることが出来た。第一電極層 2は屈折率 n = The film was formed as follows. The water vapor transmission rate of the intermediate refractive index layer 5 of alumina was 0.1 lgZm 2 days, and it could also function as a gas nolia layer. The first electrode layer 2 has a refractive index n =
E  E
2の亜鉛添加酸化インジウム (IZO)を DCスパッタリング法により膜厚が lOOnmとなる ように製膜した。発光層 3はァリルアミン系材料である TPDとアルミニウム錯体 Alq3の 積層体を用い、真空蒸着法により膜厚が約 lOOnmとなるように製膜した。第二電極 層 4はアルミニウムを真空蒸着法により膜厚が lOOnmとなるように製膜した。このエレ タトロルミネッセンス素子の第一電極層 2と第二電極層 4の間に 5Vの電圧をかけエレ タトロルミネッセンス発光をさせた。このエレクト口ルミネッセンス素子上面側表面から 射出される光を Prometric社製輝度計にて測定した。なお、光取出効率は後述の比 較例 1を基準としてそれに対する比率で表した。また、半減期は輝度計による輝度の 測定値が半減するまでの発光時間を日で表した。測定結果は表 1に示した。  The zinc-added indium oxide (IZO) of No. 2 was formed by DC sputtering so as to have a thickness of 100 nm. The light-emitting layer 3 was formed by using a laminated body of an arylamine-based material, TPD, and an aluminum complex, Alq3, to a thickness of about 100 nm by a vacuum evaporation method. The second electrode layer 4 was formed by vacuum deposition of aluminum to a thickness of 100 nm. A voltage of 5 V was applied between the first electrode layer 2 and the second electrode layer 4 of the electroluminescent device to emit electroluminescent light. The light emitted from the upper surface of the electroluminescent element was measured with a luminance meter manufactured by Prometric. The light extraction efficiency was expressed as a ratio based on Comparative Example 1 described later. The half-life was expressed in days as the emission time until the luminance measured by a luminance meter was reduced by half. The measurement results are shown in Table 1.
[0055] (実施例 2) (Example 2)
実施例 1の透明基板 1の替わりに、図 3に示す構造の透明基板を持つエレクト口ルミ ネッセンス素子 30を作製した。実施例 1との違いは透明基板 1の上面が縦横に連続 した四角錐状の凹凸構造となっている点である。各々の凹凸はそれぞれ上方、すな わち発光層と反対側に頂点を持つ四角錐で底辺は 50 m、高さ 25 /z mとした。なお 、四角錐の底辺はマイクロレンズアレイのマイクロレンズの配列ピッチ 7に相当する。 図 3の下部にマイクロレンズアレイの 1部の拡大平面図を示している。透明基板 1の製 法は榭脂の凹凸構造を持つ金型への射出成型によった。他の部分の構成や製造方 法は実施例 1と同様である。光取出効率、半減期の測定等も同様に実施し、測定結 果も表 1に示した。  An electroluminescent device 30 having a transparent substrate having a structure shown in FIG. 3 instead of the transparent substrate 1 of Example 1 was produced. The difference from the first embodiment is that the upper surface of the transparent substrate 1 has a quadrangular pyramid-shaped uneven structure that is continuous vertically and horizontally. Each of the concavities and convexities was a quadrangular pyramid having an apex on the upper side, that is, on the opposite side to the light emitting layer, with a base of 50 m and a height of 25 / z m. In addition, the base of the quadrangular pyramid corresponds to the arrangement pitch 7 of the microlenses of the microlens array. The lower part of FIG. 3 shows an enlarged plan view of a part of the microlens array. The transparent substrate 1 was manufactured by injection molding into a mold having a resin uneven structure. The configuration and manufacturing method of the other parts are the same as in the first embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
[0056] (実施例 3) (Example 3)
実施例 2の構成のエレクト口ルミネッセンス素子 30の替わりに、図 10に示す構成の エレクト口ルミネッセンス素子 50を作製した。実施例 2との違いは、透明基板 1と第一 電極層 2との間に、 n = 1. 6の Al O層である中間屈折率層 5、 n = 1. 9の Y O  Instead of the electorifice luminescent element 30 having the configuration of Example 2, an electoral luminescent element 50 having a configuration shown in FIG. 10 was produced. The difference from Example 2 is that between the transparent substrate 1 and the first electrode layer 2, an intermediate refractive index layer 5, which is an AlO layer with n = 1.6,
M2 2 3 Ml 2 3 層である中間屈折率層 5 'を透明基板 1側から順次積層した 2層構造体である点であ る。それぞれの中間屈折率層の厚さは 50nmである。中間屈折率層の水蒸気透過速 度は 2層合わせて 0. 08gZm2日である。他の部分の構成や製造方法は実施例 2と 同様である。光取出効率、半減期の測定等も同様に実施し、測定結果も表 1に示し た。 This is a two-layer structure in which an intermediate refractive index layer 5 ′, which is an M2 23 Ml 23 layer, is sequentially laminated from the transparent substrate 1 side. The The thickness of each intermediate refractive index layer is 50 nm. The water vapor transmission rate of the intermediate refractive index layer is 0.08 gZm for 2 days in total. The configuration and manufacturing method of the other parts are the same as in the second embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
[0057] (実施例 4)  (Example 4)
実施例 3の構成のエレクト口ルミネッセンス素子 50の替わりに、図 7に示す構成のェ レクト口ルミネッセンス素子を作製した。実施例 3との違いは、透明基板 1の側面構造 を 4側面とも、上に凸な小円弧を積み重ねた断面構造としている点である。透明基板 1の上面に備えた凹凸構造は、それぞれ上方に頂点を持つ四角錐で底辺は 50 m 、高さは 25 mとした。透明基板の側面に備えた小円弧は、曲率半径が約 20mm、 高さは約 25 /z mとした。他の部分の構成や製造方法は、実施例 3と同様である。光 取出効率、半減期の測定等も同様に実施し、測定結果も表 1に示した。  Instead of the electorifice luminescent element 50 having the configuration of Example 3, an electoral luminescent element having a configuration shown in FIG. 7 was produced. The difference from the third embodiment is that the side surface structure of the transparent substrate 1 has a cross-sectional structure in which small convex arcs are stacked on all four sides. The concavo-convex structure provided on the upper surface of the transparent substrate 1 was a quadrangular pyramid having an apex at an upper side, a base 50 m, and a height 25 m. The small arc provided on the side of the transparent substrate has a radius of curvature of about 20 mm and a height of about 25 / z m. Other configurations and manufacturing methods are the same as those of the third embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
[0058] (実施例 5) (Example 5)
実施例 1の構成のエレクト口ルミネッセンス素子 10の替わりに、図 9に示すに示す構 成のエレクト口ルミネッセンス素子を作製した。実施例 1との違いは、エレクト口ルミネッ センス素子の 4側面に光沢のある厚さ 0. 2mmのアルミ箔 8を設置して透明基板側面 を鏡面構造とした点である。他の部分の構成や製造方法は、実施例 1と同様である。 光取出効率、半減期の測定等も同様に実施し、測定結果も表 1に示した。  Instead of the electroluminescent device 10 having the structure of Example 1, an electroluminescent device having the structure shown in FIG. 9 was produced. The difference from the first embodiment is that a glossy 0.2 mm thick aluminum foil 8 is provided on the four side surfaces of the electorifice luminescence element, and the side surface of the transparent substrate has a mirror surface structure. Other configurations and manufacturing methods are the same as those of the first embodiment. Measurements of light extraction efficiency and half-life were performed in the same manner, and the measurement results are shown in Table 1.
[0059] (比較例 1) (Comparative Example 1)
実施例 1の構成のエレクト口ルミネッセンス素子 10の替わりに、図 12に示す構成の エレクト口ルミネッセンス素子を作製した。実施例 1との違 、は中間屈折率層 5がな ヽ だけで、他の部分の構成や製造方法は実施例 1と同様である。すなわち通常のエレ タトロルミネッセンス素子と同じ構造である。光取出効率、半減期の測定等も実施例 1 と同様に実施し、測定結果も表 1に示した。  Instead of the electroluminescent device 10 having the structure of Example 1, an electroluminescent device having the structure shown in FIG. 12 was manufactured. The difference from Example 1 is that only the intermediate refractive index layer 5 is provided, and the configuration and manufacturing method of the other parts are the same as in Example 1. That is, it has the same structure as a normal electroluminescent device. The measurement of light extraction efficiency, half-life and the like were performed in the same manner as in Example 1, and the measurement results are shown in Table 1.
[0060] (比較例 2) (Comparative Example 2)
実施例 2の構成のエレクト口ルミネッセンス素子 30の替わりに、図 13に示す構成の エレクト口ルミネッセンス素子を作製した。実施例 2との違いは中間屈折率層 5がない だけで、他の部分の構成や製造方法は実施例 2と同様である。取出効率、半減期の 測定等も実施例 1と同様に実施し、測定結果も表 1に示した。 Instead of the electroluminescent element 30 having the configuration of Example 2, an electroluminescent element having the configuration shown in FIG. 13 was manufactured. The difference from the second embodiment is only the absence of the intermediate refractive index layer 5, and the configuration of the other parts and the manufacturing method are the same as those of the second embodiment. Extraction efficiency, half-life The measurement was performed in the same manner as in Example 1, and the measurement results are shown in Table 1.
[0061] (比較例 3) (Comparative Example 3)
実施例 2の構成のエレクト口ルミネッセンス素子 30の替わりに、図 11に示す構成の エレクト口ルミネッセンス素子を作製した。実施例 2との違いは、アルミナの中間屈折 率層 5の替わりに、屈折率 n = 1. 45のシリカのガスノ リア層 6を DCスパッタリング法  An electorescence luminescence element having a configuration shown in FIG. 11 was produced instead of the electoration luminescence element 30 having the configuration of Example 2. The difference from Example 2 is that instead of the intermediate refractive index layer 5 of alumina, a gaseous silica layer 6 of silica having a refractive index of n = 1.45 was formed by DC sputtering.
M  M
により膜厚が lOOnmとなるように製膜しただけで、他の部分の構成や製造方法は実 施例 2と同様である。中間屈折率層 5の水蒸気透過速度は 0. lgZm2日である。取 出効率、半減期の測定等も実施例 1と同様に実施し、測定結果も表 1に示した。 Thus, the structure and manufacturing method of the other parts are the same as in Example 2 except that the film was formed to have a thickness of 100 nm. The water vapor transmission rate of the intermediate refractive index layer 5 is 0.1 lgZm 2 days. The extraction efficiency and half-life were measured in the same manner as in Example 1, and the measurement results are shown in Table 1.
[0062] [表 1] [Table 1]
Figure imgf000023_0001
Figure imgf000023_0001
[0063] 表 1の結果から以下のことがわかる。本発明のエレクト口ルミネッセンス素子は、実 施例 1〜5に示すように、発光輝度及び光取出効率が高ぐ半減期も大きい。一方、 比較例のエレクト口ルミネッセンス素子は、発光効率及び光取出効率が低ぐ半減期 力 S小さい場合もある。 The following can be seen from the results in Table 1. As shown in Examples 1 to 5, the electorophore luminescent device of the present invention has a high half-life in which emission luminance and light extraction efficiency are high. On the other hand, in some cases, the half-life power S of the electorophore luminescent element of the comparative example is low because the luminous efficiency and the light extraction efficiency are low.
産業上の利用可能性  Industrial applicability
[0064] 本発明により、高輝度、省電力のエレクト口ルミネッセンス素子を提供できる。また、 本発明のエレクト口ルミネッセンス素子は、光の取出効率が向上するので、エレクト口 ルミネセンス素子を各種の高輝度の照明装置や表示装置として利用するのに適して いる。また、液晶等の表示装置のバックライトとして使用する場合に、表示装置の高 輝度化や省電力化に容易に対応することができる。 According to the present invention, it is possible to provide a high-brightness, power-saving electorifice luminescence element. In addition, since the light emission efficiency of the electoran luminescent element of the present invention is improved, the electoral luminescent element is suitable for use in various high-luminance lighting devices and display devices. In addition, when used as a backlight of a display device such as a liquid crystal display, it is possible to easily cope with higher luminance and power saving of the display device.

Claims

請求の範囲  The scope of the claims
[I] 透明基板上に中間屈折率層、第一電極層、発光層、第二電極層を、この順に有し てなるエレクト口ルミネッセンス素子であって、前記透明基板の屈折率を n、前記中  [I] An electroluminescent device having an intermediate refractive index layer, a first electrode layer, a light emitting layer, and a second electrode layer in this order on a transparent substrate, wherein the transparent substrate has a refractive index of n, During
S  S
間屈折率層の屈折率を n 、前記第一電極層の屈折率を nとした時、 n <n <nで  When the refractive index of the inter-refractive index layer is n and the refractive index of the first electrode layer is n, n <n <n
M E S M E  M E S M E
あるエレクト口ルミネッセンス素子。  A certain electorifice luminescence element.
[2] 前記第一電極層と前記中間屈折率層との屈折率の差、及び、前記中間屈折率層 と前記透明基板との屈折率の差がそれぞれ 0. 5以下である請求項 1記載のエレクト ロノレミネッセンス素子。  2. The difference in refractive index between the first electrode layer and the intermediate refractive index layer and the difference in refractive index between the intermediate refractive index layer and the transparent substrate are each 0.5 or less. Electroluminescence device.
[3] 前記中間屈折率層が 2層以上の層からなり、当該中間屈折率層を構成する各層の 屈折率を、前記第一電極層に近い層から順に n 、 n 、 · · ·η としたとき、 η >η  [3] The intermediate refractive index layer is composed of two or more layers, and the refractive index of each of the layers constituting the intermediate refractive index layer is n, n,... Η in order from the layer closest to the first electrode layer. Then, η> η
Ml M2 Mk E Ml Ml M2 Mk E Ml
>n 〉 · ·〉n >nである請求項 1記載のエレクト口ルミネッセンス素子。 2. The electroluminescent device according to claim 1, wherein> n> n> n.
M2 Mk S  M2 Mk S
[4] 前記中間屈折率層を構成する隣接する各層の屈折率の差が 0. 3以下である請求 項 3記載のエレクト口ルミネッセンス素子。  4. The electroluminescent device according to claim 3, wherein a difference in refractive index between adjacent layers constituting the intermediate refractive index layer is 0.3 or less.
[5] 前記透明基板の少なくとも片方の表面に複数の凹凸構造が設けられている請求項[5] A plurality of uneven structures are provided on at least one surface of the transparent substrate.
1記載のエレクト口ルミネッセンス素子。 2. The electoluminescent device according to 1 above.
[6] 前記透明基板の側面に反射構造部が設けられて 、る請求項 1記載のエレクト口ルミ ネッセンス素子。 6. The electoran luminescence element according to claim 1, wherein a reflection structure is provided on a side surface of the transparent substrate.
[7] 前記反射構造部が凹凸構造である請求項 6記載のエレクト口ルミネッセンス素子。  7. The electroluminescent device according to claim 6, wherein the reflection structure has a concave-convex structure.
[8] 前記反射構造部が鏡面である請求項 6記載のエレクト口ルミネッセンス素子。  8. The electroluminescent device according to claim 6, wherein the reflection structure is a mirror surface.
[9] 前記透明基板と前記第一電極層との間に、水蒸気透過速度が 0. lg/m2日以下 のガスバリア層をさらに有する請求項 1記載のエレクト口ルミネッセンス素子。 9. The electroluminescent device according to claim 1, further comprising a gas barrier layer having a water vapor transmission rate of 0.1 lg / m 2 day or less between the transparent substrate and the first electrode layer.
[10] 前記透明基板の、吸水率が 0. 1%以下、熱線膨張係数が 0〜80ppmZK以下で ある請求項 1記載のエレクト口ルミネッセンス素子。 10. The electroluminescent device according to claim 1, wherein the transparent substrate has a water absorption of 0.1% or less and a linear thermal expansion coefficient of 0 to 80 ppmZK or less.
[II] 前記透明基板が脂環式構造を有する榭脂からなる請求項 1記載のエレクトロルミネ ッセンス素子。  [2] The electroluminescent device according to claim 1, wherein the transparent substrate is made of a resin having an alicyclic structure.
[12] 請求項 1に記載のエレクト口ルミネッセンス素子を備えた照明装置。  [12] A lighting device provided with the elect-opening luminescent element according to claim 1.
[13] 請求項 1に記載のエレクト口ルミネッセンス素子を備えた表示装置。 [13] A display device provided with the elect-opening luminescence element according to claim 1.
PCT/JP2005/008878 2004-05-17 2005-05-16 Electroluminescent device, illuminator and display WO2005112513A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-147077 2004-05-17
JP2004147077A JP2005327687A (en) 2004-05-17 2004-05-17 Electroluminescent element, and lighting system and display device using the element
JP2004147076A JP2005327686A (en) 2004-05-17 2004-05-17 Electroluminescent element, and lighting system and display device using the element
JP2004-147076 2004-05-17

Publications (1)

Publication Number Publication Date
WO2005112513A1 true WO2005112513A1 (en) 2005-11-24

Family

ID=35394545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008878 WO2005112513A1 (en) 2004-05-17 2005-05-16 Electroluminescent device, illuminator and display

Country Status (1)

Country Link
WO (1) WO2005112513A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023586A1 (en) * 2006-08-23 2008-02-28 Zeon Corporation Electroluminescence element, illuminating apparatus and liquid crystal display apparatus
JP2008117742A (en) * 2006-11-07 2008-05-22 Micro System:Kk Cylindrical organic el illuminator
WO2009107226A1 (en) * 2008-02-29 2009-09-03 有限会社マイクロシステム Cylindrical organic el illuminator
JP2010176928A (en) * 2009-01-27 2010-08-12 Panasonic Electric Works Co Ltd Organic el light-emitting device
WO2011162080A1 (en) * 2010-06-25 2011-12-29 パナソニック電工株式会社 Organic electroluminescence element
JPWO2016151820A1 (en) * 2015-03-25 2017-11-30 パイオニア株式会社 Light emitting device
JP2019071305A (en) * 2019-02-18 2019-05-09 パイオニア株式会社 Light-emitting device
JP2021015813A (en) * 2020-11-18 2021-02-12 パイオニア株式会社 Light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122702A (en) * 2000-10-17 2002-04-26 Matsushita Electric Ind Co Ltd Optical film and display device
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP2004079301A (en) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd Light emitting device and manufacturing method therefor
JP2004119211A (en) * 2002-09-26 2004-04-15 Toyota Industries Corp Transparent substrate for el element, and el device as well as liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122702A (en) * 2000-10-17 2002-04-26 Matsushita Electric Ind Co Ltd Optical film and display device
JP2003077680A (en) * 2001-09-06 2003-03-14 Konica Corp Organic electroluminescent element and display device
JP2004079301A (en) * 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd Light emitting device and manufacturing method therefor
JP2004119211A (en) * 2002-09-26 2004-04-15 Toyota Industries Corp Transparent substrate for el element, and el device as well as liquid crystal display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023586A1 (en) * 2006-08-23 2008-02-28 Zeon Corporation Electroluminescence element, illuminating apparatus and liquid crystal display apparatus
JP2008117742A (en) * 2006-11-07 2008-05-22 Micro System:Kk Cylindrical organic el illuminator
WO2009107226A1 (en) * 2008-02-29 2009-09-03 有限会社マイクロシステム Cylindrical organic el illuminator
JP2010176928A (en) * 2009-01-27 2010-08-12 Panasonic Electric Works Co Ltd Organic el light-emitting device
WO2011162080A1 (en) * 2010-06-25 2011-12-29 パナソニック電工株式会社 Organic electroluminescence element
JPWO2016151820A1 (en) * 2015-03-25 2017-11-30 パイオニア株式会社 Light emitting device
JP2019071305A (en) * 2019-02-18 2019-05-09 パイオニア株式会社 Light-emitting device
JP2021015813A (en) * 2020-11-18 2021-02-12 パイオニア株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
KR101236574B1 (en) Electroluminescence element, lighting equipment, and display device
WO2005112513A1 (en) Electroluminescent device, illuminator and display
US20140183462A1 (en) Organic light emitting display device and manufacturing method thereof
US20090097273A1 (en) Light guide plate and light-emitting apparatus
EP3109902B1 (en) Black matrix, flat screen display and manufacturing method thereof
TWI543424B (en) Utilizing gradient refractive index films for light extraction and distribution control in oled
WO2021002247A1 (en) Diffusion member, laminate, diffusion member set, led backlight, and display device
US20140167085A1 (en) Light emitting device having improved light extraction efficiency
CN1499905A (en) Displaying body, displaying panel and display
JP2005327687A (en) Electroluminescent element, and lighting system and display device using the element
JP2005327689A (en) Electroluminescent element, and lighting system and display device using the element
JP4393788B2 (en) Electroluminescence element, surface light source and display device
JP7302720B2 (en) Diffusion member, laminate, set of diffusion members, LED backlight and display device
JP2005327688A (en) Electroluminescent element, and lighting system and display device using the element
WO2005112515A1 (en) Electroluminescence element, illuminator and display
US7511417B2 (en) Organic light-emitting source with light-guiding substrate
JP2005327686A (en) Electroluminescent element, and lighting system and display device using the element
JP2011054443A (en) Diffusion material, light guide body unit, and surface light source device
JP5515799B2 (en) Laminate for surface light source device and surface light source device
CN214956952U (en) Flexible OLED (organic light emitting diode) back plate film with reflective coating and flexible OLED
JP5870651B2 (en) LENS SHEET AND ORGANIC EL ELEMENT HAVING THE SAME

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase