WO2012172883A1 - Method for manufacturing organic electroluminescent element - Google Patents

Method for manufacturing organic electroluminescent element Download PDF

Info

Publication number
WO2012172883A1
WO2012172883A1 PCT/JP2012/061727 JP2012061727W WO2012172883A1 WO 2012172883 A1 WO2012172883 A1 WO 2012172883A1 JP 2012061727 W JP2012061727 W JP 2012061727W WO 2012172883 A1 WO2012172883 A1 WO 2012172883A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
dopant
vapor deposition
emitting layer
compound
Prior art date
Application number
PCT/JP2012/061727
Other languages
French (fr)
Japanese (ja)
Inventor
敦 今村
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2013520467A priority Critical patent/JP5862665B2/en
Publication of WO2012172883A1 publication Critical patent/WO2012172883A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a method for producing an organic electroluminescent element having a plurality of phosphorescent dopants having different emission wavelengths in a light emitting layer, particularly a white light emitting organic electroluminescent element.
  • An organic electroluminescence device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer and recombines them to exciton (exciton). ) And emits light by utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated.
  • This organic electroluminescence device can emit light at a voltage of several volts to several tens of volts, and is a self-luminous type, so it has a wide viewing angle, high visibility, and is a thin film type solid state device. Currently, it is attracting attention from the viewpoint of space saving and portability.
  • the blue light emitting dopant having a high hole transporting property acts as an electron blocking material for preventing the intrusion of electrons, so that the concentration of the blue light emitting dopant near the cathode side interface is lowered and electrons can easily enter. By doing so, electrons move away from the anode-side interface quickly to the center of the light-emitting layer, and light is emitted at the center of the light-emitting layer away from the interface.
  • the concentration of the blue light emitting dopant near the anode side interface is increased and the concentration of the blue light emitting dopant near the cathode side interface has a low concentration gradient. Since it emits light, it leads to the improvement of luminous efficiency and luminous lifetime, especially the luminous lifetime.
  • the same effect can be obtained by increasing the concentration of the blue light emitting dopant in the vicinity of the cathode side interface of the light emitting layer.
  • the concentration of the blue luminous dopant having a high hole transporting property on the anode interface side of the luminous layer Is required to have a concentration gradient so that the concentration becomes lower toward the cathode interface side.
  • the concentration gradient of the blue light emitting dopant is preferably formed over the entire light emitting layer, and green, red, and host are preferably distributed over the entire light emitting layer. In this case, it is required that the dopant concentrations of green and red are low and evenly distributed compared to blue.
  • a method for forming the light emitting layer generally, there are methods such as vapor deposition, coating, and transfer, but vapor deposition is preferably used.
  • a vapor deposition apparatus using a vapor deposition method a technique capable of co-vapor deposition using a plurality of materials by laminating a plurality of dispersion containers having discharge ports for discharging a vapor deposition material is disclosed (for example, Patent Documents). 1). According to the technique described in Patent Document 1, the in-plane variation in film formation can be reduced. However, in the vapor deposition apparatus described in Patent Document 1, it is difficult to perform vapor deposition so as to have a concentration gradient with high accuracy.
  • an organic electroluminescence element having a plurality of stacked layers and an overlap layer in which each constituent material of adjacent layers has a continuous concentration gradient is disclosed between the layers (see, for example, Patent Document 3). .)
  • Patent Document 3 by forming an overlap layer between each layer, the constituent material concentration does not become discontinuous at the layer interface with each layer. As a result, the layer interface where the overlap layer is formed Therefore, it is said that it is possible to improve the lifetime and reliability of the device without easily accumulating charges locally or deteriorating the flow of electrons.
  • the invention described in Patent Document 3 is an invention corresponding to a color display, and a white light emitting element cannot be formed.
  • the invention described in Patent Document 3 is a method in which only one kind of material is filled in the vapor deposition source, and co-evaporation cannot be performed, and a gradient concentration structure that continuously changes the dopant concentration is formed. Can not do it.
  • a vapor deposition method for forming a vapor deposition layer on a substrate a plurality of vapor deposition sources are arranged, and an angle with respect to a horizontal direction of at least one vapor deposition molecule generation surface of the vapor deposition source is different from an angle of a vapor deposition molecule generation surface of another vapor deposition source.
  • a vapor deposition method characterized by being different is disclosed (for example, see Patent Document 4). According to the invention described in Patent Document 4, for example, even if foreign matter exists on the substrate, vapor deposition molecules are radiated from an oblique angle, and the vapor deposition film is formed so as to wrap the foreign matter without gaps.
  • the present invention has been made in view of the above-described problems, and its purpose is to combine a host compound, a blue light-emitting dopant with a concentration gradient, a green light-emitting dopant with a low concentration uniform distribution, and a red light-emitting dopant when forming a light-emitting layer by vapor deposition.
  • An object of the present invention is to provide a method for producing an organic electroluminescent element capable of forming an emissive layer by vapor deposition, obtaining an organic electroluminescent element having excellent power efficiency and a long driving life.
  • the organic compound is deposited from a plurality of vapor deposition sources filled with the organic compound on the moving substrate to form a light emitting layer of the organic electroluminescent element.
  • Each of the plurality of vapor deposition sources is filled with a host compound and a dopant compound, 2)
  • the plurality of vapor deposition sources have different mass ratios of the dopant compound to the host compound, 3)
  • the area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area,
  • the manufacturing method of the organic electroluminescent element characterized by these.
  • At least one of the said vapor deposition sources contains a several dopant compound, The manufacturing method of the organic electroluminescent element of any one of said 1 to 3 characterized by the above-mentioned.
  • the dopant compound is a blue light emitting dopant, a green light emitting dopant, and a red light emitting dopant, and the concentration of the blue light emitting dopant in the plurality of vapor deposition sources is different, and the blue light emitting dopant has a gradient concentration in the thickness direction in the light emitting layer. 5.
  • the dopant compound is a blue light-emitting dopant, a green light-emitting dopant, and a red light-emitting dopant, and the concentrations of the green light-emitting dopant and the red light-emitting dopant in the plurality of vapor deposition sources are equal, and the green light-emitting dopant and the red light-emitting in the light-emitting layer. 6.
  • the method for producing an organic electroluminescent element according to any one of 1 to 5, wherein the dopant concentration is uniform in the thickness direction.
  • the concentration gradient material has a concentration gradient in the thickness direction of the vapor deposition member, and the concentration uniform material is vapor deposited on the vapor deposition member with a uniform in-plane concentration distribution. can do. Therefore, for example, when a blue light emitting dopant is used as the concentration gradient material and a red light emitting dopant and a green light emitting dopant are used as the concentration uniforming material, the blue light emitting dopant can have a high concentration concentration gradient.
  • the blue light emitting dopant concentration is increased at the anode side interface of the light emitting layer, so that the hole transport property can be further increased, and light emission at the center of the light emitting layer leads to improvement in light emission efficiency and life.
  • the inventor forms a light emitting layer of an organic electroluminescence element by depositing the organic compound from a plurality of vapor deposition sources filled with the organic compound on a moving substrate.
  • the plurality of vapor deposition sources are all filled with a host compound and a dopant compound, and 2) the mass ratio of the dopant compound to the host compound with respect to each other.
  • the region where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area.
  • the light emitting layer unit has at least one light emitting layer having a configuration satisfying the requirements defined in the present invention. As long as it is configured, any number of layers may be stacked, but it is preferable that the light-emitting layer is preferably composed of only
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an organic electroluminescence element according to the present invention.
  • FIG. 1 a shows a schematic view of a lighting device using an organic EL element according to the present invention, and the organic EL element 101 of the present invention is covered with a glass cover 102.
  • the sealing operation with the glass cover is performed in a glove box (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer including a light emitting layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the light emission color of the organic electroluminescent device according to the present invention is white, and the light emitting layer of the organic electroluminescent device preferably contains a host compound, a blue light emitting dopant, a green light emitting dopant and a red light emitting dopant.
  • the maximum wavelength in the wavelength region of each light emitting dopant is preferably 465 to 480 nm for blue light emitting dopant, 500 to 515 nm for green light emitting dopant, and 600 to 620 nm for red light emitting dopant.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
  • the formation of the light emitting layer is characterized by being performed by a vapor deposition method, but it is preferable to use a vacuum vapor deposition method that easily forms a concentration gradient of the light emitting dopant, and a line source type vapor deposition apparatus is more preferable for mass production.
  • a method for forming a constituent layer other than the light emitting layer described later for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, a slot
  • the film can be formed by a known thin film forming method such as a mold coater method.
  • the light emitting layer may have two or more layers, but preferably comprises only one light emitting layer as described above.
  • an organic electroluminescent element is formed by evaporating the organic compound from a plurality of vapor deposition sources filled with the organic compound on a moving substrate to form a light emitting layer of the organic electroluminescent element.
  • the plurality of vapor deposition sources are all filled with a host compound and a dopant compound, 2)
  • the plurality of vapor deposition sources have different mass ratios of the dopant compound to the host compound, 3)
  • the area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area, Is a structural feature.
  • the first structural feature of the method for manufacturing an organic EL device of the present invention is that a plurality of vapor deposition sources are used in forming the light emitting layer, and each vapor deposition source is filled with a host compound and a dopant compound. It is the structure which is done.
  • FIG. 2 is a schematic view showing an example of a configuration example of an evaporation source used in the method for producing an organic electroluminescence element of the present invention.
  • a vapor deposition source 1 that can be used for forming a light emitting layer applicable to the present invention mainly generates a vapor deposition head 2 for injecting a vapor deposition gas and a vapor deposition source gas. It is composed of units.
  • a plurality of nozzles 3 for injecting vapor deposition source gas is arranged in a row on the side facing the substrate.
  • the nozzles 3 arranged in this line are installed so as to be perpendicular to the transport direction of the substrate P.
  • the unit for generating the vapor deposition source gas is connected to the vapor deposition head 2 via a conduit 5.
  • a holder BD filled with a blue light emitting dopant, a holder GD filled with a green light emitting dopant, a holder RD filled with a red light emitting dopant, and a holder Host filled with a host compound are respectively connected via a control valve (needle valve) 10. Connected to the conduit 9.
  • Each holder is provided with a raw material pallet 7 for holding a predetermined compound.
  • a heating member H for example, a ribbon heater or the like, is mounted on the outer periphery of each holder, and each holder is heated to a predetermined temperature to gasify the luminescent dopant or the host compound.
  • the heating member H and the outer peripheral portions of the conduits 5 and 9 are also mounted.
  • Each light emitting dopant and host compound are introduced into the conduit 9 in a predetermined ratio by appropriately adjusting the heating temperature of each holder and the control valve (needle valve) 10, and then an inert gas from the end. While supplying G, the mixed gas containing each compound is introduced into the vapor deposition head 2.
  • inert substances applicable to the present invention include nitrogen, carbon dioxide, and Group 18 elements of the periodic table, specifically neon, argon, krypton, xenon, radon, etc. In the invention, nitrogen and argon are particularly preferable.
  • a plurality of vapor deposition sources having the configuration described in FIG. 2 are arranged as shown in FIG.
  • the plurality of vapor deposition sources are characterized in that the mass ratio of the dopant compound to the host compound is different from each other.
  • FIG. 3 is a schematic view showing an example of a method for arranging a plurality of vapor deposition sources and forming a light emitting layer on a substrate.
  • two evaporation sources 2A and 2B having the structure shown in FIG. 2 are arranged at positions opposed to the substrate P moving from the right to the left in the drawing.
  • a light-emitting layer having a concentration gradient is formed on the substrate by injecting a forming gas containing.
  • the evaporation sources 2A and 2B shown in FIG. 3 are shown as viewed from the direction A shown in FIG. 2, and the nozzle portions 3A and 3B of the evaporation sources are arranged at right angles with respect to the transport direction of the substrate P. ing.
  • the first evaporation source 2A is arranged on the downstream side of the substrate P transported in the direction of the arrow, and the second evaporation source 2B is arranged on the upstream side thereof.
  • the emission layer forming gas is 11C normal. It is injected in the direction to do.
  • the light emitting layer forming gas is injected in a direction having 12C as a normal line.
  • the vapor deposition area as used in the present invention is defined as follows.
  • FIG. 4 is a schematic diagram for explaining a vapor deposition area formed by a vapor deposition source.
  • the light emitting layer forming gas containing each color dopant and host compound is discharged from the nozzle 3 ⁇ / b> A of the vapor deposition source 2 ⁇ / b> A using the vapor deposition source having the configuration shown in FIG. 2.
  • the ionic strength decreases as the central portion 11C becomes the maximum value and becomes the peripheral portion.
  • the vapor deposition area referred to in the present invention is up to a region range (PWmin) having an output intensity of PWmax ⁇ 0.05, where PWmax is the output intensity at the central portion showing the maximum value. Is defined as a deposition area. That is, when the maximum output intensity PWmax is set to 100%, it is set as an area up to 5% of the maximum output intensity PWmax at both ends.
  • the dopant compound held by the vapor deposition source is a blue light emitting dopant, a green light emitting dopant, and a red light emitting dopant, and the concentration of the blue light emitting dopant in the plurality of vapor deposition sources is different, and the blue light emitting dopant is present in the light emitting layer. It is preferable to have a gradient concentration in the thickness direction.
  • the blue light emission dopant concentration in the first vapor deposition source 2A is set to be higher than the blue light emission dopant concentration in the second vapor deposition source 2B. That is, as defined in the above item 2), the mass ratio of the dopant compound to the host compound is different from each other in the plurality of vapor deposition sources.
  • the dopant compound held by the vapor deposition source is a blue light emission dopant, a green light emission dopant, and a red light emission dopant, and the concentrations of the green light emission dopant and the red light emission dopant in the plurality of vapor deposition sources are equal, It is preferable that the concentration of the green light-emitting dopant and the red light-emitting dopant is uniform in the thickness direction. That is, by setting the green light emission dopant and the red light emission dopant concentration to the same concentration between the two vapor deposition sources 2A and 2B, the concentration can be made constant in the entire film thickness region of the light emitting layer to be formed.
  • a configuration in which the vapor deposition area 11 formed by the first vapor deposition source 2 ⁇ / b> A and a part of the vapor deposition area 12 formed by the second vapor deposition source overlap on the substrate P that is, As defined in the above item 3
  • the area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area.
  • the area II which is the low concentration region is formed by the area II which is the intermediate concentration region and the light emitting layer forming gas containing the low concentration blue light emitting dopant emitted from the second vapor deposition source 2B.
  • the area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate as defined in the present invention is 10% or more of the total vapor deposition area.
  • the ratio of the area II to the total vapor deposition area (area I + area II + area III)
  • the ratio of the area II is further preferably 20% or more, and particularly preferably 35% or more including 100% as the upper limit.
  • the discharge surfaces of the plurality of vapor deposition sources and the substrate surface may be parallel as shown in FIG. 7 a, but a more preferable configuration is as shown in FIGS. 3 and 6.
  • the surface 14 with respect to the discharge normals 11C and 12C of the respective vapor deposition sources 2A and 2B is arranged so as to be non-parallel to the surface of the substrate P. From the viewpoint of being formed.
  • the intersection point 11D between the discharge normal line 11C of the vapor deposition source 2A and the substrate P and the intersection point 12D between the discharge normal line 12C of the vapor deposition source 2B and the substrate P are different. Position.
  • a light-emitting layer having a gradient concentration as the blue light-emitting dopant concentration can be formed in the area II that is an intermediate concentration region.
  • FIG. 5 is a graph showing an example of a profile of the blue light emitting dopant concentration in the light emitting layer, where the vertical axis indicates the blue light emitting dopant concentration (ionic strength), and the horizontal axis indicates the film thickness of the light emitting layer.
  • the value side is the anode side, and the maximum value side of the film thickness is the cathode side.
  • a blue light emitting dopant concentration area I, an intermediate concentration area II, and a low concentration area area III are obtained as the vapor deposition area.
  • the area II where the concentration gradually decreases gradually is formed in the range of 10% or more of the total evaporation area using the evaporation source 2A and the evaporation source 2B, and finally the blue color near the cathode Area III having a low luminescent dopant concentration is formed by the vapor deposition source 2B alone.
  • the concentration distribution of the light-emitting dopant contained in the light-emitting layer of the organic EL element can be detected in the film thickness direction by TOF-SIMS (time-of-flight secondary ion mass spectrometry).
  • a constituent element of a light emitting dopant for example, Ir or the like is selected as a target element, elemental analysis in the depth direction of the light emitting layer is performed, and the concentration gradient of the light emitting dopant in the light emitting layer is measured from the result. can do.
  • Ir ⁇ Concentration gradient analysis of target element (Ir) in light emitting layer>
  • Ir iridium
  • elemental analysis in the depth direction in the light emitting layer is performed.
  • the time-of-flight secondary ion mass spectrometry (ToF-SIMS) method is preferred.
  • the distribution of the dopant compound in the depth direction can be known by measuring the distribution of fragment ions obtained from the compound in the oblique cross-section portion that has been cut off obliquely and the shaved cross-section.
  • Examples of the oblique cutting method include a method using an ultramicrotome used for preparing a sample for an electron microscope, and a method using a precision oblique cutting device such as a die-plautes Cycus NN type.
  • a precision oblique cutting device such as a die-plautes Cycus NN type.
  • ToF-SIMS method for example, the Japanese Society of Surface Science “Secondary Ion Mass Spectrometry (Surface Science and Technology Selection)” (Maruzen) can be referred to.
  • sputtering is performed by irradiating a sample surface with an ion beam called primary ions under a high vacuum of about 10 ⁇ 8 Pa.
  • the distribution of secondary ions emitted by sputtering can be measured.
  • the concentration distribution profile in the light emitting layer of the blue light emitting dopant in the present invention will be described in more detail.
  • a material having a high hole transporting property of the blue light emitting dopant it is contained at a high concentration at the anode side end of the light emitting layer, and has a concentration distribution so that the concentration decreases toward the cathode side. It is preferable that it is the structure which has.
  • the average content of the blue light emitting dopant in the portion from the anode side interface of the light emitting layer to the center portion of the light emitting layer may be larger than the average content from the cathode side interface to the center portion of the light emitting layer, but preferably the end portion on the anode side is the most. It is preferable that the concentration is high and decreases monotonically from the anode side end to the cathode side end. Monotonically decreasing means that there is no maximum concentration portion except for the anode side end of the light emitting layer.
  • the anode side end portion refers to a region having a smaller thickness of 5 nm from the anode side interface of the light emitting layer or 1/20 of the thickness of the entire light emitting layer, Denotes a region having a smaller thickness of 5 nm from the cathode side interface of the light emitting layer or 1/20 of the entire light emitting layer.
  • the blue light-emitting dopant has a high electron transport property, the same effect can be obtained if it is contained at a high concentration on the cathode side of the light-emitting layer and has a concentration distribution so that the concentration decreases toward the anode side. It is done.
  • the light emitting layer having the structure of the present invention provides an organic electroluminescence device having excellent power efficiency, long life, and excellent chromaticity stability and uniformity.
  • the concentrations of the green light emitting dopant and the red light emitting dopant are constant.
  • the lowest excited triplet energy level is changed from the blue emitting dopant having the highest lowest excited triplet energy level (T1). Since the green light-emitting dopant and the red light-emitting dopant with low energy have exciton energy transfer, when the blue, green, and red concentrations are the same, blue hardly emits light and white light emission cannot be obtained. Therefore, when the light emitting layer is formed by vapor deposition, for example, the co-evaporation is performed by setting the concentrations of the light emitting dopants of blue, green, and red to 15% by volume, 0.13% by volume, and 0.13% by volume, respectively. Luminescence is obtained.
  • the blue light-emitting dopant is not affected by the concentration fluctuation, but the low-concentration green light-emitting dopant and the red light-emitting dopant need to have a low deposition rate, and the deposition rate is unstable due to the low rate. Color unevenness is likely to occur due to slight fluctuations in the deposition rate. Therefore, in the light emitting layer of the organic EL device according to the present invention, it is important that the green light emitting dopant and the red light emitting dopant are uniformly distributed in the light emitting layer as low concentration dopants.
  • Examples of the light emitting dopant according to the present invention include a phosphorescent light emitting dopant (hereinafter also referred to as a phosphorescent light emitter, a phosphorescent compound, and a phosphorescent light emitting compound) and a fluorescent light emitting dopant.
  • a phosphorescent light emitting dopant hereinafter also referred to as a phosphorescent light emitter, a phosphorescent compound, and a phosphorescent light emitting compound
  • a fluorescent light emitting dopant In order to improve efficiency, it is more preferable to use a phosphorescent emitter.
  • the phosphorescent dopant applicable to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield.
  • the phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
  • the phosphorescent quantum yield can be measured, for example, by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • phosphorescent dopants There are two types of light emission principles of phosphorescent dopants. One type is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is phosphorescent.
  • the energy transfer type that obtains light emission from the phosphorescent dopant by transferring to the phosphorescent dopant, and the other type is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant, although it is a carrier trap type in which light emission from a phosphorescent dopant can be obtained, in any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound. .
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound.
  • the host compound contained in the light emitting layer of the organic EL device according to the present invention is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1, more preferably phosphorescence quantum.
  • the compound yield is less than 0.01.
  • the mass ratio in the layer is 20 mass% or more.
  • the host compound may be used alone or in combination of two or more.
  • the light-emitting host compound used in the present invention is not particularly limited in terms of structure, but typically, a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, Those having a basic skeleton such as an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (herein, a diazacarbazole derivative means that at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is nitrogen Represents an atom substituted with an atom).
  • the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
  • a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength and has a high Tg (glass transition temperature) is preferable.
  • the host compound in the case of having a plurality of light emitting layers, may be different for each light emitting layer, but it is preferable that they are the same compound because excellent driving life characteristics can be obtained.
  • the host compound has a minimum excitation triplet energy (T1) larger than 2.7 eV because higher luminous efficiency can be obtained.
  • T1 minimum excitation triplet energy
  • the lowest excited triplet energy as used in the present invention refers to the peak energy of an emission band corresponding to the transition between the lowest vibrational bands of a phosphorescence emission spectrum observed at a liquid nitrogen temperature after dissolving a host compound in a solvent.
  • a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent driving life characteristics can be obtained.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the host material is responsible for carrier transportation, a material having carrier transportation ability is preferable.
  • Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance of hole and electron injection / transport, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
  • injection layer electron injection layer, hole injection layer
  • the injection layer can be provided as necessary, and may exist between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
  • An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization June 30, 1998, NTS Corporation) Issue
  • Chapter 2 “ Electrode Materials ”(pages 123 to 166), which is described in detail, and has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer (hole injection layer) Details of the structure of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples include a phthalocyanine buffer layer typified by copper phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • a layer using a material described in JP-T-2003-519432 is also preferable.
  • cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium
  • alkali metal compound buffer layer typified by lithium fluoride
  • alkaline earth metal compound buffer layer typified by magnesium fluoride
  • oxide buffer layer typified by aluminum oxide, etc. .
  • the buffer layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material used.
  • the blocking layer is provided as necessary in addition to the light emitting layer, which is the basic constituent layer of the organic EL device according to the present invention. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
  • the hole blocking layer provided in the organic EL device according to the present invention is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned compounds can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-4-297076 JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), JP-A-11-251067, J. MoI. Huang et. al. It is also possible to use a hole transport material that has so-called p-type semiconducting properties, as described in the literature (Applied Physics Letters 80 (2002), p. 139), JP 2003-519432 A. it can. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport material may be selected from, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Blodget method), an ink jet method, a spray method, a printing method, a slot type coater method, etc.
  • the film can be formed by a known thin film forming method.
  • the film thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material
  • Any material may be used as long as it has a function of transmitting electrons injected from the cathode to the light-emitting layer, and any material known in the art can be selected and used.
  • nitro-substituted fluorene Derivatives diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as an electron transport material, and like the hole injection layer and the hole transport layer, inorganic such as n-type-Si and n-type-SiC can be used.
  • a semiconductor can also be used as an electron transport material.
  • the above-mentioned electron transport material is a known material such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, or a slot type coater method.
  • the film can be formed by a thin film forming method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport material that has n-type semiconductor properties doped with impurities.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport material that has such n-type semiconductor properties because an element with lower power consumption can be produced.
  • the substrate applied to the organic EL device according to the present invention (hereinafter also referred to as a substrate, a support substrate, a substrate, a support, etc.) is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability measured by a method according to JIS K 7129-1992 is 0.01 g / m 2. It is preferably a barrier film of day ⁇ atm or less, and further, the oxygen permeability measured by a method according to JIS K 7126-1992 is 10 ⁇ 3 g / m 2 / day or less, water vapor permeability Is preferably a high barrier film of 10 ⁇ 3 g / m 2 / day or less, and the water vapor permeability and oxygen permeability are both 10 ⁇ 5 g / m 2 / day or less. Further preferred.
  • the material for forming the barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable.
  • the opaque substrate examples include a metal plate / film such as aluminum and stainless steel, an opaque resin substrate, a ceramic substrate, and the like.
  • sealing means used for sealing the organic EL element according to the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film preferably has an oxygen permeability of 10 ⁇ 3 g / m 2 / day or less and a water vapor permeability of 10 ⁇ 3 g / m 2 / day or less. Further, it is more preferable that both the water vapor permeability and the oxygen permeability are 10 ⁇ 5 g / m 2 / day or less.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • fever and chemical curing types such as an epoxy type, can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • the electrode and the organic layer on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma
  • a combination method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
  • perchloric acids eg, barium perchlorate
  • sulfates, metal halides and perchloric acids are preferably anhydrous salts.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. as those used for the sealing can be used, but the polymer plate is light and thin. -It is preferable to use a film.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm, by a method such as vapor deposition or sputtering to produce an anode.
  • a hole injection layer which is an organic EL element material, a hole transport layer, and then a light emitting layer are formed according to the method for producing an organic EL element of the present invention, and further a hole blocking layer and an electron transport layer.
  • An organic compound thin film is formed.
  • vapor deposition method As a method of thinning the organic compound thin film excluding the light emitting layer, as described above, vapor deposition method, wet process (spin coating method, casting method, ink jet method, printing method, LB method (Langmuir Blodget method), spray method Printing method, slot type coater method, etc., but it is easy to obtain a homogeneous film and it is difficult to generate pinholes, vacuum deposition method, spin coating method, ink jet method, printing method, slot type.
  • the coater method is particularly preferred. Further, different film forming methods may be applied for each layer. When the vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 ° C.
  • the degree of vacuum is 10 ⁇ 6 Pa to 10 ⁇ 2 Pa
  • the vapor deposition rate is 0. It is desirable to select appropriately within the range of 01 nm / second to 50 nm / second, substrate temperature ⁇ 50 ° C. to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided.
  • the organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • An organic electroluminescence device emits light inside a layer having a refractive index higher than that of air (refractive index of about 1.6 to 2.1), and can extract only about 15% to 20% of light generated in the light emitting layer. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic electroluminescence device of the present invention, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic electroluminescence device of the present invention is processed in a specific direction by, for example, providing a structure on a microlens array on the light extraction side of a support substrate (substrate) or combining it with a so-called condensing sheet.
  • luminance in a specific direction can be raised by condensing in a front direction with respect to an element light emission surface.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL device according to the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display that directly recognizes a still image or a moving image. It may be used as a device (display).
  • the driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the light emitting dopant used in the light emitting layer is not particularly limited.
  • the platinum complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Any one of known light-emitting dopants may be selected and combined, or combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
  • the white organic EL element of the present invention is described in claim 7 by combining the CF (color filter) and arranging the element and the driving transistor circuit in accordance with the CF (color filter) pattern.
  • white light extracted from the organic electroluminescence device is used as a backlight, and blue light, green light, and red light are obtained through a blue filter, a green filter, and a red filter.
  • An organic electroluminescence display is preferable and preferable.
  • the organic EL element according to the present invention can be used as a display device, a display, and various light sources.
  • light sources include home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for backlights of various display devices combined with color filters, light diffusion plates, light extraction films, etc., and as a light source for illumination.
  • product display / display lighting built-in lighting for interior / furniture / building materials, automotive lighting, light-emitting display, public transportation (train, subway, bus, aircraft) , Ships, etc.) in-car lighting and display bodies, light sources for OA equipment, industrial inspection systems (for example, illumination light sources used for image sensors, backlights, etc.), light sources for agricultural products, evacuation lighting, and photography
  • home appliances light sources for sewing machines, microwave ovens, dishwashers / dryers, refrigerators, AV equipment, etc.
  • amusement facilities illumination lighting, lighting for belongings and clothes, communication light source, medical light source,
  • a pest control apparatus as disclosed in JP 2001-269105 A
  • mirror illumination as disclosed in JP 2001-286373 A
  • a bathroom lighting system as disclosed in Japanese Unexamined Patent Publication No.
  • Organic EL element 1 (Formation of anode) Transparent support with this ITO transparent electrode attached after depositing ITO (Indium Tin Oxide) with a thickness of 110 nm on a 30 mm ⁇ 30 mm, 0.7 mm thick glass substrate as an anode. The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • ITO Indium Tin Oxide
  • Light emitting layer forming method 1 Only one vapor deposition source having the configuration shown in FIG. 2 is used, and the arrangement of the substrate provided with the hole transport layer and the vapor deposition source is as shown in FIG. 7 d). As shown, the light emitting layer 1 in which the blue light emitting dopant was formed at a uniform concentration of 35% by mass was formed over the entire light emitting layer. This method is referred to as a light emitting layer forming method 1.
  • FIrpic (compound B) is loaded as a blue light emitting dopant on the material palette 7 of the holder BD holding the blue light emitting dopant shown in FIG. 2, and the green light emitting dopant is loaded on the material palette 7 of the holder GD holding the green light emitting dopant.
  • Ir (ppy) 3 (compound G) as a raw material palette 7 of the holder RD holding the red light emitting dopant
  • Ir (piq) 3 compound R
  • a raw material palette of the holder Host holding the host compound 7 was charged with CBP (Compound H) as a host compound.
  • the argon gas is supplied as an inert gas G from the end of the conduit 9, and the heating temperature by the heater 8 and each holder
  • the control valve (needle valve) 10 is appropriately adjusted, the blue light emitting dopant (Compound B) is 35% by mass, the green light emitting dopant (Compound B) is 0.2% by mass, and the red light emitting dopant (Compound R) is 0.2%.
  • a gas for forming a light emitting layer containing 6% by mass of the host compound (Compound H) is prepared, a gas for forming the light emitting layer containing each compound is introduced into the vapor deposition head 2, and holes are transported from the nozzle 3.
  • the blue light emitting dopant concentration profile (uniform content of 35% by mass) shown in FIG. To form a light-emitting layer 1 having a thickness of 70nm with.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 1 are 0.2 mass% uniform concentration distribution in the whole region.
  • Light emitting layer forming method 2 In the light emitting layer forming method 1, the heating temperature by the heater 8 and the control valve (needle valve) 10 of each holder are adjusted as appropriate, and the concentration of the blue light emitting dopant (compound B) in the light emitting layer forming gas is 5% by mass. In the same manner except that the content concentration of the host compound (Compound H) is changed to 94.6% by mass, the arrangement of the substrate provided with the hole transport layer and the vapor deposition source is as shown in FIG. A light emitting layer 2 having a thickness of 70 nm having a blue light emitting dopant concentration profile (uniform content of 5% by mass) shown in FIG. This method is referred to as a light emitting layer forming method 2.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 2 are 0.2 mass% uniform concentration distribution in the whole region.
  • Light emitting layer forming method 3 In the formation of the light emitting layer 1, the heating temperature by the heater 8 and the control valve (needle valve) 10 of each holder are appropriately adjusted, and the concentration of the blue light emitting dopant (compound B) in the light emitting layer forming gas is 20% by mass, Except for changing the content concentration of the host compound (Compound H) to 79.6% by mass, the arrangement of the substrate provided with the hole transport layer and the vapor deposition source is configured as shown in FIG. A light-emitting layer 3 having a thickness of 70 nm having a blue light-emitting dopant concentration profile (uniform content of 20% by mass) shown in 8) a) -3 was formed. This method is referred to as a light emitting layer forming method 3.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 3 are 0.2 mass% uniform concentration distribution in the whole region.
  • Light emitting layer forming method 4 Two vapor deposition sources having the configuration shown in FIG. 2 are used, the arrangement of the substrate and the vapor deposition source is as shown in FIG. 7 b), and the vapor deposition source surface is inclined by 15 degrees with respect to the substrate surface. As shown in FIG. 8 b), the blue light emitting dopant concentration at the time of forming the light emitting layer is 25 mass%, and is 15 mass% at the time of completing the light emitting layer formation (light emitting layer outermost surface portion).
  • the light emitting layer 4 having the gradient concentration of the blue light emitting dopant changing from 25% by mass to 15% by mass was formed. This method is referred to as a light emitting layer forming method 4.
  • the entire area of the light emitting layer 4 formed by the forming method 4 is the area II shown in FIG. 5, and the area I and the area III do not exist.
  • the detailed conditions of the first evaporation source 2A and the second evaporation source 2B are shown below.
  • the argon gas is supplied as an inert gas G from the end of the conduit 9, and the heating temperature by the heater 8 and each holder
  • the control valve (needle valve) 10 is appropriately adjusted, 25% by mass of the blue luminescent dopant (Compound B), 0.2% by mass of the green luminescent dopant (Compound B), and 0.2% of the red luminescent dopant (Compound R).
  • a light emitting layer forming gas 4A containing 74.6% by weight of a host compound (Compound H) is prepared, and the light emitting layer forming gas 4A containing each compound is introduced into the vapor deposition head 2, and is positively supplied from the nozzle 3. While transporting the substrate provided with the hole transport layer, it was emitted at a deposition rate of 0.0002 nm / second.
  • ⁇ Second evaporation source> In the first vapor deposition source, instead of the light emitting layer forming gas 4A, 15% by weight of the blue light emitting dopant (Compound B), 0.2% by weight of the green light emitting dopant (Compound B), and the red light emitting dopant (Compound R) ) was changed to 0.2% by mass and the host compound (Compound H) was changed to 84.6% by mass, and the light emitting layer forming gas 4B was used.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 4 are 0.2 mass% uniform concentration distribution in the whole region.
  • Light emitting layer forming method 5 ⁇ First evaporation source> 35% by mass of the blue luminescent dopant (Compound B), 0.2% by mass of the green luminescent dopant (Compound B), 0.2% by mass of the red luminescent dopant (Compound R), and 64.6 of the host compound (Compound H).
  • a gas 5A for forming a light emitting layer containing 5% by mass was prepared and used.
  • a gas 5A for forming a light emitting layer containing 5% by mass was prepared and used.
  • the arrangement of the substrate and the vapor deposition source shown in FIG. 7 b is an arrangement in which the vapor deposition source surface is inclined by 15 degrees with respect to the substrate surface.
  • the blue light-emitting dopant concentration at the time of forming the light-emitting layer is 35% by weight, and 35% by weight over the entire light-emitting layer so that the light-emitting layer formation is 5% by weight when the light-emitting layer is formed (outermost surface portion)
  • the light emitting layer 5 having a gradient concentration of the blue light emitting dopant that changes from 5 to 5% by mass was formed. This method is referred to as a light emitting layer forming method 5.
  • the entire area of the light emitting layer 5 formed by the forming method 5 is the area II shown in FIG. 5, and the area I and the area III do not exist.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 5 are 0.2 mass% uniform concentration distribution in the whole region.
  • Light emitting layer forming method 6 The compositions of the light emitting layer forming gas (blue light emitting dopant: 25% by mass) used in the first evaporation source 2A and the light emitting layer forming gas (blue light emitting dopant: 15% by mass) used in the second evaporation source 2B emit light. The method was the same as in Layer formation method 4.
  • the first vapor deposition source is formed by using two vapor deposition sources having the configuration shown in FIG. 2 and arranging the substrate and the vapor deposition source as shown in FIG. An area I formed only by 2A, an area II where the first vapor deposition source 2A and the second vapor deposition source 2B overlap, and an area III formed only by the second vapor deposition source 2B are formed. As shown in FIG. 8d), from the start of formation of the light emitting layer to 10% of the total film thickness, the area I where the blue light emitting dopant is a uniform concentration region of 25% by mass, 10% of the total film thickness.
  • the area II where the concentration of the blue light-emitting dopant is inclined from 25% to 15%
  • the area III where the blue light-emitting dopant is a uniform concentration region of 15% by mass.
  • the light emitting layer 6 was formed. This method is referred to as a light emitting layer forming method 6.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 6 are uniform concentration distribution of 0.2 mass% in the whole region.
  • organic EL elements 7 to 11 In the production of the organic EL element 6, the ratio of the area II to the blue light emitting dopant and the host compound concentration in the first evaporation source 2 ⁇ / b> A and the blue light emitting dopant and the host compound concentration in the second evaporation source 2 ⁇ / b> B when forming the light emitting layer.
  • the organic EL elements 7 to 11 were produced in the same manner as the light emitting layer forming methods 7 to 11 except that the conditions described in Table 1 were changed.
  • the blue light emitting dopant concentration profile in the light emitting layer forming methods 7 to 11 is as follows.
  • Light emitting layer formation method 7 Blue light emitting dopant concentration profile shown in FIG. 9 a)
  • Light emitting layer forming method 8 Blue light emitting dopant concentration profile shown in FIG. 9 b)
  • Light emitting layer forming method 9 FIG. 9 c)
  • the blue light emitting dopant concentration profile shown in FIG. 10 The light emitting layer forming method 10: The blue light emitting dopant concentration profile shown in FIG. 9d)
  • the light emitting layer forming method 11 The blue light emitting dopant concentration profile shown in FIG.
  • the green light-emitting dopant (compound B) and the red light-emitting dopant in ⁇ 11 have a uniform concentration distribution of 0.2 mass% over the entire area.
  • Method 12 for forming light emitting layer In contrast to the light emitting layer forming method 6, as shown in FIG. 7 c, the substrate and each evaporation source surface are arranged in parallel, and the evaporation area 11 formed by the first evaporation source 2 ⁇ / b> A, and the second evaporation The vapor deposition area 12 formed by the source 2B did not overlap at all, and this was used as the light emitting layer forming method 12.
  • the blue light emission dopant concentration profile of the formed light emitting layer is shown in FIG.
  • the light emitting layer formed by the light emitting layer forming method 12 is composed of only area I and area III.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 12 are 0.2 mass% uniform concentration distribution in the whole region.
  • Method 13 for forming light emitting layer With respect to the light emitting layer forming method 7, as shown in FIG. 7c, the substrate and each evaporation source surface are arranged in parallel, and the evaporation area 11 formed by the first evaporation source 2A, and the second evaporation The vapor deposition area 12 formed by the source 2B did not overlap at all, and this was used as the light emitting layer forming method 12.
  • the blue light emission dopant concentration profile of the formed light emitting layer is shown in FIG.
  • the light emitting layer formed by the light emitting layer forming method 13 is composed of only area I and area III.
  • the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 13 are 0.2 mass% uniform concentration distribution in the whole region.
  • the light emitting layer is formed in the same manner as the light emitting layer forming method 6 except that the substrate and each evaporation source surface are arranged in parallel as shown in FIG. Method 14 was adopted.
  • the blue light emitting dopant concentration profile of the formed light emitting layer is shown in d) of FIG.
  • the green light-emitting dopant (compound B) and the red light-emitting dopant in the light-emitting layer 14 have a uniform concentration distribution of 0.2 mass% over the entire area.
  • the organic EL element having the light emitting layer having the structure defined in the present invention has a power efficiency and a driving life as compared with the comparative organic EL elements 1 to 3, 12, and 13. It turns out that it is excellent.

Abstract

Provided is a method for manufacturing an organic electroluminescent element, whereby an organic electroluminescent element having excellent power efficiency and long service life can be obtained. In a method for manufacturing an organic electroluminescent element, a light emitting layer of the organic electroluminescent element is formed by depositing the organic compound on a substrate from a plurality of deposition sources. The method is characterized in that 1) the deposition sources are respectively filled with a host compound and a dopant compound, 2) the deposition sources respectively have different mass ratios of the dopant compound to the host compound, and 3) regions where deposition areas of the deposition sources overlap on the substrate are 10 % or more of the total deposition area.

Description

有機エレクトロルミネッセンス素子の製造方法Method for manufacturing organic electroluminescence device
 本発明は、発光層内に発光波長の異なる複数の燐光発光ドーパントを有する有機エレクトロルミネッセンス素子、特には白色発光の有機エレクトロルミネッセンス素子の製造方法に関するものである。 The present invention relates to a method for producing an organic electroluminescent element having a plurality of phosphorescent dopants having different emission wavelengths in a light emitting layer, particularly a white light emitting organic electroluminescent element.
 有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極とで狭持した構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子である。この有機エレクトロルミネッセンス素子は、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるため、視野角に富み、視認性が高く、薄膜型の完全固体素子であるため、現在、省スペースや携帯性等の観点から注目されている。 An organic electroluminescence device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer and recombines them to exciton (exciton). ) And emits light by utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated. This organic electroluminescence device can emit light at a voltage of several volts to several tens of volts, and is a self-luminous type, so it has a wide viewing angle, high visibility, and is a thin film type solid state device. Currently, it is attracting attention from the viewpoint of space saving and portability.
 ところが、この有機エレクトロルミネッセンス素子を、照明用光源あるいはディスプレイのバックライトとして実用する際の課題として、発光効率と発光寿命の向上、特に発光寿命の向上が重要な課題として挙げられる。 However, as a problem when the organic electroluminescence element is put to practical use as a light source for illumination or a backlight of a display, improvement of light emission efficiency and light emission life, particularly improvement of light emission life can be cited as an important problem.
 一般に、発光層において発光ドーパントとして使用される青色発光ドーパントの中には、正孔輸送性が高い物質がある。そのため、発光層に正孔輸送性が高い青色発光ドーパントを使用し、陽極側界面付近における青色発光ドーパント濃度が高く設定した場合には、正孔が陽極側界面から早く離れて発光層中心部に移動することになる。その結果、正孔と電子とが接触して発光する場所が発光層中央部になる。隣接層との界面近傍では、発光のロスが大きいことが知られており、界面から離れた発光層の中央で発光することは発光効率を高く設定する点では有利となる。 Generally, among blue light emitting dopants used as light emitting dopants in the light emitting layer, there are substances having a high hole transporting property. Therefore, when a blue light emitting dopant with high hole transportability is used for the light emitting layer and the blue light emitting dopant concentration in the vicinity of the anode side interface is set high, the holes are quickly separated from the anode side interface and enter the center of the light emitting layer. Will move. As a result, the center of the light emitting layer is the place where holes and electrons come into contact and emit light. It is known that a loss of light emission is large near the interface with the adjacent layer, and it is advantageous to emit light at the center of the light emitting layer far from the interface in terms of setting the light emission efficiency high.
 一方、陰極側界面においては、正孔輸送性が高い青色発光ドーパントが電子の侵入を防止する電子阻止材として作用するため、陰極側界面付近の青色発光ドーパントの濃度を低くして電子が入り易くすることにより、電子が陽極側界面から早く離れて発光層中心部に移動し、界面から離れた発光層の中央で発光することになる。 On the other hand, at the cathode side interface, the blue light emitting dopant having a high hole transporting property acts as an electron blocking material for preventing the intrusion of electrons, so that the concentration of the blue light emitting dopant near the cathode side interface is lowered and electrons can easily enter. By doing so, electrons move away from the anode-side interface quickly to the center of the light-emitting layer, and light is emitted at the center of the light-emitting layer away from the interface.
 従って、発光層において、陽極側界面付近の青色発光ドーパントの濃度を高くし、陰極側界面付近の青色発光ドーパントの濃度が低い濃度勾配を持たせることにより、界面から早く離れて発光層中心部で発光するため、発光効率や発光寿命の向上、特に発光寿命の向上に繋がる。 Therefore, in the light emitting layer, the concentration of the blue light emitting dopant near the anode side interface is increased and the concentration of the blue light emitting dopant near the cathode side interface has a low concentration gradient. Since it emits light, it leads to the improvement of luminous efficiency and luminous lifetime, especially the luminous lifetime.
 逆に、青色発光ドーパントに電子輸送性が高い材料を使う場合には、発光層の陰極側界面付近の青色発光ドーパントの濃度を高くすることで、同様の効果を得ることができる。 Conversely, when a material having a high electron transport property is used for the blue light emitting dopant, the same effect can be obtained by increasing the concentration of the blue light emitting dopant in the vicinity of the cathode side interface of the light emitting layer.
 このように、色度安定性及び発光効率や発光寿命の向上、特に発光寿命の向上の課題を解決するためには、発光層の陽極界面側において、正孔輸送性が高い青色発光ドーパントの濃度を高くし、陰極界面側に向けて低濃度となるように濃度勾配を持たせることが要求されている。 As described above, in order to solve the problems of chromaticity stability, luminous efficiency and luminous lifetime improvement, in particular, luminous lifetime enhancement, the concentration of the blue luminous dopant having a high hole transporting property on the anode interface side of the luminous layer. Is required to have a concentration gradient so that the concentration becomes lower toward the cathode interface side.
 この青色発光ドーパントの濃度勾配は発光層全域で形成され、緑色、赤色、ホストも発光層全域に分布していることが好ましい。この場合は、青色と比較して緑色、赤色のドーパント濃度を低濃度でかつ均一に分布することが要求される。 The concentration gradient of the blue light emitting dopant is preferably formed over the entire light emitting layer, and green, red, and host are preferably distributed over the entire light emitting layer. In this case, it is required that the dopant concentrations of green and red are low and evenly distributed compared to blue.
 ところで、発光層の形成方法として、一般に蒸着、塗布、転写などの方法が挙げられるが、蒸着法が好んで用いられる。蒸着法を使用した蒸着装置として、蒸着材料を放出する放出口を有する複数の分散容器を積層することで、複数の材料を用いた共蒸着が可能な技術が開示されている(例えば、特許文献1参照)。特許文献1に記載の技術によれば、成膜の面内バラツキを低減することができる。しかし、上記特許文献1に記載の蒸着装置においては、精度良く濃度勾配を持たせるように蒸着することが困難である。 Incidentally, as a method for forming the light emitting layer, generally, there are methods such as vapor deposition, coating, and transfer, but vapor deposition is preferably used. As a vapor deposition apparatus using a vapor deposition method, a technique capable of co-vapor deposition using a plurality of materials by laminating a plurality of dispersion containers having discharge ports for discharging a vapor deposition material is disclosed (for example, Patent Documents). 1). According to the technique described in Patent Document 1, the in-plane variation in film formation can be reduced. However, in the vapor deposition apparatus described in Patent Document 1, it is difficult to perform vapor deposition so as to have a concentration gradient with high accuracy.
 一方、濃度勾配を持たせる共蒸着法として、2種類の蒸着源を基板の搬送方向に、互いの蒸着範囲がオーバーラップするように配置する技術や、2種類の蒸着源を基板の搬送方向に沿って配置するとともに各蒸着源の開口径を搬送方向に沿って一方は大きくなるように、他方は小さくなるように変化させる技術が開示されている(例えば、特許文献2参照)。しかし、上記特許文献2に記載の蒸着装置においては、1)低濃度で均一に共蒸着する技術は示されていない、2)ホスト化合物と青色発光ドーパントが独立した蒸着源から放出されるため、所望の濃度勾配を得ることが難しい、3)複数のドーパントで濃度勾配ができない等の課題を抱えている。 On the other hand, as a co-evaporation method having a concentration gradient, a technique in which two types of vapor deposition sources are arranged in the substrate conveyance direction, and the two vapor deposition sources are arranged in the substrate conveyance direction. In addition, a technique is disclosed in which the aperture diameter of each vapor deposition source is changed so that one is increased and the other is decreased along the conveyance direction (see, for example, Patent Document 2). However, in the vapor deposition apparatus described in Patent Document 2, 1) a technique for uniformly co-depositing at a low concentration is not shown, and 2) a host compound and a blue light emitting dopant are emitted from independent vapor deposition sources. It is difficult to obtain a desired concentration gradient, and 3) there are problems such as a concentration gradient not being possible with a plurality of dopants.
 一方、積層された複数層を有し、各層間に、隣接する層の各構成材料が連続した濃度勾配を持つオーバーラップ層を有する有機エレクトロルミネッセンス素子が開示されている(例えば、特許文献3参照。)。特許文献3によれば、各層間にオーバーラップ層を形成することにより、各層との層界面において、構成材料濃度が不連続になることはなく、その結果、オーバーラップ層が形成された層界面では、局所的に電荷が溜まりやすくなったり、電子の流れが悪くなったりすることが無く、素子の寿命や信頼性を向上することができるとされている。しかしながら、特許文献3に記載の発明は、カラーディスプレイ対応の発明であり、白色発光素子を形成することができない。また、特許文献3に記載されている発明では、蒸着源に一種類の材料のみ充填する方法であり、共蒸着を行うことができず、連続的にドーパントの濃度を変化させる傾斜濃度構成を形成することができない。 On the other hand, an organic electroluminescence element having a plurality of stacked layers and an overlap layer in which each constituent material of adjacent layers has a continuous concentration gradient is disclosed between the layers (see, for example, Patent Document 3). .) According to Patent Document 3, by forming an overlap layer between each layer, the constituent material concentration does not become discontinuous at the layer interface with each layer. As a result, the layer interface where the overlap layer is formed Therefore, it is said that it is possible to improve the lifetime and reliability of the device without easily accumulating charges locally or deteriorating the flow of electrons. However, the invention described in Patent Document 3 is an invention corresponding to a color display, and a white light emitting element cannot be formed. The invention described in Patent Document 3 is a method in which only one kind of material is filled in the vapor deposition source, and co-evaporation cannot be performed, and a gradient concentration structure that continuously changes the dopant concentration is formed. Can not do it.
 また、基板に蒸着層を形成する蒸着方法において、複数の蒸着源を配置し、蒸着源の少なくとも1つの蒸着分子発生面の水平方向に対する角度が、他の蒸着源の蒸着分子発生面の角度と異なることを特徴とする蒸着方法が開示されている(例えば、特許文献4参照。)。特許文献4に記載の発明によれば、たとえば、基板上に異物が存在していたとしても、斜めの角度から蒸着分子が放射され、その異物を隙間なく包み込むようにして蒸着膜を形成することができるため、異物等により、蒸着膜を挟んで形成される陽極及び陰極が直接接することがなくなり、素子の発光不良を防止することにより、表示装置の寿命、発光効率及び品質を向上することができるとされている。しかしながら、特許文献4においては、蒸着膜の構成要素の濃度を連続的に変化させて、傾斜構造をとることの記載や示唆は、全く認められない。 Further, in a vapor deposition method for forming a vapor deposition layer on a substrate, a plurality of vapor deposition sources are arranged, and an angle with respect to a horizontal direction of at least one vapor deposition molecule generation surface of the vapor deposition source is different from an angle of a vapor deposition molecule generation surface of another vapor deposition source. A vapor deposition method characterized by being different is disclosed (for example, see Patent Document 4). According to the invention described in Patent Document 4, for example, even if foreign matter exists on the substrate, vapor deposition molecules are radiated from an oblique angle, and the vapor deposition film is formed so as to wrap the foreign matter without gaps. Therefore, the anode and the cathode formed with the vapor deposition film sandwiched by foreign substances are not in direct contact with each other, and the lifetime, luminous efficiency and quality of the display device can be improved by preventing the light emitting failure of the element. It is supposed to be possible. However, in Patent Document 4, there is no description or suggestion that the concentration of the constituent elements of the deposited film is continuously changed to adopt the inclined structure.
特開2008-075095号公報JP 2008-075095 A 特開2003-077662号公報JP 2003-077662 A 特開2003-077656号公報Japanese Patent Laid-Open No. 2003-077656 特開2007-100132号公報JP 2007-100132 A
 本発明は、上記課題に鑑みなされたものであり、その目的は、蒸着による発光層形成時に、ホスト化合物と濃度勾配のある青色発光ドーパントと低濃度均一分布の緑色発光ドーパントと赤色発光ドーパントを共蒸着して発光層を形成でき、電力効率に優れ、駆動寿命が長い有機エレクトロルミネッセンス素子を得ることができる有機エレクトロルミネッセンス素子の製造方法を提供することにある。 The present invention has been made in view of the above-described problems, and its purpose is to combine a host compound, a blue light-emitting dopant with a concentration gradient, a green light-emitting dopant with a low concentration uniform distribution, and a red light-emitting dopant when forming a light-emitting layer by vapor deposition. An object of the present invention is to provide a method for producing an organic electroluminescent element capable of forming an emissive layer by vapor deposition, obtaining an organic electroluminescent element having excellent power efficiency and a long driving life.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.移動する基板上に、有機化合物が充填された複数の蒸着源から該有機化合物を蒸着させて有機エレクトロルミネッセンス素子の発光層を形成する有機エレクトロルミネッセンス素子の製造方法において、
 1)該複数の蒸着源は、いずれもホスト化合物とドーパント化合物が充填されており、
 2)該複数の蒸着源は、お互いにホスト化合物に対するドーパント化合物の質量比率が異なっており、
 3)該基板上における該複数の蒸着源の蒸着エリアが重なり合う領域が、全蒸着エリアの10%以上であること、
を特徴とする有機エレクトロルミネッセンス素子の製造方法。
1. In the method of manufacturing an organic electroluminescent element, the organic compound is deposited from a plurality of vapor deposition sources filled with the organic compound on the moving substrate to form a light emitting layer of the organic electroluminescent element.
1) Each of the plurality of vapor deposition sources is filled with a host compound and a dopant compound,
2) The plurality of vapor deposition sources have different mass ratios of the dopant compound to the host compound,
3) The area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area,
The manufacturing method of the organic electroluminescent element characterized by these.
 2.前記複数の蒸着源に充填された前記ドーパント化合物が、全て同一であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子の製造方法。 2. 2. The method for producing an organic electroluminescence element according to 1 above, wherein the dopant compounds filled in the plurality of vapor deposition sources are all the same.
 3.前記複数の蒸着源に充填された前記ホスト化合物が、全て同一であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. 3. The method for producing an organic electroluminescent element according to 1 or 2, wherein the host compounds filled in the plurality of vapor deposition sources are all the same.
 4.前記蒸着源の少なくとも一つが、複数のドーパント化合物を含有することを特徴とする前記1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 4. At least one of the said vapor deposition sources contains a several dopant compound, The manufacturing method of the organic electroluminescent element of any one of said 1 to 3 characterized by the above-mentioned.
 5.前記ドーパント化合物が、青色発光ドーパント、緑色発光ドーパント、赤色発光ドーパントであり、前記複数の蒸着源における該青色発光ドーパントの濃度が異なり、前記発光層中で青色発光ドーパントが厚さ方向で傾斜濃度を有していることを特徴とする前記1から4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 5. The dopant compound is a blue light emitting dopant, a green light emitting dopant, and a red light emitting dopant, and the concentration of the blue light emitting dopant in the plurality of vapor deposition sources is different, and the blue light emitting dopant has a gradient concentration in the thickness direction in the light emitting layer. 5. The method for producing an organic electroluminescent element according to any one of 1 to 4, wherein the organic electroluminescent element is provided.
 6.前記ドーパント化合物が、青色発光ドーパント、緑色発光ドーパント、赤色発光ドーパントであり、前記複数の蒸着源における該緑色発光ドーパント及び赤色発光ドーパントの濃度が等しく、前記発光層中で該緑色発光ドーパント及び赤色発光ドーパントの濃度が厚さ方向で均一であることを特徴とする前記1から5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 6. The dopant compound is a blue light-emitting dopant, a green light-emitting dopant, and a red light-emitting dopant, and the concentrations of the green light-emitting dopant and the red light-emitting dopant in the plurality of vapor deposition sources are equal, and the green light-emitting dopant and the red light-emitting in the light-emitting layer. 6. The method for producing an organic electroluminescent element according to any one of 1 to 5, wherein the dopant concentration is uniform in the thickness direction.
 7.前記蒸着源の吐出法線に対する面が、基板面と非平行であることを特徴とする前記1から6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 7. 7. The method of manufacturing an organic electroluminescent element according to any one of 1 to 6, wherein a surface of the vapor deposition source with respect to a discharge normal is non-parallel to the substrate surface.
 8.前記複数の蒸着源の吐出法線と、基板面とが交差する基板上での交差点が異なっていることを特徴とする前記1から7のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 8. 8. The method of manufacturing an organic electroluminescent element according to any one of 1 to 7, wherein an intersection point on a substrate where a discharge normal line of the plurality of vapor deposition sources and a substrate surface intersect with each other is different. .
 本発明の有機エレクトロルミネッセンス素子の製造方法により、濃度勾配用材料を被蒸着部材の厚み方向に濃度勾配を持たせ、濃度均一用材料については面内の濃度分布を均一にして被蒸着部材に蒸着することができる。したがって、例えば、濃度勾配用材料として青色発光ドーパントを使用し、濃度均一用材料として赤色発光ドーパント及び緑色発光ドーパントを使用した場合、青色発光ドーパントを高濃度で濃度勾配を持たせることができるため、発光層の陽極側界面で青色発光ドーパント濃度が高くなり、正孔輸送性をさらに高めることができ、発光層の中央で発光することで発光効率や寿命の向上につながる。 According to the method of manufacturing an organic electroluminescence device of the present invention, the concentration gradient material has a concentration gradient in the thickness direction of the vapor deposition member, and the concentration uniform material is vapor deposited on the vapor deposition member with a uniform in-plane concentration distribution. can do. Therefore, for example, when a blue light emitting dopant is used as the concentration gradient material and a red light emitting dopant and a green light emitting dopant are used as the concentration uniforming material, the blue light emitting dopant can have a high concentration concentration gradient. The blue light emitting dopant concentration is increased at the anode side interface of the light emitting layer, so that the hole transport property can be further increased, and light emission at the center of the light emitting layer leads to improvement in light emission efficiency and life.
 そのことにより、電力効率に優れ、長寿命な有機エレクトロルミネッセンス素子の製造方法を提供することができる。 As a result, it is possible to provide a method for producing an organic electroluminescence element having excellent power efficiency and a long lifetime.
本発明に係る有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the organic electroluminescent element which concerns on this invention. 本発明で適用可能な蒸着源の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the vapor deposition source applicable by this invention. 本発明の複数の蒸着源を用いた発光層の形成方法の一例を示す模式図である。It is a schematic diagram which shows an example of the formation method of the light emitting layer using the some vapor deposition source of this invention. 蒸着源から吐出される発光層形成用ガスの出力強度分布と、蒸着エリアを説明するためのグラフである。It is a graph for demonstrating the output intensity distribution of the light emitting layer forming gas discharged from a vapor deposition source, and a vapor deposition area. 発光層における青色発光ドーパントの膜厚方向での濃度プロファイルの一例を示すグラフである。It is a graph which shows an example of the density | concentration profile in the film thickness direction of the blue light emission dopant in a light emitting layer. 本発明に係る蒸着源と基板との配置の一例を示す模式図である。It is a schematic diagram which shows an example of arrangement | positioning with the vapor deposition source which concerns on this invention, and a board | substrate. 実施例で用いた複数の蒸着源と基板との配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning with the some vapor deposition source and board | substrate which were used in the Example. 実施例で形成した発光層における青色発光ドーパントの膜厚方向における濃度プロファイルの一例を示すグラフである。It is a graph which shows an example of the density | concentration profile in the film thickness direction of the blue light emission dopant in the light emitting layer formed in the Example. 実施例で形成した発光層における青色発光ドーパントの膜厚方向における濃度プロファイルの他の一例を示すグラフである。It is a graph which shows another example of the concentration profile in the film thickness direction of the blue light emission dopant in the light emitting layer formed in the Example. 実施例で形成した発光層における青色発光ドーパントの膜厚方向における濃度プロファイルの他の一例を示すグラフである。It is a graph which shows another example of the concentration profile in the film thickness direction of the blue light emission dopant in the light emitting layer formed in the Example.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、移動する基板上に、有機化合物が充填された複数の蒸着源から該有機化合物を蒸着させて有機エレクトロルミネッセンス素子の発光層を形成する有機エレクトロルミネッセンス素子の製造方法において、1)該複数の蒸着源は、いずれもホスト化合物とドーパント化合物が充填されており、2)該複数の蒸着源は、お互いにホスト化合物に対するドーパント化合物の質量比率が異なっており、3)該基板上における該複数の蒸着源の蒸着エリアが重なり合う領域が、全蒸着エリアの10%以上であることを特徴とする有機エレクトロルミネッセンス素子の製造方法により、電力効率に優れ、駆動寿命が長い有機エレクトロルミネッセンス素子の製造方法を実現できることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above problems, the inventor forms a light emitting layer of an organic electroluminescence element by depositing the organic compound from a plurality of vapor deposition sources filled with the organic compound on a moving substrate. In the method for producing an organic electroluminescence device, 1) the plurality of vapor deposition sources are all filled with a host compound and a dopant compound, and 2) the mass ratio of the dopant compound to the host compound with respect to each other. 3) The region where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area. Found that an organic electroluminescence device manufacturing method with excellent and long driving life can be realized. It is up that led to.
 以下、本発明の有機エレクトロルミネッセンス素子の製造方法について、その詳細を説明する。 Hereinafter, the details of the method for producing the organic electroluminescence element of the present invention will be described.
 はじめに、本発明に係る有機エレクトロルミネッセンス素子(以下、本発明に係る有機EL素子、あるいは有機電界発光素子ともいう)の各構成要素の詳細について、順次説明する。 First, details of each component of the organic electroluminescence element according to the present invention (hereinafter also referred to as the organic EL element or the organic electroluminescence element according to the present invention) will be sequentially described.
 《有機EL素子の層構成》
 以下に、本発明に係る有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Layer structure of organic EL element >>
Although the preferable specific example of the layer structure of the organic EL element which concerns on this invention below is shown below, this invention is not limited to these.
 (i)陽極/発光層ユニット/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 本発明に係る有機EL素子においては、発光層ユニットは、本発明で規定する要件を満たす構成を有する発光層を少なくとも1層有していれば、何層でも積層した構成でもよいが、好ましくは本発明の規定を満たす要件を有する発光層1層のみから構成されていることが好ましい。
(I) Anode / light emitting layer unit / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / light emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode In the organic EL device according to the present invention, the light emitting layer unit has at least one light emitting layer having a configuration satisfying the requirements defined in the present invention. As long as it is configured, any number of layers may be stacked, but it is preferable that the light-emitting layer is preferably composed of only one light-emitting layer having requirements that satisfy the requirements of the present invention.
 図1は、本発明に係る有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of an organic electroluminescence element according to the present invention.
 図1のa)は、本発明に係る有機EL素子を用いた照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている。尚、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行う。 FIG. 1 a shows a schematic view of a lighting device using an organic EL element according to the present invention, and the organic EL element 101 of the present invention is covered with a glass cover 102. The sealing operation with the glass cover is performed in a glove box (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
 図1のb)に示す有機EL素子において、105は陰極、106は発光層を含む有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 In the organic EL element shown in FIG. 1 b), 105 denotes a cathode, 106 denotes an organic EL layer including a light emitting layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 本発明に係る有機エレクトロルミネッセンス素子の発光色は、白色であり、有機エレクトロルミネッセンス素子の発光層は、ホスト化合物と、青色発光ドーパント、緑色発光ドーパント及び赤色発光ドーパントを含有することが好ましい。各発光ドーパントの波長領域内における最大波長が、青色発光ドーパントは465~480nm、緑色発光ドーパントは500~515nm、及び赤色発光ドーパントは600~620nmに有することが好ましい。 The light emission color of the organic electroluminescent device according to the present invention is white, and the light emitting layer of the organic electroluminescent device preferably contains a host compound, a blue light emitting dopant, a green light emitting dopant and a red light emitting dopant. The maximum wavelength in the wavelength region of each light emitting dopant is preferably 465 to 480 nm for blue light emitting dopant, 500 to 515 nm for green light emitting dopant, and 600 to 620 nm for red light emitting dopant.
 《発光層の構成》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。本発明に係る発光層は、本発明で規定する要件を満たしていれば、その構成には特に制限はない。
<Structure of light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer. The structure of the light emitting layer according to the present invention is not particularly limited as long as it satisfies the requirements defined in the present invention.
 発光層の形成は蒸着法によってなされることを特徴とするが、発光ドーパントの濃度勾配が形成しやすい真空蒸着法を用いるのが好ましく、量産するためにラインソース型蒸着装置がさらに好ましい。 The formation of the light emitting layer is characterized by being performed by a vapor deposition method, but it is preferable to use a vacuum vapor deposition method that easily forms a concentration gradient of the light emitting dopant, and a line source type vapor deposition apparatus is more preferable for mass production.
 なお、後述する発光層以外の構成層を形成する方法としては、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア-ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。 As a method for forming a constituent layer other than the light emitting layer described later, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, a slot The film can be formed by a known thin film forming method such as a mold coater method.
 本発明に係る有機EL素子においては、発光層は2層以上有していてもよいが、前記記載の発光層1層のみからなることが好ましい。 In the organic EL device according to the present invention, the light emitting layer may have two or more layers, but preferably comprises only one light emitting layer as described above.
 《発光層の形成方法》
 次いで、本発明の有機EL素子の製造方法と、それを用いた発光層の形成方法について、図を交えて詳細に説明する。
<Method for forming light emitting layer>
Subsequently, the manufacturing method of the organic EL element of this invention and the formation method of a light emitting layer using the same are demonstrated in detail using figures.
 本発明の有機エレクトロルミネッセンス素子の製造方法では、移動する基板上に、有機化合物が充填された複数の蒸着源から該有機化合物を蒸着させて有機エレクトロルミネッセンス素子の発光層を形成する有機エレクトロルミネッセンス素子の製造方法において、 1)該複数の蒸着源は、いずれもホスト化合物とドーパント化合物が充填されていること、
 2)該複数の蒸着源は、お互いにホスト化合物に対するドーパント化合物の質量比率が異なっていること、
 3)該基板上における該複数の蒸着源の蒸着エリアが重なり合う領域が、全蒸着エリアの10%以上であること、
 を構成上の特徴とするものである。
In the method for producing an organic electroluminescent element of the present invention, an organic electroluminescent element is formed by evaporating the organic compound from a plurality of vapor deposition sources filled with the organic compound on a moving substrate to form a light emitting layer of the organic electroluminescent element. 1) The plurality of vapor deposition sources are all filled with a host compound and a dopant compound,
2) The plurality of vapor deposition sources have different mass ratios of the dopant compound to the host compound,
3) The area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area,
Is a structural feature.
 上述のように、本発明の有機EL素子の製造方法における構成上の第1の特徴は、発光層の形成においては複数の蒸着源を用い、それぞれの蒸着源にはホスト化合物及びドーパント化合物が充填されている構成である。 As described above, the first structural feature of the method for manufacturing an organic EL device of the present invention is that a plurality of vapor deposition sources are used in forming the light emitting layer, and each vapor deposition source is filled with a host compound and a dopant compound. It is the structure which is done.
 図2は、本発明の有機エレクトロルミネッセンス素子の製造方法で用いる蒸発源の構成例の一例を示す概略図である。 FIG. 2 is a schematic view showing an example of a configuration example of an evaporation source used in the method for producing an organic electroluminescence element of the present invention.
 図2に記載のように、本発明に適用可能な発光層の形成に用いることのできる蒸着源1は、主には、蒸着用ガスを射出する蒸着用ヘッド2と、蒸着原料ガスを発生するユニットから構成されている。 As shown in FIG. 2, a vapor deposition source 1 that can be used for forming a light emitting layer applicable to the present invention mainly generates a vapor deposition head 2 for injecting a vapor deposition gas and a vapor deposition source gas. It is composed of units.
 蒸着用ヘッド2は、基板と対向する面側に蒸着原料ガスを射出するための複数個のノズル3が一列に配置されている。この一列に配置されているノズル3は、基板Pの搬送方向に対し直角となるように設置する。また、蒸蒸着原料ガスを発生するユニットは、導管5を介して蒸着用ヘッド2に接続されている。 In the vapor deposition head 2, a plurality of nozzles 3 for injecting vapor deposition source gas is arranged in a row on the side facing the substrate. The nozzles 3 arranged in this line are installed so as to be perpendicular to the transport direction of the substrate P. The unit for generating the vapor deposition source gas is connected to the vapor deposition head 2 via a conduit 5.
 ドーパント化合物として青色発光ドーパントを充填したホルダーBD、緑色発光ドーパントを充填したホルダーGD、赤色発光ドーパントを充填したホルダーRD、及びホスト化合物を充填したホルダーHostが、それぞれ制御弁(ニードルバルブ)10を介して導管9に接続されている。それぞれのホルダーには、所定の化合物を保持する原料パレット7が設置されている。また、各ホルダー外周部には加熱部材H、例えば、リボンヒーター等が装着されており、各ホルダーを所定の温度に加熱して、発光ドーパントあるいはホスト化合物をガス化させる。この加熱部材H、導管5、9の外周部にも装着されている。 As a dopant compound, a holder BD filled with a blue light emitting dopant, a holder GD filled with a green light emitting dopant, a holder RD filled with a red light emitting dopant, and a holder Host filled with a host compound are respectively connected via a control valve (needle valve) 10. Connected to the conduit 9. Each holder is provided with a raw material pallet 7 for holding a predetermined compound. In addition, a heating member H, for example, a ribbon heater or the like, is mounted on the outer periphery of each holder, and each holder is heated to a predetermined temperature to gasify the luminescent dopant or the host compound. The heating member H and the outer peripheral portions of the conduits 5 and 9 are also mounted.
 各発光ドーパントとホスト化合物とを、各ホルダーの加熱温度と制御弁(ニードルバルブ)10を適宜調整して、所定の比率構成となるようにして導管9の導入した後、端部より不活性ガスGを供給しながら、各化合物を含む混合ガスとして、蒸着用ヘッド2に導入する。本発明に適用可能な不活性がストしては、窒素、二酸化炭素及び周期表の第18属元素、具体的には、ネオン、アルゴン、クリプトン、キセノン、ラドン等を挙げることができるが、本発明においては、特に、窒素、アルゴンが好ましい。 Each light emitting dopant and host compound are introduced into the conduit 9 in a predetermined ratio by appropriately adjusting the heating temperature of each holder and the control valve (needle valve) 10, and then an inert gas from the end. While supplying G, the mixed gas containing each compound is introduced into the vapor deposition head 2. Examples of inert substances applicable to the present invention include nitrogen, carbon dioxide, and Group 18 elements of the periodic table, specifically neon, argon, krypton, xenon, radon, etc. In the invention, nitrogen and argon are particularly preferable.
 本発明の有機EL素子の製造方法においては、第2の特徴として、図2で説明した構成からなる蒸着源を、図3に示すように複数個配置し、複数の蒸着源の蒸着エリアの少なくとも一部が重なっている構成とすること、加えて、複数の蒸着源は、お互いにホスト化合物に対するドーパント化合物の質量比率が異なっていることを特徴とする。 In the method for producing an organic EL element of the present invention, as a second feature, a plurality of vapor deposition sources having the configuration described in FIG. 2 are arranged as shown in FIG. In addition, the plurality of vapor deposition sources are characterized in that the mass ratio of the dopant compound to the host compound is different from each other.
 図3は、複数個の蒸着源を配置し、基板上に発光層を形成する方法の一例を示す概略図である。 FIG. 3 is a schematic view showing an example of a method for arranging a plurality of vapor deposition sources and forming a light emitting layer on a substrate.
 図3において、紙面の右から左方向に移動する基板Pに対し、それに対向する位置に、2基の図2に示す構成からなる蒸発源2A、2Bが配置され、蒸発源より発光層形成材料を含む形成用ガスを噴射して、基板上に濃度勾配を有する発光層を形成する。図3に示す蒸発源2A、2Bは、図2に示す方向Aから見た構成で示しており、基板Pの搬送方向に対し、各蒸発源のノズル部3A、3Bは直角に位置に配置されている。 In FIG. 3, two evaporation sources 2A and 2B having the structure shown in FIG. 2 are arranged at positions opposed to the substrate P moving from the right to the left in the drawing. A light-emitting layer having a concentration gradient is formed on the substrate by injecting a forming gas containing. The evaporation sources 2A and 2B shown in FIG. 3 are shown as viewed from the direction A shown in FIG. 2, and the nozzle portions 3A and 3B of the evaporation sources are arranged at right angles with respect to the transport direction of the substrate P. ing.
 本発明の有機EL素子の製造方法において、発光層の厚み方向でドーパント濃度の傾斜構造を形成する具体的な方法について、図3を用いて説明する。 In the method for producing an organic EL element of the present invention, a specific method for forming a gradient structure of dopant concentration in the thickness direction of the light emitting layer will be described with reference to FIG.
 発光層においてドーパント濃度の傾斜構造を形成する一例として、発光層の膜厚方向で青色発光ドーパント濃度を傾斜構造で変化させ、緑色発光ドーパント及び赤色発光ドーパント濃度を一定とする構成を形成する方法について説明する。 As an example of forming a gradient structure of dopant concentration in the light emitting layer, a method of forming a configuration in which the blue light emitting dopant concentration is changed in the inclined structure in the film thickness direction of the light emitting layer and the green light emitting dopant and the red light emitting dopant concentration are constant. explain.
 図3において、矢印方向に搬送される基板Pの下流側に、第1の蒸発源2Aを配置し、その上流側に第2の蒸発源2Bを配置する。この時、基板P面において、第1の蒸発源2Aからは、蒸着エリア端部11Aと他方の蒸着エリア端部11Bから構成される蒸着エリア11において、発光層形成用ガスが11Cを法線とする方向に噴射される。同様に、第2の蒸発源2Bからは、蒸着エリア端部12Aと他方の蒸着エリア端部12Bから構成される蒸着エリア12において、発光層形成用ガスが12Cを法線とする方向に噴射される。 3, the first evaporation source 2A is arranged on the downstream side of the substrate P transported in the direction of the arrow, and the second evaporation source 2B is arranged on the upstream side thereof. At this time, on the substrate P surface, from the first evaporation source 2A, in the vapor deposition area 11 constituted by the vapor deposition area end 11A and the other vapor deposition area end 11B, the emission layer forming gas is 11C normal. It is injected in the direction to do. Similarly, from the second evaporation source 2B, in the vapor deposition area 12 constituted by the vapor deposition area end portion 12A and the other vapor deposition area end portion 12B, the light emitting layer forming gas is injected in a direction having 12C as a normal line. The
 本発明でいう蒸着エリアとは、以下のように定義する。 The vapor deposition area as used in the present invention is defined as follows.
 図4は、蒸着源により形成される蒸着エリアを説明する概略図である。 FIG. 4 is a schematic diagram for explaining a vapor deposition area formed by a vapor deposition source.
 前記図2に記載の構成からなる蒸着源を用い、図4に示すように、蒸着源2Aのノズル3Aより各色ドーパント及びホスト化合物を含有する発光層形成用ガスが吐出されるが、そのイオン強度としては中心部11Cが最大値となり、周辺部になるに従い図4に示すようにイオン強度は低下していく。 As shown in FIG. 4, the light emitting layer forming gas containing each color dopant and host compound is discharged from the nozzle 3 </ b> A of the vapor deposition source 2 </ b> A using the vapor deposition source having the configuration shown in FIG. 2. As shown in FIG. 4, the ionic strength decreases as the central portion 11C becomes the maximum value and becomes the peripheral portion.
 この様なイオン強度分布を有するプロファイルにおいて、本発明でいう蒸着エリアは、最大値を示す中心部における出力強度をPWmaxとしたとき、PWmax×0.05の出力強度を有する領域範囲(PWmin)までを蒸着エリアと定義する。すなわち、最大出力強度PWmaxを100%としたとき、両端部で最大出力強度PWmaxの5%までの領域とする。 In the profile having such an ion intensity distribution, the vapor deposition area referred to in the present invention is up to a region range (PWmin) having an output intensity of PWmax × 0.05, where PWmax is the output intensity at the central portion showing the maximum value. Is defined as a deposition area. That is, when the maximum output intensity PWmax is set to 100%, it is set as an area up to 5% of the maximum output intensity PWmax at both ends.
 本発明においては、蒸着源が保持するドーパント化合物が、青色発光ドーパント、緑色発光ドーパント、赤色発光ドーパントであり、複数の蒸着源における該青色発光ドーパントの濃度が異なり、発光層中で青色発光ドーパントが厚さ方向で傾斜濃度を有していることが好ましい。 In the present invention, the dopant compound held by the vapor deposition source is a blue light emitting dopant, a green light emitting dopant, and a red light emitting dopant, and the concentration of the blue light emitting dopant in the plurality of vapor deposition sources is different, and the blue light emitting dopant is present in the light emitting layer. It is preferable to have a gradient concentration in the thickness direction.
 すなわち、第2の蒸着源2Bにおける青色発光ドーパント濃度に対し、第1の蒸着源2Aにおける青色発光ドーパント濃度を高濃度となるように設定する。すなわち、上記2)項で規定するように、複数の蒸着源において、お互いにホスト化合物に対するドーパント化合物の質量比率を異なる構成とする。 That is, the blue light emission dopant concentration in the first vapor deposition source 2A is set to be higher than the blue light emission dopant concentration in the second vapor deposition source 2B. That is, as defined in the above item 2), the mass ratio of the dopant compound to the host compound is different from each other in the plurality of vapor deposition sources.
 また、本発明においては、蒸着源が保持するドーパント化合物が、青色発光ドーパント、緑色発光ドーパント、赤色発光ドーパントであり、複数の蒸着源における緑色発光ドーパント及び赤色発光ドーパントの濃度が等しく、発光層中で該緑色発光ドーパント及び赤色発光ドーパントの濃度が厚さ方向で均一であることが好ましい。すなわち、緑色発光ドーパント及び赤色発光ドーパント濃度を、2つの蒸着源2A、2B間で同一濃度に設定することにより、形成する発光層の全膜厚域において一定濃度とすることができる。 In the present invention, the dopant compound held by the vapor deposition source is a blue light emission dopant, a green light emission dopant, and a red light emission dopant, and the concentrations of the green light emission dopant and the red light emission dopant in the plurality of vapor deposition sources are equal, It is preferable that the concentration of the green light-emitting dopant and the red light-emitting dopant is uniform in the thickness direction. That is, by setting the green light emission dopant and the red light emission dopant concentration to the same concentration between the two vapor deposition sources 2A and 2B, the concentration can be made constant in the entire film thickness region of the light emitting layer to be formed.
 さらに、図3に示すように、第1の蒸着源2Aより形成される蒸着エリア11と第2の蒸着源より形成される蒸着エリア12の一部が、基板P上でオーバーラップする構成、すなわち、上記3)項で規定するように、該基板上における該複数の蒸着源の蒸着エリアが重なり合う領域が、全蒸着エリアの10%以上であることを特徴とする。詳しくは、基板P上には、第1の蒸着源2Aより射出される、より高濃度の青色発光ドーパントを含有する発光層形成用ガス単独により形成されるエリアIと、第1の蒸着源2Aより射出される高濃度の青色発光ドーパントを含有する発光層形成用ガスと、第2の蒸着源2Bより射出される低濃度の青色発光ドーパントを含有する発光層形成用ガスとの混合により形成される中濃度域であるエリアIIと、第2の蒸着源2Bより射出される低濃度の青色発光ドーパントを含有する発光層形成用ガスにより低濃度域であるエリアIIIが形成される。本発明で規定する該基板上における該複数の蒸着源の蒸着エリアが重なり合う領域が、全蒸着エリアの10%以上であるとは、全蒸着エリア(エリアI+エリアII+エリアIII)に対するエリアIIの比率をいい、このエリアIIの比率としては、更には20%以上であることが好ましく、特に好ましくは上限として100%を含む35%以上である。 Further, as shown in FIG. 3, a configuration in which the vapor deposition area 11 formed by the first vapor deposition source 2 </ b> A and a part of the vapor deposition area 12 formed by the second vapor deposition source overlap on the substrate P, that is, As defined in the above item 3), the area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area. Specifically, on the substrate P, the area I formed by the light emitting layer forming gas alone containing the higher concentration blue light emitting dopant, which is emitted from the first vapor deposition source 2A, and the first vapor deposition source 2A. It is formed by mixing a light emitting layer forming gas containing a high concentration blue light emitting dopant that is emitted more from a light emitting layer forming gas containing a low concentration blue light emitting dopant that is emitted from the second vapor deposition source 2B. The area II which is the low concentration region is formed by the area II which is the intermediate concentration region and the light emitting layer forming gas containing the low concentration blue light emitting dopant emitted from the second vapor deposition source 2B. The area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate as defined in the present invention is 10% or more of the total vapor deposition area. The ratio of the area II to the total vapor deposition area (area I + area II + area III) The ratio of the area II is further preferably 20% or more, and particularly preferably 35% or more including 100% as the upper limit.
 本発明においては、複数の蒸着源の吐出面と、基板面とが、図7のa)に示すように平行であっても良いが、より好ましい構成としては、図3及び図6に示すように、各蒸着源2A、2Bの吐出法線11C、12Cに対する面14が、基板P面に対し非平行となるように配置することが、発光層のエリアIIにおける形成時に、濃度傾斜構造を安定して形成できる観点から好ましい。 In the present invention, the discharge surfaces of the plurality of vapor deposition sources and the substrate surface may be parallel as shown in FIG. 7 a, but a more preferable configuration is as shown in FIGS. 3 and 6. In addition, the surface 14 with respect to the discharge normals 11C and 12C of the respective vapor deposition sources 2A and 2B is arranged so as to be non-parallel to the surface of the substrate P. From the viewpoint of being formed.
 従って、本発明においては、図3に示すように、蒸着源2Aの吐出法線11Cと基板Pとの交点11Dと、蒸着源2Bの吐出法線12Cと基板Pとの交点12Dとは異なった位置となる。 Therefore, in the present invention, as shown in FIG. 3, the intersection point 11D between the discharge normal line 11C of the vapor deposition source 2A and the substrate P and the intersection point 12D between the discharge normal line 12C of the vapor deposition source 2B and the substrate P are different. Position.
 上記のような構成により基板P上に発光層を形成することにより、中濃度域であるエリアIIにおいて、青色発光ドーパント濃度として傾斜濃度を有する発光層を形成することができる。 By forming the light-emitting layer on the substrate P with the above-described configuration, a light-emitting layer having a gradient concentration as the blue light-emitting dopant concentration can be formed in the area II that is an intermediate concentration region.
 図5は、発光層中における青色発光ドーパント濃度のプロファイルの一例を示すグラフで、縦軸に青色発光ドーパント濃度(イオン強度)、横軸に発光層の膜厚を示しており、膜厚の最小値側が陽極側であり、膜厚の最大値側が陰極側である。図5に示すように、蒸着エリアとして、青色発光ドーパントが高濃度のエリアIと、中濃度域であるエリアII及び低濃度域のエリアIIIとすることにより、陽極近傍の領域では青色発光ドーパント濃度を高く設定し、それ以降は順次濃度が緩やかに低下するエリアIIを、蒸着源2Aと蒸着源2Bを用いて、全蒸着エリアの10%以上の範囲で形成し、最後に、陰極近傍に青色発光ドーパント濃度が低いエリアIIIを蒸着源2B単独で形成する。 FIG. 5 is a graph showing an example of a profile of the blue light emitting dopant concentration in the light emitting layer, where the vertical axis indicates the blue light emitting dopant concentration (ionic strength), and the horizontal axis indicates the film thickness of the light emitting layer. The value side is the anode side, and the maximum value side of the film thickness is the cathode side. As shown in FIG. 5, as the vapor deposition area, a blue light emitting dopant concentration area I, an intermediate concentration area II, and a low concentration area area III are obtained. After that, the area II where the concentration gradually decreases gradually is formed in the range of 10% or more of the total evaporation area using the evaporation source 2A and the evaporation source 2B, and finally the blue color near the cathode Area III having a low luminescent dopant concentration is formed by the vapor deposition source 2B alone.
 本発明において、有機EL素子の発光層中に含まれる発光ドーパントの濃度分布は、TOF-SIMS(飛行時間型二次イオン質量分析)により、膜厚方向で検出することができる。本発明においては、発光ドーパントの構成元素、例えば、Ir等を標的元素として選択して、発光層の深さ方向における元素分析を行い、その結果から、発光層中における発光ドーパントの濃度勾配を測定することができる。 In the present invention, the concentration distribution of the light-emitting dopant contained in the light-emitting layer of the organic EL element can be detected in the film thickness direction by TOF-SIMS (time-of-flight secondary ion mass spectrometry). In the present invention, a constituent element of a light emitting dopant, for example, Ir or the like is selected as a target element, elemental analysis in the depth direction of the light emitting layer is performed, and the concentration gradient of the light emitting dopant in the light emitting layer is measured from the result. can do.
 以下、発光ドーパントの構成元素として、Irを標的元素として用いた場合の測定の一例を示す。 Hereinafter, an example of measurement when Ir is used as a target element as a constituent element of the luminescent dopant will be described.
 〈発光層の標的元素(Ir)の濃度勾配分析〉
 発光層における標的元素の濃度勾配の分析は、標的元素としてIr(イリジウム)を選択し、発光層における深さ方向の元素分析を行う。化合物そのものを計測したい場合は飛行時間型二次イオン質量分析(ToF-SIMS)法が好ましい。この場合、有機層を斜めに削り取り、削り取った斜め断面部分について、化合物から得られるフラグメントイオンの分布を計測することにより、ドーパント化合物の深さ方向の分布を知ることができる。斜めに削る方法としては電子顕微鏡の試料作製に用いるウルトラミクロトームを用いる方法、ダイプラウインテス製サイカスNN型などの精密斜め切削装置を用いる方法が挙げられる。ToF-SIMS法については、例えば、日本表面科学会「二次イオン質量分析法(表面科学技術選書)」(丸善)等を参考にすることができる。ToF-SIMS法は、10-8Pa程度の高真空下で一次イオンと呼ばれるイオンビームを試料表面に照射しスパッタリングを行う。一次イオンビームを非常に低電流とし、かつパルス状にすることにより、非常に穏やかなスパッタリングがおこり、それにより放出された二次イオンを質量分析することにより表面に存在する化合物分析する方法である。一次イオンを走査しながら測定することにより、スパッタリングで放出された二次イオンの分布を計測することができる。
<Concentration gradient analysis of target element (Ir) in light emitting layer>
For analysis of the concentration gradient of the target element in the light emitting layer, Ir (iridium) is selected as the target element, and elemental analysis in the depth direction in the light emitting layer is performed. When it is desired to measure the compound itself, the time-of-flight secondary ion mass spectrometry (ToF-SIMS) method is preferred. In this case, the distribution of the dopant compound in the depth direction can be known by measuring the distribution of fragment ions obtained from the compound in the oblique cross-section portion that has been cut off obliquely and the shaved cross-section. Examples of the oblique cutting method include a method using an ultramicrotome used for preparing a sample for an electron microscope, and a method using a precision oblique cutting device such as a die-plautes Cycus NN type. For the ToF-SIMS method, for example, the Japanese Society of Surface Science “Secondary Ion Mass Spectrometry (Surface Science and Technology Selection)” (Maruzen) can be referred to. In the ToF-SIMS method, sputtering is performed by irradiating a sample surface with an ion beam called primary ions under a high vacuum of about 10 −8 Pa. It is a method of analyzing compounds present on the surface by mass spectrometry of secondary ions emitted by very gentle sputtering by making the primary ion beam very low current and pulsed. . By measuring while scanning the primary ions, the distribution of secondary ions emitted by sputtering can be measured.
 本発明における青色発光ドーパントの発光層内における濃度分布プロファイルの有効性について、更に詳しく説明する。本発明においては、青色発光ドーパントの正孔輸送性が高い材料の場合、発光層の陽極側端部において高濃度に含有されており、陰極側へ向けて低濃度となるように濃度分布を持っている構成であることが好ましい。発光層の陽極側界面から発光層中央部まで部分の青色発光ドーパントの平均含有量が、陰極側界面から発光層中央部までの平均含有量より多ければよいが、好ましくは陽極側端部が最も高濃度であり、陽極側端部から陰極側端部へかけて単調に減少していくのが好ましい。単調に減少するとは前記発光層の陽極側端部を除き、極大濃度部分を有さないということである。本発明において、陽極側端部とは前記発光層の陽極側界面から5nm、もしくは前記発光層全体の1/20の厚さの内、薄い方の厚さの領域を指し、陰極側端部とは前記発光層の陰極側界面から5nm、もしくは前記発光層全体の1/20の厚さの内、薄い方の厚さの領域を指す。 The effectiveness of the concentration distribution profile in the light emitting layer of the blue light emitting dopant in the present invention will be described in more detail. In the present invention, in the case of a material having a high hole transporting property of the blue light emitting dopant, it is contained at a high concentration at the anode side end of the light emitting layer, and has a concentration distribution so that the concentration decreases toward the cathode side. It is preferable that it is the structure which has. The average content of the blue light emitting dopant in the portion from the anode side interface of the light emitting layer to the center portion of the light emitting layer may be larger than the average content from the cathode side interface to the center portion of the light emitting layer, but preferably the end portion on the anode side is the most. It is preferable that the concentration is high and decreases monotonically from the anode side end to the cathode side end. Monotonically decreasing means that there is no maximum concentration portion except for the anode side end of the light emitting layer. In the present invention, the anode side end portion refers to a region having a smaller thickness of 5 nm from the anode side interface of the light emitting layer or 1/20 of the thickness of the entire light emitting layer, Denotes a region having a smaller thickness of 5 nm from the cathode side interface of the light emitting layer or 1/20 of the entire light emitting layer.
 青色発光ドーパントの電子輸送性が高い場合には、前記発光層の陰極側において高濃度に含有させ、陽極側へ向けて低濃度となるように濃度分布を持って存在させると同様の効果が得られる。 If the blue light-emitting dopant has a high electron transport property, the same effect can be obtained if it is contained at a high concentration on the cathode side of the light-emitting layer and has a concentration distribution so that the concentration decreases toward the anode side. It is done.
 本発明の構成の発光層により、電力効率に優れ、寿命かつ色度の安定性や均一性に優れた有機エレクトロルミネッセンス素子が得られる。 The light emitting layer having the structure of the present invention provides an organic electroluminescence device having excellent power efficiency, long life, and excellent chromaticity stability and uniformity.
 一方、図5に示す発光層全域(エリアI~エリアIII)においては、緑色発光ドーパント及び赤色発光ドーパントの濃度は一定となっていることが好ましい。 On the other hand, in the entire light emitting layer (area I to area III) shown in FIG. 5, it is preferable that the concentrations of the green light emitting dopant and the red light emitting dopant are constant.
 以下に、本発明における発光層内における緑色発光ドーパント及び赤色発光ドーパントの濃度分布について詳細に説明する。 Hereinafter, the concentration distribution of the green light emitting dopant and the red light emitting dopant in the light emitting layer in the present invention will be described in detail.
 本発明においては、青色、緑色、赤色の燐光発光ドーパントを同一の発光層中に含有する場合には、最低励起三重項エネルギー準位(T1)が高い青色発光ドーパントから最低励起三重項エネルギー準位の低い緑色発光ドーパントや赤色発光ドーパントに励起子のエネルギー移動があるため、青色・緑色・赤色の濃度を同じにした場合には、青がほとんど発光せずに、白色発光が得られない。そのため、蒸着により発光層を形成する場合には、例えば、青色、緑色、赤色の発光ドーパントの濃度をそれぞれ15体積%、0.13体積%、0.13体積%にして共蒸着すること白色の発光が得られる。この場合、青色発光ドーパントは濃度変動の影響を受けないが、低濃度である緑色発光ドーパントと赤色発光ドーパントは、蒸着レートを低レートにする必要があり、低レートのため蒸着レートが不安定な上に蒸着レートの僅かな変動により色ムラが生じ易い。そのため、本発明に係る有機EL素子の発光層においては、緑色発光ドーパント及び赤色発光ドーパントが、低濃度のドーパントとして発光層中に均一に分布させることが重要である。 In the present invention, when blue, green, and red phosphorescent dopants are contained in the same light emitting layer, the lowest excited triplet energy level is changed from the blue emitting dopant having the highest lowest excited triplet energy level (T1). Since the green light-emitting dopant and the red light-emitting dopant with low energy have exciton energy transfer, when the blue, green, and red concentrations are the same, blue hardly emits light and white light emission cannot be obtained. Therefore, when the light emitting layer is formed by vapor deposition, for example, the co-evaporation is performed by setting the concentrations of the light emitting dopants of blue, green, and red to 15% by volume, 0.13% by volume, and 0.13% by volume, respectively. Luminescence is obtained. In this case, the blue light-emitting dopant is not affected by the concentration fluctuation, but the low-concentration green light-emitting dopant and the red light-emitting dopant need to have a low deposition rate, and the deposition rate is unstable due to the low rate. Color unevenness is likely to occur due to slight fluctuations in the deposition rate. Therefore, in the light emitting layer of the organic EL device according to the present invention, it is important that the green light emitting dopant and the red light emitting dopant are uniformly distributed in the light emitting layer as low concentration dopants.
 《有機EL素子の構成要素》
 次いで、本発明に係る有機EL素子の各構成要素の詳細について説明する。
<Components of organic EL elements>
Next, details of each component of the organic EL element according to the present invention will be described.
 〔発光層の構成要素〕
 (発光ドーパント)
 はじめに、本発明に係る発光ドーパントについて説明する。
[Components of light-emitting layer]
(Luminescent dopant)
First, the light emitting dopant according to the present invention will be described.
 本発明に係る発光ドーパントとしては、燐光発光ドーパント(以下、燐光発光体、燐光性化合物、燐光発光性化合物ともいう)と、蛍光発光ドーパントがあり、本発明ではどちらを用いてもよいが、発光効率向上のために、燐光発光体を用いる方がより好ましい。 Examples of the light emitting dopant according to the present invention include a phosphorescent light emitting dopant (hereinafter also referred to as a phosphorescent light emitter, a phosphorescent compound, and a phosphorescent light emitting compound) and a fluorescent light emitting dopant. In order to improve efficiency, it is more preferable to use a phosphorescent emitter.
 〈燐光発光性ドーパント〉
 本発明に適用可能な燐光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にて燐光発光する化合物であり、燐光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。
<Phosphorescent dopant>
The phosphorescent dopant applicable to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.) and has a phosphorescence quantum yield. The phosphorescence quantum yield is preferably 0.1 or more, although it is defined as a compound of 0.01 or more at 25 ° C.
 上記燐光量子収率は、例えば、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。 The phosphorescent quantum yield can be measured, for example, by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
 燐光発光性ドーパントの発光の原理としては、2タイプが挙げられ、一つのタイプはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光性ドーパントに移動させることで燐光発光性ドーパントからの発光を得るというエネルギー移動型、もう一つのタイプは、燐光発光性ドーパントがキャリアトラップとなり、燐光発光性ドーパント上でキャリアの再結合が生じ、燐光発光性ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光性ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission principles of phosphorescent dopants. One type is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is phosphorescent. The energy transfer type that obtains light emission from the phosphorescent dopant by transferring to the phosphorescent dopant, and the other type is that the phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant, Although it is a carrier trap type in which light emission from a phosphorescent dopant can be obtained, in any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound. .
 燐光発光性ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
 本発明に係る燐光発光性ドーパントとしては、好ましくは元素の周期表で8族~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound.
 具体的には以下の特許公報に記載されている化合物であり、例えば、国際公開第00/70655号パンフレット、特開2002-280178号公報、同2001-181616号公報、同2002-280179号公報、同2001-181617号公報、同2002-280180号公報、同2001-247859号公報、同2002-299060号公報、同2001-313178号公報、同2002-302671号公報、同2001-345183号公報、同2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、同2002-50484号公報、同2002-332292号公報、同2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、同2002-338588号公報、同2002-170684号公報、同2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、同2002-100476号公報、同2002-173674号公報、同2002-359082号公報、同2002-175884号公報、同2002-363552号公報、同2002-184582号公報、同2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、同2002-226495号公報、同2002-234894号公報、同2002-235076号公報、同2002-241751号公報、同2001-319779号公報、同2001-319780号公報、同2002-62824号公報、同2002-100474号公報、同2002-203679号公報、同2002-343572号公報、同2002-203678号公報等に記載されている化合物を用いることができる。 Specifically, it is a compound described in the following patent publications, for example, International Publication No. 00/70655 pamphlet, JP 2002-280178 A, 2001-181616, 2002-280179, 2001-181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002-324679, WO 02/15645, JP-A 2002-332291, 2002-50484, 2002-332292, 2002-83684, 2002-540572 Publication, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No. 2002-359082, No. 2002-175484, No. 2002-363552, No. 2002-184582, No. 2003-7469, No. 2002-525808 JP2003-7471, JP2002-525833A, JP2003-31366A, 2002-226495, 2002-234894, 2002-233506, 2002-2417. No. 1, No. 2001-319779, No. 2001-319780, No. 2002-62824, No. 2002-1000047, No. 2002-203679, No. 2002-343572, No. 2002-203678. Can be used.
 また、これら例示されている化合物は、例えば、Inorg.Chem.,40巻、1704~1711に記載の方法に準じて合成することができる。 In addition, these exemplified compounds are, for example, Inorg. Chem. , 40, 1704 to 1711.
 (ホスト化合物)
 次に、発光層に含まれるホスト化合物について説明する。
(Host compound)
Next, the host compound contained in the light emitting layer will be described.
 本発明に係る有機EL素子の発光層に含まれるホスト化合物とは、室温(25℃)における燐光発光の燐光量子収率が、0.1未満の化合物であることが好ましく、更に好ましくは燐光量子収率が0.01未満の化合物である。また、発光層に含有される化合物の中で、その層中での質量比が20質量%以上であることが好ましい。 The host compound contained in the light emitting layer of the organic EL device according to the present invention is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1, more preferably phosphorescence quantum. The compound yield is less than 0.01. Moreover, in the compound contained in a light emitting layer, it is preferable that the mass ratio in the layer is 20 mass% or more.
 本発明に係るホスト化合物としては、ホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。 As the host compound according to the present invention, the host compound may be used alone or in combination of two or more.
 本発明に用いられる発光ホスト化合物としては、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、または、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。 The light-emitting host compound used in the present invention is not particularly limited in terms of structure, but typically, a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, Those having a basic skeleton such as an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (herein, a diazacarbazole derivative means that at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is nitrogen Represents an atom substituted with an atom).
 また、本発明に用いるホスト化合物は、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。 The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). .
 ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、高Tg(ガラス転移温度)である化合物が好ましい。 As the host compound, a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength and has a high Tg (glass transition temperature) is preferable.
 従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 As specific examples of conventionally known host compounds, compounds described in the following documents are suitable. For example, Japanese Patent Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
 本発明においては、複数の発光層を有する場合には、ホスト化合物は発光層ごとに異なっていてもよいが、同一の化合物であることが優れた駆動寿命特性が得られることから好ましい。 In the present invention, in the case of having a plurality of light emitting layers, the host compound may be different for each light emitting layer, but it is preferable that they are the same compound because excellent driving life characteristics can be obtained.
 また、前記ホスト化合物は、その最低励起3重項エネルギー(T1)が、2.7eVより大きいことがより高い発光効率を得られることから好ましい。本発明でいう最低励起3重項エネルギーとは、ホスト化合物を溶媒に溶解し、液体窒素温度において観測した燐光発光スペクトルの最低振動バンド間遷移に対応する発光バンドのピークエネルギーを言う。 Further, it is preferable that the host compound has a minimum excitation triplet energy (T1) larger than 2.7 eV because higher luminous efficiency can be obtained. The lowest excited triplet energy as used in the present invention refers to the peak energy of an emission band corresponding to the transition between the lowest vibrational bands of a phosphorescence emission spectrum observed at a liquid nitrogen temperature after dissolving a host compound in a solvent.
 本発明においては、ガラス転移点が90℃以上の化合物が好ましく、更には130℃以上の化合物が優れた駆動寿命特性を得られることから好ましい。 In the present invention, a compound having a glass transition point of 90 ° C. or higher is preferable, and a compound having a glass transition temperature of 130 ° C. or higher is preferable because excellent driving life characteristics can be obtained.
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 本発明に係る有機EL素子においては、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は、一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は、正孔と電子注入・輸送バランスを崩しやすい為、中間層材料、ホスト材料は、移動度の電界強度依存性の少ない材料を用いることが好ましい。 In the organic EL device according to the present invention, since the host material is responsible for carrier transportation, a material having carrier transportation ability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance of hole and electron injection / transport, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
 次いで、本発明に係る有機EL素子の発光層以外のその他の構成層について説明する。 Next, other constituent layers other than the light emitting layer of the organic EL device according to the present invention will be described.
 〔注入層:電子注入層、正孔注入層〕
 注入層は必要に応じて設けることができ、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
[Injection layer: electron injection layer, hole injection layer]
The injection layer can be provided as necessary, and may exist between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設ける層のことで、例えば、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage and improve light emission luminance. For example, “Organic EL element and its forefront of industrialization (November 30, 1998, NTS Corporation) Issue) ”, Chapter 2,“ Electrode Materials ”(pages 123 to 166), which is described in detail, and has a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer). .
 陽極バッファー層(正孔注入層)の構成としては、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。また、特表2003-519432号公報に記載される材料を使用した層も好ましい。 Details of the structure of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples include a phthalocyanine buffer layer typified by copper phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. . Further, a layer using a material described in JP-T-2003-519432 is also preferable.
 陰極バッファー層(電子注入層)としては、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。 Details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
 上記バッファー層(注入層)はごく薄い膜であることが望ましく、使用する素材にもよるが、その膜厚は0.1nm~5μmの範囲が好ましい。 The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material used.
 〔阻止層:正孔阻止層、電子阻止層〕
 阻止層は、本発明に係る有機EL素子の基本構成層である発光層の他に、必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
[Blocking layer: hole blocking layer, electron blocking layer]
The blocking layer is provided as necessary in addition to the light emitting layer, which is the basic constituent layer of the organic EL device according to the present invention. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer as needed.
 本発明に係る有機EL素子に設ける正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer provided in the organic EL device according to the present invention is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
 本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは5nm~30nmである。 The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
 〔正孔輸送層〕
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層や電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては、上記の化合物を使用することができるが、更には、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, the above-mentioned compounds can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, as well as those described in US Pat. No. 5,061,569 Having four condensed aromatic rings in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-30 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 688 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)、特表2003-519432号公報に記載されているような、いわゆるp型半導体的性質を有するとされる正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004), JP-A-11-251067, J. MoI. Huang et. al. It is also possible to use a hole transport material that has so-called p-type semiconducting properties, as described in the literature (Applied Physics Letters 80 (2002), p. 139), JP 2003-519432 A. it can. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュアーブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等々の公知の薄膜形成法により製膜して形成することができる。正孔輸送層の膜厚については、特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 For the hole transport layer, the hole transport material may be selected from, for example, a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Blodget method), an ink jet method, a spray method, a printing method, a slot type coater method, etc. The film can be formed by a known thin film forming method. The film thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 〔電子輸送層〕
 電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層や正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び電子輸送層を複数層とする場合は、発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Conventionally, when a single electron transport layer and a plurality of electron transport layers are used, as an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side Any material may be used as long as it has a function of transmitting electrons injected from the cathode to the light-emitting layer, and any material known in the art can be selected and used. For example, nitro-substituted fluorene Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Further, the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as an electron transport material, and like the hole injection layer and the hole transport layer, inorganic such as n-type-Si and n-type-SiC can be used. A semiconductor can also be used as an electron transport material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア-ブロジェット法)、インクジェット法、スプレー法、印刷法、スロット型コータ法等の公知の薄膜形成法により製膜して形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 For the electron transport layer, the above-mentioned electron transport material is a known material such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir-Blodget method), an ink jet method, a spray method, a printing method, or a slot type coater method. The film can be formed by a thin film forming method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn型半導体的性質を有するとされる電子輸送材料を用いることもできる。その例としては、特開平4-297076号公報、特開平10-270172号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。 It is also possible to use an electron transport material that has n-type semiconductor properties doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn型半導体的性質を有するとされる電子輸送材料を用いることもより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport material that has such n-type semiconductor properties because an element with lower power consumption can be produced.
 〔基板〕
 本発明に係る有機EL素子に適用する基板(以下、基体、支持基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。基板側から光を取り出す場合には、基板は透明であることが好ましい。好ましく用いられる透明な基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
〔substrate〕
The substrate applied to the organic EL device according to the present invention (hereinafter also referred to as a substrate, a support substrate, a substrate, a support, etc.) is not particularly limited in the type of glass, plastic, etc., and is transparent. May be opaque. When extracting light from the substrate side, the substrate is preferably transparent. Examples of the transparent substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度が、0.01g/m・day・atm以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1992に準拠した方法で測定された酸素透過度が、10-3g/m/day以下、水蒸気透過度が、10-3g/m/day以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度、酸素透過度がいずれも10-5g/m/day以下であることが、更に好ましい。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned. An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability measured by a method according to JIS K 7129-1992 is 0.01 g / m 2. It is preferably a barrier film of day · atm or less, and further, the oxygen permeability measured by a method according to JIS K 7126-1992 is 10 −3 g / m 2 / day or less, water vapor permeability Is preferably a high barrier film of 10 −3 g / m 2 / day or less, and the water vapor permeability and oxygen permeability are both 10 −5 g / m 2 / day or less. Further preferred.
 バリア膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Furthermore, in order to improve the fragility of the film, it is more preferable to have a laminated structure of these inorganic layers and layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものも好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is also preferable.
 不透明な基板としては、例えば、アルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque substrate include a metal plate / film such as aluminum and stainless steel, an opaque resin substrate, a ceramic substrate, and the like.
 〔封止〕
 本発明に係る有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。
[Sealing]
Examples of the sealing means used for sealing the organic EL element according to the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Moreover, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、酸素透過度10-3g/m/day以下、水蒸気透過度10-3g/m/day以下のものであることが好ましい。また、前記の水蒸気透過度、酸素透過度がいずれも10-5g/m/day以下であることが、更に好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the organic EL element can be thinned. Furthermore, the polymer film preferably has an oxygen permeability of 10 −3 g / m 2 / day or less and a water vapor permeability of 10 −3 g / m 2 / day or less. Further, it is more preferable that both the water vapor permeability and the oxygen permeability are 10 −5 g / m 2 / day or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化および熱硬化型接着剤、2-シアノアクリル酸エステルなどの湿気硬化型等の接着剤を挙げることができる。また、エポキシ系などの熱および化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used. Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, the heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
 また、有機層を挟み支持基板と対向する側の電極の外側に、該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素などを用いることができる。更に該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法などを用いることができる。 In addition, it is also preferable to coat the electrode and the organic layer on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and form an inorganic or organic layer in contact with the support substrate to form a sealing film. it can. In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. it can. Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相および液相では、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected in the gas phase and the liquid phase. Is preferred. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物および過塩素酸類においては、無水塩であることが好適である。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, barium perchlorate) , Magnesium perchlorate, etc.), and sulfates, metal halides and perchloric acids are preferably anhydrous salts.
 〔保護膜、保護板〕
 有機層を挟み基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、有機EL素子の機械的強度を高めるために、保護膜あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマー板・フィルムを用いることが好ましい。
[Protective film, protective plate]
In order to increase the mechanical strength of the organic EL element, a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the substrate with the organic layer interposed therebetween. In particular, when sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. as those used for the sealing can be used, but the polymer plate is light and thin. -It is preferable to use a film.
 〔陽極〕
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式など湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。
〔anode〕
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not so high (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. When light emission is taken out from the anode, it is desirable that the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
 〔陰極〕
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
〔cathode〕
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《有機EL素子の作製方法》
 本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層(本発明の有機EL素子の製造方法に準じて形成)/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法について説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, anode / hole injection layer / hole transport layer / light emitting layer (formed in accordance with the method for producing the organic EL device of the present invention) / hole blocking layer / electron transport A method for producing an organic EL element having a layer / cathode will be described.
 まず適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、次いで本発明の有機EL素子の製造方法に準じて発光層を形成し、更に正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。 First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 μm or less, preferably 10 nm to 200 nm, by a method such as vapor deposition or sputtering to produce an anode. . Next, a hole injection layer which is an organic EL element material, a hole transport layer, and then a light emitting layer are formed according to the method for producing an organic EL element of the present invention, and further a hole blocking layer and an electron transport layer. An organic compound thin film is formed.
 この発光層を除く有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法、LB法(ラングミュアーブロジェット法)、スプレー法、印刷法、スロット型コータ法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法、スロット型コータ法が特に好ましい。更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50℃~450℃、真空度10-6Pa~10-2Pa、蒸着速度0.01nm/秒~50nm/秒、基板温度-50℃~300℃、膜厚0.1nm~5μm、好ましくは5nm~200nmの範囲で適宜選ぶことが望ましい。これらの層を形成後、その上に陰極用物質からなる薄膜を、1μm以下好ましくは50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 As a method of thinning the organic compound thin film excluding the light emitting layer, as described above, vapor deposition method, wet process (spin coating method, casting method, ink jet method, printing method, LB method (Langmuir Blodget method), spray method Printing method, slot type coater method, etc., but it is easy to obtain a homogeneous film and it is difficult to generate pinholes, vacuum deposition method, spin coating method, ink jet method, printing method, slot type. The coater method is particularly preferred. Further, different film forming methods may be applied for each layer. When the vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 ° C. to 450 ° C., the degree of vacuum is 10 −6 Pa to 10 −2 Pa, and the vapor deposition rate is 0. It is desirable to select appropriately within the range of 01 nm / second to 50 nm / second, substrate temperature −50 ° C. to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 nm to 200 nm. After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained. The organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V~40V程度を印加すると、発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 It is also possible to reverse the production order to produce a cathode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。 An organic electroluminescence device emits light inside a layer having a refractive index higher than that of air (refractive index of about 1.6 to 2.1), and can extract only about 15% to 20% of light generated in the light emitting layer. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)などが挙げられる。 As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No. 62-172691), lower refractive than the substrate between the substrate and the light emitter A method of introducing a flat layer having a refractive index (for example, Japanese Patent Application Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer, and the light emitting layer (including between the substrate and the outside) ( JP 1 No. -283751 Publication), and the like.
 本発明においては、これらの方法を本発明の有機エレクトロルミネッセンス素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic electroluminescence device of the present invention, but a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, A method of forming a diffraction grating between any layers of the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。 When a low refractive index medium is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. .
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマーなどが挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
 また、低屈折率媒質の厚みは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面または、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface that causes total reflection or in any medium is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction. The light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 However, by making the refractive index distribution a two-dimensional distribution, the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
 回折格子を導入する位置としては、いずれかの層間、もしくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状など、2次元的に配列が繰り返されることが好ましい。 The position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium. The arrangement of the diffraction gratings is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
 本発明の有機エレクトロルミネッセンス素子は、支持基板(基板)の光取出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、あるいは、所謂集光シートと組み合わせたりすることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。 The organic electroluminescence device of the present invention is processed in a specific direction by, for example, providing a structure on a microlens array on the light extraction side of a support substrate (substrate) or combining it with a so-called condensing sheet. For example, the brightness | luminance in a specific direction can be raised by condensing in a front direction with respect to an element light emission surface.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。 As the condensing sheet, it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, a substrate may be formed with a Δ-shaped stripe having an apex angle of 90 degrees and a pitch of 50 μm, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)などを用いることができる。 Further, in order to control the light emission angle from the organic EL element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《照明装置》
 本発明に係る有機EL素子を適用した照明装置について説明する。
《Lighting device》
An illumination device to which the organic EL element according to the present invention is applied will be described.
 本発明に係る有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。 The organic EL device according to the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a display that directly recognizes a still image or a moving image. It may be used as a device (display). The driving method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
 本発明に用いられる白色有機エレクトロルミネッセンス素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよい。発光層に用いる発光ドーパントとしては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルタ)特性に対応した波長範囲に適合するように、本発明に係る白金錯体、また公知の発光ドーパントの中から任意のものを選択して組み合わせて、また本発明係る光取り出し及び/または集光シートと組み合わせて、白色化すればよい。 In the white organic electroluminescence element used in the present invention, patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned. The light emitting dopant used in the light emitting layer is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the platinum complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Any one of known light-emitting dopants may be selected and combined, or combined with the light extraction and / or light collecting sheet according to the present invention to be whitened.
 このように、本発明の白色の有機EL素子は、CF(カラーフィルタ)と組み合わせて、また、CF(カラーフィルタ)パターンに合わせ素子及び駆動トランジスタ回路を配置することで、請求項7に記載されるように有機エレクトロルミネッセンス素子から取り出される白色光をバックライトとして、青色フィルタ、緑色フィルタ、赤色フィルタを介して青色光、緑色光、赤色光を得ることで、低駆動電圧で長寿命のフルカラーの有機エレクトロルミネッセンスディスプレイができ、好ましい。 Thus, the white organic EL element of the present invention is described in claim 7 by combining the CF (color filter) and arranging the element and the driving transistor circuit in accordance with the CF (color filter) pattern. In this way, white light extracted from the organic electroluminescence device is used as a backlight, and blue light, green light, and red light are obtained through a blue filter, a green filter, and a red filter. An organic electroluminescence display is preferable and preferable.
 《本発明に係る有機EL素子を適用した産業分野》
 本発明に係る有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサの光源等が挙げられるがこれに限定するものではないが、特にカラーフィルタや光拡散板、光取り出しフィルムなどと組み合わせた各種表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<< Industrial field to which the organic EL element according to the present invention is applied >>
The organic EL element according to the present invention can be used as a display device, a display, and various light sources. Examples of light sources include home lighting, interior lighting, backlights for watches and liquid crystals, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Although it is not limited to this, it can be effectively used for backlights of various display devices combined with color filters, light diffusion plates, light extraction films, etc., and as a light source for illumination.
 本発明に係る有機EL素子の特徴を活かして、商品展示・ディスプレイ用照明、インテリア・家具・建築材料用の組み込み照明、自動車用照明、発光表示体、公共交通機関(電車、地下鉄、バス、航空機、船舶など)における車内の照明や表示体、OA機器用光源、産業用検査システム(例えば、画像センサ用に使用される照明光源、バックライト等)、農産物栽培用光源、避難用照明、撮影用照明、家電製品(ミシン、電子レンジ、食器洗浄乾燥機、冷蔵庫、AV機器などの光源)、遊技施設、イルミネーション用照明、持ち物・衣服につける照明、通信用光源、医療用光源等のほかに、特開2001-269105号公報に示されるような害虫防除装置として、特開2001-286373号公報に示されるような鏡用の照明として、特開2003-288995号公報に示されるような浴室照明システムとして、特開2004-321074号公報に示される植物育成用人工光源として、特開2004-354232号公報に示されるような水質汚れ測定装置の発光体として、特開2004-358063号公報に示されるような光感受性薬剤を用いた治療用被着体として、特開2005-322602号公報に示されるような医療用無影灯として、有用である。 Utilizing the characteristics of the organic EL device according to the present invention, product display / display lighting, built-in lighting for interior / furniture / building materials, automotive lighting, light-emitting display, public transportation (train, subway, bus, aircraft) , Ships, etc.) in-car lighting and display bodies, light sources for OA equipment, industrial inspection systems (for example, illumination light sources used for image sensors, backlights, etc.), light sources for agricultural products, evacuation lighting, and photography In addition to lighting, home appliances (light sources for sewing machines, microwave ovens, dishwashers / dryers, refrigerators, AV equipment, etc.), amusement facilities, illumination lighting, lighting for belongings and clothes, communication light source, medical light source, As a pest control apparatus as disclosed in JP 2001-269105 A, as a mirror illumination as disclosed in JP 2001-286373 A, As a bathroom lighting system as disclosed in Japanese Unexamined Patent Publication No. 2003-288895, as an artificial light source for plant growth as disclosed in Japanese Patent Application Laid-Open No. 2004-321074, a water pollution measuring device as disclosed in Japanese Patent Application Laid-Open No. 2004-354232 is disclosed. As a light-emitting body, a therapeutic adherend using a photosensitive drug as disclosed in JP-A-2004-358063, useful as a medical surgical light as disclosed in JP-A-2005-322602. is there.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《有機EL素子》
 〔有機EL素子1の作製〕
 (陽極の形成)
 陽極として30mm×30mm、厚さ0.7mmのガラス基板上に、ITO(インジウムチンオキシド)を110nmの厚さで成膜し、基板にパターニングを行った後、このITO透明電極を付けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定した。
<< Organic EL element >>
[Production of Organic EL Element 1]
(Formation of anode)
Transparent support with this ITO transparent electrode attached after depositing ITO (Indium Tin Oxide) with a thickness of 110 nm on a 30 mm × 30 mm, 0.7 mm thick glass substrate as an anode. The substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 (正孔注入層の形成)
 次いで、真空度1×10-4Paまで減圧した後、m-MTDATAの入ったモリブデン製の蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し、20nmの正孔注入層を設けた。
(Formation of hole injection layer)
Next, after reducing the vacuum to 1 × 10 −4 Pa, the molybdenum deposition crucible containing m-MTDATA was energized and heated, and deposited on a transparent support substrate at a deposition rate of 0.1 nm / second to 20 nm. The hole injection layer was provided.
 (正孔輸送層の形成)
 次いで、真空度1×10-4Paで、α-NPDの入ったモリブデン製の蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で蒸着し、30nmの正孔輸送層を設けた。
(Formation of hole transport layer)
Next, with a vacuum degree of 1 × 10 −4 Pa, the molybdenum vapor deposition crucible containing α-NPD was energized and heated, and vapor deposition was performed at a vapor deposition rate of 0.1 nm / second to provide a 30 nm hole transport layer. It was.
 (発光層の形成方法1)
 図2に記載の構成からなる蒸着源を1基のみ使用し、正孔輸送層を設けた基板と蒸着源との配置を図7のd)で示す構成とし、図8のa)-1に示すように発光層全層にわたり、青色発光ドーパントが35質量%の均一濃度で構成されている発光層1を形成した。この方法を発光層の形成方法1という。
(Light emitting layer forming method 1)
Only one vapor deposition source having the configuration shown in FIG. 2 is used, and the arrangement of the substrate provided with the hole transport layer and the vapor deposition source is as shown in FIG. 7 d). As shown, the light emitting layer 1 in which the blue light emitting dopant was formed at a uniform concentration of 35% by mass was formed over the entire light emitting layer. This method is referred to as a light emitting layer forming method 1.
 詳しくは、図2に記載の青色発光ドーパントを保持するホルダーBDの原料パレット7に青色発光ドーパントとしてFIrpic(化合物B)を装填し、緑色発光ドーパントを保持するホルダーGDの原料パレット7に緑色発光ドーパントとしてIr(ppy)(化合物G)を、赤色発光ドーパントを保持するホルダーRDの原料パレット7に赤色発光ドーパントとしてIr(piq)(化合物R)を、ホスト化合物を保持するホルダーHostの原料パレット7にホスト化合物としてCBP(化合物H)をそれぞれ装填した。 Specifically, FIrpic (compound B) is loaded as a blue light emitting dopant on the material palette 7 of the holder BD holding the blue light emitting dopant shown in FIG. 2, and the green light emitting dopant is loaded on the material palette 7 of the holder GD holding the green light emitting dopant. Ir (ppy) 3 (compound G) as a raw material palette 7 of the holder RD holding the red light emitting dopant, Ir (piq) 3 (compound R) as a red light emitting dopant, and a raw material palette of the holder Host holding the host compound 7 was charged with CBP (Compound H) as a host compound.
 次いで、各ホルダーに装着した加熱部材Hにより原料パレット7内の各化合物を気化させた後、導管9の端部より不活性ガスGとしてアルゴンガスを供給しながら、ヒーター8による加熱温度及び各ホルダーの制御弁(ニードルバルブ)10を適宜調整し、青色発光ドーパント(化合物B)を35質量%、緑色発光ドーパント(化合物B)を0.2質量%、赤色発光ドーパント(化合物R)を0.2質量%、ホスト化合物(化合物H)を64.6質量%含有する発光層形成用ガスを調製し、各化合物を含む発光層形成用ガスを蒸着用ヘッド2に導入し、ノズル3より正孔輸送層を設けた基板を搬送しながら、蒸着速度0.0002nm/秒で出射して、図8のa)-1に示す青色発光ドーパント濃度プロファイル(35質量%の均一含有量)を有する厚さ70nmの発光層1を形成した。 Next, after each compound in the raw material pallet 7 is vaporized by the heating member H attached to each holder, the argon gas is supplied as an inert gas G from the end of the conduit 9, and the heating temperature by the heater 8 and each holder The control valve (needle valve) 10 is appropriately adjusted, the blue light emitting dopant (Compound B) is 35% by mass, the green light emitting dopant (Compound B) is 0.2% by mass, and the red light emitting dopant (Compound R) is 0.2%. A gas for forming a light emitting layer containing 6% by mass of the host compound (Compound H) is prepared, a gas for forming the light emitting layer containing each compound is introduced into the vapor deposition head 2, and holes are transported from the nozzle 3. The blue light emitting dopant concentration profile (uniform content of 35% by mass) shown in FIG. To form a light-emitting layer 1 having a thickness of 70nm with.
 なお、発光層1における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 1 are 0.2 mass% uniform concentration distribution in the whole region.
 (電子輸送層の形成)
 発光層1上に、化合物M-1を膜厚30nmとなるように蒸着して電子輸送層を形成し、更にKFを厚さ2nmに形成した。
(Formation of electron transport layer)
On the light emitting layer 1, compound M-1 was vapor-deposited so that it might become a film thickness of 30 nm, the electron carrying layer was formed, and also KF was formed in thickness 2nm.
 (陰極の形成)
 電子輸送層上に、アルミニウム薄膜を110nm蒸着し、陰極を形成した。
(Formation of cathode)
An aluminum thin film was deposited to 110 nm on the electron transport layer to form a cathode.
 (有機EL素子の作製)
 次いで、上記素子の非発光面をガラスケースで覆い、図1に示す構成からなる有機EL素子1を作製した。
(Production of organic EL element)
Subsequently, the non-light-emitting surface of the element was covered with a glass case, and an organic EL element 1 having the configuration shown in FIG. 1 was produced.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 〔有機EL素子2の作製〕
 上記有機EL素子1の作製において、発光層の形成方法1に代えて、下記発光層の形成方法2に変更した以外は同様にして、有機EL素子2を作製した。
[Production of Organic EL Element 2]
In the production of the organic EL element 1, the organic EL element 2 was produced in the same manner except that the light emitting layer forming method 1 was replaced with the following light emitting layer forming method 2.
 (発光層の形成方法2)
 上記発光層の形成方法1において、ヒーター8による加熱温度及び各ホルダーの制御弁(ニードルバルブ)10を適宜調整し、発光層形成用ガスにおける青色発光ドーパント(化合物B)の含有濃度を5質量%、ホスト化合物(化合物H)の含有濃度を94.6質量%に変更した以外は同様にして、正孔輸送層を設けた基板と蒸着源との配置を図7のd)で示す構成にし、図8のa)-2に示す青色発光ドーパント濃度プロファイル(5質量%の均一含有量)を有する厚さ70nmの発光層2を形成した。この方法を発光層の形成方法2という。
(Light emitting layer forming method 2)
In the light emitting layer forming method 1, the heating temperature by the heater 8 and the control valve (needle valve) 10 of each holder are adjusted as appropriate, and the concentration of the blue light emitting dopant (compound B) in the light emitting layer forming gas is 5% by mass. In the same manner except that the content concentration of the host compound (Compound H) is changed to 94.6% by mass, the arrangement of the substrate provided with the hole transport layer and the vapor deposition source is as shown in FIG. A light emitting layer 2 having a thickness of 70 nm having a blue light emitting dopant concentration profile (uniform content of 5% by mass) shown in FIG. This method is referred to as a light emitting layer forming method 2.
 なお、発光層2における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 2 are 0.2 mass% uniform concentration distribution in the whole region.
 〔有機EL素子3の作製〕
 上記有機EL素子1の作製において、発光層の形成方法1に代えて、下記発光層の形成方法3に変更した以外は同様にして、有機EL素子3を作製した。
[Production of Organic EL Element 3]
In the production of the organic EL element 1, an organic EL element 3 was produced in the same manner except that the light emitting layer forming method 1 was replaced with the light emitting layer forming method 3 described below.
 (発光層の形成方法3)
 上記発光層1の形成において、ヒーター8による加熱温度及び各ホルダーの制御弁(ニードルバルブ)10を適宜調整し、発光層形成用ガスにおける青色発光ドーパント(化合物B)の含有濃度を20質量%、ホスト化合物(化合物H)の含有濃度を79.6質量%に変更した以外は同様にして、正孔輸送層を設けた基板と蒸着源との配置を図7のd)で示す構成とし、図8のa)-3に示す青色発光ドーパント濃度プロファイル(20質量%の均一含有量)を有する厚さ70nmの発光層3を形成した。この方法を発光層の形成方法3という。
(Light emitting layer forming method 3)
In the formation of the light emitting layer 1, the heating temperature by the heater 8 and the control valve (needle valve) 10 of each holder are appropriately adjusted, and the concentration of the blue light emitting dopant (compound B) in the light emitting layer forming gas is 20% by mass, Except for changing the content concentration of the host compound (Compound H) to 79.6% by mass, the arrangement of the substrate provided with the hole transport layer and the vapor deposition source is configured as shown in FIG. A light-emitting layer 3 having a thickness of 70 nm having a blue light-emitting dopant concentration profile (uniform content of 20% by mass) shown in 8) a) -3 was formed. This method is referred to as a light emitting layer forming method 3.
 なお、発光層3における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 3 are 0.2 mass% uniform concentration distribution in the whole region.
 〔有機EL素子4の作製〕
 上記有機EL素子1の作製において、発光層の形成方法1に代えて、下記発光層の形成方法4に変更した以外は同様にして、有機EL素子4を作製した。
[Production of Organic EL Element 4]
In the production of the organic EL element 1, an organic EL element 4 was produced in the same manner except that the light emitting layer forming method 1 was replaced with the light emitting layer forming method 4 described below.
 (発光層の形成方法4)
 図2に記載の構成からなる蒸着源を2基使用し、基板と蒸着源との配置を図7のb)で示す構成とし、基板面に対して蒸着源面を15度傾斜させた配置とし、図8のb)に示すように、発光層形成時の青色発光ドーパント濃度を25質量%、発光層形成完了時(発光層最表面部)で15質量%となるように、発光層全域で25質量%から15質量%に変化する青色発光ドーパントの傾斜濃度を有する発光層4を形成した。この方法を発光層の形成方法4という。形成方法4で形成した発光層4は、全域が図5で示すエリアIIであり、エリアI及びエリアIIIは存在しない構成である。
(Light emitting layer forming method 4)
Two vapor deposition sources having the configuration shown in FIG. 2 are used, the arrangement of the substrate and the vapor deposition source is as shown in FIG. 7 b), and the vapor deposition source surface is inclined by 15 degrees with respect to the substrate surface. As shown in FIG. 8 b), the blue light emitting dopant concentration at the time of forming the light emitting layer is 25 mass%, and is 15 mass% at the time of completing the light emitting layer formation (light emitting layer outermost surface portion). The light emitting layer 4 having the gradient concentration of the blue light emitting dopant changing from 25% by mass to 15% by mass was formed. This method is referred to as a light emitting layer forming method 4. The entire area of the light emitting layer 4 formed by the forming method 4 is the area II shown in FIG. 5, and the area I and the area III do not exist.
 以下に、第1の蒸発源2Aと第2の蒸発源2Bの詳細な条件を示す。 The detailed conditions of the first evaporation source 2A and the second evaporation source 2B are shown below.
 〈第1の蒸発源〉
 図2に記載の青色発光ドーパントを保持するホルダーBDの原料パレット7に青色発光ドーパントとしてFIrpic(化合物B)を装填し、緑色発光ドーパントを保持するホルダーGDの原料パレット7に緑色発光ドーパントとしてIr(ppy)(化合物G)を、赤色発光ドーパントを保持するホルダーRDの原料パレット7に赤色発光ドーパントとしてIr(piq)(化合物R)を、ホスト化合物を保持するホルダーHostの原料パレット7にホスト化合物としてCBP(化合物H)をそれぞれ装填した。
<First evaporation source>
2 is loaded with FIrpic (compound B) as a blue light emitting dopant in the holder BD raw material palette 7 holding the blue light emitting dopant shown in FIG. ppy) 3 (compound G) is hosted in the raw material palette 7 of the holder RD holding the red light emitting dopant, Ir (piq) 3 (compound R) as a red light emitting dopant, and hosted in the raw material palette 7 of the holder Host holding the host compound CBP (Compound H) was charged as a compound, respectively.
 次いで、各ホルダーに装着した加熱部材Hにより原料パレット7内の各化合物を気化させた後、導管9の端部より不活性ガスGとしてアルゴンガスを供給しながら、ヒーター8による加熱温度及び各ホルダーの制御弁(ニードルバルブ)10を適宜調整し、青色発光ドーパント(化合物B)を25質量%、緑色発光ドーパント(化合物B)を0.2質量%、赤色発光ドーパント(化合物R)を0.2質量%、ホスト化合物(化合物H)を74.6質量%含有する発光層形成用ガス4Aを調製し、各化合物を含む発光層形成用ガス4Aを蒸着用ヘッド2に導入し、ノズル3より正孔輸送層を設けた基板を搬送しながら、蒸着速度0.0002nm/秒で出射した。 Next, after each compound in the raw material pallet 7 is vaporized by the heating member H attached to each holder, the argon gas is supplied as an inert gas G from the end of the conduit 9, and the heating temperature by the heater 8 and each holder The control valve (needle valve) 10 is appropriately adjusted, 25% by mass of the blue luminescent dopant (Compound B), 0.2% by mass of the green luminescent dopant (Compound B), and 0.2% of the red luminescent dopant (Compound R). A light emitting layer forming gas 4A containing 74.6% by weight of a host compound (Compound H) is prepared, and the light emitting layer forming gas 4A containing each compound is introduced into the vapor deposition head 2, and is positively supplied from the nozzle 3. While transporting the substrate provided with the hole transport layer, it was emitted at a deposition rate of 0.0002 nm / second.
 〈第2の蒸発源〉
 上記第1の蒸着源において、発光層形成用ガス4Aに代えて、青色発光ドーパント(化合物B)を15質量%、緑色発光ドーパント(化合物B)を0.2質量%、赤色発光ドーパント(化合物R)を0.2質量%、ホスト化合物(化合物H)を84.6質量%に変更した発光層形成用ガス4Bを用いた。
<Second evaporation source>
In the first vapor deposition source, instead of the light emitting layer forming gas 4A, 15% by weight of the blue light emitting dopant (Compound B), 0.2% by weight of the green light emitting dopant (Compound B), and the red light emitting dopant (Compound R) ) Was changed to 0.2% by mass and the host compound (Compound H) was changed to 84.6% by mass, and the light emitting layer forming gas 4B was used.
 〈発光層の形成〉
 図7のb)に示すように第1の蒸発源2Aが形成するエリア11と、第2の蒸着源2Bが形成する蒸着エリア12とが全域でオーバーラップしている構成で、図8のb)に示す青色発光ドーパント濃度プロファイルを有する厚さ70nmの発光層4を形成した。
<Formation of light emitting layer>
As shown in FIG. 7b), the area 11 formed by the first evaporation source 2A and the vapor deposition area 12 formed by the second vapor deposition source 2B overlap in the whole area, The light emitting layer 4 having a thickness of 70 nm having the blue light emitting dopant concentration profile shown in FIG.
 なお、発光層4における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 4 are 0.2 mass% uniform concentration distribution in the whole region.
 〔有機EL素子5の作製〕
 上記有機EL素子4の作製において、発光層の形成方法4に代えて、下記発光層の形成方法5に変更した以外は同様にして、有機EL素子5を作製した。
[Production of Organic EL Element 5]
In the production of the organic EL element 4, the organic EL element 5 was produced in the same manner except that the light emitting layer forming method 4 was replaced with the following light emitting layer forming method 5.
 (発光層の形成方法5)
 〈第1の蒸発源〉
 青色発光ドーパント(化合物B)を35質量%、緑色発光ドーパント(化合物B)を0.2質量%、赤色発光ドーパント(化合物R)を0.2質量%、ホスト化合物(化合物H)を64.6質量%含有する発光層形成用ガス5Aを調製し、これを用いた。
(Light emitting layer forming method 5)
<First evaporation source>
35% by mass of the blue luminescent dopant (Compound B), 0.2% by mass of the green luminescent dopant (Compound B), 0.2% by mass of the red luminescent dopant (Compound R), and 64.6 of the host compound (Compound H). A gas 5A for forming a light emitting layer containing 5% by mass was prepared and used.
 〈第2の蒸発源〉
 青色発光ドーパント(化合物B)を5質量%、緑色発光ドーパント(化合物B)を0.2質量%、赤色発光ドーパント(化合物R)を0.2質量%、ホスト化合物(化合物H)を94.6質量%含有する発光層形成用ガス5Aを調製し、これを用いた。
<Second evaporation source>
5% by mass of the blue luminescent dopant (Compound B), 0.2% by mass of the green luminescent dopant (Compound B), 0.2% by mass of the red luminescent dopant (Compound R), and 94.6 of the host compound (Compound H). A gas 5A for forming a light emitting layer containing 5% by mass was prepared and used.
 〈発光層の形成〉
 図2に記載の構成からなる蒸着源を2基使用し、図7のb)で示す基板と蒸着源の配置で、基板面に対して蒸着源面を15度傾斜させた配置とし、図8のc)に示すように、発光層形成時の青色発光ドーパント濃度を35質量%、発光層形成完了時(発光層最表面部)で5質量%となるように、発光層全域で35質量%から5質量%に変化する青色発光ドーパントの傾斜濃度を有する発光層5を形成した。この方法を発光層の形成方法5という。形成方法5で形成した発光層5は、全域が図5で示すエリアIIであり、エリアI及びエリアIIIは存在しない構成である。
<Formation of light emitting layer>
Two vapor deposition sources having the configuration shown in FIG. 2 are used, and the arrangement of the substrate and the vapor deposition source shown in FIG. 7 b is an arrangement in which the vapor deposition source surface is inclined by 15 degrees with respect to the substrate surface. As shown in c), the blue light-emitting dopant concentration at the time of forming the light-emitting layer is 35% by weight, and 35% by weight over the entire light-emitting layer so that the light-emitting layer formation is 5% by weight when the light-emitting layer is formed (outermost surface portion) The light emitting layer 5 having a gradient concentration of the blue light emitting dopant that changes from 5 to 5% by mass was formed. This method is referred to as a light emitting layer forming method 5. The entire area of the light emitting layer 5 formed by the forming method 5 is the area II shown in FIG. 5, and the area I and the area III do not exist.
 なお、発光層5における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 5 are 0.2 mass% uniform concentration distribution in the whole region.
 〔有機EL素子6の作製〕
 上記有機EL素子4の作製において、発光層の形成方法4に代えて、下記発光層の形成方法6に変更した以外は同様にして、有機EL素子6を作製した。
[Production of Organic EL Element 6]
In the production of the organic EL element 4, the organic EL element 6 was produced in the same manner except that the light emitting layer forming method 4 was replaced with the following light emitting layer forming method 6.
 (発光層の形成方法6)
 第1の蒸発源2Aで用いる発光層形成用ガス(青色発光ドーパント:25質量%)、第2の蒸発源2Bで用いる発光層形成用ガス(青色発光ドーパント:15質量%)の組成はそれぞれ発光層の形成方法4と同様にした。
(Light emitting layer forming method 6)
The compositions of the light emitting layer forming gas (blue light emitting dopant: 25% by mass) used in the first evaporation source 2A and the light emitting layer forming gas (blue light emitting dopant: 15% by mass) used in the second evaporation source 2B emit light. The method was the same as in Layer formation method 4.
 〈発光層の形成〉
 図2に記載の構成からなる蒸着源を2基使用し、図3で示す基板と蒸着源の配置で、基板面に対して蒸着源面を15度傾斜させた配置とし、第1の蒸着源2Aのみで形成されるエリアIと、第1の蒸着源2Aと第2の蒸着源2BとがオーバーラップしているエリアIIと、第2の蒸着源2Bのみで形成されるエリアIIIを形成し、図8のd)に示すように、発光層の膜厚で形成開始から総膜厚の10%までが青色発光ドーパントが25質量%の均一濃度域であるエリアI、総膜厚の10%以上、90%までを、青色発光ドーパント濃度が25%から15%まで傾斜的に濃度が変化するエリアII、90%から100%までを青色発光ドーパントが15質量%の均一濃度域であるエリアIIIとした発光層6を形成した。この方法を発光層の形成方法6という。なお、発光層6における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。
<Formation of light emitting layer>
The first vapor deposition source is formed by using two vapor deposition sources having the configuration shown in FIG. 2 and arranging the substrate and the vapor deposition source as shown in FIG. An area I formed only by 2A, an area II where the first vapor deposition source 2A and the second vapor deposition source 2B overlap, and an area III formed only by the second vapor deposition source 2B are formed. As shown in FIG. 8d), from the start of formation of the light emitting layer to 10% of the total film thickness, the area I where the blue light emitting dopant is a uniform concentration region of 25% by mass, 10% of the total film thickness. As described above, up to 90% is the area II where the concentration of the blue light-emitting dopant is inclined from 25% to 15%, and from 90% to 100% is the area III where the blue light-emitting dopant is a uniform concentration region of 15% by mass. The light emitting layer 6 was formed. This method is referred to as a light emitting layer forming method 6. In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 6 are uniform concentration distribution of 0.2 mass% in the whole region.
 〔有機EL素子7~11の作製〕
 上記有機EL素子6の作製において、発光層形成時の第1の蒸発源2Aにおける青色発光ドーパント及びホスト化合物濃度、第2の蒸発源2Bにおける青色発光ドーパント及びホスト化合物濃度と、エリアIIの比率を、表1に記載の条件に変更した以外は同様にして、それぞれ発光層の形成方法7~11として有機EL素子7~11の作製を作製した。
[Production of organic EL elements 7 to 11]
In the production of the organic EL element 6, the ratio of the area II to the blue light emitting dopant and the host compound concentration in the first evaporation source 2 </ b> A and the blue light emitting dopant and the host compound concentration in the second evaporation source 2 </ b> B when forming the light emitting layer. The organic EL elements 7 to 11 were produced in the same manner as the light emitting layer forming methods 7 to 11 except that the conditions described in Table 1 were changed.
 なお、発光層の形成方法7~11における青色発光ドーパント濃度プロファイルは、以下の通りである。 The blue light emitting dopant concentration profile in the light emitting layer forming methods 7 to 11 is as follows.
 発光層の形成方法7:図9のa)に示す青色発光ドーパント濃度プロファイル
 発光層の形成方法8:図9のb)に示す青色発光ドーパント濃度プロファイル
 発光層の形成方法9:図9のc)に示す青色発光ドーパント濃度プロファイル
 発光層の形成方法10:図9のd)に示す青色発光ドーパント濃度プロファイル
 発光層の形成方法11:図10のa)に示す青色発光ドーパント濃度プロファイル
 なお、発光層7~11における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。
Light emitting layer formation method 7: Blue light emitting dopant concentration profile shown in FIG. 9 a) Light emitting layer forming method 8: Blue light emitting dopant concentration profile shown in FIG. 9 b) Light emitting layer forming method 9: FIG. 9 c) The blue light emitting dopant concentration profile shown in FIG. 10: The light emitting layer forming method 10: The blue light emitting dopant concentration profile shown in FIG. 9d) The light emitting layer forming method 11: The blue light emitting dopant concentration profile shown in FIG. The green light-emitting dopant (compound B) and the red light-emitting dopant in ˜11 have a uniform concentration distribution of 0.2 mass% over the entire area.
 〔有機EL素子12の作製〕
 上記有機EL素子6の作製において、発光層の形成方法6に代えて、下記発光層の形成方法12を用いた以外は同様にして、有機EL素子12を作製した。
[Production of Organic EL Element 12]
In the production of the organic EL element 6, an organic EL element 12 was produced in the same manner except that the following light emitting layer forming method 12 was used instead of the light emitting layer forming method 6.
 (発光層の形成方法12)
 前記発光層の形成方法6に対し、図7のc)に示すように基板と各蒸着源面を平行に配置し、かつ第1の蒸発源2Aが形成する蒸着エリア11と、第2の蒸着源2Bが形成する蒸着エリア12とが全くオーバーラップしない構成とし、これを発光層の形成方法12とした。形成した発光層の青色発光ドーパント濃度プロファイルを、図10のb)に示す。発光層の形成方法12により形成された発光層は、エリアIとエリアIIIのみで構成されている。
(Method 12 for forming light emitting layer)
In contrast to the light emitting layer forming method 6, as shown in FIG. 7 c, the substrate and each evaporation source surface are arranged in parallel, and the evaporation area 11 formed by the first evaporation source 2 </ b> A, and the second evaporation The vapor deposition area 12 formed by the source 2B did not overlap at all, and this was used as the light emitting layer forming method 12. The blue light emission dopant concentration profile of the formed light emitting layer is shown in FIG. The light emitting layer formed by the light emitting layer forming method 12 is composed of only area I and area III.
 なお、発光層12における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 12 are 0.2 mass% uniform concentration distribution in the whole region.
 〔有機EL素子13の作製〕
 上記有機EL素子7の作製において、発光層の形成方法7に代えて、下記発光層の形成方法13を用いた以外は同様にして、有機EL素子13を作製した。
[Production of Organic EL Element 13]
In the production of the organic EL element 7, an organic EL element 13 was produced in the same manner except that the following light emitting layer forming method 13 was used instead of the light emitting layer forming method 7.
 (発光層の形成方法13)
 前記発光層の形成方法7に対し、図7のc)に示すように基板と各蒸着源面を平行に配置し、かつ第1の蒸発源2Aが形成する蒸着エリア11と、第2の蒸着源2Bが形成する蒸着エリア12とが全くオーバーラップしない構成とし、これを発光層の形成方法12とした。形成した発光層の青色発光ドーパント濃度プロファイルを、図10のc)に示す。発光層の形成方法13により形成された発光層は、エリアIとエリアIIIのみで構成されている。
(Method 13 for forming light emitting layer)
With respect to the light emitting layer forming method 7, as shown in FIG. 7c, the substrate and each evaporation source surface are arranged in parallel, and the evaporation area 11 formed by the first evaporation source 2A, and the second evaporation The vapor deposition area 12 formed by the source 2B did not overlap at all, and this was used as the light emitting layer forming method 12. The blue light emission dopant concentration profile of the formed light emitting layer is shown in FIG. The light emitting layer formed by the light emitting layer forming method 13 is composed of only area I and area III.
 なお、発光層13における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 In addition, the green light emission dopant (compound B) and the red light emission dopant in the light emitting layer 13 are 0.2 mass% uniform concentration distribution in the whole region.
 〔有機EL素子14の作製〕
 上記有機EL素子6の作製において、発光層の形成方法6に代えて、下記発光層の形成方法14を用いた以外は同様にして、有機EL素子14を作製した。
[Production of Organic EL Element 14]
In the production of the organic EL element 6, an organic EL element 14 was produced in the same manner except that the following light emitting layer forming method 14 was used instead of the light emitting layer forming method 6.
 (発光層の形成方法14)
 前記発光層の形成方法6に対し、図7のa)に示すように基板と各蒸着源面を平行に配置した構成とした以外は同様にして発光層を形成し、これを発光層の形成方法14とした。形成した発光層の青色発光ドーパント濃度プロファイルを、図10のd)に示す。
(Method 14 of forming light emitting layer)
The light emitting layer is formed in the same manner as the light emitting layer forming method 6 except that the substrate and each evaporation source surface are arranged in parallel as shown in FIG. Method 14 was adopted. The blue light emitting dopant concentration profile of the formed light emitting layer is shown in d) of FIG.
 なお、発光層14における緑色発光ドーパント(化合物B)及び赤色発光ドーパントは、全域で0.2質量%の均一濃度分布である。 Note that the green light-emitting dopant (compound B) and the red light-emitting dopant in the light-emitting layer 14 have a uniform concentration distribution of 0.2 mass% over the entire area.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 《有機EL素子の評価》
 (TOF-SIMSによる濃度評価)
 TOF-SIMSによる青色発光ドーパントの濃度測定は、Physical Electronics社製の飛行時間型2次イオン質量分析計TRIFT2を用い、1次イオンとして加速電圧25kVのInイオン(ビーム電流は2nA)を用いて、発光層の陽極側端部から陰極側端部までの各材料の濃度を測定した。得られた結果を、図8~図10に示す。
<< Evaluation of organic EL elements >>
(Concentration evaluation by TOF-SIMS)
The concentration of the blue light-emitting dopant by TOF-SIMS was measured using a time-of-flight secondary ion mass spectrometer TRIFT2 manufactured by Physical Electronics, using In ions with an acceleration voltage of 25 kV (beam current is 2 nA) as primary ions. The density | concentration of each material from the anode side edge part of a light emitting layer to the cathode side edge part was measured. The obtained results are shown in FIGS.
 (電力効率の測定)
 分光放射輝度計CS-1000(コニカミノルタセンシング社製)を用いて、各有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求めた。なお、表2には、有機EL素子3の電力効率を100とした際の相対値で表示した。
(Measurement of power efficiency)
Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing Co., Ltd.), the front luminance and luminance angle dependency of each organic EL element were measured, and the power efficiency at a front luminance of 1000 cd / m 2 was obtained. Table 2 shows the relative values when the power efficiency of the organic EL element 3 is 100.
 (駆動寿命の測定)
 正面輝度10000cd/mを初期輝度として連続駆動時の輝度変動を測定し、その輝度半減時間を駆動寿命として求めた。なお、表2には、有機EL素子3の駆動寿命を100とした際の相対値で表示した。
(Measurement of driving life)
The luminance fluctuation at the time of continuous driving was measured with the front luminance of 10,000 cd / m 2 as the initial luminance, and the luminance half time was obtained as the driving life. Table 2 shows the relative values when the driving life of the organic EL element 3 is 100.
 得られた結果を表2に示す。 Table 2 shows the results obtained.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表2に記載の結果より明らかなように、本発明で規定する構成からなる発光層を有する有機EL素子は、比較の有機EL素子1~3、12、13に対し、電力効率及び駆動寿命に優れていることが分かる。 As is clear from the results shown in Table 2, the organic EL element having the light emitting layer having the structure defined in the present invention has a power efficiency and a driving life as compared with the comparative organic EL elements 1 to 3, 12, and 13. It turns out that it is excellent.
 1 蒸着源
 2、2A、2B 蒸着用ヘッド
 3、3A、3B ノズル
 5、9 導管
 10 制御弁
 11、12 蒸着エリア
 G ガス
 H 加熱部材
 P 基板
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
 
1 Deposition source 2, 2A, 2B Deposition head 3, 3A, 3B Nozzle 5, 9 Conduit 10 Control valve 11, 12 Deposition area G Gas H Heating member P Substrate 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with transparent electrode 108 Nitrogen gas 109 Water catching agent

Claims (8)

  1.  移動する基板上に、有機化合物が充填された複数の蒸着源から該有機化合物を蒸着させて有機エレクトロルミネッセンス素子の発光層を形成する有機エレクトロルミネッセンス素子の製造方法において、
     1)該複数の蒸着源は、いずれもホスト化合物とドーパント化合物が充填されており、
     2)該複数の蒸着源は、お互いにホスト化合物に対するドーパント化合物の質量比率が異なっており、
     3)該基板上における該複数の蒸着源の蒸着エリアが重なり合う領域が、全蒸着エリアの10%以上であること、
    を特徴とする有機エレクトロルミネッセンス素子の製造方法。
    In the method of manufacturing an organic electroluminescent element, the organic compound is deposited from a plurality of vapor deposition sources filled with the organic compound on the moving substrate to form a light emitting layer of the organic electroluminescent element.
    1) Each of the plurality of vapor deposition sources is filled with a host compound and a dopant compound,
    2) The plurality of vapor deposition sources have different mass ratios of the dopant compound to the host compound,
    3) The area where the vapor deposition areas of the plurality of vapor deposition sources overlap on the substrate is 10% or more of the total vapor deposition area,
    The manufacturing method of the organic electroluminescent element characterized by these.
  2.  前記複数の蒸着源に充填された前記ドーパント化合物が、全て同一であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescence element according to claim 1, wherein all of the dopant compounds filled in the plurality of vapor deposition sources are the same.
  3.  前記複数の蒸着源に充填された前記ホスト化合物が、全て同一であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. The method of manufacturing an organic electroluminescence element according to claim 1, wherein the host compounds filled in the plurality of vapor deposition sources are all the same.
  4.  前記蒸着源の少なくとも一つが、複数のドーパント化合物を含有することを特徴とする請求項1から3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 4. The method of manufacturing an organic electroluminescence element according to claim 1, wherein at least one of the vapor deposition sources contains a plurality of dopant compounds.
  5.  前記ドーパント化合物が、青色発光ドーパント、緑色発光ドーパント、赤色発光ドーパントであり、前記複数の蒸着源における該青色発光ドーパントの濃度が異なり、前記発光層中で青色発光ドーパントが厚さ方向で傾斜濃度を有していることを特徴とする請求項1から4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 The dopant compound is a blue light emitting dopant, a green light emitting dopant, and a red light emitting dopant, and the concentration of the blue light emitting dopant in the plurality of vapor deposition sources is different, and the blue light emitting dopant has a gradient concentration in the thickness direction in the light emitting layer. It has, The manufacturing method of the organic electroluminescent element of any one of Claim 1 to 4 characterized by the above-mentioned.
  6.  前記ドーパント化合物が、青色発光ドーパント、緑色発光ドーパント、赤色発光ドーパントであり、前記複数の蒸着源における該緑色発光ドーパント及び赤色発光ドーパントの濃度が等しく、前記発光層中で該緑色発光ドーパント及び赤色発光ドーパントの濃度が厚さ方向で均一であることを特徴とする請求項1から5のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 The dopant compound is a blue light-emitting dopant, a green light-emitting dopant, and a red light-emitting dopant, and the concentrations of the green light-emitting dopant and the red light-emitting dopant in the plurality of vapor deposition sources are equal, and the green light-emitting dopant and the red light-emitting in the light-emitting layer. The method for producing an organic electroluminescent element according to claim 1, wherein the concentration of the dopant is uniform in the thickness direction.
  7.  前記蒸着源の吐出法線に対する面が、基板面と非平行であることを特徴とする請求項1から6のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for manufacturing an organic electroluminescence element according to any one of claims 1 to 6, wherein a surface of the vapor deposition source with respect to a discharge normal is non-parallel to the substrate surface.
  8.  前記複数の蒸着源の吐出法線と、基板面とが交差する基板上での交差点が異なっていることを特徴とする請求項1から7のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 The manufacturing method of the organic electroluminescent element according to claim 1, wherein the intersection points on the substrate where the discharge normals of the plurality of vapor deposition sources and the substrate surface intersect with each other are different. Method.
PCT/JP2012/061727 2011-06-14 2012-05-08 Method for manufacturing organic electroluminescent element WO2012172883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520467A JP5862665B2 (en) 2011-06-14 2012-05-08 Method for manufacturing organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-131971 2011-06-14
JP2011131971 2011-06-14

Publications (1)

Publication Number Publication Date
WO2012172883A1 true WO2012172883A1 (en) 2012-12-20

Family

ID=47356879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061727 WO2012172883A1 (en) 2011-06-14 2012-05-08 Method for manufacturing organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP5862665B2 (en)
WO (1) WO2012172883A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010512A1 (en) * 2015-07-15 2017-01-19 シャープ株式会社 Vapor deposition method and vapor deposition device
CN108912105A (en) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 A kind of double carbazole compounds symmetrically replaced and its application
WO2019187162A1 (en) * 2018-03-30 2019-10-03 シャープ株式会社 Display device production method and vapor deposition device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098958B (en) * 2016-08-26 2018-04-03 昆山工研院新型平板显示技术中心有限公司 White light organic electroluminescent device and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077662A (en) * 2001-06-22 2003-03-14 Junji Kido Method and device for manufacturing organic electroluminescent element
JP2005011735A (en) * 2003-06-20 2005-01-13 Sony Corp Display element and display device
JP2009114503A (en) * 2007-11-07 2009-05-28 Seiko Epson Corp Vapor deposition apparatus, vapor deposition method, and method of manufacturing organic el apparatus
JP2010157606A (en) * 2008-12-26 2010-07-15 Fujifilm Corp Organic electroluminescent element
JP2011061016A (en) * 2009-09-10 2011-03-24 Sharp Corp Organic electroluminescent element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077662A (en) * 2001-06-22 2003-03-14 Junji Kido Method and device for manufacturing organic electroluminescent element
JP2005011735A (en) * 2003-06-20 2005-01-13 Sony Corp Display element and display device
JP2009114503A (en) * 2007-11-07 2009-05-28 Seiko Epson Corp Vapor deposition apparatus, vapor deposition method, and method of manufacturing organic el apparatus
JP2010157606A (en) * 2008-12-26 2010-07-15 Fujifilm Corp Organic electroluminescent element
JP2011061016A (en) * 2009-09-10 2011-03-24 Sharp Corp Organic electroluminescent element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010512A1 (en) * 2015-07-15 2017-01-19 シャープ株式会社 Vapor deposition method and vapor deposition device
JP2017025347A (en) * 2015-07-15 2017-02-02 シャープ株式会社 Vapor deposition method and vapor deposition apparatus
WO2019187162A1 (en) * 2018-03-30 2019-10-03 シャープ株式会社 Display device production method and vapor deposition device
CN108912105A (en) * 2018-08-03 2018-11-30 瑞声科技(南京)有限公司 A kind of double carbazole compounds symmetrically replaced and its application

Also Published As

Publication number Publication date
JPWO2012172883A1 (en) 2015-02-23
JP5862665B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5098645B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP4830374B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP2007189002A (en) Organic electroluminescence element and organic electroluminescence display
JP2007027620A (en) Organic electroluminescence element, liquid crystal display and lighting system
JP5180429B2 (en) Organic electroluminescence device
JP6337883B2 (en) Electronic devices
JP5186757B2 (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element, display device and lighting device
JP2007180277A (en) Organic electroluminescent device, display and illuminator
JP5664715B2 (en) Organic electroluminescence device
WO2011132550A1 (en) Organic electroluminescent element, display device, and illumination device
JP5862665B2 (en) Method for manufacturing organic electroluminescence element
JP2007059118A (en) Organic electroluminescent element, liquid crystal display, and lighting device
JP5589852B2 (en) Organic electroluminescence device and method for manufacturing the same
JP5879737B2 (en) Method for manufacturing organic electroluminescence element
JPWO2009116414A1 (en) Organic electroluminescence device
JP2009252944A (en) Organic electroluminescence element and its manufacturing method
JP4978034B2 (en) Organic electroluminescence device
JP6119606B2 (en) Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
JP2008305613A (en) Manufacturing method of organic electroluminescent element
JP2007221028A (en) Organic electroluminescence element, display, and illumination device
JPWO2010084816A1 (en) Organic electroluminescence device and method for manufacturing the same
JP5152331B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND MANUFACTURING METHOD THEREOF
JP5895699B2 (en) Organic electroluminescence device
JP2012234972A (en) Organic electroluminescent element and method for manufacturing the same
JP2011222385A (en) Organic electroluminescent element manufacturing method and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800714

Country of ref document: EP

Kind code of ref document: A1