WO2009107226A1 - Cylindrical organic el illuminator - Google Patents

Cylindrical organic el illuminator Download PDF

Info

Publication number
WO2009107226A1
WO2009107226A1 PCT/JP2008/053607 JP2008053607W WO2009107226A1 WO 2009107226 A1 WO2009107226 A1 WO 2009107226A1 JP 2008053607 W JP2008053607 W JP 2008053607W WO 2009107226 A1 WO2009107226 A1 WO 2009107226A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
cylindrical
cylindrical tube
light
tube
Prior art date
Application number
PCT/JP2008/053607
Other languages
French (fr)
Japanese (ja)
Inventor
暁 山本
Original Assignee
有限会社マイクロシステム
フジテック・インターナショナル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社マイクロシステム, フジテック・インターナショナル株式会社 filed Critical 有限会社マイクロシステム
Priority to PCT/JP2008/053607 priority Critical patent/WO2009107226A1/en
Publication of WO2009107226A1 publication Critical patent/WO2009107226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/20Electroluminescent [EL] light sources

Definitions

  • the present invention relates to an illuminator using an organic EL light emitting element, and more particularly to a cylindrical organic EL illuminator.
  • an organic EL light emitting element is formed on a flat glass plate and sealed with metal or glass. The light generated in the organic EL light emitting element was emitted to the outside through the organic material layer, the transparent anode, and the flat glass plate.
  • a white illuminator has been manufactured by forming an organic EL light emitting element in which low-molecular light emitting materials of three components of red, green, and blue are dispersed.
  • the organic EL light-emitting element was formed by vacuum deposition in which each raw material was placed in a crucible and heated in a vacuum, and the evaporated raw material molecules or atoms were sequentially attached to the surface of the flat glass plate.
  • the sealing component for preventing moisture in the air from entering the organic EL light emitting element is adhered to the flat glass plate with an adhesive that is cured by ultraviolet rays.
  • a single organic EL light emitting element formed on a flat glass plate emits light by direct current. For this reason, although the brightness can be adjusted by the strength of the current, the emission wavelength is determined by the material of the light emitting layer and cannot be arbitrarily adjusted.
  • an organic EL light-emitting device When an organic EL light-emitting device is driven continuously by applying an electric current, the organic material layer is aggregated and crystallized, the organic material undergoes an electrochemical reaction, the interaction between molecular excitons and interfacial charges, and the diffusion and chemical properties at the organic material layer interface.
  • the average luminance of the organic EL light-emitting element is reduced by reaction, local short circuit due to unevenness and dust.
  • the deterioration of luminance depends on the current, and when driving at high luminance, the current increases, so there is a problem that the deterioration is accelerated.
  • the organic EL light emitting element generates heat when the current is increased to increase the luminance. For this reason, when the organic EL light emitting element is driven with high luminance, the organic material is deteriorated and further deteriorated.
  • the luminance half life of the organic EL light emitting element varies depending on each light emitting material. For this reason, in the case of white light emission using a plurality of light emitting materials, there has been a problem that the light emission chromaticity is shifted as the light emission time elapses.
  • the raw material in the heated crucible scatters radially.
  • the flat glass plate is installed on the upper surface of the crucible, but the raw material scattered from the crucible to the side surface adheres to the vacuum vessel without reaching the flat glass plate. For this reason, there was a problem that the raw material efficiency was as low as about 20%.
  • the use of an adhesive for sealing makes it difficult to disassemble the parts.
  • the illuminator that cannot be used due to a decrease in luminance of the organic EL light emitting element has a problem of being discarded without being reused.
  • An object of the present invention is to provide a cylindrical organic EL illuminator capable of improving luminance while suppressing deterioration of an organic EL light emitting element.
  • the cylindrical organic EL illuminator of the present invention is an illuminator that emits light from an organic EL, and includes a tube (tube shape), an organic EL light emitting element, a desiccant, and a pair of sealing components.
  • the tubular tube is transparent.
  • the organic EL light-emitting element includes a transparent anode formed in order inside a cylindrical tube, an organic material layer including a light-emitting layer, and a cathode.
  • the desiccant is contained inside the cylindrical tube.
  • the pair of sealing parts seals both ends of the cylindrical tube in order to fill the inside of the cylindrical tube with nitrogen or an inert gas atmosphere.
  • the transparent anode is connected to the plus and the cathode is connected to the minus, and current is supplied to the organic EL light emitting element to emit light.
  • the inner surface of the sealing component is preferably a reflecting mirror.
  • fine irregularities are provided on the surface of the cylindrical tube.
  • the inner surface of the sealing part on one end side of the cylindrical tube is preferably a reflecting mirror, and the other end side of the cylindrical pipe is sealed.
  • the part is transparent.
  • the sealing component is preferably sealed using an O-ring.
  • the cylindrical organic EL illuminator is formed inside another cylindrical tube inserted into the cylindrical tube and having a diameter smaller than that of the cylindrical tube. Further, another organic EL light emitting element formed into a film is further provided. A cylindrical tube and another cylindrical tube constitute a multiple tube.
  • the organic EL light emitting element and the other organic light emitting elements in the multi-tubular tube each emit light at the same wavelength.
  • the organic EL light emitting element and the other organic light emitting elements in the multiple tube emit light at different wavelengths.
  • any one of a current and a voltage applied to each of the organic EL light emitting element and the other organic light emitting elements in the multiple tube can be adjusted independently.
  • the cylindrical tube is glass
  • the organic material layer is one or more selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • a dopant molecule and the organic material layer is a low molecular weight organic material.
  • the cylindrical tube is glass
  • the organic material layer is one or more selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • a dopant molecule, and the light emitting layer is a high molecular weight organic material.
  • the organic EL light emitting element conventionally formed on a flat glass plate is formed on the inside of the cylindrical tube.
  • a sealing component that is generated inside the organic EL light-emitting element propagates through the cylindrical tube and the organic material layer without being radiated to the outside, and returns the light emitted from the end face to the inside of the cylindrical tube.
  • the inner surface of is a reflecting mirror.
  • the light extraction is preferably performed by fine irregularities on the surface of the cylindrical tube.
  • a plurality of small-diameter multiple tube tubes with organic EL light-emitting elements formed therein are installed inside the cylindrical tube, whereby the current of each organic EL light-emitting element is adjusted, and the emission color The degree is optimized.
  • the organic EL light-emitting element is preferably formed by supplying a raw material inside a rotating cylindrical tube. It is preferable to use a rubber O-ring for sealing the cylindrical tube, so that it can be easily disassembled and assembled after disassembly.
  • the organic EL light emitting element is formed in a cylindrical tube. Since this cylindrical tube has higher mechanical strength than a conventional flat glass and can be thinned, high luminance can be achieved. In addition, since the cylindrical tube can be made thinner than the conventional flat glass, more heat generated from the organic EL light-emitting element can be transmitted to the outside, and the temperature of the organic EL light-emitting element can be lowered. It is difficult for the EL light emitting element to deteriorate.
  • the cylindrical tube since it is a cylindrical tube, when the crucible is put inside the cylindrical tube, the cylindrical tube covers the periphery of the crucible. For this reason, even if the raw material scatters radially from the crucible during vacuum deposition, the cylindrical tube covers the periphery of the crucible, so the raw material is deposited on the cylindrical tube more efficiently than in the case of conventional flat glass. can do.
  • a desiccant is placed in the tubular tube, and both ends of the tubular tube are sealed to fill with nitrogen or an inert gas atmosphere. Since the desiccant is put in this way and both ends of the cylindrical tube are sealed by filling with nitrogen or inert gas atmosphere, water molecules in the air are prevented from entering the inside of the tube on the cylinder And deterioration of the organic EL light emitting element can be prevented.
  • the light generated in the light emitting layer includes light radiated to the outside of the tubular tube, light that passes through the transparent cathode and travels toward the inside of the tubular tube, light that travels to the sealing portions at both ends, The light is refracted on the surface of the tubular tube and is divided into light that travels through the interface between the organic layer and the tubular tube by multiple reflection.
  • the light directed toward the inside of the cylindrical tube reaches the opposite cylindrical tube, and a part thereof is emitted to the outside.
  • the light directed toward the sealing component is reflected by 90% or more by the reflecting mirror on the inner surface of the sealing component, and returns to the inside of the cylindrical tube.
  • the light that has returned to the inside of the cylindrical tube reaches the surface of any of the cylindrical tubes that form a fine uneven shape.
  • light is radiated to the outside where the incident angle of light is different from the total reflection angle. Therefore, light other than the light absorbed and lost in the material is finally emitted to the outside of the cylindrical tube. For this reason, the light generated in the light emitting layer can be extracted to the outside more efficiently, and an illuminator with high external quantum efficiency can be realized.
  • the inner surface of the sealing part on the one end side of the cylindrical tube is made into a reflecting mirror, and the sealing part on the other end side of the cylindrical pipe is made transparent, thereby sealing the other end side of the cylindrical pipe. High brightness light can be extracted from the component.
  • the organic EL light emitting element on the multiple tube, the current flowing through each organic EL light emitting element is reduced, so that the deterioration of luminance is suppressed and a long-life illuminator can be realized.
  • an organic EL light emitting element is formed on the multiple tube, current can flow in parallel, so that a low voltage and high luminance illuminator can be realized.
  • red, green, and blue organic EL light emitting elements are formed on the multiple tube tubes, respectively, and white color is obtained by flowing current individually, and the average luminance can be adjusted by the strength of the current.
  • a color illuminator that emits light in an arbitrary color among triangles on the chromaticity coordinates of red, green, and blue by adjusting individual currents.
  • the organic EL light-emitting element can be formed with high raw material efficiency by feeding the raw material into the carrier tube inside the rotating cylindrical tube.
  • 1 is an external view of a monochromatic cylindrical organic EL illuminator according to Embodiment 1 of the present invention.
  • 1 is an external view of a multicolor cylindrical organic EL illuminator according to Embodiment 1 of the present invention.
  • It is an external view of the spot type organic EL illuminator in Embodiment 1 of the present invention.
  • It is sectional drawing of the monochromatic cylindrical organic electroluminescent illuminator which shows the Example of this invention.
  • It is sectional drawing of the monochromatic cylindrical organic electroluminescent illuminator which uses fluorescent substance.
  • It is sectional drawing of a multicolor cylindrical organic electroluminescent illuminator.
  • It is sectional drawing of a spot type organic electroluminescent illuminator.
  • It is a partial expanded sectional view which shows roughly the structure of the cylindrical tube of the cylindrical organic electroluminescent illuminator in Embodiment 6 of this invention.
  • Electron transporting yellow light emitting layer 10 Electron transport layer, 11 Alkali metal layer, 12, 20c, 22c, 24c, 30c Cathode, 13 Electric wire, 14 DC power supply, 15 Mirror surface, 16 Desiccant, 17 Nitrogen gas, 18 dopant Molecule, 19 polymer light emitting layer, 20, 33 outer cylindrical tube, 20A red organic EL light emitting device, 20b red organic EL light emitting layer, 22, 34 intermediate cylindrical tube, 22A blue organic EL light emitting device, 22b blue organic EL light emitting layer, 24, 35 inner cylindrical tube, 24A green organic EL light emitting element, 24b green organic EL light emitting layer, 25 anode sealing component, 26 cathode Stop part, 27 Blue light emission regulator, 28 Red light emission regulator, 29 Green light emission regulator, 30 White
  • FIG. 1A is an external view of a monochromatic cylindrical organic EL illuminator according to Embodiment 1 of the present invention
  • FIG. 1B is an external view of a multicolor cylindrical organic EL illuminator according to Embodiment 1 of the present invention
  • 1C is an external view of the spot-type organic EL illuminator according to Embodiment 1 of the present invention.
  • a sealing component 2 is attached to each of both ends of the cylindrical tube 1, and an electrode 4 is attached to each of the sealing components 2 on both sides. .
  • the cylindrical tube has, for example, a multi-cylindrical tube configuration, and an anode is sealed at one end of the outer cylindrical tube 20 of the multi-cylindrical tubes.
  • a component 25 is attached to a cathode sealing component 26 at the other end.
  • three electrodes 4 are attached to each of the anode sealing component 25 and the cathode sealing component 26.
  • the cylindrical tube has, for example, a multi-cylindrical tube configuration, and an inner surface of the multi-cylindrical tube has a reflecting mirror at one end portion of the outer cylindrical tube 33.
  • a reflective sealing component 31 is attached to a transparent transparent sealing component 32 at the other end.
  • two electrodes 4 are attached to the reflective sealing component 31.
  • FIG. 2 is a cross-sectional view schematically showing a configuration of a monochromatic cylindrical organic EL illuminator using blue and yellow light emission in the second embodiment of the present invention.
  • the cylindrical tube 1 is made of transparent glass, and is made of, for example, a straight tube.
  • a sealing component 2 is attached to each of both ends of the cylindrical tube 1.
  • An O-ring 3 is disposed between the sealing component 2 and the cylindrical tube 1. The inside of the cylindrical tube 1 is hermetically sealed by the sealing component 2 and the O-ring 3.
  • the electrode 4 for supplying electricity is attached to each of the sealing parts 2 on both sides.
  • a protective film 5 Inside the cylindrical tube 1, there are a protective film 5, a transparent anode 6, a hole transport layer 7, an electron transport blue light emitting layer 8, an electron transport yellow light emitting layer 9, and an electron transport layer 10.
  • the alkali metal layer 11 and the cathode 12 are sequentially formed.
  • the protective film 5 is made of, for example, SiO 2 having a thickness of 10 nm.
  • the transparent anode 6 is made of, for example, ITO (Indium Tin Oxide) having a thickness of 1 ⁇ m.
  • the hole transport layer 7 is formed of an organic material (NPD) represented by the following chemical formula (1) with a thickness of 40 nm, for example.
  • the electron-transporting blue light-emitting layer 8 is mainly composed of, for example, an organic material (Znbox 2) represented by the following chemical formula (2) and is 1.5 weight by perylene (C 20 H 12 ) represented by the following chemical formula (3), for example. It is a 7 nm thick layer with a% doping.
  • the electron-transporting yellow light-emitting layer 9 is mainly doped with, for example, the organic material (Znbox 2) represented by the above chemical formula (2) and doped by 0.25% by weight with the organic material (DCM 1) represented by the following chemical formula (4). This is a layer having a thickness of 23 nm.
  • the electron transport layer 10 is a layer having a thickness of 30 nm formed from, for example, an organic material (Znbox 2) represented by the above chemical formula (2).
  • the alkali metal layer 11 is made of, for example, LiF having a thickness of 5 nm.
  • the cathode 12 is made of Al having a thickness of 0.5 ⁇ m, for example.
  • Each of the transparent anode 6 and the cathode 12 is connected to the electrode 4 by an electric wire 13, whereby the organic EL light emitting element is supplied with a current from a DC power source 14.
  • the transparent anode 6 is electrically connected to the + (plus) side of the DC power supply 14, and the cathode 12 is electrically connected to the ⁇ (minus) side of the DC power supply 14.
  • the inner surface of the sealing component 2 is a mirror surface 15.
  • a desiccant 16 is attached to the tip of the electrode 4, whereby the desiccant 16 is disposed inside the cylindrical tube 1.
  • a nitrogen gas 17 is sealed inside the cylindrical tube 1.
  • the inside of the cylindrical tube 1 may be filled with nitrogen gas 17 or an inert gas atmosphere.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of a monochromatic cylindrical organic EL illuminator that emits green light in Embodiment 3 of the present invention.
  • the cylindrical tube 1 is made of transparent glass, and is made of, for example, a straight tube.
  • a sealing component 2 is attached to each of both ends of the cylindrical tube 1.
  • An O-ring 3 is disposed between the sealing component 2 and the cylindrical tube 1. The inside of the cylindrical tube 1 is hermetically sealed by the sealing component 2 and the O-ring 3.
  • the electrode 4 for supplying electricity is attached to each of the sealing parts 2 on both sides.
  • a protective film 5 Inside the cylindrical tube 1, a protective film 5, a transparent anode 6, a hole transport layer 7, a polymer light emitting layer 19, an alkali metal layer 11, and a cathode 12 are sequentially formed.
  • the protective film 5 is made of, for example, SiO 2 having a thickness of 10 nm.
  • the transparent anode 6 is made of, for example, ITO having a thickness of 1 ⁇ m.
  • the hole transport layer 7 is made of, for example, an organic material (NPD) having a thickness of 40 nm.
  • the polymer light emitting layer 19 is formed of, for example, polyfluorene having a thickness of 80 nm to which 5% of a low-molecular iridium complex (Ir (ppy) 3 ) is added as a dopant molecule 18.
  • Polyfluorene has the following chemical formula (5), and the iridium complex (Ir (ppy) 3 ) has the following chemical formula (6).
  • the alkali metal layer 11 is made of, for example, LiF having a thickness of 5 nm.
  • the cathode 12 is made of Al having a thickness of 0.5 ⁇ m, for example.
  • Each of the transparent anode 6 and the cathode 12 is connected to the electrode 4 by an electric wire 13, whereby the organic EL light emitting element is supplied with a current from a DC power source 14.
  • the transparent anode 6 is electrically connected to the + (plus) side of the DC power supply 14, and the cathode 12 is electrically connected to the ⁇ (minus) side of the DC power supply 14.
  • the inner surface of the sealing component 2 is a mirror surface 15.
  • a desiccant 16 is attached to the tip of the electrode 4, whereby the desiccant 16 is disposed inside the cylindrical tube 1.
  • a nitrogen gas 17 is sealed inside the cylindrical tube 1.
  • the inside of the cylindrical tube 1 may be filled with nitrogen gas 17 or an inert gas atmosphere.
  • FIG. 4 is a cross-sectional view schematically showing a configuration of a multicolor cylindrical organic EL illuminator using three organic EL light emitting elements in Embodiment 4 of the present invention.
  • the organic EL illuminator of the present embodiment has a multi-cylindrical tube configuration.
  • This multiple cylindrical tube has a configuration in which, for example, three cylindrical tubes having different diameters of an outer cylindrical tube 20, an intermediate cylindrical tube 22, and an inner cylindrical tube 24 are arranged coaxially.
  • Each of the cylindrical tubes 20, 22, and 24 is made of transparent glass, and is made of, for example, a straight tube.
  • An anode sealing component 25 is attached to one end of the outer cylindrical tube 20, and a cathode sealing component 26 is attached to the other end.
  • An O-ring 3 is disposed between the anode sealing component 25 and the outer cylindrical tube 20 and between the cathode sealing component 26 and the outer cylindrical tube 20.
  • the inside of the outer cylindrical tube 20 is hermetically sealed by the anode sealing component 25, the cathode sealing component 26 and the O-ring 3.
  • a red organic EL light emitting element 20 ⁇ / b> A is formed inside the outer cylindrical tube 20.
  • the red organic EL light emitting element 20A includes a transparent anode 20a, a red organic EL light emitting layer 20b, and a cathode 20c, which are sequentially formed from the inside of the outer cylindrical tube 20.
  • a blue organic EL light emitting element 22 ⁇ / b> A is formed inside the intermediate cylindrical tube 22.
  • the blue organic EL light emitting element 22A includes a transparent anode 22a, a blue organic EL light emitting layer 22b, and a cathode 22c, which are sequentially formed from the inside of the intermediate cylindrical tube 22.
  • a green organic EL light emitting element 24A is formed inside the inner cylindrical tube 24.
  • the green organic EL light emitting element 24A includes a transparent anode 24a, a green organic EL light emitting layer 24b, and a cathode 24c, which are sequentially formed from the inside of the inner cylindrical tube 24.
  • Each of the transparent anode 20a and the cathode 20c is connected to the electrode 4 by an electric wire 13, whereby the red organic EL light emitting element 20A is electrically connected to the DC power source 14 and the red light emission controller 28.
  • Each of the transparent anode 22a and the cathode 22c is connected to the electrode 4 by the electric wire 13, whereby the blue organic EL light emitting element 22A is electrically connected to the DC power source 14 and the blue light emission regulator 27.
  • Each of the transparent anode 24a and the cathode 24c is connected to the electrode 4 by the electric wire 13, whereby the green organic EL light emitting element 24A is electrically connected to the DC power source 14 and the green light emission regulator 29.
  • Each transparent anode 20a, 22a, 24a is electrically connected to the + (plus) side of the DC power supply 14, and each cathode 20c, 22c, 24c is electrically connected to the-(minus) side of the DC power supply 14. It is connected.
  • the inner surfaces of the anode sealing component 25 and the cathode sealing component 26 are mirror surfaces (reflecting mirrors).
  • a desiccant 16 is attached to the tip of the electrode 4, whereby the desiccant 16 is disposed inside the outer cylindrical tube 20.
  • a nitrogen gas 17 or an inert gas atmosphere is sealed inside the outer cylindrical tube 20.
  • FIG. 5 is a cross-sectional view schematically showing a configuration of a spot-type organic EL illuminator in which three white organic EL light emitting elements 30 are formed in Embodiment 5 of the present invention.
  • the organic EL illuminator of the present embodiment has a multi-cylindrical tube configuration.
  • This multi-cylindrical tube has a configuration in which, for example, three cylindrical tubes having different diameters of an outer cylindrical tube 33, an intermediate cylindrical tube 34, and an inner cylindrical tube 35 are arranged coaxially.
  • Each of the cylindrical tubes 33, 34, and 35 is made of transparent glass, and is made of, for example, a straight tube.
  • a reflective sealing component 31 is attached to one end of the outer cylindrical tube 33, and a transparent sealing component 32 is attached to the other end.
  • An O-ring 3 is disposed between the reflective sealing component 31 and the outer cylindrical tube 33 and between the transparent sealing component 32 and the outer cylindrical tube 33. The inside of the outer cylindrical tube 33 is sealed by the sealing parts 31 and 32 and the O-ring 3.
  • a white organic EL light emitting element 30 is formed inside each of the cylindrical tubes 33, 34, and 35.
  • the white organic EL light emitting element 30 includes a transparent anode 30a, a white organic EL light emitting layer 30b, and a cathode 30c, which are sequentially formed from the inside of the cylindrical tube.
  • the reflection sealing component 31 has two electrodes 4 for supplying electricity.
  • Each of the transparent anode 30 a and the cathode 30 c is connected to the electrode 4 by the electric wire 13, whereby each of the white organic EL light emitting elements 30 is electrically connected to the DC power source 14.
  • Each transparent anode 30 a is electrically connected to the + (plus) side of the DC power source 14, and the cathode 30 c is electrically connected to the ⁇ (minus) side of the DC power source 14.
  • the inner surface of the reflective sealing component 31 is a mirror surface (reflecting mirror) 15 and the transparent sealing component 32 is transparent. Thereby, the light emitted from the white organic EL light emitting element 30 is extracted from the transparent transparent sealing component 32 on one side.
  • the desiccant 16 is attached to the reflective sealing component 31, whereby the desiccant 16 is disposed inside the outer cylindrical tube 33. Inside the outer cylindrical tube 33, nitrogen gas 17 or an inert gas atmosphere is enclosed.
  • a film of Al (not shown) having a thickness of 10 ⁇ m, for example, on the outside of the outer cylindrical tube 20 by vapor deposition, light can be extracted only from the transparent sealing part 32.
  • FIG. 6 is a partially enlarged cross-sectional view schematically showing the configuration of the cylindrical tube of the cylindrical organic EL illuminator in Embodiment 6 of the present invention.
  • a cylindrical tube 41 of the cylindrical organic EL illuminator in the present embodiment is made of glass, for example, and has fine irregularities 42 on the outer peripheral surface thereof.
  • the light beam 44 coming from the inside of the cylindrical tube 41 is refracted inside the fine irregularities 42 and radiated to the outside air 43.
  • the organic EL light-emitting element only needs to have at least a transparent anode, a light-emitting layer, and a cathode, and also includes a protective layer, a hole injection layer, a hole transport layer, an electron A transport layer, an electron injection layer, an alkali metal layer, or the like may be provided as necessary.
  • the cylindrical tube having a circular shape in the cross section perpendicular to the axial direction has been described as the cylindrical tube.
  • the present invention is not limited to this, and the vertical direction is perpendicular to the axial direction.
  • the present invention can be similarly applied to a cylindrical tube having a polygonal cross section.
  • the shape of the cross section perpendicular to the axial direction of the cylindrical tube may be a perfect circle or an ellipse.
  • the cylindrical tube may be a tube extending in a curved shape other than a straight tube extending in a straight line in the axial direction.
  • a thin film of an organic EL light emitting element is sequentially formed inside transparent cylindrical glass tube 1.
  • TEOS gas 0.1 cc / min, O 2 gas 10 cc / min, and He gas 500 cc / min are placed inside a cylindrical tube 1 made of transparent blue glass having a diameter of 35 mm, a length of 300 mm, and a thickness of 1 mm.
  • the pressure is 0.01 atm, and the entire temperature of the cylindrical tube 1 is kept at 300 ° C.
  • the cylindrical tube 1 is rotated at 30 rpm, a coil is installed outside the cylindrical tube 1, a high frequency with a frequency of 13.56 MHz and an output of 100 W is applied to the coil, and plasma is generated inside the cylindrical tube 1.
  • Each source gas is decomposed by the plasma, and a protective film 5 of SiO 2 having a thickness of 10 nm is uniformly formed inside the cylindrical tube 1.
  • the protective film 5 prevents metal ions from moving from the glass to the transparent anode 6 side.
  • a plate-like ITO target is inserted inside the cylindrical tube 1, Ar gas 20 cc / min is allowed to flow, the pressure is set to 0.0001 atm, and the entire temperature of the cylindrical tube 1 is maintained at 300 ° C.
  • the cylindrical tube 1 is rotated at 30 rpm, a coil is installed outside the cylindrical tube 1, a high frequency with a frequency of 13.56 MHz and an output of 500 W is applied to the coil, and Ar plasma is generated inside the cylindrical tube 1.
  • the Ar ions collide with the surface of the ITO target, knock out the ITO, and the transparent anode 6 of ITO having a thickness of 1 ⁇ m is uniformly formed on the protective film 5.
  • a polishing material is poured inside the cylindrical tube 1, and the cylindrical tube 1 is rotated at 100 rpm while being polished using a polishing pad until the ITO surface of the transparent anode 6 becomes smooth, and then an organic solvent. And washed with pure water and dried by N 2 blow.
  • the cylindrical tube 1 is put in a glove box, and for example, the inside of the glove box is replaced with N 2 gas, and the dew point is set to ⁇ 80 ° C. or lower while the temperature is raised to 100 ° C.
  • O 2 gas 10 cc / min and Ar gas 500 cc / min are allowed to flow inside the cylindrical tube 1, the pressure is set to 0.001 atm, and the entire temperature of the cylindrical tube 1 is maintained at 50 ° C.
  • the cylindrical tube 1 is rotated at 30 rpm, a coil is installed outside the cylindrical tube 1, a high frequency with a frequency of 13.56 MHz and an output of 100 W is applied to the coil, and O 2 plasma is generated inside the cylindrical tube 1. .
  • O 2 plasma improves the work function of the ITO surface of the transparent anode 6 from 4.8 eV to 5.5 eV.
  • a gas injection nozzle is inserted inside the cylindrical tube 1, N 2 gas of 500 cc / min is allowed to flow, the pressure is set to 0.001 atm, and the temperature of the gas injection nozzle is maintained at 300 ° C.
  • the cylindrical tube 1 is rotated at 30 rpm, and the outside of the cylindrical tube 1 is kept cooled to 2 ° C.
  • the low-molecular-weight organic powder raw material for the hole injection layer, hole-transporting layer, light-emitting layer, electron-transporting layer, and electron-injecting layer and the low-molecular-weight organic powder raw material for the dopant are filled in separate powder feeders.
  • N 2 gas are sequentially supplied to the vaporizer.
  • the low molecular organic powder raw material heated to 300 ° C. in the vaporizer is instantaneously evaporated and sent to the gas injection nozzle together with N 2 gas.
  • the vaporized organic raw material is ejected together with N 2 gas from the gas injection nozzle, adheres to the inside of the cooled cylindrical tube 1, and the N 2 gas is discharged from the vacuum pump through the exhaust pipe.
  • NPD thinness 40 nm
  • Znbox2 perylene (1.5) as the electron transport blue light-emitting layer 8 in order.
  • % Thiickness 7 nm
  • Znbox2 DCM1 (0.25%)
  • thickness 23 nm as the electron transporting yellow light emitting layer 9
  • Znbox2 thickness 30 nm
  • a water-cooled cylindrical mask is inserted inside the cylindrical tube 1, and a plate-shaped metal crucible filled with LiF is inserted inside thereof.
  • the inside of the cylindrical tube 1 is evacuated, and the entire temperature of the cylindrical tube 1 is kept at 50 ° C. or lower.
  • the cylindrical tube 1 is rotated at 30 rpm, and a direct current is passed through the metal crucible to heat it.
  • LiF in the metal crucible evaporates and adheres straight from the opening of the mask toward the cylindrical tube 1. Thereby, a LiF film having a thickness of 5 nm as the alkali metal layer 11 is uniformly formed on the organic material layer (electron transport layer 10).
  • the organic EL light emitting element is formed inside the cylindrical tube 1.
  • Organic EL light-emitting elements are vulnerable to the penetration of water molecules, and entry of moisture causes deterioration of the organic EL light-emitting elements.
  • the desiccant 16 is put inside the cylindrical tube 1, and the inside of the cylindrical tube 1 is filled with N 2 gas to seal both ends of the cylindrical tube 1. Sealing uses a seal by a rubber O-ring 3.
  • the organic EL light emitting element is connected to the electrode 4 of the sealing component 2.
  • the transparent anode 6 When the transparent anode 6 is connected positively, the cathode 12 is connected negatively, a voltage is applied, and a direct current is applied, electrons and holes are recombined in the light emitting layers 8 and 9 to generate blue and yellow light. To do.
  • the generated light is emitted to the outside through the transparent anode 6 and the transparent cylindrical tube 1.
  • 10 V when 10 V is applied between the transparent anode 6 and the cathode 12, white light having a luminance of 5000 cd / m 2 can be obtained.
  • the hole transport layer 7, the electron transport blue light-emitting layer 8, the electron transport yellow light-emitting layer 9, the electron transport layer 10 and the dopant molecule are formed of a low molecular organic substance.
  • a hole injection layer, an electron injection layer, or the like made of a low molecular organic material may be additionally formed.
  • the polymer raw material that is the raw material of the polymer light emitting layer 19 shown in FIG. 3 cannot be heated and evaporated, it is dissolved in a solvent and applied by spin coating.
  • a solvent in which a polymer raw material is dissolved is dropped inside the cylindrical tube 1, and a uniform film is formed while the cylindrical tube 1 is tilted at 45 degrees and rotated at 2000 rpm, and the solvent is evaporated by heating.
  • the polymer light emitting layer 19 of polyfluorene: Ir (ppy) 3 (5%) (thickness 80 nm) is uniformly formed on the hole transport layer.
  • a transparent blue glass diameter 45 mm, length 300 mm, thickness 1 mm outer cylindrical tube, diameter 40 mm, length 300 mm, thickness 1 mm intermediate cylindrical tube, diameter 35 mm, length 300 mm, thickness prepare each with a 1 mm inner cylindrical tube.
  • ITO as a transparent anode film
  • NPD hole transport layer
  • Znbox 2 perylene (1.5% as an electron transport blue light emitting layer)
  • Thiickness 7 nm Znbox2: DCM1 (0.25%) (thickness 23 nm) as an electron transporting yellow light emitting layer
  • Znbox2 thickness 30 nm as an electron transporting layer
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline: Cs (thickness 20 nm) as an electron injection layer and IZO (Indium Zinc Oxide) (thickness 0.5 ⁇ m) as a transparent cathode Are sequentially formed.
  • An intermediate cylindrical tube having a diameter of 40 mm is inserted into the inside of the outer cylindrical tube having a diameter of 45 mm, and an inner cylindrical tube having a diameter of 35 mm is inserted into the intermediate cylindrical tube having a diameter of 40 mm to form a multi-cylinder tube. Connect to and seal. For example, when 10 V is applied between the transparent anode and the transparent cathode, white light having a luminance of 10000 cd / m 2 can be obtained.
  • the incident angle of light is different from the total reflection angle, and the external quantum efficiency Will improve.
  • irregularities 42 having a diameter of about 300 nm less than the optical wavelength on the outer surface of the cylindrical glass tube 41
  • the incident angle of light is different from the total reflection angle, and the external quantum efficiency Will improve.
  • white light with a luminance of 5000 cd / m 2 is obtained when 10 V is applied.
  • the luminance is improved to 6000 cd / m 2 .
  • the cylindrical organic EL illuminator of the present invention is required to have a long lifetime and high luminance because the organic EL light emitting element can be formed on a cylindrical tube to improve the luminance while suppressing deterioration of the organic EL light emitting element. It can be preferably used in certain fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A cylindrical pipe (1) is formed of transparent glass. Both ends of the pipe are sealed with a sealing component (2) and an O ring (3). A protective film (5), a transparent positive electrode (6), a hole transport layer (7), an electron transport blue light-emitting layer (8), an electron transport yellow light-emitting layer (9), an electron transport layer (10), an alkali metal layer (11), and a negative electrode (12) are sequentially laminated in the inner side of the cylindrical pipe (1). Current is supplied to an organic EL light-emitting element by allowing the transparent positive electrode (6) to be connected to plus and allowing the negative electrode (12) to be connected to minus. The inner surface of the sealing component (2) is a mirror surface (15). A drying agent (16) is arranged on the inner side of the cylindrical pipe (1). Nitride gas (17) is encapsulated in the cylindrical pipe (1). Thus, an organic EL illuminator in which the deterioration of the organic EL light-emitting element is suppressed and the luminance of which can be improved can be achieved.

Description

筒型有機EL照明器Cylindrical organic EL illuminator
 本発明は、有機EL発光素子を使用した照明器に関し、詳細には、筒型の有機EL照明器に関するものである。 The present invention relates to an illuminator using an organic EL light emitting element, and more particularly to a cylindrical organic EL illuminator.
 従来の有機EL(Electro Luminescence)照明器においては、平面ガラス板に有機EL発光素子が成膜され、金属またはガラスで封止されていた。有機EL発光素子内で発生した光は、有機物層、透明陽極、平面ガラス板を通過して外部に放射されていた。 In a conventional organic EL (Electro Luminescence) illuminator, an organic EL light emitting element is formed on a flat glass plate and sealed with metal or glass. The light generated in the organic EL light emitting element was emitted to the outside through the organic material layer, the transparent anode, and the flat glass plate.
 そして、1枚の平面ガラス板に、互いに補色となる2成分の発光層が成膜されるか、赤色、緑色、青色の3成分の発光層が成膜されるか、または高分子材料中に、赤色、緑色、青色の3成分の低分子発光材料が分散された有機EL発光素子が成膜されることにより、白色の照明器が製造されていた。 Then, a two-component light-emitting layer that is complementary to each other is formed on one flat glass plate, or a three-component light-emitting layer of red, green, and blue is formed, or in a polymer material A white illuminator has been manufactured by forming an organic EL light emitting element in which low-molecular light emitting materials of three components of red, green, and blue are dispersed.
 また、有機EL発光素子の成膜は、各原料をルツボに入れて真空中で加熱し、蒸発した原料分子または原子を順番に、平面ガラス板表面に付着させる真空蒸着により行なわれていた。 In addition, the organic EL light-emitting element was formed by vacuum deposition in which each raw material was placed in a crucible and heated in a vacuum, and the evaporated raw material molecules or atoms were sequentially attached to the surface of the flat glass plate.
 そして、有機EL発光素子に空気中の水分が侵入することを防ぐための封止部品は、紫外線で硬化する接着剤によって平面ガラス板に接着されていた。 Further, the sealing component for preventing moisture in the air from entering the organic EL light emitting element is adhered to the flat glass plate with an adhesive that is cured by ultraviolet rays.
 従来の有機EL照明器においては、発光層内で発生した光は、有機物層、透明陽極、平面ガラス板を通過して外部へ放射される。光の取り出し効率は、有機物層の屈折率で決まる臨界角に依存する。有機物層の屈折率が1.6の場合、外部へ取り出せる光は発光層内で発生した光の20%になる。有機物層と平面ガラス板との表面で屈折した残りの80%の光は、横方向に多重反射しながら導波し、ガラスの端面から放射されるか、陰極金属の表面で消失するので、外部に取り出すことはできなかった。 In the conventional organic EL illuminator, light generated in the light emitting layer is emitted to the outside through the organic material layer, the transparent anode, and the flat glass plate. The light extraction efficiency depends on the critical angle determined by the refractive index of the organic layer. When the refractive index of the organic layer is 1.6, the light that can be extracted to the outside is 20% of the light generated in the light emitting layer. The remaining 80% of the light refracted on the surface of the organic layer and the flat glass plate is guided by multiple reflections in the lateral direction, and is emitted from the end face of the glass or disappears on the surface of the cathode metal. Could not be taken out.
 また、平面ガラス板に成膜された単一の有機EL発光素子は、直流電流によって発光する。このため、電流の強弱により輝度を調整することはできるが、発光波長は、発光層の材料によって決定され、任意に調整することはできなかった。 Also, a single organic EL light emitting element formed on a flat glass plate emits light by direct current. For this reason, although the brightness can be adjusted by the strength of the current, the emission wavelength is determined by the material of the light emitting layer and cannot be arbitrarily adjusted.
 そして、電流を流して有機EL発光素子を連続駆動した場合、有機物層の凝集や結晶化、有機材料の電気化学的反応、分子励起子と界面電荷の相互作用、有機物層界面での拡散や化学反応、凹凸やゴミによる局所的短絡によって、有機EL発光素子の平均輝度が低下する。輝度の劣化は電流に依存し、高輝度で駆動する場合は電流が増加するので、劣化が加速する問題点があった。 When an organic EL light-emitting device is driven continuously by applying an electric current, the organic material layer is aggregated and crystallized, the organic material undergoes an electrochemical reaction, the interaction between molecular excitons and interfacial charges, and the diffusion and chemical properties at the organic material layer interface. The average luminance of the organic EL light-emitting element is reduced by reaction, local short circuit due to unevenness and dust. The deterioration of luminance depends on the current, and when driving at high luminance, the current increases, so there is a problem that the deterioration is accelerated.
 さらに、有機EL発光素子は、輝度を上げるために電流を増やすと発熱する。このため、有機EL発光素子を高輝度で駆動した場合、有機材料の変質が進行し、さらに劣化が加速する問題点があった。 Furthermore, the organic EL light emitting element generates heat when the current is increased to increase the luminance. For this reason, when the organic EL light emitting element is driven with high luminance, the organic material is deteriorated and further deteriorated.
 また、有機EL発光素子の輝度半減寿命は、個々の発光材料によって異なる。このため、複数の発光材料を使った白色発光の場合、発光時間の経過とともに、発光色度がずれてくる問題点があった。 In addition, the luminance half life of the organic EL light emitting element varies depending on each light emitting material. For this reason, in the case of white light emission using a plurality of light emitting materials, there has been a problem that the light emission chromaticity is shifted as the light emission time elapses.
 そして、有機EL発光素子を成膜するための真空蒸着においては、加熱されたルツボの中の原料が放射状に飛散する。平面ガラス板はルツボの上面に設置されるが、ルツボから側面に飛散した原料は、平面ガラス板に到達することなく真空容器に付着する。このため、原料効率が20%程度の低い問題点があった。 In the vacuum deposition for forming the organic EL light emitting element, the raw material in the heated crucible scatters radially. The flat glass plate is installed on the upper surface of the crucible, but the raw material scattered from the crucible to the side surface adheres to the vacuum vessel without reaching the flat glass plate. For this reason, there was a problem that the raw material efficiency was as low as about 20%.
 また、封止するための接着剤の使用は、部品の分解を困難にする。有機EL発光素子の輝度が低下して使用できなくなった照明器は、再利用されずに廃棄される問題点があった。 Also, the use of an adhesive for sealing makes it difficult to disassemble the parts. The illuminator that cannot be used due to a decrease in luminance of the organic EL light emitting element has a problem of being discarded without being reused.
 本発明は、有機EL発光素子の劣化を抑制しつつ輝度を向上できる筒型有機EL照明器を提供することを目的としている。 An object of the present invention is to provide a cylindrical organic EL illuminator capable of improving luminance while suppressing deterioration of an organic EL light emitting element.
 本発明の筒型有機EL照明器は、有機ELで発光する照明器であって、筒状(tube shape)の管と、有機EL発光素子と、乾燥剤と、1対の封止部品とを備えている。筒状の管は透明である。有機EL発光素子は、筒状の管の内側に順番に成膜された透明陽極と、発光層を含む有機物層と、陰極とを含んでいる。乾燥剤は筒状の管の内側に入れられている。1対の封止部品は、筒状の管の内側を窒素または不活性ガス雰囲気で満たすために筒状の管の両端を封止している。透明陽極がプラスに接続され、陰極がマイナスに接続されて、有機EL発光素子に電流が供給されて発光する。 The cylindrical organic EL illuminator of the present invention is an illuminator that emits light from an organic EL, and includes a tube (tube shape), an organic EL light emitting element, a desiccant, and a pair of sealing components. I have. The tubular tube is transparent. The organic EL light-emitting element includes a transparent anode formed in order inside a cylindrical tube, an organic material layer including a light-emitting layer, and a cathode. The desiccant is contained inside the cylindrical tube. The pair of sealing parts seals both ends of the cylindrical tube in order to fill the inside of the cylindrical tube with nitrogen or an inert gas atmosphere. The transparent anode is connected to the plus and the cathode is connected to the minus, and current is supplied to the organic EL light emitting element to emit light.
 上記の筒型有機EL照明器において好ましくは、封止部品の内面が反射鏡である。
 上記の筒型有機EL照明器において好ましくは、筒状の管の表面に微細な凹凸が設けられている。
In the above cylindrical organic EL illuminator, the inner surface of the sealing component is preferably a reflecting mirror.
In the above-described cylindrical organic EL illuminator, preferably, fine irregularities are provided on the surface of the cylindrical tube.
 上記の筒型有機EL照明器において好ましくは、1対の封止部品のうち筒状の管の一方端側の封止部品の内面が反射鏡で、筒状の管の他方端側の封止部品が透明である。 In the above-described cylindrical organic EL illuminator, the inner surface of the sealing part on one end side of the cylindrical tube is preferably a reflecting mirror, and the other end side of the cylindrical pipe is sealed. The part is transparent.
 上記の筒型有機EL照明器において好ましくは、封止部品がOリングを使用して封止するものである。 In the above-mentioned cylindrical organic EL illuminator, the sealing component is preferably sealed using an O-ring.
 上記の筒型有機EL照明器において好ましくは、筒状の管の内部に挿入された、筒状の管よりも直径の小さな他の筒状の管と、その他の筒状の管の内側に成膜された他の有機EL発光素子とがさらに備えられている。筒状の管と他の筒状の管とにより多重筒管が構成されている。 In the above-described cylindrical organic EL illuminator, preferably, the cylindrical organic EL illuminator is formed inside another cylindrical tube inserted into the cylindrical tube and having a diameter smaller than that of the cylindrical tube. Further, another organic EL light emitting element formed into a film is further provided. A cylindrical tube and another cylindrical tube constitute a multiple tube.
 上記の筒型有機EL照明器において好ましくは、多重筒管における有機EL発光素子と他の有機発光素子とがそれぞれ同一の波長で発光する。 In the above-described cylindrical organic EL illuminator, preferably, the organic EL light emitting element and the other organic light emitting elements in the multi-tubular tube each emit light at the same wavelength.
 上記の筒型有機EL照明器において好ましくは、多重筒管における有機EL発光素子と他の有機発光素子とがそれぞれ異なる波長で発光する。 In the above-described cylindrical organic EL illuminator, preferably, the organic EL light emitting element and the other organic light emitting elements in the multiple tube emit light at different wavelengths.
 上記の筒型有機EL照明器において好ましくは、多重筒管における有機EL発光素子と他の有機発光素子とのそれぞれに与えられる電流および電圧のいずれかを独立に調節できる。 In the above-described cylindrical organic EL illuminator, preferably, any one of a current and a voltage applied to each of the organic EL light emitting element and the other organic light emitting elements in the multiple tube can be adjusted independently.
 上記の筒型有機EL照明器において好ましくは、筒状の管がガラスであり、有機物層が正孔注入層、正孔輸送層、電子輸送層および電子注入層よりなる群より選ばれる1種以上を含み、かつドーパント分子を含んでおり、かつ有機物層が低分子系有機物である。 In the above cylindrical organic EL illuminator, preferably, the cylindrical tube is glass, and the organic material layer is one or more selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. And a dopant molecule, and the organic material layer is a low molecular weight organic material.
 上記の筒型有機EL照明器において好ましくは、筒状の管がガラスであり、有機物層が正孔注入層、正孔輸送層、電子輸送層および電子注入層よりなる群より選ばれる1種以上を含み、かつドーパント分子を含んでおり、かつ発光層が高分子系有機物である。 In the above cylindrical organic EL illuminator, preferably, the cylindrical tube is glass, and the organic material layer is one or more selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer. And a dopant molecule, and the light emitting layer is a high molecular weight organic material.
 上記目的を達成するために、本発明の筒型有機EL照明器においては、従来、平面ガラス板上に成膜していた有機EL発光素子を筒状の管の内側に成膜している。有機EL発光素子内で発生し、外部に放射されずに筒状の管と有機物層の中を伝播して、端面で放射される光を筒状の管の内側にもどすために、封止部品の内面が反射鏡とされていることが好ましい。光の取り出しは、筒状の管の表面の微細な凹凸によって行なわれることが好ましい。筒状の管の内側には有機EL発光素子を成膜した直径の小さな複数の多重筒管が設置されていることが好ましく、これにより、個々の有機EL発光素子の電流が調整され、発光色度が最適化される。有機EL発光素子の成膜は、回転する筒状の管の内側に原料を供給することにより行なわれることが好ましい。筒状の管の封止にはゴム製のOリングが使用されることが好ましく、これにより簡単に分解でき、かつ分解後に組み立てることができる。 In order to achieve the above object, in the cylindrical organic EL illuminator of the present invention, the organic EL light emitting element conventionally formed on a flat glass plate is formed on the inside of the cylindrical tube. A sealing component that is generated inside the organic EL light-emitting element, propagates through the cylindrical tube and the organic material layer without being radiated to the outside, and returns the light emitted from the end face to the inside of the cylindrical tube. It is preferable that the inner surface of is a reflecting mirror. The light extraction is preferably performed by fine irregularities on the surface of the cylindrical tube. It is preferable that a plurality of small-diameter multiple tube tubes with organic EL light-emitting elements formed therein are installed inside the cylindrical tube, whereby the current of each organic EL light-emitting element is adjusted, and the emission color The degree is optimized. The organic EL light-emitting element is preferably formed by supplying a raw material inside a rotating cylindrical tube. It is preferable to use a rubber O-ring for sealing the cylindrical tube, so that it can be easily disassembled and assembled after disassembly.
 本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。 Since the present invention is configured as described above, the following effects can be obtained.
 本発明の筒型有機EL照明器によれば、有機EL発光素子が筒状の管に形成されている。この筒状の管は従来の平板のガラスよりも機械的強度が高く薄型化可能であるため、高輝度化を図ることができる。加えて、筒状の管は従来の平板のガラスよりも薄型化可能であるため、有機EL発光素子から発生した熱をより多く外部に伝え、有機EL発光素子の温度を下げることができ、有機EL発光素子の劣化が生じにくい。 According to the cylindrical organic EL illuminator of the present invention, the organic EL light emitting element is formed in a cylindrical tube. Since this cylindrical tube has higher mechanical strength than a conventional flat glass and can be thinned, high luminance can be achieved. In addition, since the cylindrical tube can be made thinner than the conventional flat glass, more heat generated from the organic EL light-emitting element can be transmitted to the outside, and the temperature of the organic EL light-emitting element can be lowered. It is difficult for the EL light emitting element to deteriorate.
 また、筒状の管であるため、筒状の管の内側にルツボを入れると、筒状の管がルツボの周囲を覆うことになる。このため、真空蒸着時に原料がルツボから放射状に飛散しても、筒状の管がルツボの周囲を覆っているため、従来の平板のガラスの場合よりも効率良く原料を筒状の管に蒸着することができる。 Also, since it is a cylindrical tube, when the crucible is put inside the cylindrical tube, the cylindrical tube covers the periphery of the crucible. For this reason, even if the raw material scatters radially from the crucible during vacuum deposition, the cylindrical tube covers the periphery of the crucible, so the raw material is deposited on the cylindrical tube more efficiently than in the case of conventional flat glass. can do.
 また筒状の管に乾燥剤が入れられており、窒素または不活性ガス雰囲気で満たすために筒状の管の両端が封止されている。このように乾燥剤が入れられ、かつ窒素または不活性ガス雰囲気で満たして筒状の管の両端が封止されるため、筒上の管の内部に空気中の水分子が侵入することを防止でき、有機EL発光素子の劣化を防止することができる。 Also, a desiccant is placed in the tubular tube, and both ends of the tubular tube are sealed to fill with nitrogen or an inert gas atmosphere. Since the desiccant is put in this way and both ends of the cylindrical tube are sealed by filling with nitrogen or inert gas atmosphere, water molecules in the air are prevented from entering the inside of the tube on the cylinder And deterioration of the organic EL light emitting element can be prevented.
 発光層内で発生した光は、筒状の管の外部に放射される光と、透明な陰極を透過して筒状の管の内側に向かう光と、両端の封止部に向かう光と、筒状の管の表面で屈折して有機物層と筒状の管の界面を多重反射によって進む光とに分かれる。筒状の管の内側に向かった光は、反対側の筒状の管に達し、一部は外部に放射される。封止部品に向かった光は、封止部品の内面の反射鏡によって90%以上反射し、筒状の管の内側にもどる。有機物層と筒状の管との界面を多重反射によって進む光は、筒状の管の端面から放射され、封止部品の内面の反射鏡によって90%以上反射し、筒状の管の内側にもどる。筒状の管の内側にもどった光の一部は、外部へ放射されるため、発光層内で発生した光を効率的に外部へ取り出すことができる。 The light generated in the light emitting layer includes light radiated to the outside of the tubular tube, light that passes through the transparent cathode and travels toward the inside of the tubular tube, light that travels to the sealing portions at both ends, The light is refracted on the surface of the tubular tube and is divided into light that travels through the interface between the organic layer and the tubular tube by multiple reflection. The light directed toward the inside of the cylindrical tube reaches the opposite cylindrical tube, and a part thereof is emitted to the outside. The light directed toward the sealing component is reflected by 90% or more by the reflecting mirror on the inner surface of the sealing component, and returns to the inside of the cylindrical tube. Light that travels through the interface between the organic material layer and the cylindrical tube by multiple reflection is radiated from the end surface of the cylindrical tube, is reflected 90% or more by the reflecting mirror on the inner surface of the sealing component, and enters the inside of the cylindrical tube. Return. Since a part of the light returning to the inside of the cylindrical tube is emitted to the outside, the light generated in the light emitting layer can be efficiently extracted to the outside.
 また筒状の管の表面に凹凸が形成されることにより、上記の筒状の管の内側にもどった光は、微細な凹凸形状を形成した筒状の管のいずれかの表面に達した時点で、光の入射角が全反射角と異なる箇所で、光は外部へ放射される。従って、材料内で吸収され、消失した光以外の光は、最終的に筒状の管の外部に放射されることになる。このため、発光層内で発生した光をさらに効率的に外部へ取り出すことができ、高い外部量子効率の照明器が実現できる。 In addition, when unevenness is formed on the surface of the cylindrical tube, the light that has returned to the inside of the cylindrical tube reaches the surface of any of the cylindrical tubes that form a fine uneven shape. Thus, light is radiated to the outside where the incident angle of light is different from the total reflection angle. Therefore, light other than the light absorbed and lost in the material is finally emitted to the outside of the cylindrical tube. For this reason, the light generated in the light emitting layer can be extracted to the outside more efficiently, and an illuminator with high external quantum efficiency can be realized.
 また筒状の管の一方端側の封止部品の内面を反射鏡にし、筒状の管の他方端側の封止部品を透明にすることで、筒状の管の他方端側の封止部品から輝度の高い光を取り出すことができる。 Moreover, the inner surface of the sealing part on the one end side of the cylindrical tube is made into a reflecting mirror, and the sealing part on the other end side of the cylindrical pipe is made transparent, thereby sealing the other end side of the cylindrical pipe. High brightness light can be extracted from the component.
 また封止部品のシールにゴム製のOリングを使用することにより、構成部品の分解および分解後の組み立てが簡単になり、劣化した有機EL発光素子以外のすべての部品を再利用することができる。これにより、低価格で有機EL照明器を製作することができる。 In addition, by using a rubber O-ring for sealing sealing parts, disassembly of components and assembly after disassembly are simplified, and all parts other than the deteriorated organic EL light emitting element can be reused. . Thereby, an organic EL illuminator can be manufactured at a low price.
 さらに多重筒管に有機EL発光素子を成膜することにより、個々の有機EL発光素子に流れる電流が小さくなるので、輝度の劣化が抑制され、長寿命の照明器が実現できる。 Further, by forming the organic EL light emitting element on the multiple tube, the current flowing through each organic EL light emitting element is reduced, so that the deterioration of luminance is suppressed and a long-life illuminator can be realized.
 また多重筒管に有機EL発光素子を成膜すれば、電流を並列に流すことができるので、低電圧で高輝度の照明器が実現できる。 Also, if an organic EL light emitting element is formed on the multiple tube, current can flow in parallel, so that a low voltage and high luminance illuminator can be realized.
 そして、多重筒管にそれぞれ赤色、緑色、青色の有機EL発光素子を成膜し、個々に電流を流すことによって白色が得られ、電流の強弱によって平均輝度を調整することができる。この他に、個々の電流を調節することにより、赤色、緑色、青色の色度座標上の三角形の中の任意の色で発光するカラー照明器が実現できる。 Then, red, green, and blue organic EL light emitting elements are formed on the multiple tube tubes, respectively, and white color is obtained by flowing current individually, and the average luminance can be adjusted by the strength of the current. In addition, it is possible to realize a color illuminator that emits light in an arbitrary color among triangles on the chromaticity coordinates of red, green, and blue by adjusting individual currents.
 また、回転している筒状の管の内側に真空蒸着で有機EL発光素子を成膜する場合、ルツボから飛散した原料は、筒状の管の両端を除き、すべての内面に到達するので、80%の高い原料効率が得られる。 In addition, when forming an organic EL light emitting element by vacuum deposition inside the rotating cylindrical tube, the raw material scattered from the crucible reaches all inner surfaces except for both ends of the cylindrical tube. High raw material efficiency of 80% can be obtained.
 さらに、回転している筒状の管の内側に、キャリヤーガスに含ませて原料を送り、高い原料効率で有機EL発光素子を成膜することができる。 Furthermore, the organic EL light-emitting element can be formed with high raw material efficiency by feeding the raw material into the carrier tube inside the rotating cylindrical tube.
本発明の実施の形態1における単色円筒型有機EL照明器の外観図である。1 is an external view of a monochromatic cylindrical organic EL illuminator according to Embodiment 1 of the present invention. 本発明の実施の形態1における多色円筒型有機EL照明器の外観図である。1 is an external view of a multicolor cylindrical organic EL illuminator according to Embodiment 1 of the present invention. 本発明の実施の形態1におけるスポット型有機EL照明器の外観図である。It is an external view of the spot type organic EL illuminator in Embodiment 1 of the present invention. 本発明の実施例を示す単色円筒型有機EL照明器の断面図である。It is sectional drawing of the monochromatic cylindrical organic electroluminescent illuminator which shows the Example of this invention. 蛍光体を使用した単色円筒型有機EL照明器の断面図である。It is sectional drawing of the monochromatic cylindrical organic electroluminescent illuminator which uses fluorescent substance. 多色円筒型有機EL照明器の断面図である。It is sectional drawing of a multicolor cylindrical organic electroluminescent illuminator. スポット型有機EL照明器の断面図である。It is sectional drawing of a spot type organic electroluminescent illuminator. 本発明の実施の形態6における円筒型有機EL照明器の円筒管の構成を概略的に示す部分拡大断面図である。It is a partial expanded sectional view which shows roughly the structure of the cylindrical tube of the cylindrical organic electroluminescent illuminator in Embodiment 6 of this invention.
符号の説明Explanation of symbols
 1,41 円筒管、2 封止部品、3 Oリング、4 電極、5 保護膜、6,20a,22a,24a,30a 透明陽極、7 正孔(ホール)輸送層、8 電子輸送性青色発光層、9 電子輸送性黄色発光層、10 電子輸送層、11 アルカリ金属層、12,20c,22c,24c,30c 陰極、13 電線、14 直流電源、15 鏡面、16 乾燥剤、17 窒素ガス、18 ドーパント分子、19 高分子発光層、20,33 外側円筒管、20A 赤色有機EL発光素子、20b 赤色有機EL発光層、22,34 中間円筒管、22A 青色有機EL発光素子、22b 青色有機EL発光層、24,35 内側円筒管、24A 緑色有機EL発光素子、24b 緑色有機EL発光層、25 陽極封止部品、26 陰極封止部品、27 青色発光調節器、28 赤色発光調節器、29 緑色発光調節器、30 白色有機EL発光素子、30b 白色有機EL発光層、31 反射封止部品、32 透明封止部品、42 凹凸、43 外気、44 光束。 1, 41 cylindrical tube, 2 sealing parts, 3 O-ring, 4 electrodes, 5 protective film, 6, 20a, 22a, 24a, 30a transparent anode, 7 hole transport layer, 8 electron transport blue light emitting layer , 9 Electron transporting yellow light emitting layer, 10 Electron transport layer, 11 Alkali metal layer, 12, 20c, 22c, 24c, 30c Cathode, 13 Electric wire, 14 DC power supply, 15 Mirror surface, 16 Desiccant, 17 Nitrogen gas, 18 dopant Molecule, 19 polymer light emitting layer, 20, 33 outer cylindrical tube, 20A red organic EL light emitting device, 20b red organic EL light emitting layer, 22, 34 intermediate cylindrical tube, 22A blue organic EL light emitting device, 22b blue organic EL light emitting layer, 24, 35 inner cylindrical tube, 24A green organic EL light emitting element, 24b green organic EL light emitting layer, 25 anode sealing component, 26 cathode Stop part, 27 Blue light emission regulator, 28 Red light emission regulator, 29 Green light emission regulator, 30 White organic EL light emitting element, 30b White organic EL light emitting layer, 31 Reflective sealing part, 32 Transparent sealing part, 42 Concavity and convexity, 43 outside air, 44 luminous flux.
 以下、本発明の筒型有機EL照明器の実施の形態を、図面を参照して説明する。
 (実施の形態1)
 図1Aは本発明の実施の形態1における単色円筒型有機EL照明器の外観図であり、図1Bは本発明の実施の形態1における多色円筒型有機EL照明器の外観図であり、図1Cは本発明の実施の形態1におけるスポット型有機EL照明器の外観図である。
Hereinafter, embodiments of the cylindrical organic EL illuminator of the present invention will be described with reference to the drawings.
(Embodiment 1)
1A is an external view of a monochromatic cylindrical organic EL illuminator according to Embodiment 1 of the present invention, and FIG. 1B is an external view of a multicolor cylindrical organic EL illuminator according to Embodiment 1 of the present invention. 1C is an external view of the spot-type organic EL illuminator according to Embodiment 1 of the present invention.
 図1Aを参照して、単色円筒型有機EL照明器では、円筒管1の両端の各々に封止部品2が取り付けられており、両側の封止部品2の各々に電極4が取り付けられている。 Referring to FIG. 1A, in a monochromatic cylindrical organic EL illuminator, a sealing component 2 is attached to each of both ends of the cylindrical tube 1, and an electrode 4 is attached to each of the sealing components 2 on both sides. .
 図1Bを参照して、多色円筒型有機EL照明器では、円筒管は例えば多重円筒管の構成を有しており、多重円筒管のうちの外側円筒管20の一方端部に陽極封止部品25が、他方端部に陰極封止部品26がそれぞれ取り付けられている。陽極封止部品25および陰極封止部品26の各々には、例えば3つの電極4が取り付けられている。 Referring to FIG. 1B, in the multicolor cylindrical organic EL illuminator, the cylindrical tube has, for example, a multi-cylindrical tube configuration, and an anode is sealed at one end of the outer cylindrical tube 20 of the multi-cylindrical tubes. A component 25 is attached to a cathode sealing component 26 at the other end. For example, three electrodes 4 are attached to each of the anode sealing component 25 and the cathode sealing component 26.
 図1Cを参照して、スポット型有機EL照明器では、円筒管は例えば多重円筒管の構成を有しており、多重円筒管のうちの外側円筒管33の一方端部に内面が反射鏡の反射封止部品31が、他方端部に透明な透明封止部品32がそれぞれ取り付けられている。反射封止部品31には、例えば2つの電極4が取り付けられている。 Referring to FIG. 1C, in the spot type organic EL illuminator, the cylindrical tube has, for example, a multi-cylindrical tube configuration, and an inner surface of the multi-cylindrical tube has a reflecting mirror at one end portion of the outer cylindrical tube 33. A reflective sealing component 31 is attached to a transparent transparent sealing component 32 at the other end. For example, two electrodes 4 are attached to the reflective sealing component 31.
 (実施の形態2)
 図2は、本発明の実施の形態2における青色と黄色の発光を使用した単色円筒型有機EL照明器の構成を概略的に示す断面図である。図2を参照して、円筒管1は透明なガラス製であり、例えば直管で製作されている。円筒管1の両端部の各々には封止部品2が取り付けられている。封止部品2と円筒管1との間にOリング3が配置されている。この封止部品2とOリング3とにより円筒管1の内部が気密に封止されている。
(Embodiment 2)
FIG. 2 is a cross-sectional view schematically showing a configuration of a monochromatic cylindrical organic EL illuminator using blue and yellow light emission in the second embodiment of the present invention. Referring to FIG. 2, the cylindrical tube 1 is made of transparent glass, and is made of, for example, a straight tube. A sealing component 2 is attached to each of both ends of the cylindrical tube 1. An O-ring 3 is disposed between the sealing component 2 and the cylindrical tube 1. The inside of the cylindrical tube 1 is hermetically sealed by the sealing component 2 and the O-ring 3.
 両側の封止部品2の各々には電気を供給するための電極4が取り付けられている。円筒管1の内側には、保護膜5と、透明陽極6と、正孔(ホール)輸送層7と、電子輸送性青色発光層8と、電子輸送性黄色発光層9と、電子輸送層10と、アルカリ金属層11と、陰極12とが順番に成膜されている。 The electrode 4 for supplying electricity is attached to each of the sealing parts 2 on both sides. Inside the cylindrical tube 1, there are a protective film 5, a transparent anode 6, a hole transport layer 7, an electron transport blue light emitting layer 8, an electron transport yellow light emitting layer 9, and an electron transport layer 10. The alkali metal layer 11 and the cathode 12 are sequentially formed.
 保護膜5は、例えば厚み10nmのSiO2よりなっている。透明陽極6は、例えば厚み1μmのITO(Indium Tin Oxide)よりなっている。正孔輸送層7は、例えば厚み40nmで下記の化学式(1)に示す有機材料(NPD)から形成されている。 The protective film 5 is made of, for example, SiO 2 having a thickness of 10 nm. The transparent anode 6 is made of, for example, ITO (Indium Tin Oxide) having a thickness of 1 μm. The hole transport layer 7 is formed of an organic material (NPD) represented by the following chemical formula (1) with a thickness of 40 nm, for example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 電子輸送性青色発光層8は、例えば下記の化学式(2)に示す有機材料(Znbox2)を主成分とし、かつ例えば下記の化学式(3)に示すペリレン(C2012)により1.5重量%のドーピングがなされた、厚さ7nmの層である。 The electron-transporting blue light-emitting layer 8 is mainly composed of, for example, an organic material (Znbox 2) represented by the following chemical formula (2) and is 1.5 weight by perylene (C 20 H 12 ) represented by the following chemical formula (3), for example. It is a 7 nm thick layer with a% doping.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 電子輸送性黄色発光層9は、例えば上記の化学式(2)に示す有機材料(Znbox2)を主成分とし、かつ下記の化学式(4)に示す有機材料(DCM1)により0.25重量%のドーピングがなされた、厚さ23nmの層である。 The electron-transporting yellow light-emitting layer 9 is mainly doped with, for example, the organic material (Znbox 2) represented by the above chemical formula (2) and doped by 0.25% by weight with the organic material (DCM 1) represented by the following chemical formula (4). This is a layer having a thickness of 23 nm.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 電子輸送層10は、例えば上記の化学式(2)に示す有機材料(Znbox2)から形成された、厚さ30nmの層である。アルカリ金属層11は、例えば5nmの厚みのLiFより形成されている。陰極12は、例えば0.5μmの厚みのAlより形成されている。 The electron transport layer 10 is a layer having a thickness of 30 nm formed from, for example, an organic material (Znbox 2) represented by the above chemical formula (2). The alkali metal layer 11 is made of, for example, LiF having a thickness of 5 nm. The cathode 12 is made of Al having a thickness of 0.5 μm, for example.
 透明陽極6および陰極12の各々は、電線13によって電極4に接続され、これにより有機EL発光素子は直流電源14から電流を供給される。透明陽極6は直流電源14の+(プラス)側に電気的に接続され、陰極12は直流電源14の-(マイナス)側に電気的に接続されている。また、封止部品2の内面は鏡面15とされている。電極4の先端には乾燥剤16が取り付けられており、これにより乾燥剤16は円筒管1の内側に配置されている。この円筒管1の内側には、窒素ガス17が封入されている。この円筒管1の内側は、窒素ガス17または不活性ガス雰囲気で満たされていればよい。 Each of the transparent anode 6 and the cathode 12 is connected to the electrode 4 by an electric wire 13, whereby the organic EL light emitting element is supplied with a current from a DC power source 14. The transparent anode 6 is electrically connected to the + (plus) side of the DC power supply 14, and the cathode 12 is electrically connected to the − (minus) side of the DC power supply 14. The inner surface of the sealing component 2 is a mirror surface 15. A desiccant 16 is attached to the tip of the electrode 4, whereby the desiccant 16 is disposed inside the cylindrical tube 1. A nitrogen gas 17 is sealed inside the cylindrical tube 1. The inside of the cylindrical tube 1 may be filled with nitrogen gas 17 or an inert gas atmosphere.
 (実施の形態3)
 図3は、本発明の実施の形態3における緑色発光する単色円筒型有機EL照明器の構成を概略的に示す断面図である。図3を参照して、円筒管1は透明なガラス製であり、例えば直管で製作されている。円筒管1の両端部の各々には封止部品2が取り付けられている。封止部品2と円筒管1との間にOリング3が配置されている。この封止部品2とOリング3とにより円筒管1の内部が気密に封止されている。
(Embodiment 3)
FIG. 3 is a cross-sectional view schematically showing a configuration of a monochromatic cylindrical organic EL illuminator that emits green light in Embodiment 3 of the present invention. Referring to FIG. 3, the cylindrical tube 1 is made of transparent glass, and is made of, for example, a straight tube. A sealing component 2 is attached to each of both ends of the cylindrical tube 1. An O-ring 3 is disposed between the sealing component 2 and the cylindrical tube 1. The inside of the cylindrical tube 1 is hermetically sealed by the sealing component 2 and the O-ring 3.
 両側の封止部品2の各々には電気を供給するための電極4が取り付けられている。円筒管1の内側には、保護膜5と、透明陽極6と、正孔輸送層7と、高分子発光層19と、アルカリ金属層11と、陰極12とが順番に成膜されている。 The electrode 4 for supplying electricity is attached to each of the sealing parts 2 on both sides. Inside the cylindrical tube 1, a protective film 5, a transparent anode 6, a hole transport layer 7, a polymer light emitting layer 19, an alkali metal layer 11, and a cathode 12 are sequentially formed.
 保護膜5は、例えば厚み10nmのSiO2よりなっている。透明陽極6は、例えば厚み1μmのITOよりなっている。正孔輸送層7は、例えば厚み40nmの有機材料(NPD)から形成されている。 The protective film 5 is made of, for example, SiO 2 having a thickness of 10 nm. The transparent anode 6 is made of, for example, ITO having a thickness of 1 μm. The hole transport layer 7 is made of, for example, an organic material (NPD) having a thickness of 40 nm.
 高分子発光層19は、例えば低分子のイリジウム錯体(Ir(ppy)3)をドーパント分子18として5%添加した厚み80nmのポリフルオレンより形成されている。なおポリフルオレンは下記の化学式(5)を有し、イリジウム錯体(Ir(ppy)3)は下記の化学式(6)を有している。 The polymer light emitting layer 19 is formed of, for example, polyfluorene having a thickness of 80 nm to which 5% of a low-molecular iridium complex (Ir (ppy) 3 ) is added as a dopant molecule 18. Polyfluorene has the following chemical formula (5), and the iridium complex (Ir (ppy) 3 ) has the following chemical formula (6).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 アルカリ金属層11は、例えば5nmの厚みのLiFより形成されている。陰極12は、例えば0.5μmの厚みのAlより形成されている。 The alkali metal layer 11 is made of, for example, LiF having a thickness of 5 nm. The cathode 12 is made of Al having a thickness of 0.5 μm, for example.
 透明陽極6および陰極12の各々は、電線13によって電極4に接続され、これにより有機EL発光素子は直流電源14から電流を供給される。透明陽極6は直流電源14の+(プラス)側に電気的に接続され、陰極12は直流電源14の-(マイナス)側に電気的に接続されている。また、封止部品2の内面は鏡面15とされている。電極4の先端には乾燥剤16が取り付けられており、これにより乾燥剤16は円筒管1の内側に配置されている。この円筒管1の内側には、窒素ガス17が封入されている。この円筒管1の内側は、窒素ガス17または不活性ガス雰囲気で満たされていればよい。 Each of the transparent anode 6 and the cathode 12 is connected to the electrode 4 by an electric wire 13, whereby the organic EL light emitting element is supplied with a current from a DC power source 14. The transparent anode 6 is electrically connected to the + (plus) side of the DC power supply 14, and the cathode 12 is electrically connected to the − (minus) side of the DC power supply 14. The inner surface of the sealing component 2 is a mirror surface 15. A desiccant 16 is attached to the tip of the electrode 4, whereby the desiccant 16 is disposed inside the cylindrical tube 1. A nitrogen gas 17 is sealed inside the cylindrical tube 1. The inside of the cylindrical tube 1 may be filled with nitrogen gas 17 or an inert gas atmosphere.
 (実施の形態4)
 図4は、本発明の実施の形態4における3個の有機EL発光素子を使用した多色円筒型有機EL照明器の構成を概略的に示す断面図である。図4を参照して、本実施の形態の有機EL照明器は多重円筒管の構成を有している。この多重円筒管は、例えば外側円筒管20と、中間円筒管22と、内側円筒管24との径の異なる3つの円筒管が同軸上に配置された構成を有している。
(Embodiment 4)
FIG. 4 is a cross-sectional view schematically showing a configuration of a multicolor cylindrical organic EL illuminator using three organic EL light emitting elements in Embodiment 4 of the present invention. Referring to FIG. 4, the organic EL illuminator of the present embodiment has a multi-cylindrical tube configuration. This multiple cylindrical tube has a configuration in which, for example, three cylindrical tubes having different diameters of an outer cylindrical tube 20, an intermediate cylindrical tube 22, and an inner cylindrical tube 24 are arranged coaxially.
 円筒管20、22、24の各々は透明なガラス製であり、例えば直管で製作されている。外側円筒管20の一方端部には陽極封止部品25が取り付けられており、他方端部には陰極封止部品26が取り付けられている。陽極封止部品25と外側円筒管20との間および陰極封止部品26と外側円筒管20との間の各々にはOリング3が配置されている。この陽極封止部品25と陰極封止部品26とOリング3とにより外側円筒管20の内部が気密に封止されている。 Each of the cylindrical tubes 20, 22, and 24 is made of transparent glass, and is made of, for example, a straight tube. An anode sealing component 25 is attached to one end of the outer cylindrical tube 20, and a cathode sealing component 26 is attached to the other end. An O-ring 3 is disposed between the anode sealing component 25 and the outer cylindrical tube 20 and between the cathode sealing component 26 and the outer cylindrical tube 20. The inside of the outer cylindrical tube 20 is hermetically sealed by the anode sealing component 25, the cathode sealing component 26 and the O-ring 3.
 外側円筒管20の内側には赤色有機EL発光素子20Aが形成されている。この赤色有機EL発光素子20Aは、外側円筒管20の内側から順番に成膜された、透明陽極20aと、赤色有機EL発光層20bと、陰極20cとを有している。 A red organic EL light emitting element 20 </ b> A is formed inside the outer cylindrical tube 20. The red organic EL light emitting element 20A includes a transparent anode 20a, a red organic EL light emitting layer 20b, and a cathode 20c, which are sequentially formed from the inside of the outer cylindrical tube 20.
 中間円筒管22の内側には青色有機EL発光素子22Aが形成されている。この青色有機EL発光素子22Aは、中間円筒管22の内側から順番に成膜された、透明陽極22aと、青色有機EL発光層22bと、陰極22cとを有している。 A blue organic EL light emitting element 22 </ b> A is formed inside the intermediate cylindrical tube 22. The blue organic EL light emitting element 22A includes a transparent anode 22a, a blue organic EL light emitting layer 22b, and a cathode 22c, which are sequentially formed from the inside of the intermediate cylindrical tube 22.
 内側円筒管24の内側には緑色有機EL発光素子24Aが形成されている。この緑色有機EL発光素子24Aは、内側円筒管24の内側から順番に成膜された、透明陽極24aと、緑色有機EL発光層24bと、陰極24cとを有している。 A green organic EL light emitting element 24A is formed inside the inner cylindrical tube 24. The green organic EL light emitting element 24A includes a transparent anode 24a, a green organic EL light emitting layer 24b, and a cathode 24c, which are sequentially formed from the inside of the inner cylindrical tube 24.
 陽極封止部品25と陰極封止部品26との各々には電気を供給するための3つの電極4が取り付けられている。透明陽極20aおよび陰極20cの各々は、電線13によって電極4に接続され、これにより赤色有機EL発光素子20Aは直流電源14と赤色発光調節器28とに電気的に接続されている。 Three electrodes 4 for supplying electricity are attached to each of the anode sealing component 25 and the cathode sealing component 26. Each of the transparent anode 20a and the cathode 20c is connected to the electrode 4 by an electric wire 13, whereby the red organic EL light emitting element 20A is electrically connected to the DC power source 14 and the red light emission controller 28.
 透明陽極22aおよび陰極22cの各々は、電線13によって電極4に接続され、これにより青色有機EL発光素子22Aは直流電源14と青色発光調節器27とに電気的に接続されている。 Each of the transparent anode 22a and the cathode 22c is connected to the electrode 4 by the electric wire 13, whereby the blue organic EL light emitting element 22A is electrically connected to the DC power source 14 and the blue light emission regulator 27.
 透明陽極24aおよび陰極24cの各々は、電線13によって電極4に接続され、これにより緑色有機EL発光素子24Aは直流電源14と緑色発光調節器29とに電気的に接続されている。 Each of the transparent anode 24a and the cathode 24c is connected to the electrode 4 by the electric wire 13, whereby the green organic EL light emitting element 24A is electrically connected to the DC power source 14 and the green light emission regulator 29.
 なお、それぞれの透明陽極20a、22a、24aは直流電源14の+(プラス)側に電気的に接続され、それぞれの陰極20c、22c、24cは直流電源14の-(マイナス)側に電気的に接続されている。 Each transparent anode 20a, 22a, 24a is electrically connected to the + (plus) side of the DC power supply 14, and each cathode 20c, 22c, 24c is electrically connected to the-(minus) side of the DC power supply 14. It is connected.
 また、陽極封止部品25と陰極封止部品26との各々の内面は鏡面(反射鏡)とされている。電極4の先端には乾燥剤16が取り付けられており、これにより乾燥剤16は外側円筒管20の内側に配置されている。この外側円筒管20の内側には、窒素ガス17または不活性ガス雰囲気が封入されている。 The inner surfaces of the anode sealing component 25 and the cathode sealing component 26 are mirror surfaces (reflecting mirrors). A desiccant 16 is attached to the tip of the electrode 4, whereby the desiccant 16 is disposed inside the outer cylindrical tube 20. A nitrogen gas 17 or an inert gas atmosphere is sealed inside the outer cylindrical tube 20.
 (実施の形態5)
 図5は、本発明の実施の形態5における3個の白色有機EL発光素子30を成膜したスポット型有機EL照明器の構成を概略的に示す断面図である。図5を参照して、本実施の形態の有機EL照明器は多重円筒管の構成を有している。この多重円筒管は、例えば外側円筒管33と、中間円筒管34と、内側円筒管35との径の異なる3つの円筒管が同軸上に配置された構成を有している。
(Embodiment 5)
FIG. 5 is a cross-sectional view schematically showing a configuration of a spot-type organic EL illuminator in which three white organic EL light emitting elements 30 are formed in Embodiment 5 of the present invention. Referring to FIG. 5, the organic EL illuminator of the present embodiment has a multi-cylindrical tube configuration. This multi-cylindrical tube has a configuration in which, for example, three cylindrical tubes having different diameters of an outer cylindrical tube 33, an intermediate cylindrical tube 34, and an inner cylindrical tube 35 are arranged coaxially.
 円筒管33、34、35の各々は透明なガラス製であり、例えば直管で製作されている。外側円筒管33の一方端部には反射封止部品31が取り付けられており、他方端部には透明封止部品32が取り付けられている。反射封止部品31と外側円筒管33との間および透明封止部品32と外側円筒管33との間の各々にはOリング3が配置されている。この封止部品31、32とOリング3とにより外側円筒管33の内部が封止されている。 Each of the cylindrical tubes 33, 34, and 35 is made of transparent glass, and is made of, for example, a straight tube. A reflective sealing component 31 is attached to one end of the outer cylindrical tube 33, and a transparent sealing component 32 is attached to the other end. An O-ring 3 is disposed between the reflective sealing component 31 and the outer cylindrical tube 33 and between the transparent sealing component 32 and the outer cylindrical tube 33. The inside of the outer cylindrical tube 33 is sealed by the sealing parts 31 and 32 and the O-ring 3.
 円筒管33、34、35の各々の内側には白色有機EL発光素子30が形成されている。この白色有機EL発光素子30は、円筒管の内側から順番に成膜された、透明陽極30aと、白色有機EL発光層30bと、陰極30cとを有している。 A white organic EL light emitting element 30 is formed inside each of the cylindrical tubes 33, 34, and 35. The white organic EL light emitting element 30 includes a transparent anode 30a, a white organic EL light emitting layer 30b, and a cathode 30c, which are sequentially formed from the inside of the cylindrical tube.
 反射封止部品31には電気を供給するための2つの電極4が取り付けられている。透明陽極30aおよび陰極30cの各々は、電線13によって電極4に接続され、これにより白色有機EL発光素子30の各々は直流電源14とに電気的に接続されている。 The reflection sealing component 31 has two electrodes 4 for supplying electricity. Each of the transparent anode 30 a and the cathode 30 c is connected to the electrode 4 by the electric wire 13, whereby each of the white organic EL light emitting elements 30 is electrically connected to the DC power source 14.
 なお、それぞれの透明陽極30aは直流電源14の+(プラス)側に電気的に接続され、陰極30cは直流電源14の-(マイナス)側に電気的に接続されている。 Each transparent anode 30 a is electrically connected to the + (plus) side of the DC power source 14, and the cathode 30 c is electrically connected to the − (minus) side of the DC power source 14.
 また、反射封止部品31の内面は鏡面(反射鏡)15とされており、透明封止部品32は透明である。これにより、白色有機EL発光素子30から発した光は片側の透明な透明封止部品32から取り出される。 Moreover, the inner surface of the reflective sealing component 31 is a mirror surface (reflecting mirror) 15 and the transparent sealing component 32 is transparent. Thereby, the light emitted from the white organic EL light emitting element 30 is extracted from the transparent transparent sealing component 32 on one side.
 また反射封止部品31には乾燥剤16が取り付けられており、これにより乾燥剤16は外側円筒管33の内側に配置されている。この外側円筒管33の内側には、窒素ガス17または不活性ガス雰囲気が封入されている。 Also, the desiccant 16 is attached to the reflective sealing component 31, whereby the desiccant 16 is disposed inside the outer cylindrical tube 33. Inside the outer cylindrical tube 33, nitrogen gas 17 or an inert gas atmosphere is enclosed.
 また外側円筒管20の外側にたとえば厚み10μmのAl(図示せず)を蒸着によって成膜することにより、透明封止部品32からのみ光を取り出すことができる。 Further, by forming a film of Al (not shown) having a thickness of 10 μm, for example, on the outside of the outer cylindrical tube 20 by vapor deposition, light can be extracted only from the transparent sealing part 32.
 (実施の形態6)
 図6は、本発明の実施の形態6における円筒型有機EL照明器の円筒管の構成を概略的に示す部分拡大断面図である。図6を参照して、本実施の形態における円筒型有機EL照明器の円筒管41は例えばガラスからなり、その外周面に微細な凹凸42を有している。
(Embodiment 6)
FIG. 6 is a partially enlarged cross-sectional view schematically showing the configuration of the cylindrical tube of the cylindrical organic EL illuminator in Embodiment 6 of the present invention. Referring to FIG. 6, a cylindrical tube 41 of the cylindrical organic EL illuminator in the present embodiment is made of glass, for example, and has fine irregularities 42 on the outer peripheral surface thereof.
 このような凹凸42を設けたことにより、円筒管41の内側から来る光束44は、微細な凹凸42の内部で屈折し、外気43に放射される。 By providing such irregularities 42, the light beam 44 coming from the inside of the cylindrical tube 41 is refracted inside the fine irregularities 42 and radiated to the outside air 43.
 このような微細な凹凸42を有する円筒管の構成は、上記の実施の形態1~5に適宜、組み合わせられることが好ましい。 It is preferable that the configuration of the cylindrical tube having such fine irregularities 42 is appropriately combined with the above-described first to fifth embodiments.
 また上記の実施の形態1~5においては、有機EL発光素子は、少なくとも透明陽極と発光層と陰極とを有していればよく、また保護層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、アルカリ金属層などを必要に応じて有していればよい。 In the above first to fifth embodiments, the organic EL light-emitting element only needs to have at least a transparent anode, a light-emitting layer, and a cathode, and also includes a protective layer, a hole injection layer, a hole transport layer, an electron A transport layer, an electron injection layer, an alkali metal layer, or the like may be provided as necessary.
 また上記の実施の形態1~5においては、筒状の管として軸方向に垂直な断面において円形となる円筒管について説明したが、本発明はこれに限定されるものではなく、軸方向に垂直な断面の形状が多角形である筒状の管にも同様に適用することができる。また円筒管の軸方向に垂直な断面の形状は真円であってもよく、また楕円であってもよい。 In the above first to fifth embodiments, the cylindrical tube having a circular shape in the cross section perpendicular to the axial direction has been described as the cylindrical tube. However, the present invention is not limited to this, and the vertical direction is perpendicular to the axial direction. The present invention can be similarly applied to a cylindrical tube having a polygonal cross section. The shape of the cross section perpendicular to the axial direction of the cylindrical tube may be a perfect circle or an ellipse.
 また筒状の管は、軸方向の直線状に延びる直管以外に、曲線状に延びる管であってもよい。 The cylindrical tube may be a tube extending in a curved shape other than a straight tube extending in a straight line in the axial direction.
 以下、本発明が具体化される特定の事例について図を用いて説明する。
 図2を参照して、透明円筒ガラス管1の内側に、順次、有機EL発光素子の薄膜を成膜する。例えば、透明な青ガラス製の直径35mm、長さ300mm、厚さ1mmの円筒管1の内側に、TEOSガス0.1cc/minと、O2ガス10cc/minと、Heガス500cc/minとを流し、圧力を0.01atm、円筒管1の全体の温度を300℃に保つ。円筒管1を30rpmで回転させ、円筒管1の外側にはコイルを設置して、周波数13.56MHz、出力100Wの高周波をコイルに印加し、円筒管1の内側にプラズマを発生させる。プラズマによって各原料ガスは分解し、円筒管1の内側に、厚さ10nmのSiO2の保護膜5が均一に成膜される。保護膜5は、ガラスから透明陽極6側に金属イオンが移動するのを防止する。
Hereinafter, specific examples in which the present invention is embodied will be described with reference to the drawings.
Referring to FIG. 2, a thin film of an organic EL light emitting element is sequentially formed inside transparent cylindrical glass tube 1. For example, TEOS gas 0.1 cc / min, O 2 gas 10 cc / min, and He gas 500 cc / min are placed inside a cylindrical tube 1 made of transparent blue glass having a diameter of 35 mm, a length of 300 mm, and a thickness of 1 mm. The pressure is 0.01 atm, and the entire temperature of the cylindrical tube 1 is kept at 300 ° C. The cylindrical tube 1 is rotated at 30 rpm, a coil is installed outside the cylindrical tube 1, a high frequency with a frequency of 13.56 MHz and an output of 100 W is applied to the coil, and plasma is generated inside the cylindrical tube 1. Each source gas is decomposed by the plasma, and a protective film 5 of SiO 2 having a thickness of 10 nm is uniformly formed inside the cylindrical tube 1. The protective film 5 prevents metal ions from moving from the glass to the transparent anode 6 side.
 次に、円筒管1の内側に、例えば、板状のITOターゲットを挿入し、Arガス20cc/minを流し、圧力を0.0001atmとし、円筒管1の全体の温度を300℃に保つ。円筒管1を30rpmで回転させ、円筒管1の外側にはコイルを設置して、周波数13.56MHz、出力500Wの高周波をコイルに印加し、円筒管1の内側に、Arプラズマを発生させる。Arイオンは、ITOターゲットの表面に衝突し、ITOを叩き出し、保護膜5の上に、厚さ1μmのITOの透明陽極6が均一に成膜される。 Next, for example, a plate-like ITO target is inserted inside the cylindrical tube 1, Ar gas 20 cc / min is allowed to flow, the pressure is set to 0.0001 atm, and the entire temperature of the cylindrical tube 1 is maintained at 300 ° C. The cylindrical tube 1 is rotated at 30 rpm, a coil is installed outside the cylindrical tube 1, a high frequency with a frequency of 13.56 MHz and an output of 500 W is applied to the coil, and Ar plasma is generated inside the cylindrical tube 1. The Ar ions collide with the surface of the ITO target, knock out the ITO, and the transparent anode 6 of ITO having a thickness of 1 μm is uniformly formed on the protective film 5.
 次に、円筒管1の内側に、例えば、研磨材を流し、円筒管1を100rpmで回転させながら、研磨パットを使って、透明陽極6のITO表面が平滑になるまで研磨した後、有機溶剤と純水で洗浄し、N2ブローによって乾燥させる。 Next, for example, a polishing material is poured inside the cylindrical tube 1, and the cylindrical tube 1 is rotated at 100 rpm while being polished using a polishing pad until the ITO surface of the transparent anode 6 becomes smooth, and then an organic solvent. And washed with pure water and dried by N 2 blow.
 次に、円筒管1をグローブボックスの中に入れ、例えば、グローブボックス内をN2ガスで置換し、100℃まで昇温しながら、露点を-80℃以下にする。 Next, the cylindrical tube 1 is put in a glove box, and for example, the inside of the glove box is replaced with N 2 gas, and the dew point is set to −80 ° C. or lower while the temperature is raised to 100 ° C.
 次に、円筒管1の内側に、例えば、O2ガス10cc/minと、Arガス500cc/minとを流し、圧力を0.001atmとし、円筒管1の全体の温度を50℃に保つ。円筒管1を30rpmで回転させ、円筒管1の外側にはコイルを設置して、周波数13.56MHz、出力100Wの高周波をコイルに印加し、円筒管1の内側に、O2プラズマを発生させる。O2プラズマによって、透明陽極6のITO表面の仕事関数は4.8eVから5.5eVに向上する。 Next, for example, O 2 gas 10 cc / min and Ar gas 500 cc / min are allowed to flow inside the cylindrical tube 1, the pressure is set to 0.001 atm, and the entire temperature of the cylindrical tube 1 is maintained at 50 ° C. The cylindrical tube 1 is rotated at 30 rpm, a coil is installed outside the cylindrical tube 1, a high frequency with a frequency of 13.56 MHz and an output of 100 W is applied to the coil, and O 2 plasma is generated inside the cylindrical tube 1. . O 2 plasma improves the work function of the ITO surface of the transparent anode 6 from 4.8 eV to 5.5 eV.
 次に、円筒管1の内側に、例えば、ガス噴射ノズルを挿入し、N2ガス500cc/minを流し、圧力を0.001atmとし、ガス噴射ノズルの温度を300℃に保つ。円筒管1を30rpmで回転させ、円筒管1の外側は2℃に冷却して保つ。正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層の低分子有機物粉体原料と、ドーパントの低分子有機物粉体原料とを、それぞれ独立した粉体供給器に充填し、N2ガスとともに、順次、気化器に供給する。気化器内で300℃に加熱された低分子有機物粉体原料は瞬間的に蒸発し、N2ガスとともにガス噴射ノズルに送られる。気化した有機物原料は、ガス噴射ノズルからN2ガスとともに噴出し、冷却された円筒管1の内側に付着し、N2ガスは排気配管を通って真空ポンプから排出される。 Next, for example, a gas injection nozzle is inserted inside the cylindrical tube 1, N 2 gas of 500 cc / min is allowed to flow, the pressure is set to 0.001 atm, and the temperature of the gas injection nozzle is maintained at 300 ° C. The cylindrical tube 1 is rotated at 30 rpm, and the outside of the cylindrical tube 1 is kept cooled to 2 ° C. The low-molecular-weight organic powder raw material for the hole injection layer, hole-transporting layer, light-emitting layer, electron-transporting layer, and electron-injecting layer and the low-molecular-weight organic powder raw material for the dopant are filled in separate powder feeders. , And N 2 gas are sequentially supplied to the vaporizer. The low molecular organic powder raw material heated to 300 ° C. in the vaporizer is instantaneously evaporated and sent to the gas injection nozzle together with N 2 gas. The vaporized organic raw material is ejected together with N 2 gas from the gas injection nozzle, adheres to the inside of the cooled cylindrical tube 1, and the N 2 gas is discharged from the vacuum pump through the exhaust pipe.
 この成膜方法によって、例えば、透明陽極6のITOの上に、順番に、正孔輸送層7としてのNPD(厚み40nm)と、電子輸送性青色発光層8としてのZnbox2:ペリレン(1.5%)(厚み7nm)と、電子輸送性黄色発光層9としてのZnbox2:DCM1(0.25%)(厚み23nm)と、電子輸送層10としてのZnbox2(厚み30nm)とが均一に成膜される。これにより、正孔輸送層7と電子輸送性青色発光層8と電子輸送性黄色発光層9と電子輸送層10とドーパント分子とが低分子系有機物により形成される。 By this film formation method, for example, on the ITO of the transparent anode 6, NPD (thickness 40 nm) as the hole transport layer 7 and Znbox2: perylene (1.5) as the electron transport blue light-emitting layer 8 in order. %) (Thickness 7 nm), Znbox2: DCM1 (0.25%) (thickness 23 nm) as the electron transporting yellow light emitting layer 9, and Znbox2 (thickness 30 nm) as the electron transporting layer 10 are uniformly formed. The Thereby, the hole transport layer 7, the electron transport blue light-emitting layer 8, the electron transport yellow light-emitting layer 9, the electron transport layer 10, and the dopant molecule are formed of the low molecular organic substance.
 次に、円筒管1の内側に、例えば、水冷した円筒状のマスクを挿入し、その内側に、LiFを充填した板状の金属製ルツボを挿入する。円筒管1の内部を真空にし、円筒管1の全体の温度を50℃以下に保つ。円筒管1を30rpmで回転させ、金属製ルツボに直流電流を流して加熱する。金属製ルツボ内のLiFは蒸発し、マスクの開口部から円筒管1に向かって直進して付着する。これにより、有機物層(電子輸送層10)の上に、アルカリ金属層11としての厚さ5nmのLiF膜が均一に成膜される。 Next, for example, a water-cooled cylindrical mask is inserted inside the cylindrical tube 1, and a plate-shaped metal crucible filled with LiF is inserted inside thereof. The inside of the cylindrical tube 1 is evacuated, and the entire temperature of the cylindrical tube 1 is kept at 50 ° C. or lower. The cylindrical tube 1 is rotated at 30 rpm, and a direct current is passed through the metal crucible to heat it. LiF in the metal crucible evaporates and adheres straight from the opening of the mask toward the cylindrical tube 1. Thereby, a LiF film having a thickness of 5 nm as the alkali metal layer 11 is uniformly formed on the organic material layer (electron transport layer 10).
 次に、円筒管1の内側に、例えば、別の水冷した円筒状のマスクを挿入し、その内側に、Alを充填した板状の金属製ルツボを挿入する。円筒管1の内部を真空にし、円筒管1の全体の温度を50℃以下に保つ。円筒管1を30rpmで回転させ、金属製ルツボに直流電流を流して加熱する。金属製ルツボ内のAlは蒸発し、マスクの開口部から円筒管1に向かって直進して付着する。これにより、アルカリ金属層11の上に、陰極12としての厚さ0.5μmのAl膜が均一に成膜される。 Next, for example, another water-cooled cylindrical mask is inserted inside the cylindrical tube 1, and a plate-shaped metal crucible filled with Al is inserted inside thereof. The inside of the cylindrical tube 1 is evacuated, and the entire temperature of the cylindrical tube 1 is kept at 50 ° C. or lower. The cylindrical tube 1 is rotated at 30 rpm, and a direct current is passed through the metal crucible to heat it. Al in the metal crucible evaporates and adheres straight from the opening of the mask toward the cylindrical tube 1. As a result, an Al film having a thickness of 0.5 μm as the cathode 12 is uniformly formed on the alkali metal layer 11.
 上記のように円筒管1の内側に有機EL発光素子を成膜する。有機EL発光素子は水分子の侵入に弱く、水分の浸入は有機EL発光素子の劣化の原因になる。このため、例えば、円筒管1の内側に乾燥剤16を入れ、円筒管1の内部をN2ガスで満たして円筒管1の両端を封止する。封止はゴム製のOリング3によるシールを使用する。有機EL発光素子は封止部品2の電極4に接続する。透明陽極6をプラスに接続し、陰極12をマイナスに接続して、電圧を印加し、直流電流を流すと、発光層8、9で電子とホールが再結合し、青色と黄色の光が発生する。発生した光は、透明陽極6と透明な円筒管1を通って外部に放射される。例えば、透明陽極6と陰極12との間に10Vを印加すると、輝度5000cd/m2の白色光が得られる。 As described above, the organic EL light emitting element is formed inside the cylindrical tube 1. Organic EL light-emitting elements are vulnerable to the penetration of water molecules, and entry of moisture causes deterioration of the organic EL light-emitting elements. For this reason, for example, the desiccant 16 is put inside the cylindrical tube 1, and the inside of the cylindrical tube 1 is filled with N 2 gas to seal both ends of the cylindrical tube 1. Sealing uses a seal by a rubber O-ring 3. The organic EL light emitting element is connected to the electrode 4 of the sealing component 2. When the transparent anode 6 is connected positively, the cathode 12 is connected negatively, a voltage is applied, and a direct current is applied, electrons and holes are recombined in the light emitting layers 8 and 9 to generate blue and yellow light. To do. The generated light is emitted to the outside through the transparent anode 6 and the transparent cylindrical tube 1. For example, when 10 V is applied between the transparent anode 6 and the cathode 12, white light having a luminance of 5000 cd / m 2 can be obtained.
 なお上記においては、正孔輸送層7と電子輸送性青色発光層8と電子輸送性黄色発光層9と電子輸送層10とドーパント分子とが低分子系有機物により形成される場合について説明したが、低分子系有機物よりなる正孔注入層、電子注入層などが追加で形成されていてもよい。 In the above description, the hole transport layer 7, the electron transport blue light-emitting layer 8, the electron transport yellow light-emitting layer 9, the electron transport layer 10 and the dopant molecule are formed of a low molecular organic substance. A hole injection layer, an electron injection layer, or the like made of a low molecular organic material may be additionally formed.
 また図3に示す高分子発光層19の原料となる高分子原料は加熱して蒸発させることができないので、溶媒に溶かして、スピンコーティングによって塗布する。円筒管1の内側に、例えば、高分子原料を溶かした溶媒を滴下し、円筒管1を45度に傾けて、2000rpmで回転させながら、均一な膜を形成し、加熱して溶媒を蒸発させる。この成膜方法によって、例えば、正孔輸送層の上に、ポリフルオレン:Ir(ppy)3(5%)(厚み80nm)の高分子発光層19が均一に成膜される。 Further, since the polymer raw material that is the raw material of the polymer light emitting layer 19 shown in FIG. 3 cannot be heated and evaporated, it is dissolved in a solvent and applied by spin coating. For example, a solvent in which a polymer raw material is dissolved is dropped inside the cylindrical tube 1, and a uniform film is formed while the cylindrical tube 1 is tilted at 45 degrees and rotated at 2000 rpm, and the solvent is evaporated by heating. . By this film formation method, for example, the polymer light emitting layer 19 of polyfluorene: Ir (ppy) 3 (5%) (thickness 80 nm) is uniformly formed on the hole transport layer.
 また例えば、透明な青ガラス製の直径45mm、長さ300mm、厚さ1mmの外側円筒管と、直径40mm、長さ300mm、厚さ1mmの中間円筒管と、直径35mm、長さ300mm、厚さ1mmの内側円筒管との各々を準備する。これらの3つの円筒管の各々の内側に、例えば、透明陽極膜のITOと、正孔輸送層としてのNPD(厚み40nm)と、電子輸送性青色発光層としてのZnbox2:ペリレン(1.5%)(厚み7nm)と、電子輸送性黄色発光層としてのZnbox2:DCM1(0.25%)(厚み23nm)と、電子輸送層としてのZnbox2(厚み30nm)と、が均一に成膜される。さらに電子注入層としてのBCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline):Cs(厚み20nm)と、透明陰極としてのIZO(Indium Zinc Oxide)(厚み0.5μm)とが順番に成膜される。 Also, for example, a transparent blue glass diameter 45 mm, length 300 mm, thickness 1 mm outer cylindrical tube, diameter 40 mm, length 300 mm, thickness 1 mm intermediate cylindrical tube, diameter 35 mm, length 300 mm, thickness Prepare each with a 1 mm inner cylindrical tube. Inside each of these three cylindrical tubes, for example, ITO as a transparent anode film, NPD (thickness 40 nm) as a hole transport layer, and Znbox 2: perylene (1.5% as an electron transport blue light emitting layer) ) (Thickness 7 nm), Znbox2: DCM1 (0.25%) (thickness 23 nm) as an electron transporting yellow light emitting layer, and Znbox2 (thickness 30 nm) as an electron transporting layer are uniformly formed. Furthermore, BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline): Cs (thickness 20 nm) as an electron injection layer and IZO (Indium Zinc Oxide) (thickness 0.5 μm) as a transparent cathode Are sequentially formed.
 直径45mmの外側円筒管の内部に直径40mmの中間円筒管を挿入し、直径40mmの中間円筒管の内部に直径35mmの内側円筒管を挿入して多重円筒管とし、各有機EL発光素子を並列に接続して封止する。例えば、透明陽極と透明陰極との間に10Vを印加すると、輝度10000cd/m2の白色光が得られる。 An intermediate cylindrical tube having a diameter of 40 mm is inserted into the inside of the outer cylindrical tube having a diameter of 45 mm, and an inner cylindrical tube having a diameter of 35 mm is inserted into the intermediate cylindrical tube having a diameter of 40 mm to form a multi-cylinder tube. Connect to and seal. For example, when 10 V is applied between the transparent anode and the transparent cathode, white light having a luminance of 10000 cd / m 2 can be obtained.
 また図6に示すように、円筒ガラス管41の外側表面に、例えば、光学波長以下の直径300nm程度の凹凸42を形成することにより、光の入射角が全反射角とは異なり、外部量子効率が向上する。例えば、図2に示すような透明な円筒ガラス管1に成膜した有機EL発光素子の場合、10Vを印加すると輝度5000cd/m2の白色光が得られるが、円筒ガラス管1の外周面に微細な凹凸42を設けることにより、輝度6000cd/m2に向上する。 Further, as shown in FIG. 6, by forming, for example, irregularities 42 having a diameter of about 300 nm less than the optical wavelength on the outer surface of the cylindrical glass tube 41, the incident angle of light is different from the total reflection angle, and the external quantum efficiency Will improve. For example, in the case of an organic EL light emitting device formed on a transparent cylindrical glass tube 1 as shown in FIG. 2, white light with a luminance of 5000 cd / m 2 is obtained when 10 V is applied. By providing the fine unevenness 42, the luminance is improved to 6000 cd / m 2 .
 今回開示された実施の形態および実施例はすべての点で例示にすぎず、これに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示されるもので、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time are merely examples in all respects, and the present invention is not limited to them. The scope of the present invention is defined by the terms of the claims, rather than the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 以上、本発明の円筒型有機EL照明器は、円筒管に有機EL発光素子を成膜することで有機EL発光素子の劣化を抑制しつつ輝度を向上できるため、長寿命かつ高輝度が要求される分野に好ましく用いられることができる。 As described above, the cylindrical organic EL illuminator of the present invention is required to have a long lifetime and high luminance because the organic EL light emitting element can be formed on a cylindrical tube to improve the luminance while suppressing deterioration of the organic EL light emitting element. It can be preferably used in certain fields.

Claims (11)

  1.  有機ELで発光する照明器であって、
     透明な筒状の管(1)と、
     前記筒状の管の内側に順番に成膜された透明陽極(6)と、発光層(8、9)を含む有機物層と、陰極(12)とを含む有機EL発光素子と、
     前記筒状の管の内側に入れられた乾燥剤(16)と、
     前記筒状の管の内側を窒素または不活性ガス雰囲気で満たすために前記筒状の管の両端を封止する1対の封止部品(2)とを備え、
     前記透明陽極をプラスに接続し、前記陰極をマイナスに接続して、前記有機EL発光素子に電流を供給することにより発光する筒型有機EL照明器。
    An illuminator that emits light from an organic EL,
    A transparent tubular tube (1);
    An organic EL light emitting device including a transparent anode (6) sequentially formed inside the cylindrical tube, an organic material layer including a light emitting layer (8, 9), and a cathode (12);
    A desiccant (16) placed inside the cylindrical tube;
    A pair of sealing parts (2) for sealing both ends of the cylindrical tube in order to fill the inside of the cylindrical tube with nitrogen or an inert gas atmosphere,
    A cylindrical organic EL illuminator that emits light by connecting the transparent anode to a plus and the cathode to a minus and supplying a current to the organic EL light emitting element.
  2.  前記封止部品(2)の内面が反射鏡であることを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。 The cylindrical organic EL illuminator according to claim 1, wherein the inner surface of the sealing component (2) is a reflecting mirror.
  3.  前記筒状の管(41)の表面に微細な凹凸(42)を設けることを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。 The cylindrical organic EL illuminator according to claim 1, wherein fine irregularities (42) are provided on the surface of the cylindrical tube (41).
  4.  1対の前記封止部品のうち前記筒状の管(33)の一方端側の前記封止部品(31)の内面が反射鏡で、前記筒状の管の他方端側の前記封止部品(32)が透明であることを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。 Of the pair of sealing parts, the inner surface of the sealing part (31) on one end side of the cylindrical pipe (33) is a reflecting mirror, and the sealing part on the other end side of the cylindrical pipe The cylindrical organic EL illuminator according to claim 1, wherein (32) is transparent.
  5.  前記封止部品(2)がOリング(3)を使用して封止することを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。 The cylindrical organic EL illuminator according to claim 1, wherein the sealing component (2) is sealed using an O-ring (3).
  6.  前記筒状の管(20)の内部に挿入された、前記筒状の管よりも直径の小さな他の筒状の管(22、23)と、
     前記他の筒状の管の内側に成膜された他の有機EL発光素子とをさらに備え、
     前記筒状の管と前記他の筒状の管とにより多重筒管が構成されていることを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。
    Other cylindrical tubes (22, 23) inserted into the cylindrical tube (20) and having a smaller diameter than the cylindrical tube;
    And further comprising another organic EL light emitting element formed on the inside of the other cylindrical tube,
    The cylindrical organic EL illuminator according to claim 1, wherein a multi-tubular tube is constituted by the cylindrical tube and the other cylindrical tube.
  7.  前記多重筒管における前記有機EL発光素子と前記他の有機EL発光素子とがそれぞれ同一の波長で発光することを特徴とする、請求の範囲第6項に記載の筒型有機EL照明器。 The cylindrical organic EL illuminator according to claim 6, wherein the organic EL light-emitting element and the other organic EL light-emitting elements in the multi-tubular tube each emit light at the same wavelength.
  8.  前記多重筒管における前記有機EL発光素子と前記他の有機EL発光素子とがそれぞれ異なる波長で発光することを特徴とする、請求の範囲第6項に記載の筒型有機EL照明器。 The cylindrical organic EL illuminator according to claim 6, wherein the organic EL light-emitting element and the other organic EL light-emitting element in the multi-tubular tube each emit light at different wavelengths.
  9.  前記多重筒管における前記有機EL発光素子と前記他の有機EL発光素子とのそれぞれに与えられる電流および電圧のいずれかを独立に調節できることを特徴とする、請求の範囲第6項に記載の筒型有機EL照明器。 7. The cylinder according to claim 6, wherein any one of a current and a voltage applied to each of the organic EL light emitting element and the other organic EL light emitting element in the multiple tube can be adjusted independently. Type organic EL illuminator.
  10.  前記筒状の管(1)がガラスであり、前記有機物層が正孔注入層、正孔輸送層(7)、電子輸送層(10)および電子注入層よりなる群より選ばれる1種以上を含み、かつドーパント分子を含んでおり、かつ前記有機物層が低分子系有機物であることを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。 The cylindrical tube (1) is glass, and the organic material layer is at least one selected from the group consisting of a hole injection layer, a hole transport layer (7), an electron transport layer (10) and an electron injection layer. 2. The cylindrical organic EL illuminator according to claim 1, wherein the cylindrical organic EL illuminator includes a dopant molecule and the organic material layer is a low molecular weight organic material.
  11.  前記筒状の管(1)がガラスであり、前記有機物層が正孔注入層、正孔輸送層(7)、電子輸送層(10)および電子注入層よりなる群より選ばれる1種以上を含み、かつドーパント分子を含んでおり、かつ前記発光層(19)が高分子系有機物であることを特徴とする、請求の範囲第1項に記載の筒型有機EL照明器。 The cylindrical tube (1) is glass, and the organic material layer is at least one selected from the group consisting of a hole injection layer, a hole transport layer (7), an electron transport layer (10), and an electron injection layer. The cylindrical organic EL illuminator according to claim 1, wherein the cylindrical organic EL illuminator includes a dopant molecule and the light emitting layer (19) is a polymer organic material.
PCT/JP2008/053607 2008-02-29 2008-02-29 Cylindrical organic el illuminator WO2009107226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053607 WO2009107226A1 (en) 2008-02-29 2008-02-29 Cylindrical organic el illuminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053607 WO2009107226A1 (en) 2008-02-29 2008-02-29 Cylindrical organic el illuminator

Publications (1)

Publication Number Publication Date
WO2009107226A1 true WO2009107226A1 (en) 2009-09-03

Family

ID=41015639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053607 WO2009107226A1 (en) 2008-02-29 2008-02-29 Cylindrical organic el illuminator

Country Status (1)

Country Link
WO (1) WO2009107226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194934A1 (en) * 2016-05-11 2017-11-16 Luxtec Global Limited Non-linear lighting units

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142252A (en) * 2001-11-01 2003-05-16 Harison Toshiba Lighting Corp Tubular light emitting device
JP2003305362A (en) * 2002-04-18 2003-10-28 Canon Inc Fluid action apparatus and method for action on fluid
JP2004127942A (en) * 2002-10-01 2004-04-22 Eastman Kodak Co High light abstraction type organic light emitting diode (oled) device
JP2005108516A (en) * 2003-09-29 2005-04-21 Seiko Epson Corp Organic el device and power supplying device
WO2005112513A1 (en) * 2004-05-17 2005-11-24 Zeon Corporation Electroluminescent device, illuminator and display
JP2006324089A (en) * 2005-05-18 2006-11-30 Pentax Corp Organic electroluminescent element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142252A (en) * 2001-11-01 2003-05-16 Harison Toshiba Lighting Corp Tubular light emitting device
JP2003305362A (en) * 2002-04-18 2003-10-28 Canon Inc Fluid action apparatus and method for action on fluid
JP2004127942A (en) * 2002-10-01 2004-04-22 Eastman Kodak Co High light abstraction type organic light emitting diode (oled) device
JP2005108516A (en) * 2003-09-29 2005-04-21 Seiko Epson Corp Organic el device and power supplying device
WO2005112513A1 (en) * 2004-05-17 2005-11-24 Zeon Corporation Electroluminescent device, illuminator and display
JP2006324089A (en) * 2005-05-18 2006-11-30 Pentax Corp Organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194934A1 (en) * 2016-05-11 2017-11-16 Luxtec Global Limited Non-linear lighting units

Similar Documents

Publication Publication Date Title
KR101427453B1 (en) Substrate for Organic Electronic Device and Organic Electronic Device Comprising Thereof
JP5476061B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2011074633A1 (en) Organic electroluminescent element
WO2007049470A1 (en) Organic electroluminescent element, liquid crystal display device, and lighting equipment
JP2013545249A (en) Double-sided light emitting organic electroluminescence device and manufacturing method thereof
WO2011039911A1 (en) Organic el lighting device and manufacturing method therefor
WO2018147416A1 (en) Organic electroluminescent device, display device, and illumination device
JP2008117742A (en) Cylindrical organic el illuminator
CN110752306B (en) Organic light emitting display device and lighting apparatus for vehicle
WO2012063445A1 (en) Organic el display device and production method for same
WO2012172883A1 (en) Method for manufacturing organic electroluminescent element
US10879483B2 (en) Organic electroluminescent device and illumination device
WO2009107226A1 (en) Cylindrical organic el illuminator
JP5729749B2 (en) Method for manufacturing organic electroluminescence element
Kim et al. Highly efficient white organic light emitting diodes using new blue fluorescence emitter
US20200099005A1 (en) Organic electroluminescent element and lighting device
TW201316583A (en) White organic light emitting diode (WOLED) structure
Lee et al. Device Characteristics of Inverted Red Colloidal Quantum-Dot Light-Emitting Diodes Depending on Hole Transport Layers
WO2019163727A1 (en) Organic electroluminescent element, display device, and illumination device
TW201624788A (en) Organic light-emitting element
JP2016039135A (en) Flexible substrate, organic el element using the same, and organic el luminaire
WO2018051617A1 (en) Organic electroluminescent element
Seo et al. P‐160: Ultra Simple White Organic Light‐Emitting Diodes Using only Three Organic Materials
JP2005332633A (en) Organic electroluminescence display device
Seo et al. The Effects of Two Spacers on White Organic Light-Emitting Diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08712129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08712129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP