WO2012063445A1 - Organic el display device and production method for same - Google Patents

Organic el display device and production method for same Download PDF

Info

Publication number
WO2012063445A1
WO2012063445A1 PCT/JP2011/006174 JP2011006174W WO2012063445A1 WO 2012063445 A1 WO2012063445 A1 WO 2012063445A1 JP 2011006174 W JP2011006174 W JP 2011006174W WO 2012063445 A1 WO2012063445 A1 WO 2012063445A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
substrate
protective layer
display device
Prior art date
Application number
PCT/JP2011/006174
Other languages
French (fr)
Japanese (ja)
Inventor
剛 平瀬
内田 秀樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012063445A1 publication Critical patent/WO2012063445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements

Definitions

  • the present invention relates to an organic EL display device including an organic electroluminescence element (organic electroluminescence element: hereinafter referred to as “organic EL element”) and a method for manufacturing the same.
  • organic electroluminescence element organic electroluminescence element: hereinafter referred to as “organic EL element”
  • organic EL display devices have attracted attention as next-generation flat panel display devices such as full-color displays.
  • This organic EL display device is a self-luminous display device, has excellent viewing angle characteristics, high visibility, low power consumption, and can be reduced in thickness, so that demand is increasing.
  • This organic EL display device has a plurality of organic EL elements arranged in a predetermined arrangement.
  • Each of the plurality of organic EL elements includes a first electrode (anode) formed on an insulating substrate, an organic layer having a light emitting layer formed on the first electrode, and a first electrode formed on the organic layer. 2 electrodes (cathode).
  • the causes of such deterioration of the light emission characteristics include deterioration of the organic layer due to moisture from the outside air that has entered the organic EL element, oxidation of the electrode due to oxygen in the outside air, and these moisture and oxygen. For example, peeling between the organic layer and the electrode due to the above can be mentioned.
  • an organic EL display device having a structure for removing such moisture and oxygen has been proposed. More specifically, for example, an organic EL element in which an organic layer is sandwiched between a pair of opposed electrodes, an airtight container that houses the organic EL element and blocks outside air, and an organic container in the airtight container
  • An organic EL display device is disclosed that includes a drying unit that is disposed separately from the EL element and chemically adsorbs moisture (see, for example, Patent Document 1).
  • an organic EL display device provided with a sealing resin for protecting the organic EL element from moisture and oxygen has been proposed. More specifically, in an organic EL device in which at least an anode, an organic light emitting layer and a cathode are laminated on a substrate, nitriding is performed on the surface of the organic EL device which is a laminated structure composed of an anode, an organic light emitting layer and a cathode. There has been proposed an organic EL element in which a protective layer formed of silicon or the like and a resin sealing film made of resin on the protective layer are provided.
  • An organic EL display device including a sealing material is disclosed.
  • the organic EL display element described in Patent Document 3 has a problem that it is not possible to cope with the narrow frame of the organic EL display device because it is necessary to provide a sealing material.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL display device capable of preventing deterioration of characteristics of an organic EL element due to an acid or an alkali, and a manufacturing method thereof.
  • an organic EL display device of the present invention includes a first substrate, a second substrate provided opposite to the first substrate, a first substrate, a first substrate, An organic EL element provided between the two substrates, a protective layer formed on the first substrate and covering the surface of the organic EL element, and a nanoparticle layer formed on the protective layer and containing nanoparticles. It is characterized by providing.
  • the nanoparticle layer can function as a sealing material, it is not necessary to provide a sealing material separately as in the prior art, and as a result, it is possible to cope with the narrowing of the frame of the organic EL display device. become.
  • pinholes and cracks formed in the protective layer can be filled with nanoparticles, in the display area of the organic EL display device, pinholes and cracks are formed and the protective layer whose surface is uneven is flattened. can do. Accordingly, it is possible to prevent display unevenness in the display area.
  • the nanoparticles may be at least one selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles.
  • the organic EL element can be formed without increasing the thickness of the protective layer. Since it is possible to protect from moisture, it is possible to reduce the thickness of the protective layer provided on the surface of the organic EL element. Therefore, it is possible to shorten the film formation time of the protective layer and to reduce the cost when forming the protective layer.
  • a nanoparticle layer containing nanoparticles having excellent moisture resistance for example, zirconia particles
  • the nanoparticle layer may have a thickness of 0.5 ⁇ m to 50 ⁇ m.
  • pinholes and cracks formed in the protective layer can be reliably filled with nanoparticles, and the protective layer can be reliably thinned.
  • the protective layer may have a thickness of 10 nm to 10 ⁇ m.
  • the moisture resistance of the organic EL element can be sufficiently ensured without increasing the thickness of the protective layer.
  • the average particle diameter of the nanoparticles may be 10 nm or less.
  • the pinholes and cracks formed in the protective layer are filled with nanoparticles without causing the inconvenience that the film adhesion of the protective layer is reduced due to the film stress of the nanoparticle layer, resulting in film peeling. It becomes possible to do.
  • the organic EL display device of the present invention may further include an adhesive layer provided on the surface of the nanoparticle layer, and the second substrate may be bonded to the nanoparticle layer via the adhesive layer.
  • the adhesive layer can function as a sealing layer, it is not necessary to provide a sealing film separately from the adhesive layer for attaching the second substrate.
  • the organic EL display device manufacturing method of the present invention includes an organic EL element forming step of forming an organic EL element on a substrate, a protective layer forming step of forming a protective layer covering the organic EL element on the substrate, and a protective layer And a step of forming a nanoparticle layer containing nanoparticles.
  • pinholes and cracks formed in the protective layer can be filled with nanoparticles by forming a nanoparticle layer containing nanoparticles on the surface of the protective layer. Therefore, it is possible to provide an organic EL display device that can prevent deterioration in characteristics of the organic EL element due to the entry of acid or alkali.
  • pinholes and cracks formed in the protective layer can be filled with nanoparticles, in the display area of the organic EL display device, pinholes and cracks are formed and the protective layer whose surface is uneven is flattened. can do. Therefore, it is possible to provide an organic EL display device that can prevent display unevenness in the display area.
  • the method for producing an organic EL display device of the present invention is characterized in that the nanoparticles are at least one selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles.
  • the organic EL element can be formed without increasing the thickness of the protective layer. Therefore, it is possible to reduce the thickness of the protective layer provided on the surface of the organic EL element. Therefore, it is possible to provide an organic EL display device that can shorten the film formation time of the protective layer and can reduce the cost when forming the protective layer.
  • a nanoparticle layer containing nanoparticles having excellent moisture resistance for example, zirconia particles
  • an organic EL display device having a protective layer for blocking moisture, it is possible to prevent deterioration of the characteristics of the organic EL element due to the entry of acid or alkali.
  • FIG. 1 is a plan view of an organic EL display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on embodiment of this invention is provided. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention.
  • FIG. 1 is a plan view of an organic EL display device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on embodiment of this invention is provided.
  • the organic EL display device 1 is formed on an element substrate 30 that is a first substrate, a sealing substrate 20 that is a second substrate facing the element substrate 30, and the element substrate 30.
  • an organic EL element 4 provided between the element substrate 30 and the sealing substrate 20 is provided.
  • the element substrate 30 has a display region D in which the organic EL elements 4 are arranged.
  • the organic EL elements 4 are formed in a matrix on the surface of the element substrate 30 facing the sealing substrate 20.
  • the element substrate 30 and the sealing substrate 20 are formed of an insulating material such as glass or plastic, for example.
  • the organic EL element 4 includes a first electrode 6 (anode) provided on the surface of the element substrate 30, an organic layer 7 provided on the surface of the first electrode 6, And a second electrode 8 (cathode) provided on the surface of the organic layer 7.
  • a plurality of first electrodes 6 are formed in a matrix at predetermined intervals on the surface of the element substrate 30, and each of the plurality of first electrodes 6 constitutes each pixel region of the organic EL display device 1. .
  • the first electrode 6 is formed of, for example, Au, Ni, Pt, ITO (indium-tin oxide), or a laminated film of ITO and Ag.
  • the organic layer 7 is formed on the surface of each first electrode 6 partitioned in a matrix. As shown in FIG. 3, the organic layer 7 is formed on the hole injection layer 9, the hole transport layer 10 formed on the surface of the hole injection layer 9, and the surface of the hole transport layer 10. , A light emitting layer 11 that emits one of red light, green light, and blue light, an electron transport layer 12 formed on the surface of the light emitting layer 11, and an electron injection layer formed on the surface of the electron transport layer 12 13. And the organic layer 7 is comprised by laminating
  • the hole injection layer 9 is for increasing the efficiency of hole injection into the light emitting layer 11.
  • Examples of the material for forming the hole injection layer 9 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, Examples include hydrazone, stilbene, triphenylene, azatriphenylene, or derivatives thereof, or heterocyclic conjugated monomers, oligomers, or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, or aniline compounds. .
  • the hole transport layer 10 is for increasing the efficiency of hole injection into the light emitting layer 11 as with the hole injection layer 9 described above.
  • a material for forming the hole transport layer 10 the same material as the hole injection layer 9 described above can be used.
  • the light emitting layer 11 is a region in which holes and electrons are injected from each of the two electrodes when a voltage is applied by the first electrode 6 and the second electrode 8, and the holes and electrons are recombined.
  • the light emitting layer 11 is formed of a material having high luminous efficiency, and is formed of, for example, an organic material such as a low molecular fluorescent dye, a fluorescent polymer, or a metal complex.
  • tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex ditoluyl vinyl biphenyl are mentioned.
  • the electron transport layer 12 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11.
  • Examples of the material forming the electron transport layer 12 include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives or metal complexes thereof.
  • examples include tris (8-hydroxyquinoline) aluminum, anthracene, naphthalene, phenanthrene, pyrene, anthracene, perylene, butadiene, coumarin, acridine, stilbene, 1,10-phenanthroline, or derivatives or metal complexes thereof. It is done.
  • the electron injection layer 13 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11, similarly to the electron transport layer 12 described above, and the material for forming the electron injection layer 13 is described above.
  • the same material as the electron transport layer 12 can be used.
  • the second electrode 8 has a function of injecting electrons into the organic layer 7.
  • the second electrode 8 is made of, for example, a magnesium alloy (such as MgAg), an aluminum alloy (such as AlLi, AlCa, or AlMg), metallic calcium, or a metal having a small work function.
  • the organic EL display device 1 is provided with a protective layer 15 on the surface of the organic EL element 4 for protecting the organic EL element 4 from moisture and oxygen.
  • the protective layer 15 is provided so as to cover the organic EL element 4, and examples of the material for forming the protective layer 15 include inorganic materials such as SiO 2 and SiON. Further, from the viewpoint of sufficiently securing the moisture resistance of the organic EL element 4 without increasing the thickness of the protective layer 15, the thickness of the protective layer 15 is preferably 5 nm to 10 ⁇ m.
  • the organic EL display device 1 is characterized in that a nanoparticle layer 16 containing nanoparticles 18 is provided on the surface of the protective layer 15 as shown in FIG. .
  • metal materials such as zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles can be used.
  • zirconia having excellent moisture resistance as the material of the nanoparticles 18 from the viewpoint of effectively suppressing the ingress of moisture into the organic EL element 4.
  • the kind of the nanoparticle 18 contained in the nanoparticle layer 16 is not particularly limited, and may be set as appropriate.
  • the average particle size of the nanoparticles 18 is preferably 10 nm or less. This is because when the average particle diameter is larger than 10 nm, it may be difficult to fill the pinholes and cracks formed in the protective layer 15 with the nanoparticles 18. Further, when the average particle diameter is larger than 10 nm, the film stress of the nanoparticle layer 16 may cause a disadvantage that the adhesion with the protective layer 15 is lowered and the film is peeled off.
  • the average particle size refers to 50% particle size (D50), and a particle size distribution measuring device (Nikkiso Co., Ltd., Nanotrac (registered trademark) particle size distribution measuring device UPA-EX150) applying the laser Doppler method, etc. Can be measured.
  • the thickness of the nanoparticle layer 16 is 0.5 ⁇ m to 50 ⁇ m from the viewpoint of surely filling the pinholes and cracks formed in the protective layer 15 with the nanoparticles 18 and surely reducing the thickness of the protective layer 15. Preferably there is.
  • the pinholes and cracks formed in the protective layer 15 can be filled with the nanoparticles 18, the pinholes and cracks are formed in the display region D, and the protective layer 15 having an uneven surface is planarized. be able to. Therefore, it is possible to prevent display unevenness from occurring in the display area D and its peripheral area.
  • the protective layer in order to avoid the disadvantage that the characteristic deterioration of the organic EL element is caused by acid or alkali passing through pinholes or cracks formed in the protective layer, the protective layer It is also conceivable to form a thicker film. However, when the protective layer is formed thick, it takes a long time to form the protective layer, and there is a problem in that the cost for forming the protective layer increases.
  • the thickness of the protective layer 15 is increased by providing the nanoparticle layer 16 containing nanoparticles 18 (for example, the above-described zirconia particles) having excellent moisture resistance on the surface of the protective layer 15. Without this, the organic EL element 4 can be protected from moisture. Therefore, the protective layer 15 provided on the surface of the organic EL element 4 can be thinned. As a result, the film formation time of the protective layer 15 can be shortened, and the cost for forming the protective layer 15 can be reduced.
  • the nanoparticle layer 16 containing nanoparticles 18 for example, the above-described zirconia particles
  • an adhesive layer 17 is provided on the surface of the nanoparticle layer 16, and the sealing that faces the element substrate 30 through the adhesive layer 17.
  • the stop substrate 20 is provided on the element substrate 30.
  • the adhesive layer 17 functions as a resin sealing layer. Therefore, it is not necessary to provide a sealing film separately from the adhesive layer 17 for attaching the sealing substrate 20.
  • the nanoparticle layer 16 containing the nanoparticles 18 can function as a transparent resin layer. Therefore, even when the nanoparticle layer 16 containing the nanoparticles 18 is provided, the optical characteristics of the display region D can be sufficiently ensured.
  • 4 to 10 are views for explaining a method of manufacturing the organic EL display device according to the embodiment of the present invention.
  • an ITO film is patterned by a sputtering method on an element substrate 30 such as a glass substrate having a substrate size of 300 ⁇ 400 mm and a thickness of 0.7 mm, and the first electrode 6 is formed.
  • the film thickness of the first electrode 6 is, for example, about 150 nm.
  • the organic layer 7 including the light emitting layer 11 and the second electrode 8 are formed on the first electrode 6 by vapor deposition using a metal mask.
  • the element substrate 30 provided with the first electrode 6 is placed in the chamber of the vapor deposition apparatus.
  • the inside of the chamber of the vapor deposition apparatus is maintained at a vacuum degree of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 4 (Pa) by a vacuum pump.
  • the element substrate 30 provided with the first electrode 6 is installed in a state where two sides are fixed by a pair of substrate receivers attached in the chamber.
  • the vapor deposition materials of the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially evaporated from the vapor deposition source, so that the hole injection layer 9, the hole
  • the organic layer 7 is formed on the first electrode 6 in the pixel region as shown in FIG. 5.
  • Element 4 is formed.
  • a crucible charged with each evaporation material can be used as the evaporation source.
  • the crucible is installed in the lower part of the chamber, and the crucible is equipped with a heater, and the crucible is heated by the heater.
  • the various vapor deposition materials charged in the crucible become evaporated molecules and jump out upward in the chamber.
  • m-MTDATA common to all RGB pixels
  • a hole injection layer 9 made of 4,4,4-tris (3-methylphenylphenylamino) triphenylamine) is formed with a film thickness of, for example, 25 nm through a mask.
  • a hole transport layer 10 made of ⁇ -NPD (4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl) is provided on the hole injection layer 9 in common to all the RGB pixels.
  • the film is formed with a film thickness of 30 nm through the mask.
  • 30 weight of 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene (BSN) is added to di (2-naphthyl) anthracene (ADN).
  • % Mixed material is formed with a film thickness of, for example, 30 nm on the hole transport layer 10 formed in the pixel region through a mask.
  • a mixture of 5% by weight of coumarin 6 in ADN is formed on the hole transport layer 10 formed in the pixel region through a mask with a film thickness of, for example, 30 nm. .
  • the blue light-emitting layer 11 is obtained by mixing 2.5% by weight of AND with 4,4′-bis (2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl) biphenyl (DPAVBi).
  • DPAVBi 4,4′-bis (2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl) biphenyl
  • a film having a thickness of 30 nm is formed on the hole transport layer 10 formed in the pixel region through the mask.
  • 8-hydroxyquinoline aluminum (Alq3) is formed as an electron transport layer 12 with a film thickness of, for example, 20 nm through a mask, common to all RGB pixels.
  • lithium fluoride (LiF) is formed as an electron injection layer 13 on the electron transport layer 12 with a film thickness of, for example, 0.3 nm through a mask.
  • a cathode made of magnesium silver (MgAg) is formed as the second electrode 8 with a film thickness of 10 nm, for example.
  • a protective layer 15 for protecting the organic EL element 4 is formed on the surface of the organic EL element 4 with a thickness of 3 ⁇ m, for example.
  • the protective layer 15 is formed by laminating an inorganic material such as SiO 2 or SiON on the surface of the organic EL element 4 by vapor deposition, sputtering, chemical vapor deposition, or the like.
  • the organic EL element 4 is formed so as to cover it.
  • the solvent is evaporated by baking (for 40 minutes or more) in the range of 60 ° C. to 100 ° C., as shown in FIG.
  • a nanoparticle layer 16 having a thickness of 10 ⁇ m is formed on the surface of the layer 15 so as to cover the protective layer 15.
  • an adhesive layer 17 made of, for example, an epoxy resin is formed on the nanoparticle layer 16.
  • an adhesive agent which comprises the contact bonding layer 17 does not specifically limit as an adhesive agent which comprises the contact bonding layer 17.
  • various resin adhesives such as a butyral resin and an acrylic resin other than an epoxy resin, are used, for example. Can do.
  • a differential pressure in a vacuum atmosphere under predetermined conditions (for example, a pressure of 100 Pa or less, a dew point temperature of ⁇ 30 ° C. or less, preferably a dew point temperature of ⁇ 70 ° C. or less).
  • a pressure of 100 Pa or less for example, a pressure of 100 Pa or less, a dew point temperature of ⁇ 30 ° C. or less, preferably a dew point temperature of ⁇ 70 ° C. or less.
  • the ultraviolet ray to be irradiated is preferably 0.5 to 10 J, and more preferably 1 to 6 J.
  • heat treatment 70 ° C. or higher and 120 ° C. or lower, 10 minutes or longer and 2 hours or shorter is performed in the air in order to accelerate the curing of the resin.
  • the organic EL display device 1 shown in FIGS. 1 and 2 is manufactured.
  • the nanoparticle layer 16 containing the nanoparticles 18 is provided on the protective layer 15. Accordingly, since pinholes and cracks formed in the protective layer 15 can be filled with the nanoparticles 18, it is possible to prevent the deterioration of the characteristics of the organic EL element 4 due to the entry of acid or alkali.
  • the nanoparticle layer 16 can function as a sealing material, it is not necessary to provide a sealing material separately as in the prior art, and as a result, it is possible to cope with the narrowing of the frame of the organic EL display device 1. Is possible.
  • the protective layer 15 in which pinholes and cracks are formed in the display region D and the surface is uneven is provided. It can be flattened. Accordingly, display unevenness can be prevented in the display area D.
  • the nanoparticles 18 are configured to use at least one kind of particles selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles. Therefore, by providing the nanoparticle layer 16 containing the nanoparticles 18 (for example, the above-mentioned zirconia particles) excellent in moisture resistance on the surface of the protective layer 15, the organic EL without increasing the thickness of the protective layer 15. Since the element 4 can be protected from moisture, the protective layer 15 provided on the surface of the organic EL element 4 can be thinned. As a result, the film formation time of the protective layer 15 can be shortened, and the cost for forming the protective layer 15 can be reduced.
  • the nanoparticle layer 16 containing the nanoparticles 18 for example, the above-mentioned zirconia particles
  • the thickness of the nanoparticle layer 16 is set to 0.5 ⁇ m to 50 ⁇ m. Therefore, pinholes and cracks formed in the protective layer 15 can be reliably filled with the nanoparticles 18 and the protective layer 15 can be reliably thinned.
  • the average particle diameter of the nanoparticles 18 is set to 10 nm or less. Accordingly, the pinholes and cracks formed in the protective layer 15 are filled with the nanoparticles 18 without causing the disadvantage that the film stress of the nanoparticle layer 16 reduces the adhesion with the protective layer 15 to cause film peeling. It becomes possible to do.
  • the thickness of the protective layer 15 is set to 5 nm to 10 ⁇ m. Therefore, the moisture resistance of the organic EL element 4 can be sufficiently ensured without increasing the thickness of the protective layer 15.
  • a solution in which zirconia particles and a binder resin are mixed in a solvent is applied by a dispenser.
  • a spin coating method or an ink jet method is used instead of applying by the dispenser.
  • the solution may be applied by a method such as a method.
  • polymethyl methacrylate resin is used as the binder resin.
  • an epoxy resin, polyimide resin, polycarbonate resin, acrylic resin, or the like may be used.
  • the present invention is suitable for an organic EL display device including an organic EL element and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an organic EL display device (1) comprising: an element substrate (30); a sealing substrate (20) disposed facing the element substrate (30); an organic EL element (4) formed on top of the element substrate (30) and disposed between the element substrate (30) and the sealing substrate (20); a protective layer (15) formed on top of the element substrate (30) and covering the surface of the organic EL element (4); and a nanoparticle layer (16) formed on top of the protective layer (15) and containing nanoparticles (18).

Description

有機EL表示装置およびその製造方法Organic EL display device and manufacturing method thereof
 本発明は、有機電界発光素子(有機エレクトロルミネッセンス素子:以下、「有機EL素子」と記載する)を備えた有機EL表示装置およびその製造方法に関する。 The present invention relates to an organic EL display device including an organic electroluminescence element (organic electroluminescence element: hereinafter referred to as “organic EL element”) and a method for manufacturing the same.
 近年、フルカラーディスプレイ等の次世代フラットパネル表示装置として有機EL表示装置が注目されている。この有機EL表示装置は、自己発光型の表示装置であり、視野角特性に優れ、視認性が高く、低消費電力であり、かつ薄型化が可能であるため、需要が高まってきている。 In recent years, organic EL display devices have attracted attention as next-generation flat panel display devices such as full-color displays. This organic EL display device is a self-luminous display device, has excellent viewing angle characteristics, high visibility, low power consumption, and can be reduced in thickness, so that demand is increasing.
 この有機EL表示装置は、所定の配列で配列された複数の有機EL素子を有する。複数の有機EL素子の各々は、絶縁性の基板上に形成された第1電極(陽極)と、第1電極上に形成された発光層を有する有機層と、有機層上に形成された第2電極(陰極)とを備えている。 This organic EL display device has a plurality of organic EL elements arranged in a predetermined arrangement. Each of the plurality of organic EL elements includes a first electrode (anode) formed on an insulating substrate, an organic layer having a light emitting layer formed on the first electrode, and a first electrode formed on the organic layer. 2 electrodes (cathode).
 ここで、有機EL素子は、一般に、一定期間駆動すると、発光輝度や発光の均一性等の発光特性が初期の場合に比し著しく低下してしまう。このような発光特性の劣化の原因としては、有機EL素子の内部に進入した外気からの水分に起因する有機層の劣化や、外気中の酸素に起因する電極の酸化、及びこれらの水分や酸素に起因する有機層と電極との間の剥離等が挙げられる。 Here, in general, when an organic EL element is driven for a certain period, light emission characteristics such as light emission luminance and light emission uniformity are significantly reduced as compared with the initial case. The causes of such deterioration of the light emission characteristics include deterioration of the organic layer due to moisture from the outside air that has entered the organic EL element, oxidation of the electrode due to oxygen in the outside air, and these moisture and oxygen. For example, peeling between the organic layer and the electrode due to the above can be mentioned.
 そこで、これらの水分や酸素を除去するための構造を備えた有機EL表示装置が提案されている。より具体的には、例えば、対向する一対の電極間に有機層が狭持された有機EL素子と、有機EL素子を収納して外気を遮断する気密性容器と、気密性容器内に、有機EL素子から隔離して配置され、化学的に水分を吸着する乾燥手段とを備えた有機EL表示装置が開示されている(例えば、特許文献1参照)。 Therefore, an organic EL display device having a structure for removing such moisture and oxygen has been proposed. More specifically, for example, an organic EL element in which an organic layer is sandwiched between a pair of opposed electrodes, an airtight container that houses the organic EL element and blocks outside air, and an organic container in the airtight container An organic EL display device is disclosed that includes a drying unit that is disposed separately from the EL element and chemically adsorbs moisture (see, for example, Patent Document 1).
 しかし、上記特許文献1に記載の有機EL表示装置では、気密性容器内の水分を除去することはできるものの、気密性容器を設けたことにより、有機EL表示装置の全体の厚みが大きくなってしまうという問題があった。 However, in the organic EL display device described in Patent Document 1, although the moisture in the airtight container can be removed, the provision of the airtight container increases the overall thickness of the organic EL display device. There was a problem that.
 そこで、有機EL素子を水分や酸素から保護するための封止樹脂が設けられた有機EL表示装置が提案されている。より具体的には、基板上に少なくとも陽極、有機発光層および陰極が積層して成る有機EL素子において、陽極、有機発光層および陰極からなる積層構造体である有機EL素子の表面上に、窒化シリコン等により形成された保護層と、この保護層上に樹脂からなる樹脂封止膜とが設けられた有機EL素子が提案されている。 Therefore, an organic EL display device provided with a sealing resin for protecting the organic EL element from moisture and oxygen has been proposed. More specifically, in an organic EL device in which at least an anode, an organic light emitting layer and a cathode are laminated on a substrate, nitriding is performed on the surface of the organic EL device which is a laminated structure composed of an anode, an organic light emitting layer and a cathode. There has been proposed an organic EL element in which a protective layer formed of silicon or the like and a resin sealing film made of resin on the protective layer are provided.
 そして、このような構造により、有機EL表示装置の大型化を回避して、保護層により水分を十分に遮断することができ、また、樹脂封止膜により、製造作業時における衝突等に起因する損傷の発生を防止することができる、と記載されている(例えば、特許文献2参照)。 With such a structure, it is possible to avoid an increase in the size of the organic EL display device and to sufficiently block moisture by the protective layer, and due to a resin sealing film, it is caused by a collision or the like during the manufacturing operation. It is described that the occurrence of damage can be prevented (see, for example, Patent Document 2).
 また、素子基板に形成された有機EL素子の発光領域を封止するための封止樹脂と、封止基板上に設けられ、発光領域と電極領域とを遮るように形成された防護壁として作用するシール材とを備えた有機EL表示装置が開示されている。 Also, a sealing resin for sealing the light emitting region of the organic EL element formed on the element substrate, and a protective wall provided on the sealing substrate so as to block the light emitting region and the electrode region. An organic EL display device including a sealing material is disclosed.
 そして、このような構成により、発光領域において、有機EL素子を水分や酸素から保護するための封止樹脂を塗布により形成した場合であっても、シール材により、未硬化の封止樹脂が電極領域側へ拡散することを防止できると記載されている(例えば、特許文献3参照)。 And even if it is a case where the sealing resin for protecting an organic EL element from a water | moisture content or oxygen by application | coating is formed in a light emission area | region with such a structure, uncured sealing resin is electrode by a sealing material. It is described that diffusion to the region side can be prevented (see, for example, Patent Document 3).
特開平9-148066号公報Japanese Patent Laid-Open No. 9-148066 特開2000-223264号公報JP 2000-223264 A 特許第3705190号公報Japanese Patent No. 3705190
 しかし、上記特許文献2に記載の有機EL表示素子では、有機EL素子の表面上に保護層を成膜する際に、当該保護層にピンホールやクラックが形成される場合がある。従って、保護層に形成されたピンホールやクラックを通過する酸やアルカリ(外部からの進入や、樹脂封止膜を成膜して焼成処理した際に発生する副生成物、もしくは樹脂封止膜に含まれる不純物)により、有機EL表示素子の特性劣化が生じてしまうという問題があった。 However, in the organic EL display element described in Patent Document 2, when a protective layer is formed on the surface of the organic EL element, pinholes or cracks may be formed in the protective layer. Therefore, acid and alkali that pass through pinholes and cracks formed in the protective layer (from the outside, by-products generated when the resin sealing film is formed and fired, or the resin sealing film There is a problem that the characteristics of the organic EL display element deteriorate due to the impurities contained in the organic EL display element.
 また、上記特許文献3に記載の有機EL表示素子では、シール材を設ける必要があるため、有機EL表示装置の狭額縁化に対応することができないという問題があった。 Also, the organic EL display element described in Patent Document 3 has a problem that it is not possible to cope with the narrow frame of the organic EL display device because it is necessary to provide a sealing material.
 そこで、本発明は、上述の問題に鑑みてなされたものであり、酸やアルカリに起因する有機EL素子の特性劣化を防止することができる有機EL表示装置およびその製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL display device capable of preventing deterioration of characteristics of an organic EL element due to an acid or an alkali, and a manufacturing method thereof. And
 上記目的を達成するために、本発明の有機EL表示装置は、第1基板と、第1基板に対向して設けられた第2基板と、第1基板上に形成され、第1基板と第2基板との間に設けられた有機EL素子と、第1基板上に形成され、有機EL素子の表面を覆う保護層と、保護層上に形成され、ナノ粒子を含有するナノ粒子層とを備えることを特徴とする。 In order to achieve the above object, an organic EL display device of the present invention includes a first substrate, a second substrate provided opposite to the first substrate, a first substrate, a first substrate, An organic EL element provided between the two substrates, a protective layer formed on the first substrate and covering the surface of the organic EL element, and a nanoparticle layer formed on the protective layer and containing nanoparticles. It is characterized by providing.
 同構成によれば、保護層の表面にナノ粒子を含有するナノ粒子層を設けることにより、保護層に形成されたピンホールやクラックをナノ粒子により充填することができる。従って、酸やアルカリの進入に起因する有機EL素子の特性劣化を防止することが可能になる。 According to this configuration, by providing a nanoparticle layer containing nanoparticles on the surface of the protective layer, pinholes and cracks formed in the protective layer can be filled with the nanoparticles. Therefore, it becomes possible to prevent the deterioration of the characteristics of the organic EL element due to the entry of acid or alkali.
 また、ナノ粒子を含有するナノ粒子層を設けることにより、仮に、ナノ粒子層に外部から物質が浸透してきた場合であっても、ナノ粒子の存在により、物質の浸透経路を長くして、浸透時間を長期化することが可能になる。従って、ナノ粒子層をシール材として機能させることが可能になるため、従来技術のごとく、別途、シール材を設ける必要がなくなり、結果として、有機EL表示装置の狭額縁化に対応することが可能になる。 In addition, by providing a nanoparticle layer containing nanoparticles, even if the substance has penetrated into the nanoparticle layer from the outside, the presence of the nanoparticles makes the penetration path of the substance longer, It becomes possible to prolong the time. Accordingly, since the nanoparticle layer can function as a sealing material, it is not necessary to provide a sealing material separately as in the prior art, and as a result, it is possible to cope with the narrowing of the frame of the organic EL display device. become.
 また、保護層に形成されたピンホールやクラックをナノ粒子により充填することができるため、有機EL表示装置の表示領域において、ピンホールやクラックが形成され、表面が凹凸化した保護層を平坦化することができる。従って、表示領域において、表示ムラの発生を防止することができる。 In addition, since pinholes and cracks formed in the protective layer can be filled with nanoparticles, in the display area of the organic EL display device, pinholes and cracks are formed and the protective layer whose surface is uneven is flattened. can do. Accordingly, it is possible to prevent display unevenness in the display area.
 本発明の有機EL表示装置においては、ナノ粒子が、ジルコニア粒子、セリア粒子、アルミナ粒子、スピネル粒子、及びルチル粒子からなる群より選ばれる少なくとも1種であってもよい。 In the organic EL display device of the present invention, the nanoparticles may be at least one selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles.
 同構成によれば、保護層の表面に、防湿性に優れたナノ粒子(例えば、ジルコニア粒子)を含有するナノ粒子層を設けることにより、保護層の厚みを大きくすることなく、有機EL素子を水分から保護することが可能になるため、有機EL素子の表面に設ける保護層の薄膜化が可能になる。従って、保護層の成膜時間を短縮化することができるとともに、保護層を形成する際のコストダウンを図ることが可能になる。 According to this configuration, by providing a nanoparticle layer containing nanoparticles having excellent moisture resistance (for example, zirconia particles) on the surface of the protective layer, the organic EL element can be formed without increasing the thickness of the protective layer. Since it is possible to protect from moisture, it is possible to reduce the thickness of the protective layer provided on the surface of the organic EL element. Therefore, it is possible to shorten the film formation time of the protective layer and to reduce the cost when forming the protective layer.
 本発明の有機EL表示装置においては、ナノ粒子層の厚みが、0.5μm~50μmであってもよい。 In the organic EL display device of the present invention, the nanoparticle layer may have a thickness of 0.5 μm to 50 μm.
 同構成によれば、保護層に形成されたピンホールやクラックをナノ粒子により確実に充填し、保護層を確実に薄膜化することができる。 According to this configuration, pinholes and cracks formed in the protective layer can be reliably filled with nanoparticles, and the protective layer can be reliably thinned.
 本発明の有機EL表示装置においては、保護層の厚みが、10nm~10μmであってもよい。 In the organic EL display device of the present invention, the protective layer may have a thickness of 10 nm to 10 μm.
 同構成によれば、保護層の厚みを大きくすることなく、有機EL素子の耐湿性を十分に確保することができる。 According to this configuration, the moisture resistance of the organic EL element can be sufficiently ensured without increasing the thickness of the protective layer.
 本発明の有機EL表示装置においては、ナノ粒子の平均粒子径が、10nm以下であってもよい。 In the organic EL display device of the present invention, the average particle diameter of the nanoparticles may be 10 nm or less.
 同構成によれば、ナノ粒子層の膜応力により、保護層との密着性が低下して膜剥がれが生じるという不都合を生じることなく、保護層に形成されたピンホールやクラックをナノ粒子により充填することが可能になる。 According to this configuration, the pinholes and cracks formed in the protective layer are filled with nanoparticles without causing the inconvenience that the film adhesion of the protective layer is reduced due to the film stress of the nanoparticle layer, resulting in film peeling. It becomes possible to do.
 本発明の有機EL表示装置においては、ナノ粒子層の表面上に設けられた接着層を更に備え、接着層を介して、第2基板がナノ粒子層上に貼り合わされていてもよい。 The organic EL display device of the present invention may further include an adhesive layer provided on the surface of the nanoparticle layer, and the second substrate may be bonded to the nanoparticle layer via the adhesive layer.
 同構成によれば、接着層を封止層として機能させることができるため、第2基板を貼り付けるための接着層とは別個に封止膜を設ける必要がなくなる。 According to this configuration, since the adhesive layer can function as a sealing layer, it is not necessary to provide a sealing film separately from the adhesive layer for attaching the second substrate.
 本発明の有機EL表示装置の製造方法は、基板上に有機EL素子を形成する有機EL素子形成工程と、基板上に、有機EL素子を覆う保護層を形成する保護層形成工程と、保護層上に、ナノ粒子を含有するナノ粒子層を形成する工程とを少なくとも備えることを特徴とする。 The organic EL display device manufacturing method of the present invention includes an organic EL element forming step of forming an organic EL element on a substrate, a protective layer forming step of forming a protective layer covering the organic EL element on the substrate, and a protective layer And a step of forming a nanoparticle layer containing nanoparticles.
 同構成によれば、保護層の表面にナノ粒子を含有するナノ粒子層を形成することにより、保護層に形成されたピンホールやクラックをナノ粒子により充填することができる。従って、酸やアルカリの進入に起因する有機EL素子の特性劣化を防止することが可能になる有機EL表示装置を提供することができる。 According to this configuration, pinholes and cracks formed in the protective layer can be filled with nanoparticles by forming a nanoparticle layer containing nanoparticles on the surface of the protective layer. Therefore, it is possible to provide an organic EL display device that can prevent deterioration in characteristics of the organic EL element due to the entry of acid or alkali.
 また、保護層に形成されたピンホールやクラックをナノ粒子により充填することができるため、有機EL表示装置の表示領域において、ピンホールやクラックが形成され、表面が凹凸化した保護層を平坦化することができる。従って、表示領域において、表示ムラの発生を防止することができる有機EL表示装置を提供することができる。 In addition, since pinholes and cracks formed in the protective layer can be filled with nanoparticles, in the display area of the organic EL display device, pinholes and cracks are formed and the protective layer whose surface is uneven is flattened. can do. Therefore, it is possible to provide an organic EL display device that can prevent display unevenness in the display area.
 本発明の有機EL表示装置の製造方法においては、ナノ粒子が、ジルコニア粒子、セリア粒子、アルミナ粒子、スピネル粒子、及びルチル粒子からなる群より選ばれる少なくとも1種であることを特徴とする。 The method for producing an organic EL display device of the present invention is characterized in that the nanoparticles are at least one selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles.
 同構成によれば、保護層の表面に、防湿性に優れたナノ粒子(例えば、ジルコニア粒子)を含有するナノ粒子層を形成することにより、保護層の厚みを大きくすることなく、有機EL素子を水分から保護することが可能になるため、有機EL素子の表面に設ける保護層の薄膜化が可能になる。従って、保護層の成膜時間を短縮化することができるとともに、保護層を形成する際のコストダウンを図ることが可能になる有機EL表示装置を提供することができる。 According to this configuration, by forming a nanoparticle layer containing nanoparticles having excellent moisture resistance (for example, zirconia particles) on the surface of the protective layer, the organic EL element can be formed without increasing the thickness of the protective layer. Therefore, it is possible to reduce the thickness of the protective layer provided on the surface of the organic EL element. Therefore, it is possible to provide an organic EL display device that can shorten the film formation time of the protective layer and can reduce the cost when forming the protective layer.
 本発明によれば、水分を遮断するための保護層を備える有機EL表示装置において、酸やアルカリの進入に起因する有機EL素子の特性劣化を防止することが可能になる。 According to the present invention, in an organic EL display device having a protective layer for blocking moisture, it is possible to prevent deterioration of the characteristics of the organic EL element due to the entry of acid or alkali.
本発明の実施形態に係る有機EL表示装置の平面図である。1 is a plan view of an organic EL display device according to an embodiment of the present invention. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 本発明の実施形態に係る有機EL表示装置が備える有機EL素子を構成する有機層を説明するための断面図である。It is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on embodiment of this invention is provided. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the organic electroluminescence display which concerns on embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
 図1は、本発明の実施形態に係る有機EL表示装置の平面図であり、図2は、図1のA-A断面図である。また、図3は、本発明の実施形態に係る有機EL表示装置が備える有機EL素子を構成する有機層を説明するための断面図である。 FIG. 1 is a plan view of an organic EL display device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. Moreover, FIG. 3 is sectional drawing for demonstrating the organic layer which comprises the organic EL element with which the organic EL display apparatus which concerns on embodiment of this invention is provided.
 図1、図2に示す様に、有機EL表示装置1は、第1基板である素子基板30と、素子基板30に対向する第2基板である封止基板20と、素子基板30上に形成されるとともに、素子基板30及び封止基板20の間に設けられた有機EL素子4とを備えている。 As shown in FIGS. 1 and 2, the organic EL display device 1 is formed on an element substrate 30 that is a first substrate, a sealing substrate 20 that is a second substrate facing the element substrate 30, and the element substrate 30. In addition, an organic EL element 4 provided between the element substrate 30 and the sealing substrate 20 is provided.
 また、図1、図2に示すように、素子基板30は、有機EL素子4が配列された表示領域Dを有する。この表示領域Dには、封止基板20と対向する素子基板30側の面において、有機EL素子4がマトリックス状に配置されて形成されている。 Further, as shown in FIGS. 1 and 2, the element substrate 30 has a display region D in which the organic EL elements 4 are arranged. In the display area D, the organic EL elements 4 are formed in a matrix on the surface of the element substrate 30 facing the sealing substrate 20.
 素子基板30及び封止基板20は、例えば、ガラス、またはプラスチック等の絶縁性材料により形成されている。 The element substrate 30 and the sealing substrate 20 are formed of an insulating material such as glass or plastic, for example.
 また、図2に示すように、有機EL素子4は、素子基板30の表面上に設けられた第1電極6(陽極)と、第1電極6の表面上に設けられた有機層7と、有機層7の表面上に設けられた第2電極8(陰極)とを備えている。 As shown in FIG. 2, the organic EL element 4 includes a first electrode 6 (anode) provided on the surface of the element substrate 30, an organic layer 7 provided on the surface of the first electrode 6, And a second electrode 8 (cathode) provided on the surface of the organic layer 7.
 第1電極6は、素子基板30の表面上に所定の間隔でマトリクス状に複数形成されており、複数の第1電極6の各々が、有機EL表示装置1の各画素領域を構成している。なお、第1電極6は、例えば、Au、Ni、Pt、ITO(インジウム-スズ酸化物)、またはITOとAgの積層膜等により形成されている。 A plurality of first electrodes 6 are formed in a matrix at predetermined intervals on the surface of the element substrate 30, and each of the plurality of first electrodes 6 constitutes each pixel region of the organic EL display device 1. . The first electrode 6 is formed of, for example, Au, Ni, Pt, ITO (indium-tin oxide), or a laminated film of ITO and Ag.
 有機層7は、マトリクス状に区画された各第1電極6の表面上に形成されている。この有機層7は、図3に示すように、正孔注入層9と、正孔注入層9の表面上に形成された正孔輸送層10と、正孔輸送層10の表面上に形成され、赤色光、緑色光、および青色光のいずれかを発する発光層11と、発光層11の表面上に形成された電子輸送層12と、電子輸送層12の表面上に形成された電子注入層13とを備えている。そして、これらの正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13が順次積層されることにより、有機層7が構成されている。 The organic layer 7 is formed on the surface of each first electrode 6 partitioned in a matrix. As shown in FIG. 3, the organic layer 7 is formed on the hole injection layer 9, the hole transport layer 10 formed on the surface of the hole injection layer 9, and the surface of the hole transport layer 10. , A light emitting layer 11 that emits one of red light, green light, and blue light, an electron transport layer 12 formed on the surface of the light emitting layer 11, and an electron injection layer formed on the surface of the electron transport layer 12 13. And the organic layer 7 is comprised by laminating | stacking these hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 one by one.
 正孔注入層9は、発光層11への正孔注入効率を高めるためのものである。この正孔注入層9を形成する材料としては、例えば、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、オキザゾール、アントラセン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、アザトリフェニレン、あるいはこれらの誘導体、または、ポリシラン系化合物、ビニルカルバゾール系化合物、チオフェン系化合物あるいはアニリン系化合物等の複素環式共役系のモノマー、オリゴマーあるいはポリマーを挙げることができる。 The hole injection layer 9 is for increasing the efficiency of hole injection into the light emitting layer 11. Examples of the material for forming the hole injection layer 9 include benzine, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, polyarylalkane, phenylenediamine, arylamine, oxazole, anthracene, fluorenone, Examples include hydrazone, stilbene, triphenylene, azatriphenylene, or derivatives thereof, or heterocyclic conjugated monomers, oligomers, or polymers such as polysilane compounds, vinylcarbazole compounds, thiophene compounds, or aniline compounds. .
 正孔輸送層10は、上述の正孔注入層9と同様に、発光層11への正孔注入効率を高めるためのものである。正孔輸送層10を形成する材料としては、上述の正孔注入層9と同様のものが使用できる。 The hole transport layer 10 is for increasing the efficiency of hole injection into the light emitting layer 11 as with the hole injection layer 9 described above. As a material for forming the hole transport layer 10, the same material as the hole injection layer 9 described above can be used.
 発光層11は、第1電極6、及び第2電極8による電圧印加の際に、両電極の各々から正孔および電子が注入されるとともに、正孔と電子が再結合する領域である。この発光層11は、発光効率が高い材料により形成され、例えば、低分子蛍光色素、蛍光性の高分子、金属錯体等の有機材料により形成されている。 The light emitting layer 11 is a region in which holes and electrons are injected from each of the two electrodes when a voltage is applied by the first electrode 6 and the second electrode 8, and the holes and electrons are recombined. The light emitting layer 11 is formed of a material having high luminous efficiency, and is formed of, for example, an organic material such as a low molecular fluorescent dye, a fluorescent polymer, or a metal complex.
 より具体的には、例えば、アントラセン、ナフタレン、インデン、フェナントレン、ピレン、ナフタセン、トリフェニレン、アントラセン、ペリレン、ピセン、フルオランテン、アセフェナントリレン、ペンタフェン、ペンタセン、コロネン、ブタジエン、クマリン、アクリジン、スチルベン、あるいはこれらの誘導体、トリス(8-キノリノラト)アルミニウム錯体、ビス(ベンゾキノリノラト)ベリリウム錯体、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体ジトルイルビニルビフェニルが挙げられる。 More specifically, for example, anthracene, naphthalene, indene, phenanthrene, pyrene, naphthacene, triphenylene, anthracene, perylene, picene, fluoranthene, acephenanthrylene, pentaphene, pentacene, coronene, butadiene, coumarin, acridine, stilbene, or These derivatives, tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex, tri (dibenzoylmethyl) phenanthroline europium complex ditoluyl vinyl biphenyl are mentioned.
 電子輸送層12は、第2電極8から注入される電子を発光層11に輸送するためのものである。この電子輸送層12を形成する材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、またはこれらの誘導体や金属錯体が挙げられる。 The electron transport layer 12 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11. Examples of the material forming the electron transport layer 12 include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives or metal complexes thereof.
 より具体的には、トリス(8-ヒドロキシキノリン)アルミニウム、アントラセン、ナフタレン、フェナントレン、ピレン、アントラセン、ペリレン、ブタジエン、クマリン、アクリジン、スチルベン、1,10-フェナントロリン、またはこれらの誘導体や金属錯体が挙げられる。 More specifically, examples include tris (8-hydroxyquinoline) aluminum, anthracene, naphthalene, phenanthrene, pyrene, anthracene, perylene, butadiene, coumarin, acridine, stilbene, 1,10-phenanthroline, or derivatives or metal complexes thereof. It is done.
 電子注入層13は、上述の電子輸送層12と同様に、第2電極8から注入される電子を発光層11に輸送するためのものであり、電子注入層13を形成する材料としては、上述の電子輸送層12と同様のものが使用できる。 The electron injection layer 13 is for transporting electrons injected from the second electrode 8 to the light emitting layer 11, similarly to the electron transport layer 12 described above, and the material for forming the electron injection layer 13 is described above. The same material as the electron transport layer 12 can be used.
 第2電極8は、有機層7に電子を注入する機能を有するものである。この第2電極8は、例えば、マグネシウム合金(MgAg等)、アルミニウム合金(AlLi、AlCa、AlMg等)、金属カルシウム、または仕事関数の小さい金属等により形成されている。 The second electrode 8 has a function of injecting electrons into the organic layer 7. The second electrode 8 is made of, for example, a magnesium alloy (such as MgAg), an aluminum alloy (such as AlLi, AlCa, or AlMg), metallic calcium, or a metal having a small work function.
 また、有機EL表示装置1は、図2に示すように、有機EL素子4の表面上に、有機EL素子4を水分や酸素から保護するための保護層15が設けられている。 In addition, as shown in FIG. 2, the organic EL display device 1 is provided with a protective layer 15 on the surface of the organic EL element 4 for protecting the organic EL element 4 from moisture and oxygen.
 この保護層15は、有機EL素子4を覆うように設けられており、保護層15を形成する材料としては、例えば、SiO、SiON等の無機材料が挙げられる。また、保護層15の厚みを大きくすることなく、有機EL素子4の耐湿性を十分に確保するとの観点から、保護層15の厚みは、5nm~10μmであることが好ましい。 The protective layer 15 is provided so as to cover the organic EL element 4, and examples of the material for forming the protective layer 15 include inorganic materials such as SiO 2 and SiON. Further, from the viewpoint of sufficiently securing the moisture resistance of the organic EL element 4 without increasing the thickness of the protective layer 15, the thickness of the protective layer 15 is preferably 5 nm to 10 μm.
 ここで、本実施形態における有機EL表示装置1においては、図2に示すように、保護層15の表面上に、ナノ粒子18を含有するナノ粒子層16が設けられている点に特徴がある。 Here, the organic EL display device 1 according to the present embodiment is characterized in that a nanoparticle layer 16 containing nanoparticles 18 is provided on the surface of the protective layer 15 as shown in FIG. .
 ナノ粒子層16を形成するナノ粒子18の材料としては、例えば、ジルコニア粒子、セリア粒子、アルミナ粒子、スピネル粒子、及びルチル粒子等の金属材料を使用することができる。 As the material of the nanoparticles 18 forming the nanoparticle layer 16, for example, metal materials such as zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles can be used.
 なお、これらの金属材料のうち、有機EL素子4への水分の進入を効果的に抑制するとの観点から、ナノ粒子18の材料として、防湿性に優れたジルコニアを使用することが好ましい。 Of these metal materials, it is preferable to use zirconia having excellent moisture resistance as the material of the nanoparticles 18 from the viewpoint of effectively suppressing the ingress of moisture into the organic EL element 4.
 また、ナノ粒子層16が含有するナノ粒子18の種類は、特に限定されず、適宜設定すればよい。 Moreover, the kind of the nanoparticle 18 contained in the nanoparticle layer 16 is not particularly limited, and may be set as appropriate.
 また、ナノ粒子18の平均粒子径としては、10nm以下であることが好ましい。これは、平均粒子径が10nmよりも大きい場合は、保護層15に形成されたピンホールやクラックをナノ粒子18により充填することが困難になる場合があるためである。また、平均粒子径が10nmよりも大きい場合は、ナノ粒子層16の膜応力により、保護層15との密着性が低下して膜剥がれが生じるという不都合が生じる場合があるためである。 The average particle size of the nanoparticles 18 is preferably 10 nm or less. This is because when the average particle diameter is larger than 10 nm, it may be difficult to fill the pinholes and cracks formed in the protective layer 15 with the nanoparticles 18. Further, when the average particle diameter is larger than 10 nm, the film stress of the nanoparticle layer 16 may cause a disadvantage that the adhesion with the protective layer 15 is lowered and the film is peeled off.
 なお、平均粒子径とは、50%粒径(D50)を指し、レーザードップラー法を応用した粒度分布測定装置(日機装(株)製、ナノトラック(登録商標)粒度分布測定装置UPA-EX150)等により測定できる。 The average particle size refers to 50% particle size (D50), and a particle size distribution measuring device (Nikkiso Co., Ltd., Nanotrac (registered trademark) particle size distribution measuring device UPA-EX150) applying the laser Doppler method, etc. Can be measured.
 また、保護層15に形成されたピンホールやクラックをナノ粒子18により確実に充填し、保護層15を確実に薄膜化するとの観点から、ナノ粒子層16の厚みは、0.5μm~50μmであることが好ましい。 In addition, the thickness of the nanoparticle layer 16 is 0.5 μm to 50 μm from the viewpoint of surely filling the pinholes and cracks formed in the protective layer 15 with the nanoparticles 18 and surely reducing the thickness of the protective layer 15. Preferably there is.
 このように、本実施形態においては、保護層15の表面にナノ粒子18を含有するナノ粒子層16を設けることにより、保護層15に形成されたピンホールやクラックをナノ粒子18により充填することができる(即ち、量子サイズ効果が発揮される)。従って、酸やアルカリの進入に起因する有機EL素子4の特性劣化を防止することが可能になる。 Thus, in this embodiment, by providing the nanoparticle layer 16 containing the nanoparticles 18 on the surface of the protective layer 15, pinholes and cracks formed in the protective layer 15 are filled with the nanoparticles 18. (That is, the quantum size effect is exhibited). Accordingly, it is possible to prevent the deterioration of the characteristics of the organic EL element 4 due to the entry of acid or alkali.
 また、保護層15に形成されたピンホールやクラックをナノ粒子18により充填することができるため、表示領域Dにおいて、ピンホールやクラックが形成され、表面が凹凸化した保護層15を平坦化することができる。従って、表示領域Dとその周辺領域において、表示ムラの発生を防止することができる。 In addition, since the pinholes and cracks formed in the protective layer 15 can be filled with the nanoparticles 18, the pinholes and cracks are formed in the display region D, and the protective layer 15 having an uneven surface is planarized. be able to. Therefore, it is possible to prevent display unevenness from occurring in the display area D and its peripheral area.
 また、上記従来の有機EL表示装置においては、保護層に形成されたピンホールやクラックを通過する酸やアルカリにより、有機EL素子の特性劣化が生じてしまうという不都合を回避するために、保護層を厚めに形成することも考えられる。しかし、保護層を厚めに形成すると、保護層の成膜に長時間必要になるとともに、保護層を形成する際のコストが上昇するという問題があった。 Further, in the above conventional organic EL display device, in order to avoid the disadvantage that the characteristic deterioration of the organic EL element is caused by acid or alkali passing through pinholes or cracks formed in the protective layer, the protective layer It is also conceivable to form a thicker film. However, when the protective layer is formed thick, it takes a long time to form the protective layer, and there is a problem in that the cost for forming the protective layer increases.
 一方、本実施形態においては、保護層15の表面に、防湿性に優れたナノ粒子18(例えば、上述のジルコニア粒子)を含有するナノ粒子層16を設けることにより、保護層15の厚みを大きくすることなく、有機EL素子4を水分から保護することが可能になる。従って、有機EL素子4の表面に設ける保護層15の薄膜化が可能になる。その結果、保護層15の成膜時間を短縮化することができるとともに、保護層15を形成する際のコストダウンを図ることが可能になる。 On the other hand, in the present embodiment, the thickness of the protective layer 15 is increased by providing the nanoparticle layer 16 containing nanoparticles 18 (for example, the above-described zirconia particles) having excellent moisture resistance on the surface of the protective layer 15. Without this, the organic EL element 4 can be protected from moisture. Therefore, the protective layer 15 provided on the surface of the organic EL element 4 can be thinned. As a result, the film formation time of the protective layer 15 can be shortened, and the cost for forming the protective layer 15 can be reduced.
 また、有機EL表示装置1においては、図2に示すように、ナノ粒子層16の表面上に、接着層17が設けられており、当該接着層17を介して、素子基板30に対向する封止基板20が、素子基板30上に設けられる構成となっている。なお、本実施形態においては、この接着層17が、樹脂封止層として機能する。従って、封止基板20を貼り付けるための接着層17とは別個に封止膜を設ける必要がなくなる。 Further, in the organic EL display device 1, as shown in FIG. 2, an adhesive layer 17 is provided on the surface of the nanoparticle layer 16, and the sealing that faces the element substrate 30 through the adhesive layer 17. The stop substrate 20 is provided on the element substrate 30. In the present embodiment, the adhesive layer 17 functions as a resin sealing layer. Therefore, it is not necessary to provide a sealing film separately from the adhesive layer 17 for attaching the sealing substrate 20.
 また、例えば、ジルコニア粒子は透明な粒子であるため、ナノ粒子18を含有するナノ粒子層16を透明な樹脂層として機能させることができる。従って、ナノ粒子18を含有するナノ粒子層16を設けた場合であっても、表示領域Dの光学特性を十分に確保することができる。 For example, since the zirconia particles are transparent particles, the nanoparticle layer 16 containing the nanoparticles 18 can function as a transparent resin layer. Therefore, even when the nanoparticle layer 16 containing the nanoparticles 18 is provided, the optical characteristics of the display region D can be sufficiently ensured.
 次に、本実施形態の有機EL表示装置の製造方法の一例について説明する。図4~図10は、本発明の実施形態に係る有機EL表示装置の製造方法を説明するための図である。 Next, an example of a method for manufacturing the organic EL display device of this embodiment will be described. 4 to 10 are views for explaining a method of manufacturing the organic EL display device according to the embodiment of the present invention.
 <有機EL素子形成工程>
 まず、図4に示すように、基板サイズが300×400mmで、厚さが0.7mmのガラス基板等の素子基板30上に、スパッタ法によりITO膜をパターン形成して、第1電極6を形成する。この際、第1電極6の膜厚は、例えば、150nm程度に形成する。
<Organic EL element formation process>
First, as shown in FIG. 4, an ITO film is patterned by a sputtering method on an element substrate 30 such as a glass substrate having a substrate size of 300 × 400 mm and a thickness of 0.7 mm, and the first electrode 6 is formed. Form. At this time, the film thickness of the first electrode 6 is, for example, about 150 nm.
 次に、第1電極6上に、発光層11を含む有機層7、及び第2電極8を金属製のマスクを使用して、蒸着法により形成する。 Next, the organic layer 7 including the light emitting layer 11 and the second electrode 8 are formed on the first electrode 6 by vapor deposition using a metal mask.
 より具体的には、まず、第1電極6を備えた素子基板30を蒸着装置のチャンバー内に設置する。なお、蒸着装置のチャンバー内は、真空ポンプにより、1×10-5~1×10-4(Pa)の真空度に保たれている。また、第1電極6を備えた素子基板30は、チャンバー内に取り付けられた1対の基板受けによって2辺を固定した状態で設置する。 More specifically, first, the element substrate 30 provided with the first electrode 6 is placed in the chamber of the vapor deposition apparatus. Note that the inside of the chamber of the vapor deposition apparatus is maintained at a vacuum degree of 1 × 10 −5 to 1 × 10 −4 (Pa) by a vacuum pump. The element substrate 30 provided with the first electrode 6 is installed in a state where two sides are fixed by a pair of substrate receivers attached in the chamber.
 そして、蒸着源から、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13の各蒸着材料を順次蒸発させて、正孔注入層9、正孔輸送層10、発光層11、電子輸送層12、および電子注入層13を積層することにより、図5に示すように、画素領域であって第1電極6上に有機層7を形成する。 Then, the vapor deposition materials of the hole injection layer 9, the hole transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13 are sequentially evaporated from the vapor deposition source, so that the hole injection layer 9, the hole By stacking the transport layer 10, the light emitting layer 11, the electron transport layer 12, and the electron injection layer 13, the organic layer 7 is formed on the first electrode 6 in the pixel region as shown in FIG. 5.
 そして、図6に示すように、有機層7上に、第2電極8を形成することにより、素子基板30上に、第1電極6、有機層7、及び第2電極8を備えた有機EL素子4を形成する。 Then, as shown in FIG. 6, an organic EL including the first electrode 6, the organic layer 7, and the second electrode 8 on the element substrate 30 by forming the second electrode 8 on the organic layer 7. Element 4 is formed.
 なお、蒸発源としては、例えば、各蒸発材料が仕込まれた坩堝を使用することができる。坩堝は、チャンバー内の下部に設置されるとともに、坩堝にはヒーターが備え付けられており、このヒーターにより、坩堝は加熱される。 As the evaporation source, for example, a crucible charged with each evaporation material can be used. The crucible is installed in the lower part of the chamber, and the crucible is equipped with a heater, and the crucible is heated by the heater.
 そして、ヒーターによる加熱により、坩堝の内部温度が各種蒸着材料の蒸発温度に到達することで、坩堝内に仕込まれた各種蒸着材料が蒸発分子となってチャンバー内の上方向へ飛び出す。 Then, when the internal temperature of the crucible reaches the evaporation temperature of the various vapor deposition materials by heating with the heater, the various vapor deposition materials charged in the crucible become evaporated molecules and jump out upward in the chamber.
 また、有機層7、及び第2電極8の形成方法の具体例としては、まず、素子基板30上にパターニングされた第1電極6上に、RGB全ての画素に共通して、m-MTDATA(4,4,4-tris(3-methylphenylphenylamino)triphenylamine)からなる正孔注入層9を、マスクを介して、例えば、25nmの膜厚で形成する。 As a specific example of the method for forming the organic layer 7 and the second electrode 8, first, m-MTDATA (common to all RGB pixels) is formed on the first electrode 6 patterned on the element substrate 30. A hole injection layer 9 made of 4,4,4-tris (3-methylphenylphenylamino) triphenylamine) is formed with a film thickness of, for example, 25 nm through a mask.
 続いて、正孔注入層9上に、RGB全ての画素に共通して、α-NPD(4,4-bis(N-1-naphthyl-N-phenylamino)biphenyl)からなる正孔輸送層10を、マスクを介して、例えば、30nmの膜厚で形成する。次に、赤色の発光層11として、ジ(2-ナフチル)アントラセン(ADN)に2,6-ビス((4’-メトキシジフェニルアミノ)スチリル)-1,5-ジシアノナフタレン(BSN)を30重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。 Subsequently, a hole transport layer 10 made of α-NPD (4,4-bis (N-1-naphthyl-N-phenylamino) biphenyl) is provided on the hole injection layer 9 in common to all the RGB pixels. For example, the film is formed with a film thickness of 30 nm through the mask. Next, as red light emitting layer 11, 30 weight of 2,6-bis ((4'-methoxydiphenylamino) styryl) -1,5-dicyanonaphthalene (BSN) is added to di (2-naphthyl) anthracene (ADN). % Mixed material is formed with a film thickness of, for example, 30 nm on the hole transport layer 10 formed in the pixel region through a mask.
 次いで、緑色の発光層11として、ADNにクマリン6を5重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。 Next, as the green light-emitting layer 11, a mixture of 5% by weight of coumarin 6 in ADN is formed on the hole transport layer 10 formed in the pixel region through a mask with a film thickness of, for example, 30 nm. .
 次に、青色の発光層11として、ANDに4,4’-ビス(2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル)ビフェニル(DPAVBi)を2.5重量%混合したものを、マスクを介して、画素領域に形成された正孔輸送層10上に、例えば、30nmの膜厚で形成する。 Next, the blue light-emitting layer 11 is obtained by mixing 2.5% by weight of AND with 4,4′-bis (2- {4- (N, N-diphenylamino) phenyl} vinyl) biphenyl (DPAVBi). For example, a film having a thickness of 30 nm is formed on the hole transport layer 10 formed in the pixel region through the mask.
 次いで、各発光層11上に、RGB全ての画素に共通して、8-ヒドロキシキノリンアルミニウム(Alq3)を電子輸送層12として、マスクを介して、例えば、20nmの膜厚で形成する。 Next, on each light-emitting layer 11, 8-hydroxyquinoline aluminum (Alq3) is formed as an electron transport layer 12 with a film thickness of, for example, 20 nm through a mask, common to all RGB pixels.
 次いで、電子輸送層12上に、フッ化リチウム(LiF)を電子注入層13として、マスクを介して、例えば、0.3nmの膜厚で形成する。そして、第2電極8として、マグネシウム銀(MgAg)からなる陰極を、例えば、10nmの膜厚で形成する。 Next, lithium fluoride (LiF) is formed as an electron injection layer 13 on the electron transport layer 12 with a film thickness of, for example, 0.3 nm through a mask. Then, a cathode made of magnesium silver (MgAg) is formed as the second electrode 8 with a film thickness of 10 nm, for example.
 <保護層形成工程>
 次いで、図7に示すように、有機EL素子4の表面上に、当該有機EL素子4を保護するための保護層15を、例えば、3μmの厚みで形成する。この保護層15は、例えば、SiO、SiON等の無機材料を、蒸着法、スパッタ法、化学気相成長法等により、有機EL素子4の表面上に積層して、素子基板30上に、有機EL素子4を覆うように形成する。
<Protective layer forming step>
Next, as shown in FIG. 7, a protective layer 15 for protecting the organic EL element 4 is formed on the surface of the organic EL element 4 with a thickness of 3 μm, for example. For example, the protective layer 15 is formed by laminating an inorganic material such as SiO 2 or SiON on the surface of the organic EL element 4 by vapor deposition, sputtering, chemical vapor deposition, or the like. The organic EL element 4 is formed so as to cover it.
 <ナノ粒子層形成工程>
 次いで、バインダー樹脂であるポリメチルメタクリレート樹脂(PMMA)と、10nm以下の平均粒子径を有するジルコニア粒子とを、質量比で10:90となるように混合したものを準備する。次いで、この混合物をトルエン、キシレン、酢酸ブチル等の溶媒に分散して、固体分量比が10%となるように混合して溶液を調製する。
<Nanoparticle layer formation process>
Subsequently, what mixed polymethylmethacrylate resin (PMMA) which is binder resin, and the zirconia particle which has an average particle diameter of 10 nm or less so that it may become 10:90 by mass ratio is prepared. Next, this mixture is dispersed in a solvent such as toluene, xylene, butyl acetate, and mixed so that the solid content ratio is 10% to prepare a solution.
 次いで、この溶液をディスペンサにより保護層15の表面上に塗布した後、60℃~100℃の範囲で焼成(40分以上)を行うことによって、溶媒を蒸発させ、図8に示すように、保護層15の表面上に、保護層15を覆うように、例えば、厚みが10μmであるナノ粒子層16を形成する。 Next, after applying this solution on the surface of the protective layer 15 by a dispenser, the solvent is evaporated by baking (for 40 minutes or more) in the range of 60 ° C. to 100 ° C., as shown in FIG. For example, a nanoparticle layer 16 having a thickness of 10 μm is formed on the surface of the layer 15 so as to cover the protective layer 15.
 <接着層形成工程>
 次に、図9に示すように、ナノ粒子層16上に、例えば、エポキシ樹脂からなる接着層17を形成する。
<Adhesive layer forming step>
Next, as shown in FIG. 9, an adhesive layer 17 made of, for example, an epoxy resin is formed on the nanoparticle layer 16.
 なお、接着層17を構成する接着剤としては、特に限定されず、かかる接着剤としては、例えば、エポキシ樹脂の他に、ブチラール樹脂、アクリル樹脂等の各種の樹脂系の接着剤を使用することができる。 In addition, it does not specifically limit as an adhesive agent which comprises the contact bonding layer 17, As this adhesive agent, various resin adhesives, such as a butyral resin and an acrylic resin other than an epoxy resin, are used, for example. Can do.
 <貼合体形成工程>
 次いで、真空雰囲気で、封止基板20と、有機EL素子4が形成された素子基板30とを、接着層17を介して重ね合わせて、図10に示すように、素子基板30上に封止基板20を載置させる。
<Bonding body formation process>
Next, in a vacuum atmosphere, the sealing substrate 20 and the element substrate 30 on which the organic EL element 4 is formed are overlapped via the adhesive layer 17 and sealed on the element substrate 30 as shown in FIG. The substrate 20 is placed.
 次いで、真空雰囲気で、所定の条件下(例えば、100Pa以下の圧力、-30℃以下の露点温度、好ましくは、-70℃以下の露点温度)において、大気圧までパージを行って差圧で加圧処理を行うことにより、接着層17を介して、素子基板30と封止基板20とを貼り合わせ、素子基板30と封止基板20とが貼り合わされた貼合体を形成する。 Subsequently, purging to atmospheric pressure and applying a differential pressure in a vacuum atmosphere under predetermined conditions (for example, a pressure of 100 Pa or less, a dew point temperature of −30 ° C. or less, preferably a dew point temperature of −70 ° C. or less). By performing the pressure treatment, the element substrate 30 and the sealing substrate 20 are bonded to each other through the adhesive layer 17 to form a bonded body in which the element substrate 30 and the sealing substrate 20 are bonded.
 なお、素子基板30と封止基板20を貼り合わせる際に、加圧により、接着層17を形成する樹脂材料が、均一に拡散するように加圧処理を行う。 Note that when the element substrate 30 and the sealing substrate 20 are bonded together, pressure treatment is performed so that the resin material forming the adhesive layer 17 is uniformly diffused by pressure.
 <樹脂硬化工程>
 次いで、図10に示すように、封止基板20側から紫外線(図10における矢印)を照射して、均一に拡散した樹脂材料を硬化させる。
<Resin curing process>
Next, as shown in FIG. 10, ultraviolet rays (arrows in FIG. 10) are irradiated from the sealing substrate 20 side to cure the uniformly diffused resin material.
 なお、照射する紫外線は、0.5~10Jが好ましく、1~6Jがより好ましい。また、紫外線照射後、樹脂の硬化を促進させるために、大気中にて加熱処理(70℃以上120℃以下、10分以上2時間以下)を行う。 The ultraviolet ray to be irradiated is preferably 0.5 to 10 J, and more preferably 1 to 6 J. In addition, after ultraviolet irradiation, heat treatment (70 ° C. or higher and 120 ° C. or lower, 10 minutes or longer and 2 hours or shorter) is performed in the air in order to accelerate the curing of the resin.
 以上のようにして、図1、図2に示す有機EL表示装置1が作製される。 As described above, the organic EL display device 1 shown in FIGS. 1 and 2 is manufactured.
 以上に説明した本実施形態によれば、以下の効果を得ることができる。 According to the present embodiment described above, the following effects can be obtained.
 (1)本実施形態においては、保護層15上に、ナノ粒子18を含有するナノ粒子層16を設ける構成としている。従って、保護層15に形成されたピンホールやクラックをナノ粒子18により充填することができるため、酸やアルカリの進入に起因する有機EL素子4の特性劣化を防止することが可能になる。 (1) In this embodiment, the nanoparticle layer 16 containing the nanoparticles 18 is provided on the protective layer 15. Accordingly, since pinholes and cracks formed in the protective layer 15 can be filled with the nanoparticles 18, it is possible to prevent the deterioration of the characteristics of the organic EL element 4 due to the entry of acid or alkali.
 (2)また、ナノ粒子層16に外部から物質が浸透してきた場合であっても、ナノ粒子18の存在により、物質の浸透経路を長くして、浸透時間を長期化することが可能になる。従って、ナノ粒子層16をシール材として機能させることが可能になるため、従来技術のごとく、別途、シール材を設ける必要がなくなり、結果として、有機EL表示装置1の狭額縁化に対応することが可能になる。 (2) Further, even when a substance has permeated into the nanoparticle layer 16 from the outside, the presence of the nanoparticles 18 makes it possible to lengthen the permeation path of the substance and prolong the permeation time. . Therefore, since the nanoparticle layer 16 can function as a sealing material, it is not necessary to provide a sealing material separately as in the prior art, and as a result, it is possible to cope with the narrowing of the frame of the organic EL display device 1. Is possible.
 (3)また、保護層15に形成されたピンホールやクラックをナノ粒子18により充填することができるため、表示領域Dにおいて、ピンホールやクラックが形成され、表面が凹凸化した保護層15を平坦化することができる。従って、表示領域Dにおいて、表示ムラの発生を防止することができる。 (3) Further, since the pinholes and cracks formed in the protective layer 15 can be filled with the nanoparticles 18, the protective layer 15 in which pinholes and cracks are formed in the display region D and the surface is uneven is provided. It can be flattened. Accordingly, display unevenness can be prevented in the display area D.
 (4)本実施形態においては、ナノ粒子18として、ジルコニア粒子、セリア粒子、アルミナ粒子、スピネル粒子、及びルチル粒子からなる群より選ばれる少なくとも1種の粒子を使用する構成としている。従って、保護層15の表面に、防湿性に優れたナノ粒子18(例えば、上述のジルコニア粒子)を含有するナノ粒子層16を設けることにより、保護層15の厚みを大きくすることなく、有機EL素子4を水分から保護することが可能になるため、有機EL素子4の表面に設ける保護層15の薄膜化が可能になる。その結果、保護層15の成膜時間を短縮化することができるとともに、保護層15を形成する際のコストダウンを図ることが可能になる。 (4) In the present embodiment, the nanoparticles 18 are configured to use at least one kind of particles selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles. Therefore, by providing the nanoparticle layer 16 containing the nanoparticles 18 (for example, the above-mentioned zirconia particles) excellent in moisture resistance on the surface of the protective layer 15, the organic EL without increasing the thickness of the protective layer 15. Since the element 4 can be protected from moisture, the protective layer 15 provided on the surface of the organic EL element 4 can be thinned. As a result, the film formation time of the protective layer 15 can be shortened, and the cost for forming the protective layer 15 can be reduced.
 (5)本実施形態においては、ナノ粒子層16の厚みを、0.5μm~50μmに設定する構成としている。従って、保護層15に形成されたピンホールやクラックをナノ粒子18により確実に充填し、保護層15を確実に薄膜化することができる。 (5) In this embodiment, the thickness of the nanoparticle layer 16 is set to 0.5 μm to 50 μm. Therefore, pinholes and cracks formed in the protective layer 15 can be reliably filled with the nanoparticles 18 and the protective layer 15 can be reliably thinned.
 (6)本実施形態においては、ナノ粒子18の平均粒子径を、10nm以下に設定する構成としている。従って、ナノ粒子層16の膜応力により、保護層15との密着性が低下して膜剥がれが生じるという不都合を生じることなく、保護層15に形成されたピンホールやクラックをナノ粒子18により充填することが可能になる。 (6) In the present embodiment, the average particle diameter of the nanoparticles 18 is set to 10 nm or less. Accordingly, the pinholes and cracks formed in the protective layer 15 are filled with the nanoparticles 18 without causing the disadvantage that the film stress of the nanoparticle layer 16 reduces the adhesion with the protective layer 15 to cause film peeling. It becomes possible to do.
 (7)本実施形態においては、保護層15の厚みを、5nm~10μmに設定する構成としている。従って、保護層15の厚みを大きくすることなく、有機EL素子4の耐湿性を十分に確保することができる。 (7) In this embodiment, the thickness of the protective layer 15 is set to 5 nm to 10 μm. Therefore, the moisture resistance of the organic EL element 4 can be sufficiently ensured without increasing the thickness of the protective layer 15.
 なお、上記実施形態は以下のように変更しても良い。 Note that the above embodiment may be modified as follows.
 上記実施形態においては、ナノ粒子層16を形成する際に、溶媒にジルコニア粒子とバインダ樹脂とを混合した溶液をディスペンサにより塗布する構成としたが、ディスペンサにより塗布する代わりに、スピンコート法やインクジェット法のような方法により、上記溶液を塗布する構成としてもよい。 In the above embodiment, when the nanoparticle layer 16 is formed, a solution in which zirconia particles and a binder resin are mixed in a solvent is applied by a dispenser. However, instead of applying by the dispenser, a spin coating method or an ink jet method is used. The solution may be applied by a method such as a method.
 また、上記実施形態においては、バインダー樹脂として、ポリメチルメタクリレート樹脂を使用したが、例えば、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、アクリル樹脂等を使用する構成としてもよい。 In the above embodiment, polymethyl methacrylate resin is used as the binder resin. However, for example, an epoxy resin, polyimide resin, polycarbonate resin, acrylic resin, or the like may be used.
 以上説明したように、本発明は、有機EL素子を備えた有機EL表示装置およびその製造方法に適している。 As described above, the present invention is suitable for an organic EL display device including an organic EL element and a manufacturing method thereof.
 1  有機EL表示装置
 4  有機EL素子
 5  シール材
 6  第1電極
 7  有機層
 8  第2電極
 15  保護層
 16  ナノ粒子層
 17  接着層
 18  ナノ粒子
 20  封止基板(第2基板)
 30  素子基板(第1基板)
DESCRIPTION OF SYMBOLS 1 Organic EL display device 4 Organic EL element 5 Sealing material 6 1st electrode 7 Organic layer 8 2nd electrode 15 Protective layer 16 Nanoparticle layer 17 Adhesive layer 18 Nanoparticle 20 Sealing substrate (2nd substrate)
30 Element substrate (first substrate)

Claims (8)

  1.  第1基板と、
     前記第1基板に対向して設けられた第2基板と、
     前記第1基板上に形成され、前記第1基板と前記第2基板との間に設けられた有機EL素子と、
     前記第1基板上に形成され、前記有機EL素子の表面を覆う保護層と、
     前記保護層上に形成され、ナノ粒子を含有するナノ粒子層と
     を備えることを特徴とする有機EL表示装置。
    A first substrate;
    A second substrate provided facing the first substrate;
    An organic EL element formed on the first substrate and provided between the first substrate and the second substrate;
    A protective layer formed on the first substrate and covering a surface of the organic EL element;
    An organic EL display device comprising: a nanoparticle layer formed on the protective layer and containing nanoparticles.
  2.  前記ナノ粒子が、ジルコニア粒子、セリア粒子、アルミナ粒子、スピネル粒子、及びルチル粒子からなる群より選ばれる少なくとも1種であることを特徴とする請求項1に記載の有機EL表示装置。 2. The organic EL display device according to claim 1, wherein the nanoparticles are at least one selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles.
  3.  前記ナノ粒子層の厚みが、0.5μm~50μmであることを特徴とする請求項2に記載の有機EL表示装置。 3. The organic EL display device according to claim 2, wherein the nanoparticle layer has a thickness of 0.5 μm to 50 μm.
  4.  前記保護層の厚みが、5nm~10μmであることを特徴とする請求項2または請求項3に記載の有機EL表示装置。 4. The organic EL display device according to claim 2, wherein the protective layer has a thickness of 5 nm to 10 μm.
  5.  前記ナノ粒子の平均粒子径が、10nm以下であることを特徴とする請求項1~請求項3のいずれか1項に記載の有機EL表示装置。 The organic EL display device according to any one of claims 1 to 3, wherein an average particle size of the nanoparticles is 10 nm or less.
  6.  前記ナノ粒子層の表面上に設けられた接着層を更に備え、該接着層を介して、前記第2基板が前記第1基板上に設けられていることを特徴とする請求項1~請求項5のいずれか1項に記載の有機EL表示装置。 The adhesive substrate further provided on the surface of the nanoparticle layer, and the second substrate is provided on the first substrate via the adhesive layer. 6. The organic EL display device according to any one of 5 above.
  7.  基板上に有機EL素子を形成する有機EL素子形成工程と、
     前記基板上に、前記有機EL素子を覆う保護層を形成する保護層形成工程と、
     前記保護層上に、ナノ粒子を含有するナノ粒子層を形成する工程と
     を少なくとも備えることを特徴とする有機EL表示装置の製造方法。
    An organic EL element forming step of forming an organic EL element on the substrate;
    A protective layer forming step of forming a protective layer covering the organic EL element on the substrate;
    And a step of forming a nanoparticle layer containing nanoparticles on the protective layer. A method for producing an organic EL display device, comprising:
  8.  前記ナノ粒子が、ジルコニア粒子、セリア粒子、アルミナ粒子、スピネル粒子、及びルチル粒子からなる群より選ばれる少なくとも1種であることを特徴とする請求項7に記載の有機EL表示装置の製造方法。 8. The method of manufacturing an organic EL display device according to claim 7, wherein the nanoparticles are at least one selected from the group consisting of zirconia particles, ceria particles, alumina particles, spinel particles, and rutile particles.
PCT/JP2011/006174 2010-11-12 2011-11-04 Organic el display device and production method for same WO2012063445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253782 2010-11-12
JP2010-253782 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063445A1 true WO2012063445A1 (en) 2012-05-18

Family

ID=46050614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006174 WO2012063445A1 (en) 2010-11-12 2011-11-04 Organic el display device and production method for same

Country Status (1)

Country Link
WO (1) WO2012063445A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552248A (en) * 2016-01-26 2016-05-04 纳晶科技股份有限公司 Package structure for electroluminescent device and package method for electroluminescent device
CN110246985A (en) * 2019-06-21 2019-09-17 京东方科技集团股份有限公司 Electroluminescent device, preparation method and display device
CN110416436A (en) * 2019-08-29 2019-11-05 京东方科技集团股份有限公司 A kind of thin-film packing structure, display device and packaging method
US11158835B2 (en) * 2017-03-17 2021-10-26 Boe Technology Group Co., Ltd. Manufacturing method of display substrate, display substrate, and display device
CN115191012A (en) * 2020-02-28 2022-10-14 夏普株式会社 Display device and method for manufacturing display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095572A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Barrier substrate for organic electroluminescent element
JP2007265987A (en) * 2006-03-03 2007-10-11 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, manufacturing method of light emitting device, and sheet-like sealing material
JP2007299725A (en) * 2006-04-07 2007-11-15 Sekisui Chem Co Ltd Organic electroluminescent device
WO2008057045A1 (en) * 2006-11-06 2008-05-15 Agency For Science, Technology And Research Nanoparticulate encapsulation barrier stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095572A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Barrier substrate for organic electroluminescent element
JP2007265987A (en) * 2006-03-03 2007-10-11 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, manufacturing method of light emitting device, and sheet-like sealing material
JP2007299725A (en) * 2006-04-07 2007-11-15 Sekisui Chem Co Ltd Organic electroluminescent device
WO2008057045A1 (en) * 2006-11-06 2008-05-15 Agency For Science, Technology And Research Nanoparticulate encapsulation barrier stack

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552248A (en) * 2016-01-26 2016-05-04 纳晶科技股份有限公司 Package structure for electroluminescent device and package method for electroluminescent device
US11158835B2 (en) * 2017-03-17 2021-10-26 Boe Technology Group Co., Ltd. Manufacturing method of display substrate, display substrate, and display device
CN110246985A (en) * 2019-06-21 2019-09-17 京东方科技集团股份有限公司 Electroluminescent device, preparation method and display device
CN110246985B (en) * 2019-06-21 2021-10-01 京东方科技集团股份有限公司 Electroluminescent device, preparation method thereof and display device
CN110416436A (en) * 2019-08-29 2019-11-05 京东方科技集团股份有限公司 A kind of thin-film packing structure, display device and packaging method
CN110416436B (en) * 2019-08-29 2021-05-25 京东方科技集团股份有限公司 Thin film packaging structure, display device and packaging method
CN115191012A (en) * 2020-02-28 2022-10-14 夏普株式会社 Display device and method for manufacturing display device
CN115191012B (en) * 2020-02-28 2023-09-01 夏普株式会社 Display device and method for manufacturing display device

Similar Documents

Publication Publication Date Title
US8710492B2 (en) Organic EL display device and method for manufacturing the same
WO2011001573A1 (en) Organic el display device and method for manufacturing same
TWI552407B (en) Organic electronic device and method for producing of organic electronic device
US20110018416A1 (en) Organic electroluminescence element
WO2013171966A1 (en) Organic el display apparatus
WO2013057873A1 (en) Organic electroluminescent display panel and method for manufacturing same
WO2012063445A1 (en) Organic el display device and production method for same
JP2007273094A (en) Organic electroluminescence element and manufacturing method therefor
JP2013251191A (en) Organic electroluminescent element
CN104347665B (en) The method for manufacturing oganic light-emitting display device
JP2013187019A (en) Organic el display device and method for manufacturing the same
US10276829B2 (en) Organic EL display device having multilayered sealing film and method for manufacturing same
JP2004047381A (en) Flexible organic electroluminescent element, manufacturing method of same, information display device, and lighting device
JP2010080215A (en) Organic electroluminescence element, and method for manufacturing the same
CN102090142B (en) Organic EL device
JPH1055888A (en) Multi-color light emitting device and manufacture thereof
TW201505226A (en) Organic light emitting display apparatus
WO2013150713A1 (en) Organic el display device and manufacturing method therefor
WO2012093467A1 (en) Organic el display device and method for manufacturing same
WO2009099009A1 (en) Organic el display and manufacturing method of the same
JP2010251401A (en) Organic electroluminescent device and method for manufacturing the same
JP6592883B2 (en) ORGANIC EL ELEMENT AND ORGANIC EL LIGHTING DEVICE USING SAME
WO2012114685A1 (en) Method for manufacturing organic electroluminescent display device, and organic electroluminescent display device manufactured by method
JP2001203075A (en) Organic electroluminescent element and its manufacturing method
CN103427036A (en) Organic electroluminescence device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP