WO2019187162A1 - Display device production method and vapor deposition device - Google Patents
Display device production method and vapor deposition device Download PDFInfo
- Publication number
- WO2019187162A1 WO2019187162A1 PCT/JP2018/013996 JP2018013996W WO2019187162A1 WO 2019187162 A1 WO2019187162 A1 WO 2019187162A1 JP 2018013996 W JP2018013996 W JP 2018013996W WO 2019187162 A1 WO2019187162 A1 WO 2019187162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vapor deposition
- layer
- source
- region
- deposition source
- Prior art date
Links
- 238000007740 vapor deposition Methods 0.000 title claims abstract description 689
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 239000000463 material Substances 0.000 claims abstract description 309
- 239000000758 substrate Substances 0.000 claims abstract description 122
- 238000000151 deposition Methods 0.000 claims description 179
- 230000008021 deposition Effects 0.000 claims description 151
- 230000005855 radiation Effects 0.000 claims description 39
- 230000007246 mechanism Effects 0.000 claims description 37
- 230000015572 biosynthetic process Effects 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 27
- 238000001816 cooling Methods 0.000 claims description 8
- 238000010030 laminating Methods 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 238000009434 installation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 262
- 239000010408 film Substances 0.000 description 107
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 238000001704 evaporation Methods 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 10
- 238000007789 sealing Methods 0.000 description 10
- 238000010549 co-Evaporation Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 239000002019 doping agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 239000002346 layers by function Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000011368 organic material Substances 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000002096 quantum dot Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
Definitions
- the present invention relates to a display device manufacturing method and a vapor deposition apparatus.
- a plurality of layers are laminated by vapor deposition. From the viewpoint of suppressing contamination, it is ideal to form each layer in a different vapor deposition chamber. However, if the number of stacked layers is large, the number of vapor deposition chambers increases and the manufacturing cost increases. For this reason, for example, when the first layer is a co-evaporation layer of the material A and the material B and the second layer is a single vapor deposition layer of only the material A, the vapor deposition of the material B is performed with a shutter at the time of vapor deposition of the single vapor deposition layer. By depositing only the material A while shielding the path, a plurality of layers are formed in one deposition chamber.
- Patent Document 1 includes a vapor deposition source that emits a light emitting dopant and a vapor deposition source that emits a host material / intermediate layer forming material, and forms an intermediate layer by closing all shutters for the light emitting dopant to emit light.
- a vapor deposition method using a vapor deposition apparatus that forms a light emitting layer by opening a shutter for a dopant and a shutter for a host material / intermediate layer forming material is disclosed.
- a manufacturing method of a display device includes a first vapor deposition layer that is a co-deposition layer made of a material including a first material and a second material, the first material, and the second material.
- vapor deposition step includes a first vapor deposition source that radiates the first material toward the film formation substrate, A plurality of vapor deposition sources including a second vapor deposition source that is arranged in parallel with the first vapor deposition source and emits the second material toward the deposition target substrate; the plurality of vapor deposition sources; and the film deposition target The plurality of vapor deposition sources are arranged in parallel with each other so that each vapor deposition source is sandwiched between the substrates.
- the radiation angle of the first material emitted from the first vapor deposition source is smaller than the radiation angle of the second material emitted from the second vapor deposition source, and the first material
- a plurality of limiting plates for limiting a passing angle of the material radiated from each vapor deposition source so that a vapor deposition region by the vapor deposition source overlaps a part of the vapor deposition region by the second vapor deposition source, the plurality of vapor deposition sources, and the plural
- a deposition apparatus comprising a moving mechanism for relatively moving one of the limiting plate and the deposition target substrate with respect to the other along a parallel direction of the plurality of deposition sources.
- a vapor deposition apparatus is arranged in parallel with a first vapor deposition source that radiates a first material toward a film formation substrate and the first vapor deposition source, and toward the film formation substrate.
- a plurality of vapor deposition sources including a second vapor deposition source that radiates a second material; and the plurality of vapor deposition sources so as to sandwich each vapor deposition source between the plurality of vapor deposition sources and the deposition target substrate.
- the radiation angle of the first material emitted from the first vapor deposition source is spaced from each other in the juxtaposed direction of the second material, and the radiation angle of the second material emitted from the second vapor deposition source
- a plurality of limiting plates for limiting the passage angle of the material emitted from each vapor deposition source so that the vapor deposition region by the first vapor deposition source overlaps a part of the vapor deposition region by the second vapor deposition source,
- the plurality of vapor deposition sources, the plurality of limiting plates, and the substrate A moving mechanism for moving one of the film substrates relative to the other along the parallel direction of the plurality of vapor deposition sources, the plurality of vapor deposition sources, the plurality of limiting plates, and the film formation
- the present invention it is possible to provide a method for manufacturing a display device and a vapor deposition apparatus that can suppress material loss as compared with the related art and can suppress material peeling from the shutter.
- FIG. 3 is a flowchart illustrating an example of a method for manufacturing a display device according to the first embodiment.
- FIG. 3 is a cross-sectional view illustrating a configuration of a display area of the display device according to the first embodiment.
- (A) is sectional drawing which shows typically the main component of the vapor deposition apparatus concerning Embodiment 1
- (b) is the vapor deposition formed into a film on the film-forming substrate by the vapor deposition apparatus shown to (a). It is sectional drawing which shows an example of a layer.
- It is a perspective view which shows typically the main components in the vapor deposition chamber in the vapor deposition apparatus concerning Embodiment 1.
- FIG. It is a schematic diagram explaining the effect of a restriction
- (A) is sectional drawing which shows typically the main components in a vapor deposition chamber in the vapor deposition apparatus concerning Embodiment 2, (b) is on a film-forming substrate by the vapor deposition apparatus shown to (a). It is sectional drawing which shows an example of the vapor deposition layer formed into a film.
- (A) is sectional drawing which shows typically the main components in a vapor deposition chamber in the vapor deposition apparatus concerning Embodiment 3
- (b) is on a film-forming substrate by the vapor deposition apparatus shown to (a). It is sectional drawing which shows an example of the vapor deposition layer formed into a film.
- FIG. (A) is sectional drawing which shows typically the main components in a vapor deposition chamber in the vapor deposition apparatus concerning Embodiment 4, (b) is formed on a film-forming substrate by the vapor deposition apparatus shown to (a). It is sectional drawing which shows an example of the vapor deposition layer formed into a film.
- (A) is sectional drawing which shows typically vapor deposition in the outward path concerning Embodiment 5
- (b) is sectional drawing which shows typically vapor deposition in the return path concerning this Embodiment 5.
- FIG. (A) is sectional drawing which shows an example of the vapor deposition layer formed into a film on the to-be-deposited board
- FIG. 9 is (b) of FIG.
- route shown in FIG. (A) is sectional drawing which shows typically vapor deposition in the outward path concerning Embodiment 6
- (b) is sectional drawing which shows typically vapor deposition in the return path concerning this Embodiment 6.
- FIG. (A) is sectional drawing which shows an example of the vapor deposition layer formed into a film on the to-be-deposited board
- FIG. 1 is a flowchart showing an example of a method for manufacturing the display device 2 according to the present embodiment.
- FIG. 2 is a cross-sectional view showing the configuration of the display area of the display device 2 according to the present embodiment.
- “same layer” means formed in the same process (film formation step), and “lower layer” is formed in a process prior to the layer to be compared. This means that the “upper layer” is formed in a later process than the layer to be compared.
- a resin layer 12 is formed on a translucent support substrate (for example, mother glass) (step S1).
- the barrier layer 3 is formed (step S2).
- the TFT layer 4 is formed (step S3).
- the light emitting element layer 5 is formed (step S4).
- the sealing layer 6 is formed (step S5).
- an upper surface film is pasted on the sealing layer 6 (step S6).
- step S7 the support substrate is peeled off from the resin layer 12 by laser light irradiation or the like.
- the lower film 10 is attached to the lower surface of the resin layer 12 (step S8).
- step S9 the laminate including the lower film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces.
- step S10 an electronic circuit board (for example, an IC chip and an FPC) is mounted on a part (terminal portion) outside (a non-display area, a frame) of the display area where the plurality of sub-pixels are formed (step S11).
- steps S1 to S11 are performed by a display device manufacturing apparatus (including a film forming apparatus that performs each step of steps S1 to S5).
- the material of the resin layer 12 examples include polyimide.
- the resin layer 12 may be replaced with a two-layer resin film (for example, a polyimide film) and an inorganic insulating film sandwiched between them.
- the barrier layer 3 is a layer that prevents foreign matters such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5.
- a silicon oxide film, a silicon nitride film, or an oxynitride formed by a CVD method is used.
- a silicon film or a laminated film thereof can be used.
- the TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE and a gate wiring GH above the inorganic insulating film 16, and a gate electrode GE and An inorganic insulating film 18 above the gate wiring GH, a capacitive electrode CE above the inorganic insulating film 18, an inorganic insulating film 20 above the capacitive electrode CE, and a source wiring SH above the inorganic insulating film 20 And a planarizing film 21 (interlayer insulating film) that is an upper layer than the source wiring SH.
- the semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor (for example, an In—Ga—Zn—O-based semiconductor), and a transistor (TFT) is formed so as to include the semiconductor film 15 and the gate electrode GE. Is done.
- the transistor is shown with a top gate structure, but may have a bottom gate structure.
- the gate electrode GE, the gate wiring GH, the capacitor electrode CE, and the source wiring SH are configured by, for example, a single layer film or a stacked film of a metal including at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper.
- the TFT layer 4 in FIG. 2 includes one semiconductor layer and three metal layers.
- the inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method.
- the planarizing film 21 can be made of, for example, an applicable organic material such as polyimide or acrylic.
- the light emitting element layer 5 includes an anode 22 above the planarizing film 21, an insulating edge cover 23 covering the edge of the anode 22, an EL (electroluminescence) layer 24 above the edge cover 23, and an EL layer 24 and a cathode 25 above the upper layer.
- the edge cover 23 is formed, for example, by applying an organic material such as polyimide or acrylic and then patterning by photolithography.
- a light emitting element ES for example, OLED: organic light emitting diode, QLED: quantum dot light emitting diode
- ES light emitting element
- the island-shaped anode 22, EL layer 24, and cathode 25 is formed in the light emitting element layer 5, and the light emitting element
- a sub-pixel circuit for controlling ES is formed in the TFT layer 4.
- the EL layer 24 is configured as a functional layer by, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side.
- the light emitting layer is formed in an island shape, for example, in the opening (for each subpixel) of the edge cover 23 by an evaporation method or an ink jet method.
- the light emitting layer of the OLED is formed as a vapor deposition layer by a vapor deposition method using a vapor deposition mask.
- the light emitting layer of the QLED is formed by, for example, applying a solvent in which quantum dots are diffused by inkjet coating.
- the other functional layer is formed as an island-shaped or solid-shaped common layer by a vapor deposition method using a vapor deposition mask.
- a configuration in which one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not formed, or a configuration in which another layer is formed is also possible. Note that a method for forming the EL layer 24 using a vapor deposition mask will be described in detail later.
- the anode 22 is composed of, for example, a laminate of ITO (IndiumITOTin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity.
- the cathode (cathode) 25 can be made of a light-transmitting conductive material such as MgAg alloy (ultra-thin film), ITO, or IZO (Indium zinc Oxide).
- the light-emitting element ES is an OLED
- holes and electrons are recombined in the light-emitting layer by the driving current between the anode 22 and the cathode 25, and light is emitted in the process in which the excitons generated thereby transition to the ground state.
- the cathode 25 is light-transmitting and the anode 22 is light-reflecting
- the light emitted from the EL layer 24 is directed upward and becomes top emission.
- the cathode 25 is light-reflective and the anode 22 is light-transmitting
- the light emitted from the EL layer 24 is directed downward and becomes bottom emission.
- the light-emitting element ES is a QLED
- holes and electrons are recombined in the light-emitting layer due to the drive current between the anode 22 and the cathode 25, and the excitons generated thereby are conduction band levels of the quantum dots.
- Light (fluorescence) is emitted in the process of transition from valence band level to valence band.
- a light emitting element inorganic light emitting diode or the like
- OLED organic light emitting diode
- the sealing layer 6 is translucent, and includes an inorganic sealing film 26 that covers the cathode 25, an organic buffer film 27 that is above the inorganic sealing film 26, and an inorganic sealing film 28 that is above the organic buffer film 27. Including.
- the sealing layer 6 covering the light emitting element layer 5 prevents penetration of foreign substances such as water and oxygen into the light emitting element layer 5.
- Each of the inorganic sealing film 26 and the inorganic sealing film 28 is an inorganic insulating film, and is formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film thereof formed by a CVD method. be able to.
- the organic buffer film 27 is a light-transmitting organic film having a flattening effect, and can be made of a coatable organic material such as acrylic.
- the organic buffer film 27 can be formed by, for example, inkjet coating, but a bank for stopping the liquid droplets may be provided in the non-display area.
- the lower surface film 10 is, for example, a PET film for realizing a display device having excellent flexibility by being attached to the lower surface of the resin layer 12 after peeling the support substrate.
- the functional film 39 has, for example, at least one of an optical compensation function, a touch sensor function, and a protection function.
- step S4 for forming the light emitting element layer 5 for example, the EL layer 24 is formed by a vapor deposition method using a vapor deposition mask.
- the EL layer 24 includes two or more vapor deposition layers as functional layers.
- step S ⁇ b> 4 for forming the light emitting element layer 5 includes a vapor deposition process for forming a plurality of vapor deposition layers on the film formation substrate 200 by vapor deposition of a vapor deposition material on the film formation substrate 200.
- FIG. 3A is a cross-sectional view schematically showing main components of the vapor deposition apparatus 100 according to the present embodiment.
- FIG. 3B is a schematic view of the vapor deposition apparatus 100 shown in FIG. 3 is a cross-sectional view illustrating an example of a vapor deposition layer formed on a deposition target substrate 200.
- FIG. FIG. 4 is a perspective view schematically showing main components in the vapor deposition chamber 40 in the vapor deposition apparatus 100 according to the present embodiment.
- the direction in which the vapor deposition sources 51 and 52 are arranged in the scanning direction of the deposition target substrate 200 on which the vapor deposition layer is formed is defined as the Y direction.
- the horizontal direction perpendicular to the direction is defined as the X direction, the normal direction of the film formation surface 201 of the film formation substrate 200, and the vertical direction (vertical direction) perpendicular to the X direction and the Y direction is described as the Z direction.
- the vapor deposition apparatus 100 includes a vapor deposition chamber 40 (vacuum chamber), vapor deposition sources 51 and 52, a plurality of limiting plates 60 and 60 ′, a cooling mechanism 65 (cooling unit), and a vapor deposition source moving.
- a mechanism 70, a vapor deposition mask 80, a substrate moving mechanism 90, and the like are provided.
- the vapor deposition sources 51 and 52, the plurality of limiting plates 60 and 60 ', the cooling mechanism 65, the vapor deposition source moving mechanism 70, the vapor deposition mask 80, and the substrate moving mechanism 90 are disposed in the vapor deposition chamber 40.
- the deposition chamber 40 is provided with a vacuum pump (not shown) that evacuates the inside of the deposition chamber 40 through an exhaust port (not shown) provided in the deposition chamber 40.
- the vapor deposition mask 80 is a plate-like object whose mask surface, which is the main surface, is parallel to the film formation surface 201 of the film formation substrate 200.
- the main surface of the vapor deposition mask 80 is provided with at least one opening 81 (mask opening).
- the opening 81 is a through-hole, and functions as a passing portion through which a vapor deposition material (materials 301 and 302) radiated as vapor deposition particles from the vapor deposition sources 51 and 52 passes during vapor deposition.
- a region other than the opening 81 in the vapor deposition mask 80 is a non-opening, and functions as a blocking portion that blocks the flow of the vapor deposition material during vapor deposition.
- the opening 81 is provided corresponding to the pattern of each vapor deposition layer so that the vapor deposition material does not adhere to a region other than the target vapor deposition layer formation region in the deposition target substrate 200. Only the deposition material that has passed through the opening 81 adheres to the deposition target substrate 200, and a deposition layer having a pattern corresponding to the opening 81 is formed on the deposition target surface 201 of the deposition target substrate 200.
- an FMM fine metal mask
- the FMM is a sheet-like mask having a plurality of openings 81, and an island-shaped light emitting layer (corresponding to one subpixel) is formed by an organic material that has passed through one opening 81.
- an open mask such as FMM or CMM (common metal) is used as the vapor deposition mask 80.
- the open mask is a sheet-like mask having one opening 81 in the light emitting region, and a solid functional layer common to all sub-pixels is formed by the vapor deposition material that has passed through the opening 81.
- the deposition mask 80 corresponds to an open mask such as a CMM or a plurality of sub-pixels. A vapor deposition mask having an opening is used.
- vapor deposition masks 80 for example, a metal mask such as Invar material, a resin mask, or a composite mask having a metal layer and a resin layer is used.
- the vapor deposition sources 51 and 52 are juxtaposed in the Y direction so as to face the film formation substrate 200 through the vapor deposition mask 80.
- the vapor deposition sources 51 and 52 heat the vapor deposition material to evaporate (when the vapor deposition material is a liquid material) or sublimate (when the vapor deposition material is a solid material), thereby converting the vapor deposition material into gaseous vapor deposition particles. Radiate.
- the vapor deposition sources 51 and 52 are disposed, for example, below the film formation substrate 200 at a predetermined distance from the film formation substrate 200 so as to face the film formation surface 201 of the film formation substrate 200. .
- the vapor deposition sources 51 and 52 emit different materials.
- the vapor deposition source 51 (first vapor deposition source) heats the material 301 (first material) as a vapor deposition material and emits it as vapor deposition particles.
- the vapor deposition source 52 (second vapor deposition source) heats the material 302 (second material) as a vapor deposition material and emits it as vapor deposition particles.
- the vapor deposition source 51 has a radiation port 51 a that radiates the material 301 on the surface facing the deposition target substrate 200.
- the vapor deposition source 52 has a radiation port 52 a that radiates the material 302 on the surface facing the deposition target substrate 200.
- the evaporation sources 51 and 52 are evaporation sources called a line source or a linear source, and have a shape in which the length in the X direction is longer than the width in the Y direction.
- a plurality of radiation openings 51a and 52a are arranged in the X direction.
- the vapor deposition sources 51 and 52 have, for example, a container for storing the vapor deposition material and a heating member inside, and may directly store the vapor deposition material inside the container, have a load lock type pipe, and from the outside. You may form so that vapor deposition material may be supplied.
- the limiting plates 60 and 60 ′ are disposed above the deposition sources 51 and 52 (that is, between the deposition target substrate 200 and the deposition mask 80 and the deposition sources 51 and 52) so as to sandwich the respective deposition sources 51 and 52. They are separated from each other in the Y direction.
- the limiting plates 60 and 60 ′ limit the passage angle of the vapor deposition material radiated from the vapor deposition sources 51 and 52, thereby limiting the removal of unnecessary components of the vapor deposition material and the vapor deposition angle on the deposition target substrate 200.
- the limiting plates 60 and 60 ′ may be directly connected to the vapor deposition sources 51 and 52, or may be provided apart from the vapor deposition sources 51 and 52.
- FIG. 5 is a schematic diagram for explaining the effect of the limiting plates 60 and 60 '.
- FIG. 5 illustrates the vapor deposition source 51 and the material 301 emitted from the vapor deposition source 51 as an example of the vapor deposition source and the vapor deposition material. Although not shown, the same effects as those shown in FIG. 5 can be obtained for the vapor deposition source 52 and the material 302 emitted from the vapor deposition source 52.
- the material 301 radiated from the vapor deposition source 51 passes through the opening 61 (restriction plate opening) between the respective restriction plates 60 and 60 ′, and then the opening formed in the vapor deposition mask 80 (not shown). It passes through the part 81 and is deposited on the deposition target substrate 200.
- the limiting plates 60 and 60 ′ capture (attach) at least a part of the material 301 that has collided with the limiting plates 60 and 60 ′, and the like, so that the vapor deposition sources 51 and 52 are arranged in parallel (that is, the Y direction). Restricts the passage of vapor deposition materials (unnecessary components) with poor directivity.
- the amount of radiation of the vapor deposition material radiated from the vapor deposition source is most directly above the vapor deposition source, and the distribution conforms to the cosine law. Components with a shallow (low) deposition angle increase the risk of color mixing due to mask shadows.
- the limiting plates 60 and 60 ′ set the incident angle of the vapor deposition material incident on the opening 81 of the vapor deposition mask 80 so that the vapor deposition material having a shallow vapor deposition angle does not reach the deposition target substrate 200. It is limited to an angle equal to or greater than the shadow critical angle, which is the critical angle at which no shadows occur. Thereby, the limiting plates 60 and 60 ′ limit the deposition angle ⁇ in the Y direction with respect to the deposition target substrate 200 within a certain range, as shown in FIG. 5.
- the limiting plates 60 and 60 ′ capture the unnecessary components by the limiting plates 60 and 60 ′ and prevent the supplemented unnecessary components from vaporizing again. It is desirable to have a low temperature. Therefore, it is desirable that the restriction plates 60 and 60 'be provided with a cooling mechanism 65 for cooling the restriction plates 60 and 60' as shown in FIG. As described above, the vapor deposition material colliding with the limiting plates 60 and 60 ′ is attached to and captured by the limiting plates 60 and 60 ′, thereby preventing collision and scattering between the vapor deposition materials.
- the limiting plates 60 and 60 ′ thus limit the vapor deposition angle ⁇ in the Y direction with respect to the deposition target substrate 200 within a certain range, so that as shown in FIG.
- the deposition area by the deposition source 51 (deposition range, that is, the area where the material 301 radiated from the deposition source 51 is deposited) is limited (defined) and the deposition area by the deposition source 52 (deposition range, that is, the deposition source).
- the region where the material 302 emitted from 52 is deposited is limited.
- the limiting plates 60 and 60 ′ are configured so that the radiation angle of the material 301 radiated from the vapor deposition source 51 is smaller than the radiation angle of the material 302 radiated from the vapor deposition source 52. Limit the passing angle of the materials 301 and 302 emitted from 52.
- the vapor deposition region of the material 301 by the vapor deposition source 51 overlaps a part of the vapor deposition region of the material 302 by the vapor deposition source 52, so that the co-deposition layer made of the material 301 and the material 302 is formed on the deposition target substrate 200.
- a single vapor deposition layer made of the material 302 is laminated.
- the radiation angle of the material 301 radiated from the vapor deposition source 51 indicates an angle formed by the radiation trajectory of the material 301 with respect to the direction of the radiation port 51a of the vapor deposition source 51 (Z direction in the present embodiment).
- the radiation angle of the material 302 radiated from the vapor deposition source 52 indicates an angle formed by the radiation trajectory of the material 302 with respect to the direction of the radiation port 52a of the vapor deposition source 52 (Z direction in the present embodiment).
- the material of the limiting plates 60 and 60 ' for example, stainless steel such as SUS304 having a high heat-resistant temperature and excellent workability and weldability is used.
- the material of the limiting plates 60 and 60 ' is not limited to this, and various alloys, metals, and the like can be used as the material.
- the vapor deposition source moving mechanism 70 includes a holding member 71 that holds the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ', and a drive unit (not shown).
- the holding member 71 In the holding member 71, the radiation ports 51 a and 52 a of the vapor deposition sources 51 and 52, the longitudinal end surfaces of the restricting plates 60 and 60 ′, and the opening 61 between the restricting plates 60 and 60 ′ face the film formation substrate 200.
- the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ are held so that the limiting plates 60 and 60 ′ are adjacent to each other in the Y direction.
- the vapor deposition source moving mechanism 70 moves the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 'in the horizontal direction by a driving unit (not shown). If the vapor deposition source moving mechanism 70 is provided so as to be able to reciprocate along the parallel direction (Y direction) of the vapor deposition sources 51 and 52 as shown by arrows in FIGS. Any of these may be provided so as to be movable, or may be provided so as to be movable only in the Y direction.
- the holding member 71 may be a support base on which the vapor deposition sources 51 and 52 to which the limiting plates 60 and 60 ′ are directly connected are mounted.
- the vapor deposition sources 51 and 52 are mounted, and the vapor deposition sources 51 and 52 are mounted.
- It may be a support base having a frame-like shelf portion that supports the restriction plates 60 and 60 'in a state where the relative position between and is fixed.
- the drive unit may include, for example, a linear motor or the like, and may include a ball screw and a servo motor.
- the substrate moving mechanism 90 includes, for example, a holding member 91 that holds the deposition target substrate 200, a drive unit (not shown), and the like.
- the holding member 91 holds the deposition target substrate 200 so that the deposition target surface 201 of the deposition target substrate 200 faces the deposition sources 51 and 52 while vapor deposition is performed.
- the holding member 91 may be configured to hold the vapor deposition mask 80 together with the deposition target substrate 200.
- the holding member 91 may include a magnetic force generation source (not shown) such as a magnet or an electromagnet that holds the film formation substrate 200 together with the vapor deposition mask 80 in a state where the vapor deposition mask 80 is in contact with the film formation substrate 200.
- a frame body that holds the deposition target substrate 200 and the vapor deposition mask 80 in an overlapping manner may be provided.
- the substrate moving mechanism 90 moves the film formation substrate 200 and the vapor deposition mask 80 in the horizontal direction by a driving unit (not shown).
- the substrate moving mechanism 90 may be provided so as to be movable in both the Y direction and the X direction as long as the substrate moving mechanism 90 is provided so as to reciprocate along the direction in which the vapor deposition sources 51 and 52 are arranged side by side (Y direction). , May be provided to be movable only in the Y direction.
- Various known movement mechanisms can be used for the substrate movement mechanism 90.
- the evaporation sources 51 and 52, the plurality of limiting plates 60 and 60 ′, and the film formation are performed during the evaporation of the evaporation material.
- One of the substrates 200 is moved relative to the other along the Y direction.
- the vapor deposition mask 80 has a size equal to or larger than the deposition target substrate 200 (for example, the same size)
- the vapor deposition source 51 is moved relative to the other along the Y direction.
- the relative position of the vapor deposition mask 80 with the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ is fixed. .
- one of the deposition sources 51 and 52, the plurality of limiting plates 60 and 60 ', the deposition mask 80, and the deposition target substrate 200 is moved relative to the other along the Y direction.
- at least one of the deposition source moving mechanism 70 and the substrate moving mechanism 90 may be provided. Only one of the vapor deposition source moving mechanism 70 and the substrate moving mechanism 90 may be provided, and a fixing member for fixing the holding member 71 or the holding member 91 in the vapor deposition chamber 40 may be provided instead.
- the deposition target substrate 200 and the deposition mask 80 are, for example, a deposition target surface so that the deposition target surface 201 of the deposition target substrate 200 faces the deposition sources 51 and 52 through the deposition mask 80. It is held by the holding member 91 with 201 facing down.
- the vapor deposition source moving mechanism 70 causes the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ to be arranged side by side with respect to the deposition target substrate 200 and the vapor deposition mask 80 (Y direction).
- the material 301 radiated from the vapor deposition source 51 and the material 302 radiated from the vapor deposition source 52 are moved relative to each other in one direction (first direction) along the apertures 61 and 60 ′ of the limiting plates 60 and 60 ′.
- the film is deposited on the deposition target substrate 200 through the opening 81 of the vapor deposition mask 80.
- the radiation angle of the material 301 radiated from the vapor deposition source 51 is smaller than the radiation angle of the material 302 radiated from the vapor deposition source 52 by the limiting plates 60 and 60 ′.
- the passage angle of the materials 301 and 302 emitted from the respective vapor deposition sources 51 and 52 is limited so that the vapor deposition region of the material 301 by 51 overlaps a part of the vapor deposition region of the material 302 by the vapor deposition source 52. Accordingly, in the present embodiment, the forward direction (in other words, scanning) in which the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ are moved relative to the deposition target substrate 200 and the vapor deposition mask 80 in the first direction.
- the vapor deposition area by the vapor deposition sources 51 and 52 is divided into a co-deposition area where the material 301 and the material 302 are co-evaporated and a single vapor deposition area where the material 302 is vapor-deposited alone (single vapor deposition). To do.
- the vapor deposition layer 311 that is a co-deposition layer formed by co-deposition of the material 301 and the material 302 and the material 302 are only formed in the forward path.
- a laminated body with the vapor deposition layer 312 which is a vapor-deposited single vapor deposition layer can be formed.
- the restriction plates 60 and 60 ′ as an example, as shown in FIG. 3A, 1/3 of the outward path is a co-deposition region of the material 301 and the material 302, and the outward path
- the vapor deposition area by the vapor deposition sources 51 and 52 is partitioned so that 2/3 of the above becomes a single vapor deposition area of the material 302.
- the vapor deposition sources 51 and 52 are arranged so that the vapor deposition source 51 is positioned in front of the forward path (that is, downstream in the scanning direction) and the vapor deposition source 52 is positioned in the rearward path (that is, upstream in the scanning direction). For this reason, the vapor deposition source 51 reaches below the deposition target substrate 200 before the vapor deposition source 52 when the vapor deposition sources 51 and 52 are moved in the first direction.
- the vapor deposition layer 311 has a vapor deposition layer containing at least one of the material 301 and the material 302 on the deposition target substrate 200 first (that is, on the lower layer side). Then, the vapor deposition layer 312 is formed on the vapor deposition layer 311 with a thickness that is 2/3 of the total film thickness of the vapor deposition layers 311 and 312.
- vapor deposition is performed on the deposition target substrate 200 only by the reciprocating path (scanning path) of the vapor deposition sources 51 and 52. For this reason, after vapor deposition onto the film formation substrate 200 is performed in the outward path, the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ are returned to their original positions (initial positions) by the vapor deposition source moving mechanism 70. In the present embodiment, in the return path, only the deposition sources 51 and 52 and the limiting plates 60 and 60 'are moved, and deposition is not performed.
- the tact does not decrease.
- the vapor deposition layer 312 which is a single vapor deposition layer, it is not necessary to close a shutter and the material loss by that and the material peeling from a shutter do not arise. Therefore, according to the present embodiment, it is possible to provide a method for manufacturing the display device 2 and a vapor deposition apparatus 100 that can suppress material loss and tact reduction as compared with the related art and can prevent material peeling from the shutter. Can do.
- the materials 301 and 302 are not particularly limited as long as they are different from each other.
- the combination of the materials 301 and 302 is not particularly limited, and examples thereof include a combination in which the material 301 is a light emitting dopant material and the material 302 is a hole transporting or electron transporting host material.
- a light-emitting layer can be formed as a co-evaporation layer
- a hole transport layer or an electron transport layer can be formed as a single vapor deposition layer.
- a hole injection layer can be formed as a co-evaporation layer
- a hole transport layer can be formed as a single vapor deposition layer.
- an electron blocking layer can be formed as a single vapor deposition layer.
- an electron transport layer can be formed as a co-deposition layer, and an electron injection layer can be formed as a single deposition layer.
- a hole blocking layer can be formed as a co-evaporation layer, and an electron transport layer can be formed as a single vapor deposition layer.
- the EL layer 24 has a bipolar transporting layer having high hole transporting properties and electron transporting properties, such as a separate layer that inhibits the Forster transition, for example, hole transport is performed on one of the materials 301 and 302.
- a bipolar transporting layer can be formed as a co-deposition layer, and a hole transporting layer or an electron transporting layer can be formed as a single deposition layer.
- the protrusion height of the limiting plates 60 and 60 ′ from the upper surface of the vapor deposition source 51 and 52 (hereinafter referred to as “the height of protrusion from the vapor deposition source”) or simply “the protrusion”, with the upper surface of the vapor deposition source 51 and 52 as the reference plane.
- the height is referred to as “evaporation source-substrate distance (hereinafter referred to as“ T / S ”), the required deposition area width, and the like. It is desirable that it is in the range of several hundred mm, preferably in the range of 10 mm to 200 mm. If the protrusion height is less than 10 mm, the radiation angle is not sufficiently limited, and there is an increased concern about color mixing due to mask shadows.
- the separation distance between the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ is not uniquely determined for the same reason as the protrusion height, but is preferably in the range of several tens mm to several hundred mm. It is desirable to be within a range of 20 mm to 100 mm. When the separation distance is less than 20 nm, trapping of vapor deposition particles by the limiting plates 60 and 60 'increases, and material utilization efficiency deteriorates. Moreover, when the said separation distance exceeds 100 mm, the radiation angle of vapor deposition particle
- a limiting plate 60 and a limiting plate 60 ' are used.
- the protruding height of the central limiting plate 60 ′ is lower than the other two limiting plates 60.
- the separation distance between the restriction plate 60 on the left side of the vapor deposition source 52 and the vapor deposition source 52 is the separation distance between the restriction plate 60 ′ and the vapor deposition source 52, the separation distance between the restriction plate 60 ′ and the vapor deposition source 51, and the vapor deposition.
- the limiting plate 60 on the left side of the source 51 and the vapor deposition source 51 were arranged so as to be longer than the separation distance.
- the protruding height of the limiting plates 60 and 60 ′ and the arrangement of the limiting plates 60 and 60 ′ are examples, and the present embodiment is not limited to this.
- FIG. 6A is a cross-sectional view schematically showing main components in the vapor deposition chamber 40 in the vapor deposition apparatus 100 according to this embodiment
- FIG. 6B is a cross-sectional view of FIG. It is sectional drawing which shows an example of the vapor deposition layer formed into a film by the vapor deposition apparatus 100 shown in FIG.
- each deposition source 51 is configured so that the radiation angle of the material 302 radiated from the deposition source 52 is smaller than the radiation angle of the material 301 radiated from the deposition source 51 by the limiting plates 60 and 60 ′. Limit the passing angle of the materials 301 and 302 emitted from 52. As a result, the deposition region of the material 302 by the deposition source 52 overlaps with a part of the deposition region of the material 301 by the deposition source 51.
- the vapor deposition area by the vapor deposition sources 51 and 52 is divided into a single vapor deposition area where the material 301 is vapor-deposited, and a co-vapor deposition area where the material 301 and the material 302 are vapor-deposited in the scanning forward direction. Divide into and.
- the vapor deposition layer 313, which is a single vapor deposition layer obtained by single vapor deposition of the material 301, and the material 301 and the material 302 are shared in the forward path only.
- a laminated body with the vapor deposition layer 311 which is a co-deposition layer formed by vapor deposition can be formed.
- the vapor deposition apparatus 100 uses the limiting plates 60 and 60 ′ as an example, as shown in FIG.
- the vapor deposition regions by the vapor deposition sources 51 and 52 are partitioned so that 3/4 of the forward path is a co-vapor deposition region of the material 301 and the material 302.
- the vapor deposition layer 313 is formed on the deposition target substrate 200 first (that is, on the lower layer side) 1 / of the total film thickness of the vapor deposition layers 313 and 311.
- a vapor deposition layer 311 is formed on the vapor deposition layer 313 with a thickness of 3/4 of the total film thickness of the vapor deposition layers 313 and 311.
- the same effects as those of the first embodiment can be obtained, and by changing the arrangement and height of the restriction plates 60 and 60 ′, the types of the materials 301 and 302, and the like, A desired laminated structure can be formed.
- the limiting plate 60 and the limiting plate 60 ' are used as shown in FIG. 6A in order to achieve the above-described configuration.
- the protruding height of the central limiting plate 60 ′ is lower than the other two limiting plates 60.
- the separation distance between the restriction plate 60 on the left side of the vapor deposition source 52 and the vapor deposition source 52 and the separation distance between the restriction plate 60 on the right side of the vapor deposition source 51 and the vapor deposition source 51 are arranged to be approximately the same.
- the protruding height of the restriction plates 60 and 60 ′ and the arrangement of the restriction plates 60 and 60 ′ are examples, and the present embodiment is not limited to this.
- the vapor deposition layer 311 is formed.
- the film thickness can be increased.
- FIG. 7A is a cross-sectional view schematically showing main components in the vapor deposition chamber 40 in the vapor deposition apparatus 100 according to this embodiment
- FIG. 7B is a cross-sectional view of FIG. It is sectional drawing which shows an example of the vapor deposition layer formed into a film by the vapor deposition apparatus 100 shown in FIG.
- the vapor deposition apparatus 100 may include three or more vapor deposition sources. When the vapor deposition apparatus 100 includes three or more vapor deposition sources, at least two of the vapor deposition materials emitted from the respective vapor deposition sources are different materials.
- the vapor deposition apparatus 100 further includes a vapor deposition source 52 ′ that radiates a material 302 in addition to the vapor deposition sources 51 and 52 as shown in FIG. That is, the vapor deposition apparatus 100 according to the present embodiment includes one vapor deposition source 51 that radiates the material 301 and two vapor deposition sources 52 and 52 ′ as vapor deposition sources that radiate the material 302. .
- the vapor deposition source 52 ′ has a radiation port 52 a ′ that radiates the material 302 on the surface facing the deposition target substrate 200.
- the vapor deposition source 51, the vapor deposition source 52, and the vapor deposition source 52 ' are provided in this order from the forward path forward side (downstream in the scanning direction).
- the holding member 71 in the vapor deposition source moving mechanism 70 holds these vapor deposition sources 51, 52, and 52 '.
- the limiting plates 60 and 60 ' are provided above the vapor deposition sources 51, 52, and 52' so as to be separated from each other in the Y direction so as to sandwich the vapor deposition sources 51, 52, and 52 '. For this reason, the limiting plates 60 and 60 ′ limit the passage angle of the vapor deposition material radiated from the vapor deposition sources 51, 52, and 52 ′, thereby removing unnecessary components of the vapor deposition material and forming the deposition target substrate 200. The deposition angle is limited.
- the limiting plates 60 and 60 ′ may be directly connected to the vapor deposition sources 51, 52 and 52 ′, or may be provided apart from the vapor deposition sources 51, 52 and 52 ′.
- the limiter plates 60 and 60 ′ allow the radiation angle of the material 301 radiated from the vapor deposition source 51 and the radiation angle of the material 302 radiated from the vapor deposition source 52 ′ to be the material 302 radiated from the vapor deposition source 52.
- the passage angle of the materials 301 and 302 radiated from the respective vapor deposition sources 51, 52 and 52 ′ is limited so as to be smaller than the radiation angle. Accordingly, the deposition region of the material 301 by the deposition source 51 and the deposition region of the material 302 by the deposition source 52 ′ overlap with a part of the deposition region of the material 302 by the deposition source 52.
- the vapor deposition layer 311 that is a co-deposition layer formed by co-evaporation of the material 301 and the material 302 and the material 302 are simply formed as shown in FIG.
- a laminated body with the vapor deposition layer 312 which is a vapor-deposited single vapor deposition layer can be formed.
- the vapor deposition apparatus 100 uses the limiting plates 60 and 60 ′ as an example, as shown in FIG. 7A, half of the forward path is the co-vapor deposition of the material 301 and the material 302.
- the vapor deposition region by the vapor deposition sources 51, 52, and 52 ′ is partitioned so that the remaining half of the forward path is a single vapor deposition region of the material 302 emitted from the vapor deposition sources 52 and 52 ′.
- the vapor deposition layer 311 is first (that is, on the lower layer side) 1 / of the total film thickness of the vapor deposition layers 311 and 312. Then, the vapor deposition layer 312 is formed on the vapor deposition layer 311 with a thickness of 2/3 of the total film thickness of the vapor deposition layers 311 and 312.
- the two deposition sources radiate the material 302 as described above.
- a desired film thickness can be achieved. Note that, in this embodiment, the case where two evaporation sources that radiate the material 302 are provided has been described as an example. However, a material emitted from a plurality of evaporation sources that are prepared is not limited to the above material. Further, the number of vapor deposition sources to be prepared is not limited to two.
- a limiting plate 60 and a limiting plate 60 ' are used as shown in FIG.
- the projecting height of the central two limiting plates 60 ′ is lower than the two limiting plates 60 at both ends.
- the distance between the left limit plate 60 and the vapor deposition source 52 ′ of the vapor deposition source 52 ′ and the distance between the right limit plate 60 and the vapor deposition source 51 of the vapor deposition source 51 are arranged to be approximately the same. did.
- the protruding height of the restriction plates 60 and 60 ′ and the arrangement of the restriction plates 60 and 60 ′ are examples, and the present embodiment is not limited to this.
- the protrusion height refers to the protrusion height from the upper surface of the vapor deposition source 51, 52, 52 ′ with the upper surface of the vapor deposition source 51, 52, 52 ′ as the reference surface (the protrusion height from the vapor deposition source). ).
- the limiting plate 60 ′ having a low protrusion height from the vapor deposition source between the two limiting plates 60 having a high protrusion height from the vapor deposition source, the desired layer, in this embodiment, the vapor deposition layer 312 is formed.
- the film thickness can be increased.
- FIG. 8A is a cross-sectional view schematically showing main components in the vapor deposition chamber 40 in the vapor deposition apparatus 100 according to this embodiment
- FIG. 8B is a cross-sectional view of FIG. It is sectional drawing which shows an example of the vapor deposition layer formed into a film by the vapor deposition apparatus 100 shown in FIG.
- the vapor deposition apparatus 100 is a vapor deposition source 53 that emits a material 303 instead of the vapor deposition source 52 ′ in the vapor deposition apparatus 100 shown in FIG. It has.
- the vapor deposition source 53 has a radiation port 53 a that radiates the material 303 on the surface facing the deposition target substrate 200.
- a vapor deposition source 51, a vapor deposition source 52, and a vapor deposition source 53 are provided as vapor deposition sources in this order from the forward path front side (downstream in the scanning direction).
- the holding member 71 in the vapor deposition source moving mechanism 70 holds these vapor deposition sources 51, 52, and 53.
- the limiting plates 60 and 60 ′ are provided above the vapor deposition sources 51, 52, and 53 so as to be separated from each other in the Y direction so as to sandwich the vapor deposition sources 51, 52, and 53.
- the limiting plates 60 and 60 ′ limit the passage angle of the vapor deposition material radiated from the respective vapor deposition sources 51, 52, and 53, thereby removing unnecessary components of the vapor deposition material and applying them to the deposition target substrate 200. Limit the deposition angle.
- the limiting plates 60, 60 ' may be directly connected to the vapor deposition sources 51, 52, 53, or may be provided apart from the vapor deposition sources 51, 52, 53.
- the limiting plates 60 and 60 ′ allow the radiation angle of the material 301 radiated from the vapor deposition source 51 and the radiation angle of the material 303 radiated from the vapor deposition source 53 to be different from those of the material 302 radiated from the vapor deposition source 52.
- the passing angle of the materials 301, 302, and 303 radiated from the respective vapor deposition sources 51, 52, and 53 is limited so as to be smaller than the radiation angle.
- the vapor deposition region of the material 301 by the vapor deposition source 51 and the vapor deposition region of the material 303 by the vapor deposition source 53 overlap with a part of the vapor deposition region of the material 302 by the vapor deposition source 52.
- the vapor deposition regions by the vapor deposition sources 51, 52, and 53 are co-deposited, the material 301 and the material 302 are co-deposited, and the material 302 and the material 303 are co-deposited. It is divided into a co-evaporation region.
- the vapor deposition layer 311 which is a co-deposition layer formed by co-deposition of the material 301 and the material 302, and the material 302 and the material only in the outward path.
- a laminate with the vapor deposition layer 314 which is a co-deposition layer formed by co-evaporation of 303 can be formed.
- the vapor deposition apparatus 100 uses the limiting plates 60 and 60 ′ as an example, as shown in FIG. 8A, half of the forward path is the co-vapor deposition of the material 301 and the material 302. This is a region, and the vapor deposition regions by the vapor deposition sources 51, 52, and 53 are partitioned so that the remaining half of the forward path is a co-vapor deposition region of the material 302 and the material 303.
- the vapor deposition layer 311 is first (that is, on the lower layer side) 1 / of the total film thickness of the vapor deposition layers 311 and 314. Then, a vapor deposition layer 314 is formed on the vapor deposition layer 311 with a thickness of 1 ⁇ 2 of the total film thickness of the vapor deposition layers 311 and 314.
- the limiting plate 60 and the limiting plate 60 ′ are used as shown in FIG. 8A in order to achieve the above-described configuration.
- the projecting height of the central two limiting plates 60 ′ is lower than the two limiting plates 60 at both ends.
- the separation distance between the restriction plate 60 on the left side of the vapor deposition source 53 and the vapor deposition source 53 and the separation distance between the restriction plate 60 on the right side of the vapor deposition source 51 and the vapor deposition source 51 are arranged to be approximately the same.
- protruding heights of the restriction plates 60 and 60 'and the arrangement of the restriction plates 60 and 60' are examples, and the present embodiment is not limited to this.
- the protrusion height is a protrusion height from the upper surface of the vapor deposition source 51, 52, 53 (protrusion height from the vapor deposition source) with the upper surface of the vapor deposition source 51, 52, 53 as a reference surface.
- the materials 301, 302, and 303 are not particularly limited as long as they are different from each other.
- the combination of the materials 301, 302, and 303 is not particularly limited, and examples thereof include a combination in which the materials 301, 302, and 303 are different hole transport materials, or a combination in which the materials are different electron transport materials. It is done.
- vapor deposition consisting of any combination of a hole injection layer and a hole transport layer, a hole transport layer and an electron blocking layer, an electron transport layer and an electron injection layer, a hole blocking layer and an electron transport layer, It can form as the vapor deposition layer 311 * 314.
- a light emitting layer that emits light of different colors can be formed as the vapor deposition layers 311 and 314.
- one of the materials 301 and 303 is a light emitting dopant material
- the other is a hole transporting material or an electron transporting material
- the material 302 is a hole transporting or electron transporting host material.
- a light emitting layer and a layer made of an electron transporting material such as an electron transporting layer adjacent to the light emitting layer, or a layer made of a hole transporting material such as a hole transporting layer. Can be stacked.
- the case where three vapor deposition sources that release different materials are provided has been described as an example, but the number of the vapor deposition sources is not limited to three. Moreover, the overlap and ratio of each vapor deposition area are not limited to the example mentioned above. As described above, this embodiment can also be applied to vapor deposition of three or more different materials.
- a laminate of a co-deposition layer and a single deposition layer By changing the arrangement and height of the limiting plates 60 and 60 '(in other words, the deposition range by each deposition source), the material released from each deposition source, etc., a laminate of a co-deposition layer and a single deposition layer, A plurality of layers including a co-deposited layer, which are stacked on each other, such as a stack of co-adhering layers, can be formed in a stack.
- FIG. 9A is a cross-sectional view schematically showing the vapor deposition in the forward path according to the present embodiment
- FIG. 9B is a cross-sectional view schematically showing the vapor deposition in the return path according to the present embodiment.
- FIG. 10A is a cross-sectional view showing an example of a vapor deposition layer formed on the deposition target substrate 200 after vapor deposition in the outward path shown in FIG. 9A.
- FIG. ) Is a cross-sectional view showing an example of a vapor deposition layer formed on the film formation substrate 200 after vapor deposition in the return path shown in FIG.
- FIGS. 9A and 9B illustrate the case where vapor deposition is performed reciprocally using the vapor deposition apparatus 100 according to the first embodiment. Therefore, (a) in FIG. 9 is the same as (a) in FIG. 3, and (a) in FIG. 10 is the same as (b) in FIG.
- the return path is also used for vapor deposition, so that the thickness of the vapor deposition layer 312 is doubled compared to the case where vapor deposition is performed only in the forward path.
- a vapor deposition layer made of the same material as the vapor deposition layer 311 can be formed as the vapor deposition layer 315 on the vapor deposition layer 312.
- the vapor deposition layer 312 formed in the forward path and the vapor deposition layer 312 formed in the backward path are distinguished from each other by dotted lines, but these are films made of the same material. There is no boundary and it is formed continuously. Moreover, the ratio of the vapor deposition area
- the co-deposition layers of the materials 301 and 302, the single vapor deposition layer of the material 302, and the co-deposition of the materials 301 and 302 are stacked in this order.
- the present embodiment is not limited to this.
- a single vapor deposition layer of the material 301, a co-vapor deposition layer of the materials 301 and 302, and the material 301 These single vapor deposition layers can also be laminated in this order.
- FIG. 11A is a cross-sectional view schematically showing the vapor deposition in the forward path
- FIG. 11B is a cross-sectional view schematically showing the vapor deposition in the return path
- 12A is a cross-sectional view showing an example of a vapor deposition layer formed on the deposition target substrate 200 after vapor deposition in the outward path shown in FIG. 11A.
- FIG. ) Is a cross-sectional view showing an example of a vapor deposition layer formed on the film formation substrate 200 after vapor deposition in the return path shown in FIG.
- the deposition apparatus 100 according to the fifth embodiment is provided with the shutter 111 that selectively shields the deposition path of the material 301
- the material 302 is simply deposited on the end surface 202 of the deposition target substrate 200 facing the deposition sources 51 and 52 in the return path.
- the vapor deposition path of the material 301 is selectively shielded by the shutter 111 before reaching the boundary A between the single vapor deposition area and the co-deposition area where the material 301 and the material 302 are co-deposited. By doing so, as shown in FIG.
- the vapor deposition layer 312 having a larger film thickness was laminated on the vapor deposition layer 311 than when the vapor deposition was performed only in the forward path.
- a stacked body of vapor deposition layers 311 and 312 can be formed.
- the vapor deposition layer 311 and the vapor deposition layer 312 are laminated in the forward path, so that only the vapor deposition layer 311 is formed in the forward path.
- the time for depositing only the vapor deposition layer 312 (that is, the vapor deposition time on the return path) can be shortened. For this reason, even if the shutter 111 is used, the material loss can be suppressed as compared with the conventional case, and the material peeling from the shutter 111 can be suppressed.
- the deposition apparatus 100 according to the fifth embodiment is provided with the shutter 111 that selectively shields the deposition path of the material 301 .
- This embodiment is not limited to this.
- a shutter that selectively shields the vapor deposition path of the vapor deposition material radiated from at least one vapor deposition source among the plurality of vapor deposition sources is provided, and vapor deposition is performed in each of the forward path and the return path. Only in one of the return paths, the above-described effects can be obtained by selectively shielding the vapor deposition paths of some of the plurality of vapor deposition materials by the shutter.
- a single vapor deposition layer made of the first material or the second material is formed in the forward path and the return path, and the first material and the second material are either in the forward path or the return path. It is not limited to the case where the co-evaporation layer consisting of is formed.
- the co-evaporation layer consisting of is formed.
- a single vapor deposition layer made of the material 302 is formed.
- the present invention is not limited to the case where the vapor deposition path of the material 301 is blocked.
- the single vapor deposition layer made of the first material or the second material is formed in the forward path and the return path, and the first material and the first path are formed in at least one of the forward path and the return path. It is possible to form a co-deposition layer made of two materials.
- the present invention can be used in a display device manufacturing method and a vapor deposition apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
In this invention, a vapor deposition device (100) is equipped with a restricting plate (60) for restricting the passing angle of materials emitted from each of vapor deposition sources (51, 52) in such a manner that the emission angle of the materials emitted from one of the vapor deposition sources is smaller than the emission angle of the other, and the vapor deposition region of one of the vapor deposition sources overlaps with a portion of the vapor deposition region of the other vapor deposition source. Among the vapor deposition sources and the restricting plate on one hand, and a film-forming substrate on the other, one is moved relative to the other along the alignment direction of the vapor deposition sources while performing the vapor deposition using this vapor deposition device (100).
Description
本発明は、表示デバイスの製造方法および蒸着装置に関する。
The present invention relates to a display device manufacturing method and a vapor deposition apparatus.
発光素子では、複数の層を蒸着により積層する。コンタミネーションの抑制の観点からは、各層を異なる蒸着チャンバ内で成膜することが理想である。しかしながら、積層数が多いと蒸着チャンバ数が増大し、製造コストが増加する。このため、例えば第1層が材料Aと材料Bとの共蒸着層であり、第2層が材料Aのみの単蒸着層である場合、単蒸着層の蒸着時に、シャッタで、材料Bの蒸着経路を遮蔽して材料Aのみを蒸着することで、1つの蒸着チャンバ内で複数の層を形成する。
In the light emitting element, a plurality of layers are laminated by vapor deposition. From the viewpoint of suppressing contamination, it is ideal to form each layer in a different vapor deposition chamber. However, if the number of stacked layers is large, the number of vapor deposition chambers increases and the manufacturing cost increases. For this reason, for example, when the first layer is a co-evaporation layer of the material A and the material B and the second layer is a single vapor deposition layer of only the material A, the vapor deposition of the material B is performed with a shutter at the time of vapor deposition of the single vapor deposition layer. By depositing only the material A while shielding the path, a plurality of layers are formed in one deposition chamber.
例えば、特許文献1には、発光ドーパントを放射する蒸着源と、ホスト材料兼中間層形成材料を放射する蒸着源とを備え、発光ドーパント用のシャッタを全て閉じることで中間層を形成し、発光ドーパント用のシャッタおよびホスト材料兼中間層形成材料用のシャッタを開放することで発光層を形成する蒸着装置を用いた蒸着方法が開示されている。
For example, Patent Document 1 includes a vapor deposition source that emits a light emitting dopant and a vapor deposition source that emits a host material / intermediate layer forming material, and forms an intermediate layer by closing all shutters for the light emitting dopant to emit light. A vapor deposition method using a vapor deposition apparatus that forms a light emitting layer by opening a shutter for a dopant and a shutter for a host material / intermediate layer forming material is disclosed.
しかしながら、このような蒸着装置を用いて、例えば蒸着源を往復移動させることにより、往路で上記共蒸着層を形成し、復路で上記単蒸着層を形成する場合、シャッタを閉じている間、材料Bはシャッタの底部に堆積されるため、材料Bが復路で無駄に消費される。また、シャッタの底部への材料Bの堆積量が増えるに従い、シャッタからの材料剥がれが懸念される。
However, when such a vapor deposition source is used, for example, by reciprocating the vapor deposition source, the co-deposition layer is formed in the forward path, and the single vapor deposition layer is formed in the return path. Since B is deposited on the bottom of the shutter, the material B is wasted on the return path. Further, as the amount of the material B deposited on the bottom of the shutter increases, there is a concern about the material peeling from the shutter.
本発明の一態様にかかる表示デバイスの製造方法は、第1の材料および第2の材料を含む材料からなる共蒸着層である第1の蒸着層と、上記第1の材料および上記第2の材料のうち何れか一方の材料を含む材料からなる第2の蒸着層との積層体を有する表示デバイスの製造方法であって、被成膜基板に上記材料を蒸着させることで上記被成膜基板に上記第1の蒸着層および上記第2の蒸着層を形成する蒸着工程を含み、上記蒸着工程では、上記被成膜基板に向かって上記第1の材料を放射する第1の蒸着源と該第1の蒸着源に並設され、上記被成膜基板に向かって上記第2の材料を放射する第2の蒸着源とを含む複数の蒸着源と、上記複数の蒸着源と上記被成膜基板との間に、各蒸着源を挟むように上記複数の蒸着源の並設方向に互いに離間して設けられ、上記第1の蒸着源から放射される上記第1の材料の放射角が上記第2の蒸着源から放射される上記第2の材料の放射角よりも小さく、上記第1の蒸着源による蒸着領域が上記第2の蒸着源による蒸着領域の一部に重なるように各蒸着源から放射された材料の通過角度を制限する複数の制限板と、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向に沿って相対的に移動させる移動機構とを備えた蒸着装置を用いて、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向の一方向に沿って相対的に移動させながら蒸着を行うことで、上記第1の蒸着層と上記第2の蒸着層とを積層する。
A manufacturing method of a display device according to one embodiment of the present invention includes a first vapor deposition layer that is a co-deposition layer made of a material including a first material and a second material, the first material, and the second material. A method of manufacturing a display device having a laminate with a second vapor deposition layer made of a material containing any one of the materials, wherein the film deposition substrate is formed by depositing the material on the film deposition substrate. Including a vapor deposition step of forming the first vapor deposition layer and the second vapor deposition layer, wherein the vapor deposition step includes a first vapor deposition source that radiates the first material toward the film formation substrate, A plurality of vapor deposition sources including a second vapor deposition source that is arranged in parallel with the first vapor deposition source and emits the second material toward the deposition target substrate; the plurality of vapor deposition sources; and the film deposition target The plurality of vapor deposition sources are arranged in parallel with each other so that each vapor deposition source is sandwiched between the substrates. The radiation angle of the first material emitted from the first vapor deposition source is smaller than the radiation angle of the second material emitted from the second vapor deposition source, and the first material A plurality of limiting plates for limiting a passing angle of the material radiated from each vapor deposition source so that a vapor deposition region by the vapor deposition source overlaps a part of the vapor deposition region by the second vapor deposition source, the plurality of vapor deposition sources, and the plural Using a deposition apparatus comprising a moving mechanism for relatively moving one of the limiting plate and the deposition target substrate with respect to the other along a parallel direction of the plurality of deposition sources. By performing deposition while relatively moving one of the deposition source and the plurality of limiting plates and the deposition target substrate along one direction of the plurality of deposition sources with respect to the other, The first vapor deposition layer and the second vapor deposition layer are stacked.
本発明の一態様にかかる蒸着装置は、被成膜基板に向かって第1の材料を放射する第1の蒸着源と該第1の蒸着源に並設され、上記被成膜基板に向かって第2の材料を放射する第2の蒸着源とを含む複数の蒸着源と、上複数の記蒸着源と上記被成膜基板との間に、各蒸着源を挟むように上記複数の蒸着源の並設方向に互いに離間して設けられ、上記第1の蒸着源から放射される上記第1の材料の放射角が上記第2の蒸着源から放射される上記第2の材料の放射角よりも小さく、上記第1の蒸着源による蒸着領域が上記第2の蒸着源による蒸着領域の一部に重なるように各蒸着源から放射された材料の通過角度を制限する複数の制限板と、上記第1の材料および上記第2の材料の蒸着時に、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向に沿って相対的に移動させる移動機構とを備え、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向の一方向に沿って相対的に移動させながら蒸着を行うことで、上記第1の材料および上記第2の材料を含む材料からなる共蒸着層である第1の蒸着層と、上記第1の材料および上記第2の材料のうち何れか一方の材料を含む材料からなる第2の蒸着層とを積層する。
A vapor deposition apparatus according to one embodiment of the present invention is arranged in parallel with a first vapor deposition source that radiates a first material toward a film formation substrate and the first vapor deposition source, and toward the film formation substrate. A plurality of vapor deposition sources including a second vapor deposition source that radiates a second material; and the plurality of vapor deposition sources so as to sandwich each vapor deposition source between the plurality of vapor deposition sources and the deposition target substrate. The radiation angle of the first material emitted from the first vapor deposition source is spaced from each other in the juxtaposed direction of the second material, and the radiation angle of the second material emitted from the second vapor deposition source A plurality of limiting plates for limiting the passage angle of the material emitted from each vapor deposition source so that the vapor deposition region by the first vapor deposition source overlaps a part of the vapor deposition region by the second vapor deposition source, At the time of vapor deposition of the first material and the second material, the plurality of vapor deposition sources, the plurality of limiting plates, and the substrate A moving mechanism for moving one of the film substrates relative to the other along the parallel direction of the plurality of vapor deposition sources, the plurality of vapor deposition sources, the plurality of limiting plates, and the film formation By performing deposition while moving one of the substrates relative to the other along one direction of the plurality of deposition sources, the first material and the second material are included. A first vapor deposition layer that is a co-deposition layer made of a material and a second vapor deposition layer made of a material containing one of the first material and the second material are stacked.
本発明の一態様によれば、従来よりも材料ロスを抑えることができるとともに、シャッタからの材料剥がれを抑制することができる表示デバイスの製造方法および蒸着装置を提供することができる。
According to one embodiment of the present invention, it is possible to provide a method for manufacturing a display device and a vapor deposition apparatus that can suppress material loss as compared with the related art and can suppress material peeling from the shutter.
本発明の一実施形態について詳細に説明する。なお、以下の各実施形態では先に説明した部材と同じ機能を有する部材については同じ符号を付記し、その説明を繰り返さない。
An embodiment of the present invention will be described in detail. In the following embodiments, members having the same functions as those described above are denoted by the same reference numerals, and the description thereof will not be repeated.
〔実施形態1〕
<表示デバイスの構成および製造方法の概要>
図1は、本実施形態にかかる表示デバイス2の製造方法の一例を示すフローチャートである。図2は、本実施形態にかかる表示デバイス2の表示領域の構成を示す断面図である。以下の説明では、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。Embodiment 1
<Outline of display device configuration and manufacturing method>
FIG. 1 is a flowchart showing an example of a method for manufacturing thedisplay device 2 according to the present embodiment. FIG. 2 is a cross-sectional view showing the configuration of the display area of the display device 2 according to the present embodiment. In the following description, “same layer” means formed in the same process (film formation step), and “lower layer” is formed in a process prior to the layer to be compared. This means that the “upper layer” is formed in a later process than the layer to be compared.
<表示デバイスの構成および製造方法の概要>
図1は、本実施形態にかかる表示デバイス2の製造方法の一例を示すフローチャートである。図2は、本実施形態にかかる表示デバイス2の表示領域の構成を示す断面図である。以下の説明では、「同層」とは同一のプロセス(成膜工程)にて形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
<Outline of display device configuration and manufacturing method>
FIG. 1 is a flowchart showing an example of a method for manufacturing the
フレキシブルな表示デバイス2を製造する場合、図1および図2に示すように、まず、透光性の支持基板(例えば、マザーガラス)上に樹脂層12を形成する(ステップS1)。次いで、バリア層3を形成する(ステップS2)。次いで、TFT層4を形成する(ステップS3)。次いで、発光素子層5を形成する(ステップS4)。次いで、封止層6を形成する(ステップS5)。次いで、封止層6上に上面フィルムを貼り付ける(ステップS6)。
When the flexible display device 2 is manufactured, as shown in FIGS. 1 and 2, first, a resin layer 12 is formed on a translucent support substrate (for example, mother glass) (step S1). Next, the barrier layer 3 is formed (step S2). Next, the TFT layer 4 is formed (step S3). Next, the light emitting element layer 5 is formed (step S4). Next, the sealing layer 6 is formed (step S5). Next, an upper surface film is pasted on the sealing layer 6 (step S6).
次いで、レーザ光の照射等によって支持基板を樹脂層12から剥離する(ステップS7)。次いで、樹脂層12の下面に下面フィルム10を貼り付ける(ステップS8)。次いで、下面フィルム10、樹脂層12、バリア層3、TFT層4、発光素子層5、封止層6を含む積層体を分断し、複数の個片を得る(ステップS9)。次いで、得られた個片に機能フィルム39を貼り付ける(ステップS10)。次いで、複数のサブ画素が形成された表示領域よりも外側(非表示領域、額縁)の一部(端子部)に電子回路基板(例えば、ICチップおよびFPC)をマウントする(ステップS11)。なお、ステップS1~S11は、表示デバイス製造装置(ステップS1~S5の各工程を行う成膜装置を含む)が行う。
Next, the support substrate is peeled off from the resin layer 12 by laser light irradiation or the like (step S7). Next, the lower film 10 is attached to the lower surface of the resin layer 12 (step S8). Next, the laminate including the lower film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces (step S9). Subsequently, the functional film 39 is affixed on the obtained piece (step S10). Next, an electronic circuit board (for example, an IC chip and an FPC) is mounted on a part (terminal portion) outside (a non-display area, a frame) of the display area where the plurality of sub-pixels are formed (step S11). Steps S1 to S11 are performed by a display device manufacturing apparatus (including a film forming apparatus that performs each step of steps S1 to S5).
樹脂層12の材料としては、例えばポリイミド等が挙げられる。樹脂層12の部分を、二層の樹脂膜(例えば、ポリイミド膜)およびこれらに挟まれた無機絶縁膜で置き換えることもできる。
Examples of the material of the resin layer 12 include polyimide. The resin layer 12 may be replaced with a two-layer resin film (for example, a polyimide film) and an inorganic insulating film sandwiched between them.
バリア層3は、水、酸素等の異物がTFT層4および発光素子層5に侵入することを防ぐ層であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
The barrier layer 3 is a layer that prevents foreign matters such as water and oxygen from entering the TFT layer 4 and the light emitting element layer 5. For example, a silicon oxide film, a silicon nitride film, or an oxynitride formed by a CVD method is used. A silicon film or a laminated film thereof can be used.
TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層の、ゲート電極GEおよびゲート配線GHと、ゲート電極GEおよびゲート配線GHよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量電極CEと、容量電極CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層のソース配線SHと、ソース配線SHよりも上層の平坦化膜21(層間絶縁膜)とを含む。
The TFT layer 4 includes a semiconductor film 15, an inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, a gate electrode GE and a gate wiring GH above the inorganic insulating film 16, and a gate electrode GE and An inorganic insulating film 18 above the gate wiring GH, a capacitive electrode CE above the inorganic insulating film 18, an inorganic insulating film 20 above the capacitive electrode CE, and a source wiring SH above the inorganic insulating film 20 And a planarizing film 21 (interlayer insulating film) that is an upper layer than the source wiring SH.
半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体(例えばIn-Ga-Zn-O系の半導体)で構成され、半導体膜15およびゲート電極GEを含むようにトランジスタ(TFT)が構成される。図2では、トランジスタがトップゲート構造で示されているが、ボトムゲート構造でもよい。
The semiconductor film 15 is made of, for example, low-temperature polysilicon (LTPS) or an oxide semiconductor (for example, an In—Ga—Zn—O-based semiconductor), and a transistor (TFT) is formed so as to include the semiconductor film 15 and the gate electrode GE. Is done. In FIG. 2, the transistor is shown with a top gate structure, but may have a bottom gate structure.
ゲート電極GE、ゲート配線GH、容量電極CE、およびソース配線SHは、例えば、アルミニウム、タングステン、モリブデン、タンタル、クロム、チタン、銅の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。図2のTFT層4には、一層の半導体層および三層の金属層が含まれる。
The gate electrode GE, the gate wiring GH, the capacitor electrode CE, and the source wiring SH are configured by, for example, a single layer film or a stacked film of a metal including at least one of aluminum, tungsten, molybdenum, tantalum, chromium, titanium, and copper. The The TFT layer 4 in FIG. 2 includes one semiconductor layer and three metal layers.
無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。平坦化膜21は、例えば、ポリイミド、アクリル等の塗布可能な有機材料によって構成することができる。
The inorganic insulating films 16, 18, and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a stacked film thereof formed by a CVD method. The planarizing film 21 can be made of, for example, an applicable organic material such as polyimide or acrylic.
発光素子層5は、平坦化膜21よりも上層のアノード22と、アノード22のエッジを覆う絶縁性のエッジカバー23と、エッジカバー23よりも上層のEL(エレクトロルミネッセンス)層24と、EL層24よりも上層のカソード25とを含む。エッジカバー23は、例えば、ポリイミド、アクリル等の有機材料を塗布した後にフォトリソグラフィよってパターニングすることで形成される。
The light emitting element layer 5 includes an anode 22 above the planarizing film 21, an insulating edge cover 23 covering the edge of the anode 22, an EL (electroluminescence) layer 24 above the edge cover 23, and an EL layer 24 and a cathode 25 above the upper layer. The edge cover 23 is formed, for example, by applying an organic material such as polyimide or acrylic and then patterning by photolithography.
サブ画素毎に、島状のアノード22、EL層24、およびカソード25を含む発光素子ES(例えば、OLED:有機発光ダイオード,QLED:量子ドット発光ダイオード)が発光素子層5に形成され、発光素子ESを制御するサブ画素回路がTFT層4に形成される。
For each subpixel, a light emitting element ES (for example, OLED: organic light emitting diode, QLED: quantum dot light emitting diode) including the island-shaped anode 22, EL layer 24, and cathode 25 is formed in the light emitting element layer 5, and the light emitting element A sub-pixel circuit for controlling ES is formed in the TFT layer 4.
EL層24は、機能層として、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、例えばエッジカバー23の開口(サブ画素毎)に島状に形成される。OLEDの発光層は、蒸着マスクを用いた蒸着法により蒸着層として形成される。QLEDの発光層は、例えば、量子ドットを拡散させた溶媒をインクジェット塗布することで形成される。他の機能層は、蒸着マスクを用いた蒸着法によって、島状あるいはベタ状の共通層として形成される。なお、正孔注入層、正孔輸送層、電子輸送層、電子注入層のうち1以上の層を形成しない構成、あるいは、さらに他の層を形成する構成も可能である。なお、蒸着マスクを用いて上記EL層24を形成する方法については、後で詳述する。
The EL layer 24 is configured as a functional layer by, for example, laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side. The light emitting layer is formed in an island shape, for example, in the opening (for each subpixel) of the edge cover 23 by an evaporation method or an ink jet method. The light emitting layer of the OLED is formed as a vapor deposition layer by a vapor deposition method using a vapor deposition mask. The light emitting layer of the QLED is formed by, for example, applying a solvent in which quantum dots are diffused by inkjet coating. The other functional layer is formed as an island-shaped or solid-shaped common layer by a vapor deposition method using a vapor deposition mask. A configuration in which one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer are not formed, or a configuration in which another layer is formed is also possible. Note that a method for forming the EL layer 24 using a vapor deposition mask will be described in detail later.
アノード(陽極)22は、例えばITO(Indium Tin Oxide)とAg(銀)あるいはAgを含む合金との積層によって構成され、光反射性を有する。カソード(陰極)25は、MgAg合金(極薄膜)、ITO、IZO(Indium zinc Oxide)等の透光性の導電材で構成することができる。
The anode 22 is composed of, for example, a laminate of ITO (IndiumITOTin Oxide) and Ag (silver) or an alloy containing Ag, and has light reflectivity. The cathode (cathode) 25 can be made of a light-transmitting conductive material such as MgAg alloy (ultra-thin film), ITO, or IZO (Indium zinc Oxide).
発光素子ESがOLEDである場合、アノード22およびカソード25間の駆動電流によって正孔と電子が発光層内で再結合し、これによって生じたエキシトンが基底状態に遷移する過程で光が放出される。カソード25が透光性であり、アノード22が光反射性である場合、EL層24から放出された光は上方に向かい、トップエミッションとなる。カソード25が光反射性であり、アノード22が透光性である場合、EL層24から放出された光は下方に向かい、ボトムエミッションとなる。
When the light-emitting element ES is an OLED, holes and electrons are recombined in the light-emitting layer by the driving current between the anode 22 and the cathode 25, and light is emitted in the process in which the excitons generated thereby transition to the ground state. . When the cathode 25 is light-transmitting and the anode 22 is light-reflecting, the light emitted from the EL layer 24 is directed upward and becomes top emission. When the cathode 25 is light-reflective and the anode 22 is light-transmitting, the light emitted from the EL layer 24 is directed downward and becomes bottom emission.
発光素子ESがQLEDである場合、アノード22およびカソード25間の駆動電流によって正孔と電子が発光層内で再結合し、これによって生じたエキシトンが、量子ドットの伝導帯準位(conduction band)から価電子帯準位(valence band)に遷移する過程で光(蛍光)が放出される。
When the light-emitting element ES is a QLED, holes and electrons are recombined in the light-emitting layer due to the drive current between the anode 22 and the cathode 25, and the excitons generated thereby are conduction band levels of the quantum dots. Light (fluorescence) is emitted in the process of transition from valence band level to valence band.
発光素子層5には、前記のOLED、QLED以外の発光素子(無機発光ダイオード等)を形成してもよい。
In the light emitting element layer 5, a light emitting element (inorganic light emitting diode or the like) other than the OLED and QLED may be formed.
封止層6は透光性であり、カソード25を覆う無機封止膜26と、無機封止膜26よりも上層の有機バッファ膜27と、有機バッファ膜27よりも上層の無機封止膜28とを含む。発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防いでいる。
The sealing layer 6 is translucent, and includes an inorganic sealing film 26 that covers the cathode 25, an organic buffer film 27 that is above the inorganic sealing film 26, and an inorganic sealing film 28 that is above the organic buffer film 27. Including. The sealing layer 6 covering the light emitting element layer 5 prevents penetration of foreign substances such as water and oxygen into the light emitting element layer 5.
無機封止膜26および無機封止膜28はそれぞれ無機絶縁膜であり、例えば、CVD法により形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機バッファ膜27は、平坦化効果のある透光性有機膜であり、アクリル等の塗布可能な有機材料によって構成することができる。有機バッファ膜27は例えばインクジェット塗布によって形成することができるが、液滴を止めるためのバンクを非表示領域に設けてもよい。
Each of the inorganic sealing film 26 and the inorganic sealing film 28 is an inorganic insulating film, and is formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film thereof formed by a CVD method. be able to. The organic buffer film 27 is a light-transmitting organic film having a flattening effect, and can be made of a coatable organic material such as acrylic. The organic buffer film 27 can be formed by, for example, inkjet coating, but a bank for stopping the liquid droplets may be provided in the non-display area.
下面フィルム10は、支持基板を剥離した後に樹脂層12の下面に貼り付けることで柔軟性に優れた表示デバイスを実現するための、例えばPETフィルムである。機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能の少なくとも1つを有する。
The lower surface film 10 is, for example, a PET film for realizing a display device having excellent flexibility by being attached to the lower surface of the resin layer 12 after peeling the support substrate. The functional film 39 has, for example, at least one of an optical compensation function, a touch sensor function, and a protection function.
以上の説明ではフレキシブルな表示デバイスについて説明したが、非フレキシブルな表示デバイスを製造する場合は、一般的に樹脂層の形成、基材の付け替え等が不要であるため、例えば、ガラス基板上にステップS2~S5の積層工程を行い、その後ステップS9に移行する。
In the above description, the flexible display device has been described. However, in the case of manufacturing a non-flexible display device, it is generally unnecessary to form a resin layer, change the base material, etc. The stacking process of S2 to S5 is performed, and then the process proceeds to step S9.
上述したように、発光素子層5を形成するステップS4において、例えば、EL層24の形成には、蒸着マスクを用いた蒸着法が用いられる。本実施形態にかかる表示デバイス2は、EL層24が、機能層として2層以上の蒸着層を含んでいる。また、発光素子層5を形成するステップS4は、被成膜基板200に蒸着材料を蒸着させることで被成膜基板200に複数の蒸着層を形成する蒸着工程を含んでいる。
As described above, in step S4 for forming the light emitting element layer 5, for example, the EL layer 24 is formed by a vapor deposition method using a vapor deposition mask. In the display device 2 according to the present embodiment, the EL layer 24 includes two or more vapor deposition layers as functional layers. Further, step S <b> 4 for forming the light emitting element layer 5 includes a vapor deposition process for forming a plurality of vapor deposition layers on the film formation substrate 200 by vapor deposition of a vapor deposition material on the film formation substrate 200.
<蒸着装置100の概略構成>
図3の(a)は、本実施形態にかかる蒸着装置100の主要構成要素を模式的に示す断面図であり、図3の(b)は、図3の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。また、図4は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す斜視図である。 <Schematic configuration ofvapor deposition apparatus 100>
FIG. 3A is a cross-sectional view schematically showing main components of thevapor deposition apparatus 100 according to the present embodiment. FIG. 3B is a schematic view of the vapor deposition apparatus 100 shown in FIG. 3 is a cross-sectional view illustrating an example of a vapor deposition layer formed on a deposition target substrate 200. FIG. FIG. 4 is a perspective view schematically showing main components in the vapor deposition chamber 40 in the vapor deposition apparatus 100 according to the present embodiment.
図3の(a)は、本実施形態にかかる蒸着装置100の主要構成要素を模式的に示す断面図であり、図3の(b)は、図3の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。また、図4は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す斜視図である。 <Schematic configuration of
FIG. 3A is a cross-sectional view schematically showing main components of the
以下では、蒸着層を成膜する被成膜基板200の走査方向(言い換えれば、蒸着時における蒸着源51・52の移動方向)となる蒸着源51・52の並設方向をY方向とし、Y方向に垂直な水平方向をX方向とし、被成膜基板200の被成膜面201の法線方向であり、X方向およびY方向に垂直な垂直方向(上下方向)をZ方向として説明する。
In the following, the direction in which the vapor deposition sources 51 and 52 are arranged in the scanning direction of the deposition target substrate 200 on which the vapor deposition layer is formed (in other words, the movement direction of the vapor deposition sources 51 and 52 during vapor deposition) is defined as the Y direction. The horizontal direction perpendicular to the direction is defined as the X direction, the normal direction of the film formation surface 201 of the film formation substrate 200, and the vertical direction (vertical direction) perpendicular to the X direction and the Y direction is described as the Z direction.
図3の(a)に示すように、蒸着装置100は、蒸着チャンバ40(真空チャンバ)、蒸着源51・52、複数の制限板60・60’、冷却機構65(冷却部)、蒸着源移動機構70、蒸着マスク80、基板移動機構90等を備えている。蒸着源51・52、複数の制限板60・60’、冷却機構65、蒸着源移動機構70、蒸着マスク80、基板移動機構90は、蒸着チャンバ40内に配置されている。
As shown in FIG. 3A, the vapor deposition apparatus 100 includes a vapor deposition chamber 40 (vacuum chamber), vapor deposition sources 51 and 52, a plurality of limiting plates 60 and 60 ′, a cooling mechanism 65 (cooling unit), and a vapor deposition source moving. A mechanism 70, a vapor deposition mask 80, a substrate moving mechanism 90, and the like are provided. The vapor deposition sources 51 and 52, the plurality of limiting plates 60 and 60 ', the cooling mechanism 65, the vapor deposition source moving mechanism 70, the vapor deposition mask 80, and the substrate moving mechanism 90 are disposed in the vapor deposition chamber 40.
蒸着チャンバ40には、該蒸着チャンバ40に設けられた図示しない排気口を介して蒸着チャンバ40内を真空排気する、図示しない真空ポンプが設けられている。
The deposition chamber 40 is provided with a vacuum pump (not shown) that evacuates the inside of the deposition chamber 40 through an exhaust port (not shown) provided in the deposition chamber 40.
蒸着マスク80は、その主面であるマスク面が被成膜基板200の被成膜面201と平行な板状物である。蒸着マスク80の主面には、少なくとも1つの開口部81(マスク開口)が設けられている。開口部81は貫通口であり、蒸着時に、蒸着源51・52から蒸着粒子として放射される蒸着材料(材料301・302)を通過させる通過部として機能する。蒸着マスク80における開口部81以外の領域は非開口部であり、蒸着時に蒸着材料の流れを遮断する遮断部として機能する。
The vapor deposition mask 80 is a plate-like object whose mask surface, which is the main surface, is parallel to the film formation surface 201 of the film formation substrate 200. The main surface of the vapor deposition mask 80 is provided with at least one opening 81 (mask opening). The opening 81 is a through-hole, and functions as a passing portion through which a vapor deposition material (materials 301 and 302) radiated as vapor deposition particles from the vapor deposition sources 51 and 52 passes during vapor deposition. A region other than the opening 81 in the vapor deposition mask 80 is a non-opening, and functions as a blocking portion that blocks the flow of the vapor deposition material during vapor deposition.
開口部81は、被成膜基板200における、目的とする蒸着層形成領域以外の領域に蒸着材料が付着しないように、各蒸着層のパターンに対応して設けられている。開口部81を通過した蒸着材料のみが被成膜基板200に付着し、被成膜基板200の被成膜面201に、開口部81に応じたパターンの蒸着層が形成される。
The opening 81 is provided corresponding to the pattern of each vapor deposition layer so that the vapor deposition material does not adhere to a region other than the target vapor deposition layer formation region in the deposition target substrate 200. Only the deposition material that has passed through the opening 81 adheres to the deposition target substrate 200, and a deposition layer having a pattern corresponding to the opening 81 is formed on the deposition target surface 201 of the deposition target substrate 200.
OLEDの発光層を蒸着形成する場合には、蒸着マスク80として、例えば、FMM(ファインメタルマスク)を用いる。FMMは複数の開口部81を有するシート状のマスクであり、1つの開口部81を通過した有機材料によって島状の発光層(1つのサブ画素に対応)が形成される。一方、発光層以外の機能層の蒸着形成には、蒸着マスク80として、FMM、または、CMM(コモンメタル)等のオープンマスクを用いる。オープンマスクは、発光領域に1つの開口部81を有するシート状のマスクであり、開口部81を通過した蒸着材料によって、全てのサブ画素に共通したベタ状の機能層が形成される。なお、OLEDが白色発光タイプである場合、あるいは、複数のサブ画素に共通する共通発光層を形成する場合には、蒸着マスク80として、CMM等のオープンマスク、あるいは、複数のサブ画素に対応した開口部を有する蒸着マスクが用いられる。
When the light emitting layer of the OLED is formed by vapor deposition, for example, an FMM (fine metal mask) is used as the vapor deposition mask 80. The FMM is a sheet-like mask having a plurality of openings 81, and an island-shaped light emitting layer (corresponding to one subpixel) is formed by an organic material that has passed through one opening 81. On the other hand, in the vapor deposition formation of the functional layers other than the light emitting layer, an open mask such as FMM or CMM (common metal) is used as the vapor deposition mask 80. The open mask is a sheet-like mask having one opening 81 in the light emitting region, and a solid functional layer common to all sub-pixels is formed by the vapor deposition material that has passed through the opening 81. When the OLED is a white light emitting type or when a common light emitting layer common to a plurality of sub-pixels is formed, the deposition mask 80 corresponds to an open mask such as a CMM or a plurality of sub-pixels. A vapor deposition mask having an opening is used.
これら蒸着マスク80には、例えば、インバー材等の金属製のマスク、あるいは、樹脂製のマスク、あるいは、金属層と樹脂層とを有する複合マスクが用いられる。
As these vapor deposition masks 80, for example, a metal mask such as Invar material, a resin mask, or a composite mask having a metal layer and a resin layer is used.
蒸着源51・52は、蒸着マスク80を介して被成膜基板200と対向するようにY方向に並設されている。蒸着源51・52は、蒸着材料を加熱して蒸発(蒸着材料が液体材料である場合)または昇華(蒸着材料が固体材料である場合)させることで、蒸着材料を、気体状の蒸着粒子として放射する。蒸着源51・52は、被成膜基板200の被成膜面201に対向するように、例えば、被成膜基板200の下方に、被成膜基板200から所定距離離間して配置されている。
The vapor deposition sources 51 and 52 are juxtaposed in the Y direction so as to face the film formation substrate 200 through the vapor deposition mask 80. The vapor deposition sources 51 and 52 heat the vapor deposition material to evaporate (when the vapor deposition material is a liquid material) or sublimate (when the vapor deposition material is a solid material), thereby converting the vapor deposition material into gaseous vapor deposition particles. Radiate. The vapor deposition sources 51 and 52 are disposed, for example, below the film formation substrate 200 at a predetermined distance from the film formation substrate 200 so as to face the film formation surface 201 of the film formation substrate 200. .
蒸着源51・52は、互いに異なる材料を放射する。蒸着源51(第1の蒸着源)は、蒸着材料として材料301(第1の材料)を加熱して蒸着粒子として放射する。蒸着源52(第2の蒸着源)は、蒸着材料として材料302(第2の材料)を加熱して蒸着粒子として放射する。蒸着源51は、被成膜基板200との対向面に、材料301を放射する放射口51aを有している。蒸着源52は、被成膜基板200との対向面に、材料302を放射する放射口52aを有している。
The vapor deposition sources 51 and 52 emit different materials. The vapor deposition source 51 (first vapor deposition source) heats the material 301 (first material) as a vapor deposition material and emits it as vapor deposition particles. The vapor deposition source 52 (second vapor deposition source) heats the material 302 (second material) as a vapor deposition material and emits it as vapor deposition particles. The vapor deposition source 51 has a radiation port 51 a that radiates the material 301 on the surface facing the deposition target substrate 200. The vapor deposition source 52 has a radiation port 52 a that radiates the material 302 on the surface facing the deposition target substrate 200.
蒸着源51・52は、ラインソースまたはリニアソースと称される蒸着源でありY方向の幅よりもX方向の長さが長い形状を有している。放射口51a・52aは、それぞれ、X方向に複数配置されている。
The evaporation sources 51 and 52 are evaporation sources called a line source or a linear source, and have a shape in which the length in the X direction is longer than the width in the Y direction. A plurality of radiation openings 51a and 52a are arranged in the X direction.
蒸着源51・52は、例えば、内部に蒸着材料を収容する容器と加熱部材とを有し、容器内部に蒸着材料を直接収容していてもよく、ロードロック式の配管を有し、外部から蒸着材料が供給されるように形成されていてもよい。
The vapor deposition sources 51 and 52 have, for example, a container for storing the vapor deposition material and a heating member inside, and may directly store the vapor deposition material inside the container, have a load lock type pipe, and from the outside. You may form so that vapor deposition material may be supplied.
制限板60・60’は、蒸着源51・52の上方(つまり、被成膜基板200および蒸着マスク80と蒸着源51・52との間)に、各蒸着源51・52を挟むように、Y方向に互いに離間して設けられている。制限板60・60’は、各蒸着源51・52から放射された蒸着材料の通過角度を制限することで、各蒸着材料の不要成分の除去および被成膜基板200への蒸着角度を制限する。制限板60・60’は、蒸着源51・52に直結されていてもよく、蒸着源51・52から離間して設けられていてもよい。
The limiting plates 60 and 60 ′ are disposed above the deposition sources 51 and 52 (that is, between the deposition target substrate 200 and the deposition mask 80 and the deposition sources 51 and 52) so as to sandwich the respective deposition sources 51 and 52. They are separated from each other in the Y direction. The limiting plates 60 and 60 ′ limit the passage angle of the vapor deposition material radiated from the vapor deposition sources 51 and 52, thereby limiting the removal of unnecessary components of the vapor deposition material and the vapor deposition angle on the deposition target substrate 200. . The limiting plates 60 and 60 ′ may be directly connected to the vapor deposition sources 51 and 52, or may be provided apart from the vapor deposition sources 51 and 52.
図5は、制限板60・60’の効果を説明する模式図である。図5は、蒸着源および蒸着材料として、蒸着源51および該蒸着源51から放射された材料301を例に挙げて図示している。図示はしないが、蒸着源52および該蒸着源52から放射された材料302に対しても、図5に示す効果と同様の効果を得ることができる。
FIG. 5 is a schematic diagram for explaining the effect of the limiting plates 60 and 60 '. FIG. 5 illustrates the vapor deposition source 51 and the material 301 emitted from the vapor deposition source 51 as an example of the vapor deposition source and the vapor deposition material. Although not shown, the same effects as those shown in FIG. 5 can be obtained for the vapor deposition source 52 and the material 302 emitted from the vapor deposition source 52.
図5に示すように、蒸着源51から放射された材料301は、各制限板60・60’間の開口部61(制限板開口)を通った後、図示しない蒸着マスク80に形成された開口部81を通過して、被成膜基板200に蒸着される。
As shown in FIG. 5, the material 301 radiated from the vapor deposition source 51 passes through the opening 61 (restriction plate opening) between the respective restriction plates 60 and 60 ′, and then the opening formed in the vapor deposition mask 80 (not shown). It passes through the part 81 and is deposited on the deposition target substrate 200.
制限板60・60’は、該制限板60・60’に衝突した材料301の少なくとも一部を捕捉する(付着させる)等して、蒸着源51・52の並設方向(つまり、Y方向)に対する指向性が悪い蒸着材料(不要成分)の通過を制限する。
The limiting plates 60 and 60 ′ capture (attach) at least a part of the material 301 that has collided with the limiting plates 60 and 60 ′, and the like, so that the vapor deposition sources 51 and 52 are arranged in parallel (that is, the Y direction). Restricts the passage of vapor deposition materials (unnecessary components) with poor directivity.
一般的に、蒸着源から放射される蒸着材料の放射量は、蒸着源直上が最も多く、余弦則に準拠した分布となる。蒸着角度が浅い(低い)成分は、マスクシャドウによる混色リスクが高まる。制限板60・60’は、蒸着角度が浅い蒸着材料が被成膜基板200に到達しないように、蒸着マスク80の開口部81に入射する蒸着材料の入射角を、蒸着マスク80によるシャドウ(マスクシャドウ)が発生しない臨界角であるシャドウ臨界角以上の角度に制限する。これにより、制限板60・60’は、図5に示すように、被成膜基板200に対するY方向の蒸着角度θを、一定範囲内に制限する。
Generally, the amount of radiation of the vapor deposition material radiated from the vapor deposition source is most directly above the vapor deposition source, and the distribution conforms to the cosine law. Components with a shallow (low) deposition angle increase the risk of color mixing due to mask shadows. The limiting plates 60 and 60 ′ set the incident angle of the vapor deposition material incident on the opening 81 of the vapor deposition mask 80 so that the vapor deposition material having a shallow vapor deposition angle does not reach the deposition target substrate 200. It is limited to an angle equal to or greater than the shadow critical angle, which is the critical angle at which no shadows occur. Thereby, the limiting plates 60 and 60 ′ limit the deposition angle θ in the Y direction with respect to the deposition target substrate 200 within a certain range, as shown in FIG. 5.
なお、制限板60・60’は、該制限板60・60’により上記不要成分を捕捉したり、補足した不要成分が再度気化することを防止したりするため、蒸着材料が気体になる温度よりも低い温度を有していることが望ましい。このため、制限板60・60’には、図3の(a)に示すように、制限板60・60’を冷却する冷却機構65が設けられていることが望ましい。このように、制限板60・60’に衝突した蒸着材料を該制限板60・60’に付着させて捕捉することで、蒸着材料同士の衝突や散乱を防止することができる。
The limiting plates 60 and 60 ′ capture the unnecessary components by the limiting plates 60 and 60 ′ and prevent the supplemented unnecessary components from vaporizing again. It is desirable to have a low temperature. Therefore, it is desirable that the restriction plates 60 and 60 'be provided with a cooling mechanism 65 for cooling the restriction plates 60 and 60' as shown in FIG. As described above, the vapor deposition material colliding with the limiting plates 60 and 60 ′ is attached to and captured by the limiting plates 60 and 60 ′, thereby preventing collision and scattering between the vapor deposition materials.
また、制限板60・60’は、このように、被成膜基板200に対するY方向の蒸着角度θを一定範囲内に制限することで、図3の(a)に示すように、Y方向における、蒸着源51による蒸着領域(蒸着範囲、つまり、蒸着源51から放射された材料301が蒸着される領域)を制限(画定)するとともに、蒸着源52による蒸着領域(蒸着範囲、つまり、蒸着源52から放射された材料302が蒸着される領域)を、制限(画定)する。
Further, the limiting plates 60 and 60 ′ thus limit the vapor deposition angle θ in the Y direction with respect to the deposition target substrate 200 within a certain range, so that as shown in FIG. The deposition area by the deposition source 51 (deposition range, that is, the area where the material 301 radiated from the deposition source 51 is deposited) is limited (defined) and the deposition area by the deposition source 52 (deposition range, that is, the deposition source). The region where the material 302 emitted from 52 is deposited is limited.
本実施形態では、制限板60・60’は、蒸着源51から放射される材料301の放射角が、蒸着源52から放射される材料302の放射角よりも小さくなるように、各蒸着源51・52から放射された材料301・302の通過角度を制限する。これによって、蒸着源51による材料301の蒸着領域が、蒸着源52による材料302の蒸着領域の一部と重なることで、被成膜基板200上に、材料301および材料302からなる共蒸着層と、材料302からなる単蒸着層とが積層される。なお、ここで、蒸着源51から放射される材料301の放射角とは、蒸着源51の放射口51aの向き(本実施形態ではZ方向)に対して材料301の放射軌道がなす角度を示す。同様に、蒸着源52から放射される材料302の放射角とは、蒸着源52の放射口52aの向き(本実施形態ではZ方向)に対して材料302の放射軌道がなす角度を示す。
In the present embodiment, the limiting plates 60 and 60 ′ are configured so that the radiation angle of the material 301 radiated from the vapor deposition source 51 is smaller than the radiation angle of the material 302 radiated from the vapor deposition source 52. Limit the passing angle of the materials 301 and 302 emitted from 52. Thus, the vapor deposition region of the material 301 by the vapor deposition source 51 overlaps a part of the vapor deposition region of the material 302 by the vapor deposition source 52, so that the co-deposition layer made of the material 301 and the material 302 is formed on the deposition target substrate 200. , A single vapor deposition layer made of the material 302 is laminated. Here, the radiation angle of the material 301 radiated from the vapor deposition source 51 indicates an angle formed by the radiation trajectory of the material 301 with respect to the direction of the radiation port 51a of the vapor deposition source 51 (Z direction in the present embodiment). . Similarly, the radiation angle of the material 302 radiated from the vapor deposition source 52 indicates an angle formed by the radiation trajectory of the material 302 with respect to the direction of the radiation port 52a of the vapor deposition source 52 (Z direction in the present embodiment).
制限板60・60’の材質としては、例えば、耐熱温度が高く、加工性・溶接性に優れた、SUS304等のステンレスが用いられる。しかしながら、制限板60・60’の材質は、これに限定されず、該材質としては、各種合金、金属等を用いることができる。
As the material of the limiting plates 60 and 60 ', for example, stainless steel such as SUS304 having a high heat-resistant temperature and excellent workability and weldability is used. However, the material of the limiting plates 60 and 60 'is not limited to this, and various alloys, metals, and the like can be used as the material.
蒸着源移動機構70は、蒸着源51・52および制限板60・60’を保持する保持部材71と、図示しない駆動部等とを備えている。保持部材71は、蒸着源51・52の放射口51a・52aおよび各制限板60・60’の長手方向端面並びに各制限板60・60’間の開口部61が被成膜基板200側を向くとともに、各制限板60・60’がY方向に隣り合うように、蒸着源51・52および制限板60・60’を保持する。蒸着源移動機構70は、図示しない駆動部により、蒸着源51・52および制限板60・60’を水平方向に移動させる。蒸着源移動機構70は、図4および図5に矢印で示すように蒸着源51・52の並設方向(Y方向)に沿って往復移動可能に設けられていれば、Y方向およびX方向の何れにも移動可能に設けられていてもよく、Y方向にのみ移動可能に設けられていてもよい。
The vapor deposition source moving mechanism 70 includes a holding member 71 that holds the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ', and a drive unit (not shown). In the holding member 71, the radiation ports 51 a and 52 a of the vapor deposition sources 51 and 52, the longitudinal end surfaces of the restricting plates 60 and 60 ′, and the opening 61 between the restricting plates 60 and 60 ′ face the film formation substrate 200. At the same time, the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ are held so that the limiting plates 60 and 60 ′ are adjacent to each other in the Y direction. The vapor deposition source moving mechanism 70 moves the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 'in the horizontal direction by a driving unit (not shown). If the vapor deposition source moving mechanism 70 is provided so as to be able to reciprocate along the parallel direction (Y direction) of the vapor deposition sources 51 and 52 as shown by arrows in FIGS. Any of these may be provided so as to be movable, or may be provided so as to be movable only in the Y direction.
なお、上記保持部材71は、制限板60・60’が直結された蒸着源51・52を搭載する支持台であってもよく、蒸着源51・52を搭載するとともに、該蒸着源51・52との相対的な位置が固定された状態で制限板60・60’を支持する枠状の棚部を有する支持台であってもよい。また、上記駆動部は、例えば、リニアモータ等を備えていてもよく、ボールねじとサーボモータ等とを備えていてもよい。
The holding member 71 may be a support base on which the vapor deposition sources 51 and 52 to which the limiting plates 60 and 60 ′ are directly connected are mounted. The vapor deposition sources 51 and 52 are mounted, and the vapor deposition sources 51 and 52 are mounted. It may be a support base having a frame-like shelf portion that supports the restriction plates 60 and 60 'in a state where the relative position between and is fixed. Further, the drive unit may include, for example, a linear motor or the like, and may include a ball screw and a servo motor.
基板移動機構90は、例えば、被成膜基板200を保持する保持部材91と、図示しない駆動部等とを備えている。保持部材91は、蒸着が行われる間、被成膜基板200の被成膜面201が蒸着源51・52側を向くように被成膜基板200を保持する。保持部材91は、例えば、被成膜基板200とともに蒸着マスク80を保持するように構成されていてもよい。保持部材91は、例えば、被成膜基板200に蒸着マスク80が接触した状態で蒸着マスク80ごと被成膜基板200を保持する、マグネットや電磁石等の、図示しない磁力発生源を備えていてもよく、被成膜基板200と蒸着マスク80とを重ねて保持する枠体を備えていてもよい。
The substrate moving mechanism 90 includes, for example, a holding member 91 that holds the deposition target substrate 200, a drive unit (not shown), and the like. The holding member 91 holds the deposition target substrate 200 so that the deposition target surface 201 of the deposition target substrate 200 faces the deposition sources 51 and 52 while vapor deposition is performed. For example, the holding member 91 may be configured to hold the vapor deposition mask 80 together with the deposition target substrate 200. The holding member 91 may include a magnetic force generation source (not shown) such as a magnet or an electromagnet that holds the film formation substrate 200 together with the vapor deposition mask 80 in a state where the vapor deposition mask 80 is in contact with the film formation substrate 200. Alternatively, a frame body that holds the deposition target substrate 200 and the vapor deposition mask 80 in an overlapping manner may be provided.
基板移動機構90は、図示しない駆動部により、被成膜基板200および蒸着マスク80を水平方向に移動させる。基板移動機構90は、蒸着源51・52の並設方向(Y方向)に沿って往復移動可能に設けられていれば、Y方向およびX方向の何れにも移動可能に設けられていてもよく、Y方向にのみ移動可能に設けられていてもよい。上記基板移動機構90には、公知の各種移動機構を使用することができる。
The substrate moving mechanism 90 moves the film formation substrate 200 and the vapor deposition mask 80 in the horizontal direction by a driving unit (not shown). The substrate moving mechanism 90 may be provided so as to be movable in both the Y direction and the X direction as long as the substrate moving mechanism 90 is provided so as to reciprocate along the direction in which the vapor deposition sources 51 and 52 are arranged side by side (Y direction). , May be provided to be movable only in the Y direction. Various known movement mechanisms can be used for the substrate movement mechanism 90.
本実施形態では、これら蒸着源移動機構70および基板移動機構90のうち一方を駆動させることにより、蒸着材料の蒸着時に、蒸着源51・52および複数の制限板60・60’と、被成膜基板200と、のうち一方を他方に対してY方向に沿って相対的に移動させる。なお、図3の(a)および図4に示したように、蒸着マスク80が被成膜基板200と同等以上の大きさ(例えば同じ大きさ)を有している場合には、蒸着源51・52および複数の制限板60・60’と、被成膜基板200および蒸着マスク80と、のうち一方が他方に対してY方向に沿って相対的に移動される。一方、図示はしないが、蒸着マスク80が被成膜基板200よりも小さい場合には、蒸着マスク80は、蒸着源51・52および制限板60・60’との相対的な位置が固定される。このため、蒸着源51・52、複数の制限板60・60’、および蒸着マスク80と、被成膜基板200と、のうち一方を他方に対してY方向に沿って相対的に移動させる。このため、蒸着源移動機構70および基板移動機構90は、少なくとも一方が設けられていればよい。蒸着源移動機構70および基板移動機構90は、何れか一方のみが設けられ、代わりに、保持部材71または保持部材91を蒸着チャンバ40内に固定する固定部材が設けられていても構わない。
In the present embodiment, by driving one of the evaporation source moving mechanism 70 and the substrate moving mechanism 90, the evaporation sources 51 and 52, the plurality of limiting plates 60 and 60 ′, and the film formation are performed during the evaporation of the evaporation material. One of the substrates 200 is moved relative to the other along the Y direction. As shown in FIGS. 3A and 4, when the vapor deposition mask 80 has a size equal to or larger than the deposition target substrate 200 (for example, the same size), the vapor deposition source 51. One of the 52 and the plurality of limiting plates 60 and 60 ′, the deposition target substrate 200, and the vapor deposition mask 80 is moved relative to the other along the Y direction. On the other hand, although not shown, when the vapor deposition mask 80 is smaller than the deposition target substrate 200, the relative position of the vapor deposition mask 80 with the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ is fixed. . For this reason, one of the deposition sources 51 and 52, the plurality of limiting plates 60 and 60 ', the deposition mask 80, and the deposition target substrate 200 is moved relative to the other along the Y direction. For this reason, at least one of the deposition source moving mechanism 70 and the substrate moving mechanism 90 may be provided. Only one of the vapor deposition source moving mechanism 70 and the substrate moving mechanism 90 may be provided, and a fixing member for fixing the holding member 71 or the holding member 91 in the vapor deposition chamber 40 may be provided instead.
<蒸着工程>
次に、上記蒸着装置100の用いた蒸着方法(蒸着工程)について、図3の(a)・(b)を参照して以下に説明する。なお、以下では、被成膜基板200および蒸着マスク80を蒸着チャンバ40内に固定した状態で、図3の(a)に矢印で示す蒸着源51・52の往復移動の往路(言い換えれば、走査往路)において被成膜基板200への蒸着を行う場合を例に挙げて説明する。 <Deposition process>
Next, the vapor deposition method (vapor deposition process) used by thevapor deposition apparatus 100 will be described below with reference to FIGS. In the following, in the state where the deposition target substrate 200 and the vapor deposition mask 80 are fixed in the vapor deposition chamber 40, the reciprocating path of the vapor deposition sources 51 and 52 indicated by arrows in FIG. The case where vapor deposition is performed on the deposition target substrate 200 in the forward path) will be described as an example.
次に、上記蒸着装置100の用いた蒸着方法(蒸着工程)について、図3の(a)・(b)を参照して以下に説明する。なお、以下では、被成膜基板200および蒸着マスク80を蒸着チャンバ40内に固定した状態で、図3の(a)に矢印で示す蒸着源51・52の往復移動の往路(言い換えれば、走査往路)において被成膜基板200への蒸着を行う場合を例に挙げて説明する。 <Deposition process>
Next, the vapor deposition method (vapor deposition process) used by the
被成膜基板200が蒸着チャンバ40内に搬入されると、基板移動機構90により、被成膜基板200と蒸着マスク80とのアライメント調整が行われ、被成膜基板200と蒸着マスク80とが、互いに密着した状態で保持部材91により保持される。このとき、被成膜基板200および蒸着マスク80は、被成膜基板200の被成膜面201が、蒸着マスク80を介して蒸着源51・52に対向するように、例えば、被成膜面201を下側にして、保持部材91により保持される。
When the film formation substrate 200 is carried into the vapor deposition chamber 40, alignment adjustment between the film formation substrate 200 and the vapor deposition mask 80 is performed by the substrate moving mechanism 90, and the film formation substrate 200 and the vapor deposition mask 80 are moved. , And held by the holding member 91 in close contact with each other. At this time, the deposition target substrate 200 and the deposition mask 80 are, for example, a deposition target surface so that the deposition target surface 201 of the deposition target substrate 200 faces the deposition sources 51 and 52 through the deposition mask 80. It is held by the holding member 91 with 201 facing down.
次に、蒸着源移動機構70により、蒸着源51・52および制限板60・60’を、被成膜基板200および蒸着マスク80に対して、蒸着源51・52の並設方向(Y方向)に沿った一方向(第1方向)に相対移動させながら、蒸着源51から放射された材料301と、蒸着源52から放射された材料302とを、制限板60・60’の開口部61および蒸着マスク80の開口部81を介して、被成膜基板200に付着させる。
Next, the vapor deposition source moving mechanism 70 causes the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ to be arranged side by side with respect to the deposition target substrate 200 and the vapor deposition mask 80 (Y direction). The material 301 radiated from the vapor deposition source 51 and the material 302 radiated from the vapor deposition source 52 are moved relative to each other in one direction (first direction) along the apertures 61 and 60 ′ of the limiting plates 60 and 60 ′. The film is deposited on the deposition target substrate 200 through the opening 81 of the vapor deposition mask 80.
本実施形態では、前述したように、制限板60・60’により、蒸着源51から放射される材料301の放射角が、蒸着源52から放射される材料302の放射角よりも小さく、蒸着源51による材料301の蒸着領域が、蒸着源52による材料302の蒸着領域の一部と重なるように、各蒸着源51・52から放射された材料301・302の通過角度を制限する。これにより、本実施形態では、蒸着源51・52および制限板60・60’を被成膜基板200および蒸着マスク80に対して上記第1方向に相対的に移動させる往路方向(言い換えれば、走査の往路方向)で、上記蒸着源51・52による蒸着領域を、材料301および材料302が共蒸着される共蒸着領域と、材料302が単独で蒸着(単蒸着)される単蒸着領域とに区画する。
In the present embodiment, as described above, the radiation angle of the material 301 radiated from the vapor deposition source 51 is smaller than the radiation angle of the material 302 radiated from the vapor deposition source 52 by the limiting plates 60 and 60 ′. The passage angle of the materials 301 and 302 emitted from the respective vapor deposition sources 51 and 52 is limited so that the vapor deposition region of the material 301 by 51 overlaps a part of the vapor deposition region of the material 302 by the vapor deposition source 52. Accordingly, in the present embodiment, the forward direction (in other words, scanning) in which the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ are moved relative to the deposition target substrate 200 and the vapor deposition mask 80 in the first direction. The vapor deposition area by the vapor deposition sources 51 and 52 is divided into a co-deposition area where the material 301 and the material 302 are co-evaporated and a single vapor deposition area where the material 302 is vapor-deposited alone (single vapor deposition). To do.
これにより、本実施形態によれば、図3の(b)に示すように、往路のみで、材料301および材料302を共蒸着してなる共蒸着層である蒸着層311と、材料302が単蒸着された単蒸着層である蒸着層312との積層体を形成することができる。
As a result, according to the present embodiment, as shown in FIG. 3B, the vapor deposition layer 311 that is a co-deposition layer formed by co-deposition of the material 301 and the material 302 and the material 302 are only formed in the forward path. A laminated body with the vapor deposition layer 312 which is a vapor-deposited single vapor deposition layer can be formed.
なお、本実施形態では、制限板60・60’により、一例として、図3の(a)に示すように、往路の1/3が、材料301と材料302との共蒸着領域であり、往路の2/3が、材料302の単蒸着領域となるように、上記蒸着源51・52による蒸着領域が区画されている。また、往路前方(すなわち、走査方向下流側)に蒸着源51が位置し、往路後方(すなわち、走査方向上流側)に蒸着源52が位置するように蒸着源51・52が配置されている。このため、蒸着源51は、該蒸着源51・52を上記第1方向に移動させたときに、蒸着源52よりも先に被成膜基板200の下方に到達する。
In the present embodiment, the restriction plates 60 and 60 ′, as an example, as shown in FIG. 3A, 1/3 of the outward path is a co-deposition region of the material 301 and the material 302, and the outward path The vapor deposition area by the vapor deposition sources 51 and 52 is partitioned so that 2/3 of the above becomes a single vapor deposition area of the material 302. Further, the vapor deposition sources 51 and 52 are arranged so that the vapor deposition source 51 is positioned in front of the forward path (that is, downstream in the scanning direction) and the vapor deposition source 52 is positioned in the rearward path (that is, upstream in the scanning direction). For this reason, the vapor deposition source 51 reaches below the deposition target substrate 200 before the vapor deposition source 52 when the vapor deposition sources 51 and 52 are moved in the first direction.
このため、図3の(b)に示すように、被成膜基板200上には、先に(つまり、下層側に)、蒸着層311が、材料301および材料302の少なくとも一方を含む蒸着層311・312の総膜厚の1/3の厚みで形成され、その後、蒸着層311上に、蒸着層312が、蒸着層311・312の総膜厚の2/3の厚みで形成される。
Therefore, as illustrated in FIG. 3B, the vapor deposition layer 311 has a vapor deposition layer containing at least one of the material 301 and the material 302 on the deposition target substrate 200 first (that is, on the lower layer side). Then, the vapor deposition layer 312 is formed on the vapor deposition layer 311 with a thickness that is 2/3 of the total film thickness of the vapor deposition layers 311 and 312.
本実施形態では、蒸着源51・52の往復移動の往路(走査往路)のみで被成膜基板200への蒸着を行う。このため、上記往路で被成膜基板200への蒸着を行った後、蒸着源51・52および制限板60・60’は、蒸着源移動機構70により元の位置(初期位置)に戻される。本実施形態では、復路では、蒸着源51・52および制限板60・60’の移動のみが行われ、蒸着は行われない。
In this embodiment, vapor deposition is performed on the deposition target substrate 200 only by the reciprocating path (scanning path) of the vapor deposition sources 51 and 52. For this reason, after vapor deposition onto the film formation substrate 200 is performed in the outward path, the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ are returned to their original positions (initial positions) by the vapor deposition source moving mechanism 70. In the present embodiment, in the return path, only the deposition sources 51 and 52 and the limiting plates 60 and 60 'are moved, and deposition is not performed.
以上のように、本実施形態によれば、往路のみで複数(2層)の蒸着層311・312を形成することができるため、タクトの低下が生じない。また、本実施形態によれば、単蒸着層である蒸着層312を形成するときに、シャッタを閉じる必要がなく、それによる材料ロスや、シャッタからの材料剥がれが生じない。したがって、本実施形態によれば、従来よりも材料ロスやタクトの低下を抑えることができるとともに、シャッタからの材料剥がれを防止することができる表示デバイス2の製造方法および蒸着装置100を提供することができる。
As described above, according to the present embodiment, since a plurality (two layers) of vapor deposition layers 311 and 312 can be formed only by the outward path, the tact does not decrease. Moreover, according to this embodiment, when forming the vapor deposition layer 312 which is a single vapor deposition layer, it is not necessary to close a shutter and the material loss by that and the material peeling from a shutter do not arise. Therefore, according to the present embodiment, it is possible to provide a method for manufacturing the display device 2 and a vapor deposition apparatus 100 that can suppress material loss and tact reduction as compared with the related art and can prevent material peeling from the shutter. Can do.
なお、材料301・302は、互いに異なる材料であれば、特に限定されない。材料301・302の組み合わせとしては、特に限定されないが、例えば、材料301が発光ドーパント材料であり、材料302が、正孔輸送性または電子輸送性のホスト材料である組み合わせが挙げられる。この場合、例えば、共蒸着層として発光層を形成するとともに、単蒸着層として、正孔輸送層または電子輸送層を形成することができる。また、材料301・302が、互いに異なる正孔輸送性材料である場合、例えば、共蒸着層として正孔注入層を形成するとともに、単蒸着層として正孔輸送層を形成することができる。あるいは、例えば、共蒸着層として正孔輸送層を形成するとともに、単蒸着層として電子ブロッキング層を形成することができる。材料301・302が、互いに異なる電子輸送性材料である場合、例えば、共蒸着層として電子輸送層を形成するとともに、単蒸着層として電子注入層を形成することができる。あるいは、例えば、共蒸着層として正孔ブロッキング層を形成するとともに、単蒸着層として電子輸送層を形成することができる。また、EL層24が、例えば、フェルスター遷移を阻害するセパレート層のように、正孔輸送性および電子輸送性がともに高いバイポーラ輸送性層を有する場合、材料301・302の一方に正孔輸送性材料を使用し、他方に電子輸送性材料を使用することで、共蒸着層としてバイポーラ輸送性層を形成し、単蒸着層として、正孔輸送層または電子輸送層を形成することができる。
The materials 301 and 302 are not particularly limited as long as they are different from each other. The combination of the materials 301 and 302 is not particularly limited, and examples thereof include a combination in which the material 301 is a light emitting dopant material and the material 302 is a hole transporting or electron transporting host material. In this case, for example, a light-emitting layer can be formed as a co-evaporation layer, and a hole transport layer or an electron transport layer can be formed as a single vapor deposition layer. Further, when the materials 301 and 302 are different hole transport materials, for example, a hole injection layer can be formed as a co-evaporation layer, and a hole transport layer can be formed as a single vapor deposition layer. Or for example, while forming a positive hole transport layer as a co-evaporation layer, an electron blocking layer can be formed as a single vapor deposition layer. When the materials 301 and 302 are different electron transport materials, for example, an electron transport layer can be formed as a co-deposition layer, and an electron injection layer can be formed as a single deposition layer. Alternatively, for example, a hole blocking layer can be formed as a co-evaporation layer, and an electron transport layer can be formed as a single vapor deposition layer. In addition, when the EL layer 24 has a bipolar transporting layer having high hole transporting properties and electron transporting properties, such as a separate layer that inhibits the Forster transition, for example, hole transport is performed on one of the materials 301 and 302. By using a conductive material and an electron transporting material on the other side, a bipolar transporting layer can be formed as a co-deposition layer, and a hole transporting layer or an electron transporting layer can be formed as a single deposition layer.
また、蒸着源51・52の上面を基準面とする、蒸着源51・52の上面からの制限板60・60’の突出高さ(以下、「蒸着源からの突出高さ」もしくは単に「突出高さ」と称する)は、蒸着源-基板間距離(以下、「T/S」と称する)、必要とされる蒸着領域幅等の条件により、一義的には決まらないが、数十mm~数百mmの範囲内、好適には10mm~200mmの範囲内であることが望ましい。上記突出高さが10mmを下回ると放射角が十分に制限されず、マスクシャドウによる混色懸念が高まる。また、上記突出高さが200mmを超えると、制限板60・60’による蒸着粒子(蒸着源51・52から放射される材料301・302)の捕捉が多くなり、材料利用効率が悪化する。
Further, the protrusion height of the limiting plates 60 and 60 ′ from the upper surface of the vapor deposition source 51 and 52 (hereinafter referred to as “the height of protrusion from the vapor deposition source”) or simply “the protrusion”, with the upper surface of the vapor deposition source 51 and 52 as the reference plane. The height is referred to as “evaporation source-substrate distance (hereinafter referred to as“ T / S ”), the required deposition area width, and the like. It is desirable that it is in the range of several hundred mm, preferably in the range of 10 mm to 200 mm. If the protrusion height is less than 10 mm, the radiation angle is not sufficiently limited, and there is an increased concern about color mixing due to mask shadows. On the other hand, if the protruding height exceeds 200 mm, trapping of vapor deposition particles ( materials 301 and 302 radiated from the vapor deposition sources 51 and 52) by the limiting plates 60 and 60 'increases, and material utilization efficiency deteriorates.
また、蒸着源51・52と制限板60・60’との離間距離も、上記突出高さと同様の理由から一義的には決まらないが、数十mm~数百mmの範囲内、好適には20mm~100mmの範囲内であることが望ましい。上記離間距離が20nmを下回ると、制限板60・60’による蒸着粒子の捕捉が多くなり、材料利用効率が悪化する。また、上記離間距離が100mmを超えると、蒸着粒子の放射角が十分に制限されず、マスクシャドウによる混色懸念が高まる。
Further, the separation distance between the vapor deposition sources 51 and 52 and the limiting plates 60 and 60 ′ is not uniquely determined for the same reason as the protrusion height, but is preferably in the range of several tens mm to several hundred mm. It is desirable to be within a range of 20 mm to 100 mm. When the separation distance is less than 20 nm, trapping of vapor deposition particles by the limiting plates 60 and 60 'increases, and material utilization efficiency deteriorates. Moreover, when the said separation distance exceeds 100 mm, the radiation angle of vapor deposition particle | grains is not fully restrict | limited, and the color mixing concern by a mask shadow increases.
また、上述した構成を達成するため、本実施形態においては、図3の(a)に示すように、制限板60及び制限板60’を用いている。図3の(a)に示す制限板60・60’のうち、中央の制限板60’の突出高さは、他2つの制限板60と比べて低い。また、蒸着源52の左側の制限板60と蒸着源52との離間距離は、制限板60’と蒸着源52との離間距離、制限板60’と蒸着源51との離間距離、および、蒸着源51の左側の制限板60と蒸着源51との離間距離よりも長くなるように配置した。なお、このような制限板60・60’の突出高さや制限板60・60’の配置は一例であり、本実施形態は、これに限定されない。蒸着源からの突出高さが低い制限板60’を、蒸着源からの突出高さが高い2つの制限板60間に配置することで、所望の層、本実施形態においては、蒸着層312を厚膜化することができる。
Further, in order to achieve the above-described configuration, in the present embodiment, as shown in FIG. 3A, a limiting plate 60 and a limiting plate 60 'are used. Of the limiting plates 60 and 60 ′ shown in FIG. 3A, the protruding height of the central limiting plate 60 ′ is lower than the other two limiting plates 60. Further, the separation distance between the restriction plate 60 on the left side of the vapor deposition source 52 and the vapor deposition source 52 is the separation distance between the restriction plate 60 ′ and the vapor deposition source 52, the separation distance between the restriction plate 60 ′ and the vapor deposition source 51, and the vapor deposition. The limiting plate 60 on the left side of the source 51 and the vapor deposition source 51 were arranged so as to be longer than the separation distance. Note that the protruding height of the limiting plates 60 and 60 ′ and the arrangement of the limiting plates 60 and 60 ′ are examples, and the present embodiment is not limited to this. By disposing the limiting plate 60 ′ having a low protrusion height from the vapor deposition source between the two limiting plates 60 having a high protrusion height from the vapor deposition source, the desired layer, in this embodiment, the vapor deposition layer 312 is formed. The film thickness can be increased.
〔実施形態2〕
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。つまり、本実施形態にかかる表示デバイス2および蒸着装置100の構成並びに表示デバイス2の製造方法は、以下の点を除けば、実施形態1と同じである。 [Embodiment 2]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. That is, the configuration of thedisplay device 2 and the vapor deposition apparatus 100 and the manufacturing method of the display device 2 according to the present embodiment are the same as those of the first embodiment except for the following points.
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。つまり、本実施形態にかかる表示デバイス2および蒸着装置100の構成並びに表示デバイス2の製造方法は、以下の点を除けば、実施形態1と同じである。 [Embodiment 2]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. That is, the configuration of the
図6の(a)は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す断面図であり、図6の(b)は、図6の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。
6A is a cross-sectional view schematically showing main components in the vapor deposition chamber 40 in the vapor deposition apparatus 100 according to this embodiment, and FIG. 6B is a cross-sectional view of FIG. It is sectional drawing which shows an example of the vapor deposition layer formed into a film by the vapor deposition apparatus 100 shown in FIG.
本実施形態では、制限板60・60’により、蒸着源52から放射される材料302の放射角が、蒸着源51から放射される材料301の放射角よりも小さくなるように、各蒸着源51・52から放射された材料301・302の通過角度を制限する。これによって、蒸着源52による材料302の蒸着領域が、蒸着源51による材料301の蒸着領域の一部と重なる。したがって、本実施形態では、走査の往路方向で、上記蒸着源51・52による蒸着領域を、材料301が単蒸着される単蒸着領域と、材料301と材料302とが共蒸着される共蒸着領域とに区画する。
In the present embodiment, each deposition source 51 is configured so that the radiation angle of the material 302 radiated from the deposition source 52 is smaller than the radiation angle of the material 301 radiated from the deposition source 51 by the limiting plates 60 and 60 ′. Limit the passing angle of the materials 301 and 302 emitted from 52. As a result, the deposition region of the material 302 by the deposition source 52 overlaps with a part of the deposition region of the material 301 by the deposition source 51. Therefore, in the present embodiment, the vapor deposition area by the vapor deposition sources 51 and 52 is divided into a single vapor deposition area where the material 301 is vapor-deposited, and a co-vapor deposition area where the material 301 and the material 302 are vapor-deposited in the scanning forward direction. Divide into and.
これにより、本実施形態によれば、図6の(b)に示すように、往路のみで、材料301を単蒸着してなる単蒸着層である蒸着層313と、材料301および材料302を共蒸着してなる共蒸着層である蒸着層311との積層体を形成することができる。
As a result, according to the present embodiment, as shown in FIG. 6B, the vapor deposition layer 313, which is a single vapor deposition layer obtained by single vapor deposition of the material 301, and the material 301 and the material 302 are shared in the forward path only. A laminated body with the vapor deposition layer 311 which is a co-deposition layer formed by vapor deposition can be formed.
なお、本実施形態にかかる蒸着装置100は、制限板60・60’により、一例として、図6の(a)に示すように、往路の1/4が、材料301の単蒸着領域であり、往路の3/4が、材料301と材料302との共蒸着領域となるように、蒸着源51・52による蒸着領域が区画されている。このため、図3の(b)に示すように、被成膜基板200上には、先に(つまり、下層側に)、蒸着層313が、蒸着層313・311の総膜厚の1/4の厚みで形成され、その後、上記蒸着層313上に、蒸着層311が、上記蒸着層313・311の総膜厚の3/4の厚みで形成される。
In addition, the vapor deposition apparatus 100 according to the present embodiment uses the limiting plates 60 and 60 ′ as an example, as shown in FIG. The vapor deposition regions by the vapor deposition sources 51 and 52 are partitioned so that 3/4 of the forward path is a co-vapor deposition region of the material 301 and the material 302. For this reason, as shown in FIG. 3B, the vapor deposition layer 313 is formed on the deposition target substrate 200 first (that is, on the lower layer side) 1 / of the total film thickness of the vapor deposition layers 313 and 311. Then, a vapor deposition layer 311 is formed on the vapor deposition layer 313 with a thickness of 3/4 of the total film thickness of the vapor deposition layers 313 and 311.
このように、本実施形態によれば、実施形態1と同様の効果を得ることができるとともに、制限板60・60’の配置および高さ、材料301・302の種類等を変更することで、所望の積層構造を形成することができる。
As described above, according to the present embodiment, the same effects as those of the first embodiment can be obtained, and by changing the arrangement and height of the restriction plates 60 and 60 ′, the types of the materials 301 and 302, and the like, A desired laminated structure can be formed.
なお、本実施形態では、上述した構成を達成するため、図6の(a)に示すように、制限板60および制限板60’を用いている。図6の(a)に示す制限板60・60’のうち、中央の制限板60’の突出高さは、他2つの制限板60と比べて低い。また、蒸着源52の左側の制限板60と蒸着源52との離間距離と、蒸着源51の右側の制限板60と蒸着源51との離間距離とは、同程度となるように配置した。なお、このような制限板60・60’の突出高さや制限板60・60’の配置は一例であり、本実施形態はこれに限定されない。蒸着源からの突出高さが低い制限板60’を、蒸着源からの突出高さが高い2つの制限板60間に配置することで、所望の層、本実施形態においては、蒸着層311を厚膜化することができる。
In the present embodiment, the limiting plate 60 and the limiting plate 60 'are used as shown in FIG. 6A in order to achieve the above-described configuration. Among the limiting plates 60 and 60 ′ shown in FIG. 6A, the protruding height of the central limiting plate 60 ′ is lower than the other two limiting plates 60. Further, the separation distance between the restriction plate 60 on the left side of the vapor deposition source 52 and the vapor deposition source 52 and the separation distance between the restriction plate 60 on the right side of the vapor deposition source 51 and the vapor deposition source 51 are arranged to be approximately the same. Note that the protruding height of the restriction plates 60 and 60 ′ and the arrangement of the restriction plates 60 and 60 ′ are examples, and the present embodiment is not limited to this. By disposing the limiting plate 60 ′ having a low protrusion height from the vapor deposition source between the two limiting plates 60 having a high protrusion height from the vapor deposition source, a desired layer, in this embodiment, the vapor deposition layer 311 is formed. The film thickness can be increased.
〔実施形態3〕
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。図7の(a)は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す断面図であり、図7の(b)は、図7の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。 [Embodiment 3]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. FIG. 7A is a cross-sectional view schematically showing main components in thevapor deposition chamber 40 in the vapor deposition apparatus 100 according to this embodiment, and FIG. 7B is a cross-sectional view of FIG. It is sectional drawing which shows an example of the vapor deposition layer formed into a film by the vapor deposition apparatus 100 shown in FIG.
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。図7の(a)は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す断面図であり、図7の(b)は、図7の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。 [Embodiment 3]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. FIG. 7A is a cross-sectional view schematically showing main components in the
蒸着装置100は、3つ以上の蒸着源を備えていてもよい。蒸着装置100が、3つ以上の蒸着源を備えている場合、各蒸着源から放射される蒸着材料のうち、少なくとも2つは異種材料である。
The vapor deposition apparatus 100 may include three or more vapor deposition sources. When the vapor deposition apparatus 100 includes three or more vapor deposition sources, at least two of the vapor deposition materials emitted from the respective vapor deposition sources are different materials.
本実施形態にかかる蒸着装置100は、図7の(a)に示すように、蒸着源51・52に加え、材料302を放射する蒸着源52’をさらに備えている。つまり、本実施形態にかかる蒸着装置100は、材料301を放射する蒸着源51を1つ備えるとともに、材料302を放射する蒸着源として、蒸着源52・52’の2つの蒸着源を備えている。蒸着源52’は、被成膜基板200との対向面に、材料302を放射する放射口52a’を有している。これら蒸着源51、蒸着源52、蒸着源52’は、往路前方側(走査方向下流側)から、この順に設けられている。
The vapor deposition apparatus 100 according to the present embodiment further includes a vapor deposition source 52 ′ that radiates a material 302 in addition to the vapor deposition sources 51 and 52 as shown in FIG. That is, the vapor deposition apparatus 100 according to the present embodiment includes one vapor deposition source 51 that radiates the material 301 and two vapor deposition sources 52 and 52 ′ as vapor deposition sources that radiate the material 302. . The vapor deposition source 52 ′ has a radiation port 52 a ′ that radiates the material 302 on the surface facing the deposition target substrate 200. The vapor deposition source 51, the vapor deposition source 52, and the vapor deposition source 52 'are provided in this order from the forward path forward side (downstream in the scanning direction).
蒸着源移動機構70における保持部材71は、これら蒸着源51・52・52’を保持する。制限板60・60’は、これら蒸着源51・52・52’の上方に、各蒸着源51・52・52’を挟むように、Y方向に互いに離間して設けられている。このため、制限板60・60’は、各蒸着源51・52・52’から放射された蒸着材料の通過角度を制限することで、各蒸着材料の不要成分の除去および被成膜基板200への蒸着角度を制限する。制限板60・60’は、蒸着源51・52・52’に直結されていてもよく、蒸着源51・52・52’から離間して設けられていてもよい。
The holding member 71 in the vapor deposition source moving mechanism 70 holds these vapor deposition sources 51, 52, and 52 '. The limiting plates 60 and 60 'are provided above the vapor deposition sources 51, 52, and 52' so as to be separated from each other in the Y direction so as to sandwich the vapor deposition sources 51, 52, and 52 '. For this reason, the limiting plates 60 and 60 ′ limit the passage angle of the vapor deposition material radiated from the vapor deposition sources 51, 52, and 52 ′, thereby removing unnecessary components of the vapor deposition material and forming the deposition target substrate 200. The deposition angle is limited. The limiting plates 60 and 60 ′ may be directly connected to the vapor deposition sources 51, 52 and 52 ′, or may be provided apart from the vapor deposition sources 51, 52 and 52 ′.
本実施形態では、制限板60・60’により、蒸着源51から放射される材料301の放射角および蒸着源52’から放射される材料302の放射角が、蒸着源52から放射される材料302の放射角よりも小さくなるように、各蒸着源51・52・52’から放射された材料301・302の通過角度を制限する。これによって、蒸着源51による材料301の蒸着領域および蒸着源52’による材料302の蒸着領域が、蒸着源52による材料302の蒸着領域の一部と重なる。したがって、本実施形態では、走査の往路方向で、上記蒸着源51・52・52’による蒸着領域を、材料301および材料302が共蒸着される共蒸着領域と、材料302が単独で蒸着(単蒸着)される単蒸着領域とに区画する。
In the present embodiment, the limiter plates 60 and 60 ′ allow the radiation angle of the material 301 radiated from the vapor deposition source 51 and the radiation angle of the material 302 radiated from the vapor deposition source 52 ′ to be the material 302 radiated from the vapor deposition source 52. The passage angle of the materials 301 and 302 radiated from the respective vapor deposition sources 51, 52 and 52 ′ is limited so as to be smaller than the radiation angle. Accordingly, the deposition region of the material 301 by the deposition source 51 and the deposition region of the material 302 by the deposition source 52 ′ overlap with a part of the deposition region of the material 302 by the deposition source 52. Therefore, in the present embodiment, the vapor deposition region by the vapor deposition sources 51, 52, and 52 ′, the co-deposition region in which the material 301 and the material 302 are co-deposited, and the material 302 are vapor-deposited alone (in the single direction of scanning) It is divided into single vapor deposition areas to be vapor deposited).
これにより、本実施形態によれば、図7の(b)に示すように、往路のみで、材料301および材料302を共蒸着してなる共蒸着層である蒸着層311と、材料302が単蒸着された単蒸着層である蒸着層312との積層体を形成することができる。
As a result, according to the present embodiment, as shown in FIG. 7B, the vapor deposition layer 311 that is a co-deposition layer formed by co-evaporation of the material 301 and the material 302 and the material 302 are simply formed as shown in FIG. A laminated body with the vapor deposition layer 312 which is a vapor-deposited single vapor deposition layer can be formed.
なお、本実施形態にかかる蒸着装置100は、制限板60・60’により、一例として、図7の(a)に示すように、往路の1/2が、材料301と材料302との共蒸着領域であり、往路の残りの1/2が、蒸着源52・52’から放射される材料302の単蒸着領域となるように、蒸着源51・52・52’による蒸着領域が区画されている。このため、図7の(b)に示すように、被成膜基板200上には、先に(つまり、下層側に)、蒸着層311が、蒸着層311・312の総膜厚の1/3の厚みで形成され、その後、上記蒸着層311上に、蒸着層312が、上記蒸着層311・312の総膜厚の2/3の厚みで形成される。
Note that the vapor deposition apparatus 100 according to the present embodiment uses the limiting plates 60 and 60 ′ as an example, as shown in FIG. 7A, half of the forward path is the co-vapor deposition of the material 301 and the material 302. The vapor deposition region by the vapor deposition sources 51, 52, and 52 ′ is partitioned so that the remaining half of the forward path is a single vapor deposition region of the material 302 emitted from the vapor deposition sources 52 and 52 ′. . For this reason, as shown in FIG. 7B, on the deposition target substrate 200, the vapor deposition layer 311 is first (that is, on the lower layer side) 1 / of the total film thickness of the vapor deposition layers 311 and 312. Then, the vapor deposition layer 312 is formed on the vapor deposition layer 311 with a thickness of 2/3 of the total film thickness of the vapor deposition layers 311 and 312.
このように、例えば材料302を放射する蒸着源が蒸着源52の1つだけだと、蒸着層312が所望の膜厚に達しない場合、上述したように材料302を放射する蒸着源を2つ設けることで、所望の膜厚を達成することができる。なお、本実施形態では、材料302を放射する蒸着源を2つ設ける場合を例に挙げて説明したが、複数準備する蒸着源から放射される材料は、上記材料に限定されない。また、複数準備する蒸着源の数も2つに限定されない。
Thus, for example, if the deposition layer 312 does not reach the desired film thickness when only one deposition source 52 radiates the material 302, the two deposition sources radiate the material 302 as described above. By providing, a desired film thickness can be achieved. Note that, in this embodiment, the case where two evaporation sources that radiate the material 302 are provided has been described as an example. However, a material emitted from a plurality of evaporation sources that are prepared is not limited to the above material. Further, the number of vapor deposition sources to be prepared is not limited to two.
なお、本実施形態では、上述した構成を達成するため、図7の(a)に示すように、制限板60および制限板60’を用いている。図7の(a)に示す制限板60・60’のうち、中央の2つの制限板60’の突出高さは、両端の2つの制限板60と比べて低い。また、蒸着源52’の左側の制限板60と蒸着源52’との離間距離と、蒸着源51の右側の制限板60と蒸着源51との離間距離とは、同程度となるように配置した。なお、このような制限板60・60’の突出高さや制限板60・60’の配置は一例であり、本実施形態はこれに限定されない。本実施形態において、上記突出高さとは、蒸着源51・52・52’の上面を基準面とする、蒸着源51・52・52’の上面からの突出高さ(蒸着源からの突出高さ)を示す。蒸着源からの突出高さが低い制限板60’を、蒸着源からの突出高さが高い2つの制限板60間に配置することで、所望の層、本実施形態においては、蒸着層312を厚膜化することができる。
In the present embodiment, in order to achieve the above-described configuration, a limiting plate 60 and a limiting plate 60 'are used as shown in FIG. Of the limiting plates 60 and 60 ′ shown in FIG. 7A, the projecting height of the central two limiting plates 60 ′ is lower than the two limiting plates 60 at both ends. Further, the distance between the left limit plate 60 and the vapor deposition source 52 ′ of the vapor deposition source 52 ′ and the distance between the right limit plate 60 and the vapor deposition source 51 of the vapor deposition source 51 are arranged to be approximately the same. did. Note that the protruding height of the restriction plates 60 and 60 ′ and the arrangement of the restriction plates 60 and 60 ′ are examples, and the present embodiment is not limited to this. In the present embodiment, the protrusion height refers to the protrusion height from the upper surface of the vapor deposition source 51, 52, 52 ′ with the upper surface of the vapor deposition source 51, 52, 52 ′ as the reference surface (the protrusion height from the vapor deposition source). ). By disposing the limiting plate 60 ′ having a low protrusion height from the vapor deposition source between the two limiting plates 60 having a high protrusion height from the vapor deposition source, the desired layer, in this embodiment, the vapor deposition layer 312 is formed. The film thickness can be increased.
〔実施形態4〕
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。図8の(a)は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す断面図であり、図8の(b)は、図8の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。 [Embodiment 4]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. FIG. 8A is a cross-sectional view schematically showing main components in thevapor deposition chamber 40 in the vapor deposition apparatus 100 according to this embodiment, and FIG. 8B is a cross-sectional view of FIG. It is sectional drawing which shows an example of the vapor deposition layer formed into a film by the vapor deposition apparatus 100 shown in FIG.
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。図8の(a)は、本実施形態にかかる蒸着装置100における、蒸着チャンバ40内の主要構成要素を模式的に示す断面図であり、図8の(b)は、図8の(a)に示す蒸着装置100により被成膜基板200上に成膜された蒸着層の一例を示す断面図である。 [Embodiment 4]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. FIG. 8A is a cross-sectional view schematically showing main components in the
本実施形態にかかる蒸着装置100は、図8の(a)に示すように、図7の(a)に示す蒸着装置100において、蒸着源52’に代えて、材料303を放射する蒸着源53を備えている。蒸着源53は、被成膜基板200との対向面に、材料303を放射する放射口53aを有している。
As shown in FIG. 8A, the vapor deposition apparatus 100 according to this embodiment is a vapor deposition source 53 that emits a material 303 instead of the vapor deposition source 52 ′ in the vapor deposition apparatus 100 shown in FIG. It has. The vapor deposition source 53 has a radiation port 53 a that radiates the material 303 on the surface facing the deposition target substrate 200.
本実施形態にかかる蒸着装置100は、蒸着源として、蒸着源51、蒸着源52、蒸着源53が、往路前方側(走査方向下流側)から、この順に設けられている。蒸着源移動機構70における保持部材71は、これら蒸着源51・52・53を保持する。制限板60・60’は、これら蒸着源51・52・53の上方に、各蒸着源51・52・53を挟むように、Y方向に互いに離間して設けられている。このため、制限板60・60’は、各蒸着源51・52・53から放射された蒸着材料の通過角度を制限することで、各蒸着材料の不要成分の除去および被成膜基板200への蒸着角度を制限する。制限板60・60’は、蒸着源51・52・53に直結されていてもよく、蒸着源51・52・53から離間して設けられていてもよい。
In the vapor deposition apparatus 100 according to the present embodiment, a vapor deposition source 51, a vapor deposition source 52, and a vapor deposition source 53 are provided as vapor deposition sources in this order from the forward path front side (downstream in the scanning direction). The holding member 71 in the vapor deposition source moving mechanism 70 holds these vapor deposition sources 51, 52, and 53. The limiting plates 60 and 60 ′ are provided above the vapor deposition sources 51, 52, and 53 so as to be separated from each other in the Y direction so as to sandwich the vapor deposition sources 51, 52, and 53. For this reason, the limiting plates 60 and 60 ′ limit the passage angle of the vapor deposition material radiated from the respective vapor deposition sources 51, 52, and 53, thereby removing unnecessary components of the vapor deposition material and applying them to the deposition target substrate 200. Limit the deposition angle. The limiting plates 60, 60 'may be directly connected to the vapor deposition sources 51, 52, 53, or may be provided apart from the vapor deposition sources 51, 52, 53.
本実施形態では、制限板60・60’により、蒸着源51から放射される材料301の放射角および蒸着源53から放射される材料303の放射角が、蒸着源52から放射される材料302の放射角よりも小さくなるように、各蒸着源51・52・53から放射された材料301・302・303の通過角度を制限する。これによって、蒸着源51による材料301の蒸着領域および蒸着源53よる材料303の蒸着領域が、蒸着源52による材料302の蒸着領域の一部と重なる。したがって、本実施形態では、走査の往路方向で、上記蒸着源51・52・53による蒸着領域を、材料301および材料302が共蒸着される共蒸着領域と、材料302および材料303が共蒸着される共蒸着領域とに区画する。
In the present embodiment, the limiting plates 60 and 60 ′ allow the radiation angle of the material 301 radiated from the vapor deposition source 51 and the radiation angle of the material 303 radiated from the vapor deposition source 53 to be different from those of the material 302 radiated from the vapor deposition source 52. The passing angle of the materials 301, 302, and 303 radiated from the respective vapor deposition sources 51, 52, and 53 is limited so as to be smaller than the radiation angle. Thereby, the vapor deposition region of the material 301 by the vapor deposition source 51 and the vapor deposition region of the material 303 by the vapor deposition source 53 overlap with a part of the vapor deposition region of the material 302 by the vapor deposition source 52. Accordingly, in the present embodiment, in the scanning forward direction, the vapor deposition regions by the vapor deposition sources 51, 52, and 53 are co-deposited, the material 301 and the material 302 are co-deposited, and the material 302 and the material 303 are co-deposited. It is divided into a co-evaporation region.
これにより、本実施形態によれば、図8の(b)に示すように、往路のみで、材料301および材料302を共蒸着してなる共蒸着層である蒸着層311と、材料302および材料303を共蒸着してなる共蒸着層である蒸着層314との積層体を形成することができる。
As a result, according to the present embodiment, as shown in FIG. 8B, the vapor deposition layer 311, which is a co-deposition layer formed by co-deposition of the material 301 and the material 302, and the material 302 and the material only in the outward path. A laminate with the vapor deposition layer 314 which is a co-deposition layer formed by co-evaporation of 303 can be formed.
なお、本実施形態にかかる蒸着装置100は、制限板60・60’により、一例として、図8の(a)に示すように、往路の1/2が、材料301と材料302との共蒸着領域であり、往路の残りの1/2が、材料302と材料303との共蒸着領域となるように、蒸着源51・52・53による蒸着領域が区画されている。このため、図8の(b)に示すように、被成膜基板200上には、先に(つまり、下層側に)、蒸着層311が、蒸着層311・314の総膜厚の1/2の厚みで形成され、その後、上記蒸着層311上に、蒸着層314が、上記蒸着層311・314の総膜厚の1/2の厚みで形成される。
Note that the vapor deposition apparatus 100 according to the present embodiment uses the limiting plates 60 and 60 ′ as an example, as shown in FIG. 8A, half of the forward path is the co-vapor deposition of the material 301 and the material 302. This is a region, and the vapor deposition regions by the vapor deposition sources 51, 52, and 53 are partitioned so that the remaining half of the forward path is a co-vapor deposition region of the material 302 and the material 303. For this reason, as shown in FIG. 8B, on the deposition target substrate 200, the vapor deposition layer 311 is first (that is, on the lower layer side) 1 / of the total film thickness of the vapor deposition layers 311 and 314. Then, a vapor deposition layer 314 is formed on the vapor deposition layer 311 with a thickness of ½ of the total film thickness of the vapor deposition layers 311 and 314.
なお、本実施形態では、上述した構成を達成するため、図8の(a)に示すように、制限板60および制限板60’を用いている。図8の(a)に示す制限板60・60’のうち、中央の2つの制限板60’の突出高さは、両端の2つの制限板60と比べて低い。また、蒸着源53の左側の制限板60と蒸着源53との離間距離と、蒸着源51の右側の制限板60と蒸着源51との離間距離とは、同程度となるように配置した。このような制限板60・60’の突出高さや制限板60・60’の配置は一例であり、本実施形態は、これに限定されない。本実施形態において、上記突出高さとは、蒸着源51・52・53の上面を基準面とする、蒸着源51・52・53の上面からの突出高さ(蒸着源からの突出高さ)を示す。
In the present embodiment, the limiting plate 60 and the limiting plate 60 ′ are used as shown in FIG. 8A in order to achieve the above-described configuration. Of the limiting plates 60 and 60 ′ shown in FIG. 8A, the projecting height of the central two limiting plates 60 ′ is lower than the two limiting plates 60 at both ends. Further, the separation distance between the restriction plate 60 on the left side of the vapor deposition source 53 and the vapor deposition source 53 and the separation distance between the restriction plate 60 on the right side of the vapor deposition source 51 and the vapor deposition source 51 are arranged to be approximately the same. Such protruding heights of the restriction plates 60 and 60 'and the arrangement of the restriction plates 60 and 60' are examples, and the present embodiment is not limited to this. In the present embodiment, the protrusion height is a protrusion height from the upper surface of the vapor deposition source 51, 52, 53 (protrusion height from the vapor deposition source) with the upper surface of the vapor deposition source 51, 52, 53 as a reference surface. Show.
なお、材料301・302・303は、互いに異なる材料であれば、特に限定されない。材料301・302・303の組み合わせとしては、特に限定されないが、例えば、材料301・302・303が、互いに異なる正孔輸送性材料である組み合わせ、あるいは、互いに異なる電子輸送性材料である組み合わせが挙げられる。この場合、例えば、正孔注入層および正孔輸送層、正孔輸送層および電子ブロッキング層、電子輸送層および電子注入層、正孔ブロッキング層および電子輸送層の何れかの組み合わせからなる蒸着を、蒸着層311・314として形成することができる。また、材料301・303が異種の発光ドーパント材料であり、材料302がホスト材料である場合、蒸着層311・314として、互いに異なる色の光を発光する発光層を形成することができる。なお、勿論、材料301・303の何れか一方が発光ドーパント材料であり、他方が正孔輸送性材料または電子輸送性材料であり、材料302が、正孔輸送性または電子輸送性のホスト材料であってもよい。この場合、蒸着層311・314として、発光層と、該発光層に隣り合う、電子輸送層等の電子輸送性材料からなる層、または、正孔輸送層等の正孔輸送性材料からなる層とを、積層することができる。
Note that the materials 301, 302, and 303 are not particularly limited as long as they are different from each other. The combination of the materials 301, 302, and 303 is not particularly limited, and examples thereof include a combination in which the materials 301, 302, and 303 are different hole transport materials, or a combination in which the materials are different electron transport materials. It is done. In this case, for example, vapor deposition consisting of any combination of a hole injection layer and a hole transport layer, a hole transport layer and an electron blocking layer, an electron transport layer and an electron injection layer, a hole blocking layer and an electron transport layer, It can form as the vapor deposition layer 311 * 314. In the case where the materials 301 and 303 are different types of light emitting dopant materials and the material 302 is a host material, a light emitting layer that emits light of different colors can be formed as the vapor deposition layers 311 and 314. Of course, one of the materials 301 and 303 is a light emitting dopant material, the other is a hole transporting material or an electron transporting material, and the material 302 is a hole transporting or electron transporting host material. There may be. In this case, as the vapor deposition layers 311 and 314, a light emitting layer and a layer made of an electron transporting material such as an electron transporting layer adjacent to the light emitting layer, or a layer made of a hole transporting material such as a hole transporting layer. Can be stacked.
本実施形態では、それぞれ異なる材料を放出する蒸着源を3つ設ける場合を例に挙げて説明したが、上記蒸着源の数は、3つに限定されない。また、各蒸着領域の重なりおよび比率は、上述した例に限定されない。このように、本実施形態は、3つ以上の異種材料の蒸着にも適用することができる。制限板60・60’の配置および高さ(言い換えれば、各蒸着源による蒸着範囲)、各蒸着源から放出される材料等を変更することで、共蒸着層と単蒸着層との積層体、共着層の積層体等、互いに積層された、共蒸着層を含む複数の層を、積層に形成することができる。
In the present embodiment, the case where three vapor deposition sources that release different materials are provided has been described as an example, but the number of the vapor deposition sources is not limited to three. Moreover, the overlap and ratio of each vapor deposition area are not limited to the example mentioned above. As described above, this embodiment can also be applied to vapor deposition of three or more different materials. By changing the arrangement and height of the limiting plates 60 and 60 '(in other words, the deposition range by each deposition source), the material released from each deposition source, etc., a laminate of a co-deposition layer and a single deposition layer, A plurality of layers including a co-deposited layer, which are stacked on each other, such as a stack of co-adhering layers, can be formed in a stack.
〔実施形態5〕
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。本実施形態では、蒸着源の往復移動における往路だけなく復路も蒸着層の成膜に利用する。 [Embodiment 5]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. In the present embodiment, not only the forward path but also the return path in the reciprocating movement of the vapor deposition source is used for the deposition layer deposition.
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。本実施形態では、蒸着源の往復移動における往路だけなく復路も蒸着層の成膜に利用する。 [Embodiment 5]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. In the present embodiment, not only the forward path but also the return path in the reciprocating movement of the vapor deposition source is used for the deposition layer deposition.
図9の(a)は、本実施形態にかかる往路での蒸着を模式的に示す断面図であり、図9の(b)は、本実施形態にかかる復路での蒸着を模式的に示す断面図である。また、図10の(a)は、図9の(a)に示す往路での蒸着後に被成膜基板200上に成膜された蒸着層の一例を示す断面図であり、図10の(b)は、図9の(b)に示す復路での蒸着後に被成膜基板200上に成膜された蒸着層の一例を示す断面図である。
9A is a cross-sectional view schematically showing the vapor deposition in the forward path according to the present embodiment, and FIG. 9B is a cross-sectional view schematically showing the vapor deposition in the return path according to the present embodiment. FIG. 10A is a cross-sectional view showing an example of a vapor deposition layer formed on the deposition target substrate 200 after vapor deposition in the outward path shown in FIG. 9A. FIG. ) Is a cross-sectional view showing an example of a vapor deposition layer formed on the film formation substrate 200 after vapor deposition in the return path shown in FIG.
図9の(a)・(b)は、実施形態1にかかる蒸着装置100を用いて、往復で蒸着を行う場合を例に挙げて図示している。このため、図9の(a)は、図3の(a)と同じであり、図10の(a)は、図3の(b)と同じである。本実施形態では、図9の(b)に示すように復路も蒸着に利用することで、往路のみで蒸着を行う場合と比較して、蒸着層312の膜厚を2倍の厚みで形成することができるとともに、蒸着層312上に、蒸着層315として、蒸着層311と同じ材料からなる蒸着層を形成することができる。
FIGS. 9A and 9B illustrate the case where vapor deposition is performed reciprocally using the vapor deposition apparatus 100 according to the first embodiment. Therefore, (a) in FIG. 9 is the same as (a) in FIG. 3, and (a) in FIG. 10 is the same as (b) in FIG. In this embodiment, as shown in FIG. 9B, the return path is also used for vapor deposition, so that the thickness of the vapor deposition layer 312 is doubled compared to the case where vapor deposition is performed only in the forward path. In addition, a vapor deposition layer made of the same material as the vapor deposition layer 311 can be formed as the vapor deposition layer 315 on the vapor deposition layer 312.
なお、図10の(b)では、往路で形成された蒸着層312と復路で形成された蒸着層312とを点線で区別して記載しているが、これらは、同一材料からなる膜であるため、境界は無く、連続的に形成される。また、図9の(a)・(b)に示す蒸着領域の比率並びにこれにより形成される図10の(a)・(b)に示す蒸着層311・312の膜厚の比率は一例であり、前述したように、制限板60・60’の配置および高さ(言い換えれば、各蒸着源による蒸着範囲)を適宜調整することで、任意に変更することができる。
In FIG. 10B, the vapor deposition layer 312 formed in the forward path and the vapor deposition layer 312 formed in the backward path are distinguished from each other by dotted lines, but these are films made of the same material. There is no boundary and it is formed continuously. Moreover, the ratio of the vapor deposition area | region shown to (a) * (b) of FIG. 9 and the ratio of the film thickness of the vapor deposition layer 311 * 312 shown to (a) * (b) of FIG. 10 formed by this are an example. As described above, the arrangement and height (in other words, the deposition range of each deposition source) of the restriction plates 60 and 60 ′ can be arbitrarily changed by appropriately adjusting.
また、本実施形態では、材料301・302の共蒸着層、材料302の単蒸着層、材料301・302の共蒸着がこの順に積層される場合を例に挙げて説明した。しかしながら、本実施形態は、これに限定されるものではなく、例えば、実施形態2にかかる蒸着装置100を用いることで、例えば材料301の単蒸着層、材料301・302の共蒸着層、材料301の単蒸着層をこの順に積層することもできる。
In this embodiment, the case where the co-deposition layers of the materials 301 and 302, the single vapor deposition layer of the material 302, and the co-deposition of the materials 301 and 302 are stacked in this order has been described as an example. However, the present embodiment is not limited to this. For example, by using the vapor deposition apparatus 100 according to the second embodiment, for example, a single vapor deposition layer of the material 301, a co-vapor deposition layer of the materials 301 and 302, and the material 301 These single vapor deposition layers can also be laminated in this order.
〔実施形態6〕
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。図11の(a)は、往路での蒸着を模式的に示す断面図であり、図11の(b)は、復路での蒸着を模式的に示す断面図である。また、図12の(a)は、図11の(a)に示す往路での蒸着後に被成膜基板200上に成膜された蒸着層の一例を示す断面図であり、図12の(b)は、図11の(b)に示す復路での蒸着後に被成膜基板200上に成膜された蒸着層の一例を示す断面図である。 [Embodiment 6]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. 11A is a cross-sectional view schematically showing the vapor deposition in the forward path, and FIG. 11B is a cross-sectional view schematically showing the vapor deposition in the return path. 12A is a cross-sectional view showing an example of a vapor deposition layer formed on thedeposition target substrate 200 after vapor deposition in the outward path shown in FIG. 11A. FIG. ) Is a cross-sectional view showing an example of a vapor deposition layer formed on the film formation substrate 200 after vapor deposition in the return path shown in FIG.
本実施形態では、先の実施形態との相異点についてのみ説明および図示する。図11の(a)は、往路での蒸着を模式的に示す断面図であり、図11の(b)は、復路での蒸着を模式的に示す断面図である。また、図12の(a)は、図11の(a)に示す往路での蒸着後に被成膜基板200上に成膜された蒸着層の一例を示す断面図であり、図12の(b)は、図11の(b)に示す復路での蒸着後に被成膜基板200上に成膜された蒸着層の一例を示す断面図である。 [Embodiment 6]
In the present embodiment, only the differences from the previous embodiment will be described and illustrated. 11A is a cross-sectional view schematically showing the vapor deposition in the forward path, and FIG. 11B is a cross-sectional view schematically showing the vapor deposition in the return path. 12A is a cross-sectional view showing an example of a vapor deposition layer formed on the
以下では、実施形態5にかかる蒸着装置100に、材料301の蒸着経路を選択的に遮蔽するシャッタ111が設けられている場合を例に挙げて説明する。実施形態5において、蒸着層312上に蒸着層315である共蒸着層を形成しない場合、復路において蒸着源51・52に対向する、被成膜基板200の端面202が、材料302が単蒸着される単蒸着領域と、材料301および材料302が共蒸着される共蒸着領域との境界部Aに到達する前に、シャッタ111で材料301の蒸着経路を選択的に遮蔽する。このようにすることで、図12の(b)に示すように、復路での蒸着後に、蒸着層311上に、往路のみで蒸着を行う場合よりも膜厚が厚い蒸着層312が積層された、蒸着層311・312の積層体を形成することができる。
Hereinafter, a case where the deposition apparatus 100 according to the fifth embodiment is provided with the shutter 111 that selectively shields the deposition path of the material 301 will be described as an example. In Embodiment 5, when the co-deposition layer which is the deposition layer 315 is not formed on the deposition layer 312, the material 302 is simply deposited on the end surface 202 of the deposition target substrate 200 facing the deposition sources 51 and 52 in the return path. The vapor deposition path of the material 301 is selectively shielded by the shutter 111 before reaching the boundary A between the single vapor deposition area and the co-deposition area where the material 301 and the material 302 are co-deposited. By doing so, as shown in FIG. 12B, after the vapor deposition in the return path, the vapor deposition layer 312 having a larger film thickness was laminated on the vapor deposition layer 311 than when the vapor deposition was performed only in the forward path. A stacked body of vapor deposition layers 311 and 312 can be formed.
本実施形態では、図11の(a)および図12の(a)に示すように、往路で、蒸着層311と蒸着層312とが積層されるため、往路で蒸着層311のみを形成し、復路で、図12の(b)に示す厚みを有する蒸着層312を形成する場合と比較して、蒸着層312のみを蒸着する時間(つまり、復路での蒸着時間)を短くすることができる。このため、シャッタ111を使用しても、材料ロスを従来よりも抑えることができるとともに、シャッタ111からの材料剥がれを抑制することができる。
In this embodiment, as shown in FIG. 11A and FIG. 12A, the vapor deposition layer 311 and the vapor deposition layer 312 are laminated in the forward path, so that only the vapor deposition layer 311 is formed in the forward path. Compared with the case where the vapor deposition layer 312 having the thickness shown in FIG. 12B is formed on the return path, the time for depositing only the vapor deposition layer 312 (that is, the vapor deposition time on the return path) can be shortened. For this reason, even if the shutter 111 is used, the material loss can be suppressed as compared with the conventional case, and the material peeling from the shutter 111 can be suppressed.
なお、本実施形態では、上述したように、実施形態5にかかる蒸着装置100に、材料301の蒸着経路を選択的に遮蔽するシャッタ111が設けられている場合を例に挙げて説明したが、本実施形態は、これに限定されるものではない。上述した何れの実施形態においても、複数の蒸着源のうち少なくとも1つの蒸着源から放射される蒸着材料の蒸着経路を選択的に遮蔽するシャッタを設け、往路および復路でそれぞれ蒸着を行うとともに、往路および復路のうち一方でのみ、上記シャッタにより、複数の蒸着材料のうちの一部の蒸着材料の蒸着経路を選択的に遮蔽することで、上述した効果を得ることができる。
In the present embodiment, as described above, the case where the deposition apparatus 100 according to the fifth embodiment is provided with the shutter 111 that selectively shields the deposition path of the material 301 has been described as an example. This embodiment is not limited to this. In any of the above-described embodiments, a shutter that selectively shields the vapor deposition path of the vapor deposition material radiated from at least one vapor deposition source among the plurality of vapor deposition sources is provided, and vapor deposition is performed in each of the forward path and the return path. Only in one of the return paths, the above-described effects can be obtained by selectively shielding the vapor deposition paths of some of the plurality of vapor deposition materials by the shutter.
また、本実施形態は、往路および復路で、第1の材料または第2の材料からなる単蒸着層を形成し、往路および復路のうち何れか一方で、第1の材料と第2の材料とからなる共蒸着層を形成する場合に限定されない。例えば、図8の(a)に示す蒸着装置100を用いて蒸着を行う場合、材料301の蒸着経路をシャッタ111で塞いだ場合、往路および復路で、それぞれ、材料302からなる単蒸着層と、材料302と材料303とからなる共蒸着層とが形成される。なお、上記例示は一例であり、材料301の蒸着経路を塞ぐ場合に限定されない。以上のように、本実施形態によれば、往路および復路で、第1の材料または第2の材料からなる単蒸着層を形成し、往路および復路のうち少なくとも一方で、第1の材料と第2の材料とからなる共蒸着層を形成することができる。
In the present embodiment, a single vapor deposition layer made of the first material or the second material is formed in the forward path and the return path, and the first material and the second material are either in the forward path or the return path. It is not limited to the case where the co-evaporation layer consisting of is formed. For example, when vapor deposition is performed using the vapor deposition apparatus 100 illustrated in FIG. 8A, when the vapor deposition path of the material 301 is blocked by the shutter 111, a single vapor deposition layer made of the material 302, respectively, in the forward path and the return path, A co-deposition layer made of the material 302 and the material 303 is formed. The above illustration is an example, and the present invention is not limited to the case where the vapor deposition path of the material 301 is blocked. As described above, according to the present embodiment, the single vapor deposition layer made of the first material or the second material is formed in the forward path and the return path, and the first material and the first path are formed in at least one of the forward path and the return path. It is possible to form a co-deposition layer made of two materials.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
本発明は、表示デバイスの製造方法及び蒸着装置に利用することができる。
The present invention can be used in a display device manufacturing method and a vapor deposition apparatus.
2 表示デバイス
24 EL層(蒸着層)
51、52、52’、53 蒸着源
60、60’ 制限板
65 冷却機構(冷却部)
70 蒸着源移動機構(移動機構)
90 基板移動機構(移動機構)
100 蒸着装置
111 シャッタ
200 被成膜基板
301、302、303 材料
311、312、313、314、315 蒸着層 2 Display devices 24 EL layer (deposition layer)
51, 52, 52 ′, 53 Deposition source 60, 60 ′ Limit plate 65 Cooling mechanism (cooling section)
70 Deposition source moving mechanism (moving mechanism)
90 Substrate moving mechanism (moving mechanism)
DESCRIPTION OFSYMBOLS 100 Vapor deposition apparatus 111 Shutter 200 Film-forming substrate 301,302,303 Material 311,312,313,314,315 Deposition layer
24 EL層(蒸着層)
51、52、52’、53 蒸着源
60、60’ 制限板
65 冷却機構(冷却部)
70 蒸着源移動機構(移動機構)
90 基板移動機構(移動機構)
100 蒸着装置
111 シャッタ
200 被成膜基板
301、302、303 材料
311、312、313、314、315 蒸着層 2 Display devices 24 EL layer (deposition layer)
51, 52, 52 ′, 53
70 Deposition source moving mechanism (moving mechanism)
90 Substrate moving mechanism (moving mechanism)
DESCRIPTION OF
Claims (15)
- 第1の材料および第2の材料を含む材料からなる共蒸着層である第1の蒸着層と、上記第1の材料および上記第2の材料のうち何れか一方の材料を含む材料からなる第2の蒸着層との積層体を有する表示デバイスの製造方法であって、
被成膜基板に上記材料を蒸着させることで上記被成膜基板に上記第1の蒸着層および上記第2の蒸着層を形成する蒸着工程を含み、
上記蒸着工程では、上記被成膜基板に向かって上記第1の材料を放射する第1の蒸着源と該第1の蒸着源に並設され、上記被成膜基板に向かって上記第2の材料を放射する第2の蒸着源とを含む複数の蒸着源と、上記複数の蒸着源と上記被成膜基板との間に、各蒸着源を挟むように上記複数の蒸着源の並設方向に互いに離間して設けられ、上記第1の蒸着源から放射される上記第1の材料の放射角が上記第2の蒸着源から放射される上記第2の材料の放射角よりも小さく、上記第1の蒸着源による蒸着領域が上記第2の蒸着源による蒸着領域の一部に重なるように各蒸着源から放射された材料の通過角度を制限する複数の制限板と、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向に沿って相対的に移動させる移動機構とを備えた蒸着装置を用いて、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向の一方向に沿って相対的に移動させながら蒸着を行うことで、上記第1の蒸着層と上記第2の蒸着層とを積層することを特徴とする表示デバイスの製造方法。 A first vapor-deposited layer that is a co-evaporated layer made of a material containing the first material and the second material; and a first vapor-deposited layer made of a material containing one of the first material and the second material. A manufacturing method of a display device having a laminate with two vapor deposition layers,
A vapor deposition step of forming the first vapor deposition layer and the second vapor deposition layer on the film formation substrate by vapor-depositing the material on the film formation substrate;
In the vapor deposition step, the first vapor deposition source that radiates the first material toward the deposition target substrate and the first vapor deposition source are arranged in parallel, and the second deposition source is directed toward the deposition target substrate. A plurality of vapor deposition sources including a second vapor deposition source that radiates a material, and a plurality of vapor deposition sources arranged in parallel so as to sandwich each vapor deposition source between the plurality of vapor deposition sources and the deposition target substrate The radiation angle of the first material radiated from the first vapor deposition source is smaller than the radiation angle of the second material radiated from the second vapor deposition source. A plurality of limiting plates for limiting the passage angle of the material radiated from each vapor deposition source so that the vapor deposition region by the first vapor deposition source overlaps a part of the vapor deposition region by the second vapor deposition source; and the plurality of vapor deposition sources And one of the plurality of limiting plates and the deposition target substrate is connected to the other of the plurality of vapor deposition sources. A plurality of vapor deposition sources, a plurality of limiting plates, and a substrate to be deposited with respect to the other using the vapor deposition apparatus including a moving mechanism that moves relatively along the installation direction. The display device is characterized in that the first vapor deposition layer and the second vapor deposition layer are stacked by performing vapor deposition while relatively moving along one direction of the vapor deposition sources in parallel. Production method. - 上記移動機構は、上記複数の蒸着源および上記複数の制限板と、上記被成膜基板とのうち一方を、上記複数の蒸着源の並設方向に沿って往復移動させるとともに、
上記蒸着工程では、上記往復移動の往路および復路のうち少なくとも一方で、上記第1の蒸着層および上記第2の蒸着層を積層することを特徴とする請求項1に記載の表示デバイスの製造方法。 The moving mechanism reciprocally moves one of the plurality of vapor deposition sources, the plurality of limiting plates, and the deposition target substrate along a parallel arrangement direction of the plurality of vapor deposition sources,
2. The method of manufacturing a display device according to claim 1, wherein in the vapor deposition step, the first vapor deposition layer and the second vapor deposition layer are laminated on at least one of the reciprocating forward path and the return path. . - 上記蒸着工程における上記往路においては、
上記第1の蒸着源による蒸着領域と上記第2の蒸着源による蒸着領域とが重なる領域において、上記第1の蒸着層を形成し、
上記第2の蒸着源による蒸着領域中の上記重なる領域以外の領域において、上記第2の材料からなる単蒸着層である上記第2の蒸着層を形成し、
上記被成膜基板上に、上記第1の蒸着層と上記第2の蒸着層とをこの順に積層することを特徴とする請求項2に記載の表示デバイスの製造方法。 In the outward path in the vapor deposition step,
Forming the first vapor deposition layer in a region where the vapor deposition region by the first vapor deposition source and the vapor deposition region by the second vapor deposition source overlap;
Forming the second vapor deposition layer, which is a single vapor deposition layer made of the second material, in a region other than the overlapping region in the vapor deposition region by the second vapor deposition source;
The method for manufacturing a display device according to claim 2, wherein the first vapor deposition layer and the second vapor deposition layer are laminated in this order on the deposition target substrate. - 上記蒸着工程における上記往路においては、
上記第1の蒸着源による蒸着領域と上記第2の蒸着源による蒸着領域とが重なる領域において、上記第1の蒸着層を形成し、
上記第2の蒸着源による蒸着領域中の上記重なる領域以外の領域において、上記第2の材料からなる単蒸着層である上記第2の蒸着層を形成し、
上記被成膜基板上に、上記第2の蒸着層と上記第1の蒸着層とをこの順に積層することを特徴とする請求項2に記載の表示デバイスの製造方法。 In the outward path in the vapor deposition step,
Forming the first vapor deposition layer in a region where the vapor deposition region by the first vapor deposition source and the vapor deposition region by the second vapor deposition source overlap;
Forming the second vapor deposition layer, which is a single vapor deposition layer made of the second material, in a region other than the overlapping region in the vapor deposition region by the second vapor deposition source;
The method for manufacturing a display device according to claim 2, wherein the second vapor deposition layer and the first vapor deposition layer are laminated in this order on the deposition target substrate. - 上記被成膜基板に向かって上記第2の材料を放射する第3の蒸着源をさらに備え、
上記第3の蒸着源から放射される上記第2の材料の放射角が上記第2の蒸着源から放射される上記第2の材料の放射角よりも小さく、上記第3の蒸着源による蒸着領域が上記第2の蒸着源による蒸着領域中の上記第1の蒸着源による蒸着領域と重ならない領域と重なるように各蒸着源から放射された材料の通過角度を制限する複数の制限板をさらに備え、
上記蒸着工程における上記往路においては、
上記第1の蒸着源による蒸着領域と上記第2の蒸着源による蒸着領域とが重なる領域において、上記第1の蒸着層を形成し、
上記第2の蒸着源による蒸着領域と上記第3の蒸着源による蒸着領域とが重なる領域において、上記第2の材料からなる単蒸着層である上記第2の蒸着層を形成し、
上記被成膜基板上に、上記第1の蒸着層と上記第2の蒸着層とをこの順に積層することを特徴とする請求項2に記載の表示デバイスの製造方法。 A third deposition source that radiates the second material toward the deposition substrate;
The radiation angle of the second material emitted from the third vapor deposition source is smaller than the radiation angle of the second material emitted from the second vapor deposition source, and the vapor deposition region by the third vapor deposition source A plurality of limiting plates for limiting the passage angle of the material radiated from each vapor deposition source so as to overlap a region that does not overlap the vapor deposition region by the first vapor deposition source in the vapor deposition region by the second vapor deposition source ,
In the outward path in the vapor deposition step,
Forming the first vapor deposition layer in a region where the vapor deposition region by the first vapor deposition source and the vapor deposition region by the second vapor deposition source overlap;
Forming the second vapor deposition layer, which is a single vapor deposition layer made of the second material, in a region where the vapor deposition region by the second vapor deposition source and the vapor deposition region by the third vapor deposition source overlap;
The method for manufacturing a display device according to claim 2, wherein the first vapor deposition layer and the second vapor deposition layer are laminated in this order on the deposition target substrate. - 上記被成膜基板に向かって第3の材料を放射する第3の蒸着源をさらに備え、
上記蒸着工程では、上記第1の材料と上記第2の材料とからなる共蒸着層である上記第1の蒸着層と、上記第2の材料と上記第3の材料とからなる共蒸着層である上記第2の蒸着層とを形成することを特徴とする請求項1または2に記載の表示デバイスの製造方法。 A third deposition source that emits a third material toward the deposition substrate;
In the vapor deposition step, the first vapor deposition layer which is a co-vapor deposition layer composed of the first material and the second material, and a co-vapor deposition layer composed of the second material and the third material. The method for manufacturing a display device according to claim 1, wherein the second vapor deposition layer is formed. - 上記第3の蒸着源から放射される上記第3の材料の放射角が上記第2の蒸着源から放射される上記第2の材料の放射角よりも小さく、上記第3の蒸着源による蒸着領域が、上記第2の蒸着源による蒸着領域中の上記第1の蒸着源による蒸着領域と重ならない領域と重なるように各蒸着源から放射された材料の通過角度を制限する複数の制限板をさらに備え、
上記蒸着工程における上記往路においては、
上記第1の蒸着源による蒸着領域と上記第2の蒸着源による蒸着領域とが重なる領域において、上記第1の蒸着層を形成し、
上記第2の蒸着源による蒸着領域と上記第3の蒸着源による蒸着領域とが重なる領域において、上記第2の蒸着層を形成し、
上記被成膜基板上に、上記第1の蒸着層と上記第2の蒸着層とをこの順に積層することを特徴とする請求項6に記載の表示デバイスの製造方法。 The radiation angle of the third material emitted from the third vapor deposition source is smaller than the radiation angle of the second material emitted from the second vapor deposition source, and the vapor deposition region by the third vapor deposition source A plurality of limiting plates that limit the passage angle of the material radiated from each vapor deposition source so as to overlap a region that does not overlap the vapor deposition region by the first vapor deposition source in the vapor deposition region by the second vapor deposition source Prepared,
In the outward path in the vapor deposition step,
Forming the first vapor deposition layer in a region where the vapor deposition region by the first vapor deposition source and the vapor deposition region by the second vapor deposition source overlap;
Forming the second vapor deposition layer in a region where the vapor deposition region by the second vapor deposition source and the vapor deposition region by the third vapor deposition source overlap;
The method for manufacturing a display device according to claim 6, wherein the first vapor deposition layer and the second vapor deposition layer are laminated in this order on the deposition target substrate. - 上記蒸着工程における上記復路においては、
上記第1の蒸着源による蒸着領域と上記第2の蒸着源による蒸着領域とが重なる領域において、上記第1の蒸着層を形成し、
上記第2の蒸着源による蒸着領域中の上記重なる領域以外の領域において、上記第2の材料からなる単蒸着層である上記第2の蒸着層を形成し、
上記被成膜基板上に、上記第2の蒸着層と上記第1の蒸着層とをこの順に積層することを特徴とする請求項3に記載の表示デバイスの製造方法。 In the return path in the vapor deposition step,
Forming the first vapor deposition layer in a region where the vapor deposition region by the first vapor deposition source and the vapor deposition region by the second vapor deposition source overlap;
Forming the second vapor deposition layer, which is a single vapor deposition layer made of the second material, in a region other than the overlapping region in the vapor deposition region by the second vapor deposition source;
4. The method for manufacturing a display device according to claim 3, wherein the second vapor deposition layer and the first vapor deposition layer are laminated in this order on the deposition target substrate. - 上記第1の蒸着源から放射される蒸着材料の蒸着経路を遮蔽するシャッタをさらに備え、
上記蒸着工程における上記復路においては、
上記シャッタにより、上記第1の蒸着源から放射される蒸着材料の蒸着経路を遮蔽し、
上記被成膜基板上に、上記第2の材料からなる単蒸着層である上記第2の蒸着層を形成することを特徴とする請求項3に記載の表示デバイスの製造方法。 A shutter for shielding a vapor deposition path of the vapor deposition material radiated from the first vapor deposition source;
In the return path in the vapor deposition step,
The shutter shields the vapor deposition path of the vapor deposition material radiated from the first vapor deposition source,
4. The method for manufacturing a display device according to claim 3, wherein the second vapor deposition layer, which is a single vapor deposition layer made of the second material, is formed on the deposition target substrate. - 上記複数の蒸着源のうち少なくとも1つの蒸着源から放射される蒸着材料の蒸着経路を選択的に遮蔽するシャッタをさらに備え、
上記蒸着工程では、上記往路および上記復路でそれぞれ蒸着を行うとともに、上記往路および上記復路のうち一方で、上記シャッタにより、上記第1の材料および上記第2の材料のうち何れか一方の材料の蒸着経路を選択的に遮蔽することで、上記往路および上記復路で、上記第1の材料または上記第2の材料からなる単蒸着層である上記第2の蒸着層を形成し、上記往路および上記復路のうち少なくとも一方で、上記第1の材料と上記第2の材料とからなる共蒸着層である上記第1の蒸着層を形成することを特徴とする請求項2に記載の表示デバイスの製造方法。 A shutter that selectively shields a vapor deposition path of vapor deposition material emitted from at least one vapor deposition source of the plurality of vapor deposition sources;
In the vapor deposition step, vapor deposition is performed in each of the forward path and the return path, and one of the first material and the second material is formed by the shutter on the forward path and the return path. By selectively shielding the vapor deposition path, the second vapor deposition layer which is a single vapor deposition layer made of the first material or the second material is formed in the forward path and the return path, and the forward path and the above 3. The display device manufacturing method according to claim 2, wherein the first vapor deposition layer, which is a co-vapor deposition layer composed of the first material and the second material, is formed on at least one of the return paths. Method. - 上記複数の制限板のうち一部の制限板の上記蒸着源からの突出高さは、上記複数の制限板のうち残りの制限板よりも高いことを特徴とする請求項1~10の何れか1項に記載の表示デバイスの製造方法。 11. The protruding height of a part of the plurality of limiting plates from the vapor deposition source is higher than the remaining limiting plate among the plurality of limiting plates. 2. A method for manufacturing a display device according to item 1.
- 上記複数の制限板のうち一部の制限板は、上記複数の制限板のうち残りの制限板の間に配置されていることを特徴とする請求項11に記載の表示デバイスの製造方法。 12. The method of manufacturing a display device according to claim 11, wherein some of the plurality of restriction plates are arranged between the remaining restriction plates of the plurality of restriction plates.
- 被成膜基板に向かって第1の材料を放射する第1の蒸着源と該第1の蒸着源に並設され、上記被成膜基板に向かって第2の材料を放射する第2の蒸着源とを含む複数の蒸着源と、
上複数の記蒸着源と上記被成膜基板との間に、各蒸着源を挟むように上記複数の蒸着源の並設方向に互いに離間して設けられ、上記第1の蒸着源から放射される上記第1の材料の放射角が上記第2の蒸着源から放射される上記第2の材料の放射角よりも小さく、上記第1の蒸着源による蒸着領域が上記第2の蒸着源による蒸着領域の一部に重なるように各蒸着源から放射された材料の通過角度を制限する複数の制限板と、
上記第1の材料および上記第2の材料の蒸着時に、上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向に沿って相対的に移動させる移動機構とを備え、
上記複数の蒸着源および上記複数の制限板と上記被成膜基板とのうち一方を他方に対して上記複数の蒸着源の並設方向の一方向に沿って相対的に移動させながら蒸着を行うことで、上記第1の材料および上記第2の材料を含む材料からなる共蒸着層である第1の蒸着層と、上記第1の材料および上記第2の材料のうち何れか一方の材料を含む材料からなる第2の蒸着層とを積層することを特徴とする蒸着装置。 A first vapor deposition source that radiates a first material toward the film formation substrate and a second vapor deposition that is arranged in parallel with the first vapor deposition source and radiates the second material toward the film formation substrate. A plurality of deposition sources including a source;
The plurality of vapor deposition sources and the deposition target substrate are provided apart from each other in the direction in which the plurality of vapor deposition sources are arranged so as to sandwich each vapor deposition source, and are emitted from the first vapor deposition source. The radiation angle of the first material is smaller than the radiation angle of the second material emitted from the second vapor deposition source, and the vapor deposition area by the first vapor deposition source is vapor deposition by the second vapor deposition source. A plurality of limiting plates that limit the passage angle of the material emitted from each vapor deposition source so as to overlap a part of the region;
At the time of vapor deposition of the first material and the second material, one of the plurality of vapor deposition sources, the plurality of limiting plates, and the deposition target substrate is arranged in parallel with the other of the plurality of vapor deposition sources. And a moving mechanism for relatively moving along the
Vapor deposition is performed while moving one of the plurality of vapor deposition sources, the plurality of limiting plates, and the deposition target substrate relative to the other along one direction of the plurality of vapor deposition sources. Thus, the first vapor deposition layer, which is a co-deposition layer made of a material containing the first material and the second material, and one of the first material and the second material are used. The vapor deposition apparatus characterized by laminating | stacking the 2nd vapor deposition layer which consists of a material containing. - 上記制限板を冷却する冷却部をさらに備えていることを特徴とする請求項13に記載の蒸着装置。 The vapor deposition apparatus according to claim 13, further comprising a cooling unit that cools the restriction plate.
- 上記制限板の材質はステンレスであることを特徴とする請求項13または14に記載の蒸着装置。 The vapor deposition apparatus according to claim 13 or 14, wherein the material of the limiting plate is stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/013996 WO2019187162A1 (en) | 2018-03-30 | 2018-03-30 | Display device production method and vapor deposition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/013996 WO2019187162A1 (en) | 2018-03-30 | 2018-03-30 | Display device production method and vapor deposition device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019187162A1 true WO2019187162A1 (en) | 2019-10-03 |
Family
ID=68059730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013996 WO2019187162A1 (en) | 2018-03-30 | 2018-03-30 | Display device production method and vapor deposition device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019187162A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113061847A (en) * | 2021-03-19 | 2021-07-02 | 云谷(固安)科技有限公司 | Display device evaporation device and evaporation method |
CN116219366A (en) * | 2021-12-02 | 2023-06-06 | 长州产业株式会社 | Vapor deposition device and vapor deposition method |
WO2024070473A1 (en) * | 2022-09-26 | 2024-04-04 | キヤノントッキ株式会社 | Film formation device and film formation method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040043360A (en) * | 2002-11-18 | 2004-05-24 | 주식회사 야스 | Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition |
JP2004214120A (en) * | 2003-01-08 | 2004-07-29 | Sony Corp | Device and method for manufacturing organic electroluminescent element |
JP2005317477A (en) * | 2004-04-30 | 2005-11-10 | Toshiba Matsushita Display Technology Co Ltd | Manufacturing device of display device |
JP2009215644A (en) * | 2008-03-11 | 2009-09-24 | Samsung Mobile Display Co Ltd | Thin film forming method |
DE102009011696A1 (en) * | 2009-03-09 | 2010-09-23 | Von Ardenne Anlagentechnik Gmbh | Forming gradient layer containing two components on substrate by simultaneously evaporating evaporation materials in process chamber, comprises arranging the materials in individual vapor sources and arranging vapor sources in the chamber |
WO2012098927A1 (en) * | 2011-01-18 | 2012-07-26 | シャープ株式会社 | Vapor deposition apparatus, vapor deposition method, organic el element, and organic el display apparatus |
WO2012172883A1 (en) * | 2011-06-14 | 2012-12-20 | コニカミノルタホールディングス株式会社 | Method for manufacturing organic electroluminescent element |
JP2014019954A (en) * | 2012-07-16 | 2014-02-03 | Samsung Display Co Ltd | Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method |
US20140291619A1 (en) * | 2013-03-27 | 2014-10-02 | Samsung Display Co., Ltd. | Method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus manufactured by the same |
JP2015007263A (en) * | 2013-06-24 | 2015-01-15 | 株式会社日立ハイテクノロジーズ | Organic device manufacturing device and organic device manufacturing method |
-
2018
- 2018-03-30 WO PCT/JP2018/013996 patent/WO2019187162A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040043360A (en) * | 2002-11-18 | 2004-05-24 | 주식회사 야스 | Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition |
JP2004214120A (en) * | 2003-01-08 | 2004-07-29 | Sony Corp | Device and method for manufacturing organic electroluminescent element |
JP2005317477A (en) * | 2004-04-30 | 2005-11-10 | Toshiba Matsushita Display Technology Co Ltd | Manufacturing device of display device |
JP2009215644A (en) * | 2008-03-11 | 2009-09-24 | Samsung Mobile Display Co Ltd | Thin film forming method |
DE102009011696A1 (en) * | 2009-03-09 | 2010-09-23 | Von Ardenne Anlagentechnik Gmbh | Forming gradient layer containing two components on substrate by simultaneously evaporating evaporation materials in process chamber, comprises arranging the materials in individual vapor sources and arranging vapor sources in the chamber |
WO2012098927A1 (en) * | 2011-01-18 | 2012-07-26 | シャープ株式会社 | Vapor deposition apparatus, vapor deposition method, organic el element, and organic el display apparatus |
WO2012172883A1 (en) * | 2011-06-14 | 2012-12-20 | コニカミノルタホールディングス株式会社 | Method for manufacturing organic electroluminescent element |
JP2014019954A (en) * | 2012-07-16 | 2014-02-03 | Samsung Display Co Ltd | Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus by using the same, and organic light-emitting display apparatus manufactured by the method |
US20140291619A1 (en) * | 2013-03-27 | 2014-10-02 | Samsung Display Co., Ltd. | Method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus manufactured by the same |
JP2015007263A (en) * | 2013-06-24 | 2015-01-15 | 株式会社日立ハイテクノロジーズ | Organic device manufacturing device and organic device manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113061847A (en) * | 2021-03-19 | 2021-07-02 | 云谷(固安)科技有限公司 | Display device evaporation device and evaporation method |
CN116219366A (en) * | 2021-12-02 | 2023-06-06 | 长州产业株式会社 | Vapor deposition device and vapor deposition method |
WO2024070473A1 (en) * | 2022-09-26 | 2024-04-04 | キヤノントッキ株式会社 | Film formation device and film formation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11997864B2 (en) | Device including patterning a conductive coating | |
CN106298847B (en) | Organic light emitting display device | |
US9842894B2 (en) | Organic light-emitting display apparatus and manufacturing method thereof | |
KR102648132B1 (en) | Electroluminescent display device | |
KR101097311B1 (en) | Organic light emitting display apparatus and apparatus for thin layer deposition for manufacturing the same | |
JP5328727B2 (en) | Thin film deposition apparatus and organic light emitting display device manufacturing method using the same | |
JP5328726B2 (en) | Thin film deposition apparatus and organic light emitting display device manufacturing method using the same | |
US8876975B2 (en) | Thin film deposition apparatus | |
KR101174874B1 (en) | Deposition source, apparatus for thin layer deposition and method of manufacturing organic light emitting display apparatus | |
WO2019187162A1 (en) | Display device production method and vapor deposition device | |
US8729570B2 (en) | Mask frame assembly for thin film deposition, organic light-emitting display device using the same, and method of manufacturing the organic light-emitting display device | |
US10103348B2 (en) | OLED, method for manufacturing the same, and OLED display device | |
JP5211114B2 (en) | Thin film deposition equipment | |
KR20120029895A (en) | Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same | |
US11665932B2 (en) | Organic light emitting display device | |
US9379325B2 (en) | Donor mask and method of manufacturing organic light emitting display apparatus using the same | |
KR20200041689A (en) | Organic light emitting display device | |
KR102169862B1 (en) | Organic light emitting diode display device and fabricating method thereof | |
US11398610B2 (en) | Display device and method of manufacturing display device | |
WO2019186720A1 (en) | Manufacturing method for display device, and display device | |
KR20170033968A (en) | Organic light emitting device | |
US11414741B2 (en) | Vapor deposition mask and vapor deposition device | |
WO2019186843A1 (en) | Vapor deposition source, vapor deposition device and vapor deposition method | |
US20230200196A1 (en) | Deposition device and deposition method | |
WO2012108363A1 (en) | Crucible, vapor deposition apparatus, vapor deposition method, and method for manufacturing organic electroluminescent display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18912315 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18912315 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |