WO2021103061A1 - 发光器件的制备方法 - Google Patents

发光器件的制备方法 Download PDF

Info

Publication number
WO2021103061A1
WO2021103061A1 PCT/CN2019/122811 CN2019122811W WO2021103061A1 WO 2021103061 A1 WO2021103061 A1 WO 2021103061A1 CN 2019122811 W CN2019122811 W CN 2019122811W WO 2021103061 A1 WO2021103061 A1 WO 2021103061A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transport layer
spin coating
prepare
emitting device
Prior art date
Application number
PCT/CN2019/122811
Other languages
English (en)
French (fr)
Inventor
吴永伟
李佳育
徐君哲
陈书志
何波
江沛
尹勇明
段淼
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/642,032 priority Critical patent/US20210159467A1/en
Publication of WO2021103061A1 publication Critical patent/WO2021103061A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of display technology, in particular to a method for preparing a light-emitting device.
  • perovskite structures have shown great application potential in the fields of optoelectronic devices such as solar cells, displays and lighting, lasers and detectors.
  • perovskite light-emitting diodes Perovskite Light Emitting Diode (PeLED) is used for OLED light emission.
  • PeLED Perovskite Light Emitting Diode
  • the high efficiency, high brightness, and high color purity of perovskite materials perfectly meet the requirements of high-end display applications.
  • perovskite light-emitting diodes usually adopt a multilayer device structure, with a hole and electron transport matching layer between the perovskite light-emitting layer and the cathode and anode.
  • 2,9-Dimethyl-4,7-biphenyl-1,10-phenanthroline (Bathocuproin, hole blocking material) is a common electron transport layer material, due to its high electron mobility (10–4 To 10–3 cm2 V–1 s–1), the lowest unoccupied molecular orbital (Lowest Unoccpied Molecular Orbiitalal (LUMO) ( ⁇ –3.0 eV) and Highest Occupied Molecular Orbitalal (HOMO) (–6.4 eV) energy levels, widely used in organic light-emitting diodes, quantum dot light-emitting diodes, perovskite light-emitting diodes, etc. In optoelectronic devices. .
  • the embodiment of the present invention provides a method for manufacturing a light-emitting device, which is used to solve the problem that the prior art diode device adopts 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline, which is mostly used
  • the device is prepared by vacuum evaporation. This device preparation method not only requires high equipment, but also has serious material waste during the preparation process and complicated processes, which have led to technical problems such as a substantial increase in cost.
  • the present application provides a method for manufacturing a light emitting device, the method includes: preparing a pixel electrode on a substrate; preparing a hole transport layer on the pixel electrode; A light-emitting layer is prepared on the light-emitting layer; on the light-emitting layer, an electron transport layer is prepared by coating a saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline; A common electrode is prepared on the electron transport layer.
  • the preparation of an electron transport layer by coating a saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline on the light-emitting layer includes:
  • the first spin coating is annealed to prepare the electron transport layer.
  • the spin coating The speed of the equipment is 2500-4000 times per minute, and the processing time is 30-90s.
  • the annealing treatment of the first spin-coating layer to prepare the electron transport layer includes:
  • the first spin-coating layer is placed in an environment of 80-150°C and annealed for 10-15 minutes to prepare the electron transport layer.
  • the solvent of the saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline is isopropanol, ethanol or toluene.
  • the preparing the pixel electrode on the substrate further includes:
  • the pixel electrode glass is etched to prepare a pixel electrode pattern.
  • the preparing a hole transport layer on the pixel electrode includes:
  • a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) solution is coated by a spin coating method in a spin coating device to prepare a second spin coating;
  • the second spin coating is annealed to prepare the hole transport layer.
  • the rotation speed of the spin coating equipment is 2500-4000 times per minute, the processing time is 40-80s.
  • the annealing process on the second spin-coating layer to prepare the hole transport layer includes:
  • the second spin-coated is placed at 120-160 o C environment, annealed 15-30 min, the hole transport layer is prepared.
  • the preparing a light-emitting layer on the hole transport layer includes:
  • the perovskite precursor solution is coated by a spin coating method in a spin coating device to prepare a third spin coating;
  • the third spin coating is annealed to prepare the light-emitting layer.
  • the rotation speed of the spin coating equipment is 2500-5000 times per minute, and the processing time is 50-120s.
  • the annealing treatment of the third spin-coating layer to prepare the light-emitting layer includes:
  • the preparing a common electrode on the electron transport layer includes:
  • a common electrode is prepared by vacuum evaporation of aluminum/lithium fluoride for evaporation.
  • the thickness of lithium fluoride in the common electrode is 1 nm, and the thickness of aluminum is 90-120. nm.
  • the present application provides a light-emitting device; the light-emitting device is prepared by the method for preparing the light-emitting device as described above.
  • the present application provides a light-emitting device including the light-emitting device as described above.
  • the present application provides a method for manufacturing a light-emitting device, the method including:
  • the first spin-coating layer is placed in an environment of 80-150 ° C., and annealed for 10-15 minutes to prepare the electron transport layer.
  • the solvent of the saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline is isopropanol, ethanol or toluene.
  • the preparing the pixel electrode on the substrate further includes:
  • the pixel electrode is etched to prepare a pixel electrode pattern.
  • the preparing a hole transport layer on the pixel electrode includes:
  • a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) solution is coated by a spin coating method in a spin coating device to prepare a second spin coating;
  • the second spin coating is annealed to prepare the hole transport layer.
  • the annealing process on the second spin-coating layer to prepare the hole transport layer includes:
  • the second spin-coated is placed at 120-160 o C environment, annealed 15-30 min, the hole transport layer is prepared.
  • the preparing a light-emitting layer on the hole transport layer includes:
  • the perovskite precursor solution is coated by a spin coating method in a spin coating device to prepare a third spin coating;
  • the third spin coating is annealed to prepare the light-emitting layer.
  • the annealing treatment of the third spin-coating layer to prepare the light-emitting layer includes:
  • the preparing a common electrode on the electron transport layer includes:
  • a common electrode is prepared by vacuum evaporation of aluminum or lithium fluoride for evaporation.
  • a method for manufacturing a light-emitting device includes: preparing a pixel electrode on a substrate; preparing a hole transport layer on the pixel electrode; A light-emitting layer is prepared on the light-emitting layer; on the light-emitting layer, an electron transport layer is prepared by coating a saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline; on the electron
  • the common electrode is prepared on the transport layer. Because the electron transport layer is prepared by the solution processing method, compared with the traditional vacuum evaporation method, the equipment is simpler, the process is simpler, and the material utilization rate is high, which effectively improves the preparation of the light-emitting device effectiveness.
  • FIG. 1 is a schematic diagram of an embodiment of a method for manufacturing a light-emitting device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a light emitting device provided by an embodiment of the present invention.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, “plurality” means two or more than two, unless otherwise specifically defined.
  • the prior art diode device adopts 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline, and is mostly prepared by vacuum evaporation.
  • This device preparation method is not only equipment High requirements, serious waste of materials and complicated processes in the preparation process, all of which have led to technical problems such as a substantial increase in cost.
  • embodiments of the present invention provide a method for manufacturing a light-emitting device, a light-emitting device and a display panel, which will be described in detail below.
  • an embodiment of the present invention provides a method for manufacturing a light emitting device, the method includes: preparing a pixel electrode on a substrate; preparing a hole transport layer on the pixel electrode; preparing a light emitting device on the hole transport layer Layer; on the light-emitting layer, by coating 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline saturated solution to prepare an electron transport layer; on the electron transport layer Prepare the common electrode.
  • FIG. 1 it is a schematic flow chart of an embodiment of a method for manufacturing a light-emitting device in an embodiment of the present invention, wherein the method includes:
  • organic electroluminescence utilizes the photoelectric functional properties of organic semiconductor materials to directly convert electrical energy into light energy.
  • OLED belongs to the carrier injection type of light emission. Holes injected from the anode and electrons injected from the cathode recombine to form excitons in the light-emitting layer, and release energy in the form of light energy. During this period, it involves a series of physical processes such as the injection and migration of carriers and the formation and diffusion of excitons.
  • the light-emitting device may be a flexible OLED, a rigid OLED, or a transparent OLED.
  • the type of the light-emitting device is not limited in this application, and the specific situation depends on the actual situation.
  • the pixel electrode is the aforementioned anode, and the pixel electrode is ITO.
  • the embodiments of the present invention are mainly directed to a perovskite light-emitting diode, that is, a light-emitting layer made of a perovskite material.
  • perovskite structure is expressed by ABO 3 , and its crystal structure is cubic crystal system, which is a kind of composite metal oxide.
  • the typical perovskite structure material is CaTiO 3 .
  • an electron transport layer is prepared by coating a saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline.
  • the present invention adopts a solution processing method to prepare the electron transport layer, specifically, adopts a spin coating method to prepare the electron transport layer.
  • the common electrode is the above-mentioned cathode.
  • a method for manufacturing a light-emitting device includes: preparing a pixel electrode on a substrate; preparing a hole transport layer on the pixel electrode; preparing a light emitting device on the hole transport layer. Layer; on the light-emitting layer, by coating 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline saturated solution to prepare an electron transport layer; on the electron transport layer In the preparation of the common electrode, since the electron transport layer is prepared by the solution processing method, the equipment is simple and the material utilization rate is high, thereby effectively improving the preparation efficiency of the light-emitting device.
  • the light-emitting layer is coated with 2,9-dimethyl-4,7-biphenyl-1,10-
  • the preparation of an electron transport layer from a saturated solution of phenanthroline includes:
  • a saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline was coated by a spin coating method in a spin coating device to prepare the first Spin coating.
  • the 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline is 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline Azaphenanthrene, due to its high electron mobility (10 – 4 to 10 – 3 cm 2 V – 1 s – 1 ), deep LUMO ( ⁇ –3.0 eV) and HOMO (–6.4 eV) energy levels, is widely used in organic Light-emitting diodes, quantum dot light-emitting diodes, perovskite light-emitting diodes and other optoelectronic devices.
  • the spin coating method put the dilute solution to be coated on a flat bottom plate, the rotating machine with the bottom plate starts to rotate from slow to fast, and the dilute solution on the bottom plate is coated into a thin film due to centrifugal force ;
  • the thickness of the film produced by spin coating can reach the range from micrometers to nanometers. This is a common method for manufacturing thin and uniform polymer films on flat substrates and producing films for the microelectronics industry.
  • the first spin coating is annealed to prepare the electron transport layer.
  • the solvent in the first spin-coated layer needs to be removed.
  • annealing treatment can be used to make the The solvent in the first spin coating evaporates or evaporates quickly, but the prerequisite is to ensure that the temperature during annealing does not affect the properties of the organic matter in the spin coating.
  • the 2,9-dimethyl-4,7-biphenyl-1 is coated by a spin coating method in a spin coating device,
  • the rotation speed of the spin coating equipment is 2500-4000 times per minute, and the processing time is 30-90s.
  • the processing time can be implemented within the range of 30-90s.
  • the rotation speed of the spin coating equipment is set to 3000 times per minute, which takes 45 seconds.
  • the annealing treatment of the first spin-coating layer to prepare the electron transport layer includes:
  • the first spin-coating layer is placed in an environment of 80-150 ° C., and annealed for 10-15 minutes to prepare the electron transport layer.
  • the solvent of the 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline saturated solution may be Isopropanol, ethanol or toluene. This application does not limit the solvent of the saturated solution of 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline, and it depends on the actual situation.
  • the preparation of the pixel electrode on the substrate further includes:
  • the pixel electrode glass is etched to prepare a pixel electrode pattern.
  • the cleaning method includes a chemical cleaning method, an ultrasonic cleaning method, a vacuum baking method, and a particle bombardment method.
  • the forming a hole transport layer on the pixel electrode includes:
  • a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) solution is coated by a spin coating method in a spin coating device to prepare a second spin coating.
  • the PEDOT:PSS is an aqueous solution of high molecular polymer with high conductivity. According to different formulations, aqueous solutions with different conductivity can be obtained.
  • the PEDOT:PSS is composed of two substances, PEDOT and PSS.
  • PEDOT is a polymer of EDOT (3,4-ethylenedioxythiophene monomer), and PSS is a polystyrene sulfonate. These two substances together greatly improve the solubility of PEDOT.
  • the aqueous conductive material is mainly used in the hole transport layer of organic light-emitting diodes, OLEDs, organic thin-film transistors, and supercapacitors.
  • the second spin coating is annealed to prepare the hole transport layer.
  • the poly(3,4-ethylenedioxythiophene)-poly(styrene) is coated by a spin coating method in a spin coating device.
  • the rotation speed of the spin coating equipment is 2500-4000 times per minute, and the processing time is 40-80s.
  • the annealing treatment on the second spin-coating layer to prepare the hole transport layer includes:
  • the second spin-coated is placed at 120-160 o C environment, annealed 15-30 min, the hole transport layer is prepared.
  • the preparing a light-emitting layer on the hole transport layer includes:
  • the perovskite precursor solution is coated by a spin coating method in a spin coating device to prepare a third spin coating;
  • the third spin coating is annealed to prepare the light-emitting layer.
  • the rotation speed of the spin coating equipment is per minute 2500-5000 times, the processing time is 50-120s.
  • the annealing treatment of the third spin-coating layer to prepare the light-emitting layer includes:
  • the preparation of a common electrode on the electron transport layer includes:
  • a common electrode is prepared by vacuum evaporation of aluminum/lithium fluoride for evaporation.
  • the thickness of lithium fluoride in the common electrode is 1 nm, and the thickness of aluminum may be 90-120 nm.
  • the embodiment of the present invention also provides a light-emitting device, and the light-emitting device adopts the method described in the above-mentioned embodiment.
  • the preparation method of the light-emitting device is prepared.
  • FIG. 2 it is a schematic structural diagram of an embodiment of a light-emitting device according to an embodiment of the present invention.
  • the light-emitting device includes a pixel electrode ITO201, a hole transport layer 202, a light-emitting layer 203, an electron transport layer 204, and a common electrode 205. .
  • the light-emitting device can be used in mobile phones, notebook computers, televisions, and various portable display devices.
  • the embodiment of the present invention also provides a display device, and the display device includes the light-emitting device described in the foregoing embodiment.
  • each of the above units or structures can be implemented as independent entities, or can be combined arbitrarily, and implemented as the same or several entities.
  • each of the above units or structures please refer to the previous method embodiments. No longer.

Abstract

本发明实施例公开了一种发光器件的制备方法。本发明实施例中提供一种发光器件的制备方法,由于采用溶液加工方式制备电子传输层,相较于传统的真空蒸镀方式,使用设备简单,流程更加简单,而且材料利用率高,从而有效的提高了发光器件的制备效率。

Description

发光器件的制备方法
本申请要求于2019年11月26日提交中国专利局、申请号为201911170021.7、发明名称为“发光器件的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,具体涉及一种发光器件的制备方法。
背景技术
目前,作为新一代半导体材料,基于钙钛矿结构的材料在太阳能电池、显示和照明、激光和探测器等光电子器件领域展现出了巨大应用潜力。对于钙钛矿发光二极管(Perovskite Light Emitting Diode,PeLED)用于OLED的发光,钙钛矿材料具有的高效率、高亮度、高色纯度等特点完美契合高端显示应用的要求。
为了提高器件效率,钙钛矿发光二极管通常采用多层器件结构,在钙钛矿发光层及阴阳极间搭配空穴及电子传输匹配层。2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(Bathocuproin ,空穴阻挡材料)是常见的电子传输层材料,由于具有高电子迁移率(10–4至10–3 cm2 V–1 s–1)、最低未占据分子轨道(Lowest Unoccpied Molecular Orbiitalal,LUMO)(~–3.0 eV)以及最高占据分子轨道(Highest Occupied Molecular Orbitalal,HOMO)(–6.4 eV)能级,广泛应用于有机发光二极管、量子点发光二极管、钙钛矿发光二极管等光电器件中。。
技术问题
然而,2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲应用于OLED发光,多采用真空蒸镀的方式进行制备。这种器件制备方法,不仅设备要求高,而且制备过程中材料浪费严重,流程复杂,这都导致了成本的大幅升高。
技术解决方案
本发明实施例提供一种发光器件的制备方法,用于解决现有技术的二极管器件采用2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲,多采用真空蒸镀的方式进行制备,这种器件制备方法,不仅设备要求高,而且制备过程中材料浪费严重,流程复杂,这都导致了成本的大幅升高的技术问题。
为解决上述问题,第一方面,本申请提供一种发光器件的制备方法,所述方法包括:在基板上制备像素电极;在所述像素电极上制备空穴传输层;在所述空穴传输层上制备发光层;在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层;在所述电子传输层上制备公共电极。
进一步的,所述在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层包括:
在所述发光层上,在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液,制备得到第一旋涂层;
对所述第一旋涂层进行退火处理,制备得到所述电子传输层。
进一步的,所述在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液过程中,所述旋涂设备的转速为每分钟2500-4000次,加工用时为30-90s。
进一步的,所述对所述第一旋涂层进行退火处理,制备得到所述电子传输层包括:
将所述第一旋涂层放置于80~150oC环境下,退火处理10~15min,制备得到所述电子传输层。
进一步的,所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液的溶剂为异丙醇、乙醇或甲苯。
进一步的,所述在基板上制备像素电极还包括:
对所述像素电极玻璃进行刻蚀,制备得到像素电极图案。
进一步的,所述在所述像素电极上制备空穴传输层包括:
在所述像素电极上,在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液,制备得到第二旋涂层;
对所述第二旋涂层进行退火处理,制备得到所述空穴传输层。
进一步的,所述在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液过程中,所述旋涂设备的转速为每分钟2500-4000次,加工用时为40-80s。
进一步的,所述对所述第二旋涂层进行退火处理,制备得到所述空穴传输层包括:
将所述第二旋涂放置于120-160 oC环境下,退火处理15-30 min,制备得到所述空穴传输层。
进一步的,所述在所述空穴传输层上制备发光层包括:
在所述空穴传输层上,在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液,制备得到第三旋涂层;
对所述第三旋涂层进行退火处理,制备得到所述发光层。
进一步的,所述在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液过程中,所述旋涂设备的转速为每分钟2500-5000次,加工用时为50-120s。
进一步的,所述对所述第三旋涂层进行退火处理,制备得到所述发光层包括:
将所述第三旋涂层放置于80-120 oC环境下,退火处理10-60 min,制备得到所述发光层。
进一步的,所述在所述电子传输层上制备公共电极包括:
在所述电子传输层上,通过真空蒸镀铝/氟化锂进行蒸镀加工,制备得到公共电极。
进一步的,所述公共电极中氟化锂的厚度为1 nm,铝的厚度为90-120 nm。
第二方面,本申请提供一种发光器件;所述发光器件采用如上述所述的发光器件的制备方法制备所得。
第三方面,本申请提供一发光器件,所述发光器件包括如上述所述的发光器件。
第四方面,本申请提供一种发光器件的制备方法,所述方法包括:
在基板上制备像素电极;
在所述像素电极上制备空穴传输层;
在所述空穴传输层上制备发光层;
在所述发光层上,在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液,制备得到第一旋涂层;
将所述第一旋涂层放置于80~150 oC环境下,退火处理10~15min,制备得到所述电子传输层。
进一步的,所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液的溶剂为异丙醇、乙醇或甲苯。
进一步的,所述在基板上制备像素电极还包括:
对所述像素电极进行刻蚀,制备得到像素电极图案。
进一步的,所述在所述像素电极上制备空穴传输层包括:
在所述像素电极上,在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液,制备得到第二旋涂层;
对所述第二旋涂层进行退火处理,制备得到所述空穴传输层。
进一步的,所述对所述第二旋涂层进行退火处理,制备得到所述空穴传输层包括:
将所述第二旋涂放置于120-160 oC环境下,退火处理15-30 min,制备得到所述空穴传输层。
进一步的,所述在所述空穴传输层上制备发光层包括:
在所述空穴传输层上,在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液,制备得到第三旋涂层;
对所述第三旋涂层进行退火处理,制备得到所述发光层。
进一步的,所述对所述第三旋涂层进行退火处理,制备得到所述发光层包括:
将所述第三旋涂层放置于80-120 oC环境下,退火处理10-60 min,制备得到所述发光层。
进一步的,所述在所述电子传输层上制备公共电极包括:
在所述电子传输层上,通过真空蒸镀铝或氟化锂进行蒸镀加工,制备得到公共电极。
有益效果
有益效果:本发明实施例中,通过提供一种发光器件的制备方法,所述方法包括:在基板上制备像素电极;在所述像素电极上制备空穴传输层;在所述空穴传输层上制备发光层;在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层;在所述电子传输层上制备公共电极,由于采用溶液加工方式制备电子传输层,相较于传统的真空蒸镀方式,使用设备简单,流程更加简单,而且材料利用率高,从而有效的提高了发光器件的制备效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供一种发光器件的制备方法的一个实施例流程意图;
图2是本发明实施例提供一种发光器件的一个实施例结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
现有技术的二极管器件采用2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲,多采用真空蒸镀的方式进行制备,这种器件制备方法,不仅设备要求高,而且制备过程中材料浪费严重,流程复杂,这都导致了成本的大幅升高的技术问题。
基于此,本发明实施例提供一种发光器件的制备方法、发光器件及显示面板,以下分别进行详细说明。
首先,本发明实施例中提供一种发光器件的制备方法,所述方法包括:在基板上制备像素电极;在所述像素电极上制备空穴传输层;在所述空穴传输层上制备发光层;在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层;在所述电子传输层上制备公共电极。
如图1所示,为本发明实施例中发光器件的制备方法的一个实施例流程示意图,其中,所述方法包括:
一般而言,有机电致发光利用有机半导体材料的光电功能特性,将电能直接转换为光能。OLED属于载流子注入型发光,通过从阳极注入的空穴与从阴极注入的电子在发光层中复合形成激子,并以光能的形式释放能量。期间,涉及载流子的注入、迁移以及激子的形成、扩散等一系列物理过程。
所述发光器件可以为柔性OLED、刚性OLED或透明OLED,本申请对所述发光器件的种类不做限定,具体是实际情况而定。
101、在基板上制备像素电极。
其中,所述像素电极即为上述所述的阳极,所述像素电极为ITO。
102、在所述像素电极上制备空穴传输层。
103、在所述空穴传输层上制备发光层。
具体的,本发明实施例主要针对于钙钛矿发光二极管,即采用钙钛矿材料制备的发光层。
一般而言,钙钛矿结构通式为ABO 3来表达,其晶体结构为立方晶系,时一种复合金属氧化物。典型的钙钛矿结构材料为CaTiO 3
104、在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层。
其中,本发明采用溶液加工法制备电子传输层,具体的,采用旋转涂布法制备电子传输层。
105、在所述电子传输层上制备公共电极。
其中,所述公共电极即为上述所述的阴极。
本发明实施例中,通过提供一种发光器件的制备方法,所述方法包括:在基板上制备像素电极;在所述像素电极上制备空穴传输层;在所述空穴传输层上制备发光层;在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层;在所述电子传输层上制备公共电极,由于采用溶液加工方式制备电子传输层,使用设备简单,而且材料利用率高,从而有效的提高了发光器件的制备效率。
在上述实施例的基础上,在本申请的另一个具体实施例中,所述在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层包括:
在所述发光层上,在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液,制备得到第一旋涂层。
其中,所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲为2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲,由于具有高电子迁移率(10 4至10 3 cm 2 V 1 s 1)、深LUMO (~ –3.0 eV)以及HOMO (–6.4 eV)能级,广泛应用于有机发光二极管、量子点发光二极管、钙钛矿发光二极管等光电器件中。
本申请实施例中,所述旋转涂布法:将要涂布的稀溶液放在平面底板上,放有底板的旋转机开始由慢到快旋转,由于离心力将底板上的稀溶液涂布成薄膜;用旋转涂布出来的薄膜厚度,可以达到从微米致纳米范围。这是在平面底板上制造薄和均匀聚合物薄膜和微电子学工业生产薄膜的通用方法。
对所述第一旋涂层进行退火处理,制备得到所述电子传输层。
本申请实施例中,当经过旋涂的溶液形成第一旋涂层的过程中,需要将所述第一旋涂层中的溶剂除去,为了提高制备效率,因此采用退火处理,可以使所述第一旋涂层中的溶剂快速挥发或蒸发掉,但是前提需保证退火时的温度不影响旋涂层中的有机物的性质。
在上述实施例的基础上,在本申请的另一个具体实施例中,所述在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液过程中,所述旋涂设备的转速为每分钟2500-4000次,加工用时为30-90s。
可以理解的是,旋涂设备的转速只要在每分钟2500-4000次,加工用时为30-90s范围内均可实施,例如,设定旋涂设备的转速为每分钟3000次,用时45s。
在上述实施例的基础上,在本申请的另一个具体实施例中,所述对所述第一旋涂层进行退火处理,制备得到所述电子传输层包括:
将所述第一旋涂层放置于80~150 oC环境下,退火处理10~15min,制备得到所述电子传输层。
在上述实施例的基础上,在本申请的一个具体实施例中,所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液的溶剂可以为异丙醇、乙醇或甲苯。本申请对所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液的溶剂并不做限定,具体视实际情况而定。
在上述实施例的基础上,在本申请的一个具体实施例中,所述在基板上制备像素电极还包括:
对所述像素电极玻璃进行刻蚀,制备得到像素电极图案。
其中,进行素电极图案化后,需要对所述像素电极进行清洗,其清洗的方式包括化学清洗法、超声波清洗法、真空烘烤法和粒子轰击法。
在上述实施例的基础上,在本申请的一个具体实施例中,所述在所述像素电极上制备空穴传输层包括:
在所述像素电极上,在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液,制备得到第二旋涂层。
其中,所述PEDOT:PSS是一种高分子聚合物的水溶液,导电率很高,根据不同的配方,可以得到导电率不同的水溶液。所述PEDOT:PSS是由PEDOT和PSS两种物质构成。PEDOT是EDOT(3,4-乙烯二氧噻吩单体)的聚合物,PSS 是聚苯乙烯磺酸盐。这两种物质在一起极大的提高了PEDOT的溶解性,水溶液导电物主要应用于有机发光二极管 OLED,有机薄膜晶体管,超级电容器等的空穴传输层。
对所述第二旋涂层进行退火处理,制备得到所述空穴传输层。
在上述实施例的基础上,在本申请的一个具体实施例中,所述在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液过程中,所述旋涂设备的转速为每分钟2500-4000次,加工用时为40-80s。
在上述实施例的基础上,在本申请的一个具体实施例中,所述对所述第二旋涂层进行退火处理,制备得到所述空穴传输层包括:
将所述第二旋涂放置于120-160 oC环境下,退火处理15-30 min,制备得到所述空穴传输层。
在上述实施例的基础上,在本申请的一个具体实施例中,所述在所述空穴传输层上制备发光层包括:
在所述空穴传输层上,在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液,制备得到第三旋涂层;
对所述第三旋涂层进行退火处理,制备得到所述发光层。
在上述实施例的基础上,在本申请的一个具体实施例中,所述在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液过程中,所述旋涂设备的转速为每分钟2500-5000次,加工用时为50-120s。
在上述实施例的基础上,在本申请的一个具体实施例中,所述对所述第三旋涂层进行退火处理,制备得到所述发光层包括:
将所述第三旋涂层放置于80-120 oC环境下,退火处理10-60 min,制备得到所述发光层。
在上述实施例的基础上,在本申请的一个具体实施例中,所述在所述电子传输层上制备公共电极包括:
在所述电子传输层上,通过真空蒸镀铝/氟化锂进行蒸镀加工,制备得到公共电极。
在上述实施例的基础上,在本申请的一个具体实施例中,所述公共电极中氟化锂的厚度为1 nm,铝的厚度可以为90-120 nm。
为了更好实施本发明实施例中发光器件的制备方法,在发光器件的制备方法的基础之上,本发明实施例中还提供一种发光器件,所述发光器件采用如上述实施例所述的发光器件的制备方法制备所得。
如图2所示,为本发明实施例提供一种发光器件的一个实施例结构示意图,所述发光器件包括像素电极ITO201、空穴传输层202、发光层203、电子传输层204和公共电极205。
具体的,本申请对所述发光器件的使用场景不做限定,具体视情况而定,例如所述发光器件可用于手机、笔记本电脑、电视及其各种可便携式显示设备。
为了更好实施本发明实施例中发光器件,在发光器件的基础之上,本发明实施例中还提供一种显示装置,所述显示装置包括上述实施例所述的发光器件。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见上文其他实施例中的详细描述,此处不再赘述。
具体实施时,以上各个单元或结构可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个单元或结构的具体实施可参见前面的方法实施例,在此不再赘述。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
以上对本发明实施例所提供的一种发光器件的制备方法、发光器件进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种发光器件的制备方法,其中,所述方法包括:
    在基板上制备像素电极;
    在所述像素电极上制备空穴传输层;
    在所述空穴传输层上制备发光层;
    在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层;
    在所述电子传输层上制备公共电极。
  2. 根据权利要求1所述的发光器件的制备方法,其中,所述在所述发光层上,通过涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液制备电子传输层包括:
    在所述发光层上,在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液,制备得到第一旋涂层;
    对所述第一旋涂层进行退火处理,制备得到所述电子传输层。
  3. 根据权利要求2所述的发光器件的制备方法,其中,所述对所述第一旋涂层进行退火处理,制备得到所述电子传输层包括:
    将所述第一旋涂层放置于80~150 oC环境下,退火处理10~15min,制备得到所述电子传输层。
  4. 根据权利要求2所述的发光器件的制备方法,其中,所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液的溶剂为异丙醇、乙醇或甲苯。
  5. 根据权利要求1所述的发光器件的制备方法,其中,所述在基板上制备像素电极还包括:
    对所述像素电极进行刻蚀,制备得到像素电极图案。
  6. 根据权利要求1所述的发光器件的制备方法,其中,所述在所述像素电极上制备空穴传输层包括:
    在所述像素电极上,在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液,制备得到第二旋涂层;
    对所述第二旋涂层进行退火处理,制备得到所述空穴传输层。
  7. 根据权利要求6所述的发光器件的制备方法,其中,所述对所述第二旋涂层进行退火处理,制备得到所述空穴传输层包括:
    将所述第二旋涂放置于120-160 oC环境下,退火处理15-30 min,制备得到所述空穴传输层。
  8. 根据权利要求1所述的发光器件的制备方法,其中,所述在所述空穴传输层上制备发光层包括:
    在所述空穴传输层上,在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液,制备得到第三旋涂层;
    对所述第三旋涂层进行退火处理,制备得到所述发光层。
  9. 根据权利要求8所述的发光器件的制备方法,其中,所述对所述第三旋涂层进行退火处理,制备得到所述发光层包括:
    将所述第三旋涂层放置于80-120 oC环境下,退火处理10-60 min,制备得到所述发光层。
  10. 根据权利要求1所述的发光器件的制备方法,其中,所述在所述电子传输层上制备公共电极包括:
    在所述电子传输层上,通过真空蒸镀铝或氟化锂进行蒸镀加工,制备得到公共电极。
  11. 一种发光器件的制备方法,其中,所述方法包括:
    在基板上制备像素电极;
    在所述像素电极上制备空穴传输层;
    在所述空穴传输层上制备发光层;
    在所述发光层上,在旋涂设备中通过旋转涂布法涂布2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液,制备得到第一旋涂层;
    将所述第一旋涂层放置于80~150 oC环境下,退火处理10~15min,制备得到所述电子传输层。
  12. 根据权利要求11所述的发光器件的制备方法,其中,所述2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲饱和溶液的溶剂为异丙醇、乙醇或甲苯。
  13. 根据权利要求11所述的发光器件的制备方法,其中,所述在基板上制备像素电极还包括:
    对所述像素电极进行刻蚀,制备得到像素电极图案。
  14. 根据权利要求11所述的发光器件的制备方法,其中,所述在所述像素电极上制备空穴传输层包括:
    在所述像素电极上,在旋涂设备中通过旋转涂布法涂布聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)溶液,制备得到第二旋涂层;
    对所述第二旋涂层进行退火处理,制备得到所述空穴传输层。
  15. 根据权利要求14所述的发光器件的制备方法,其中,所述对所述第二旋涂层进行退火处理,制备得到所述空穴传输层包括:
    将所述第二旋涂放置于120-160 oC环境下,退火处理15-30 min,制备得到所述空穴传输层。
  16. 根据权利要求11所述的发光器件的制备方法,其中,所述在所述空穴传输层上制备发光层包括:
    在所述空穴传输层上,在旋涂设备中通过旋转涂布法涂布钙钛矿前驱液,制备得到第三旋涂层;
    对所述第三旋涂层进行退火处理,制备得到所述发光层。
  17. 根据权利要求16所述的发光器件的制备方法,其中,所述对所述第三旋涂层进行退火处理,制备得到所述发光层包括:
    将所述第三旋涂层放置于80-120 oC环境下,退火处理10-60 min,制备得到所述发光层。
  18. 根据权利要求11所述的发光器件的制备方法,其中,所述在所述电子传输层上制备公共电极包括:
    在所述电子传输层上,通过真空蒸镀铝或氟化锂进行蒸镀加工,制备得到公共电极。
PCT/CN2019/122811 2019-11-26 2019-12-03 发光器件的制备方法 WO2021103061A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/642,032 US20210159467A1 (en) 2019-11-26 2019-12-03 Method of manufacturing light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911170021.7A CN111048674A (zh) 2019-11-26 2019-11-26 发光器件的制备方法
CN201911170021.7 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021103061A1 true WO2021103061A1 (zh) 2021-06-03

Family

ID=70233391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122811 WO2021103061A1 (zh) 2019-11-26 2019-12-03 发光器件的制备方法

Country Status (2)

Country Link
CN (1) CN111048674A (zh)
WO (1) WO2021103061A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198405A1 (zh) * 2021-03-22 2022-09-29 京东方科技集团股份有限公司 量子点发光器件、其驱动方法及显示基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004036A1 (en) * 2012-06-29 2014-01-03 University Of Washington Solution processed metal ion compound doped electron transport layers and uses in organic electronics
US20140070178A1 (en) * 2012-09-07 2014-03-13 Postech Academy-Industry Foundation Organic light-emitting device
CN108258133A (zh) * 2018-01-22 2018-07-06 苏州大学 钙钛矿发光二极管及其制备方法
CN108281572A (zh) * 2018-01-22 2018-07-13 苏州大学 含亚乙氧基化合物的钙钛矿发光二极管及其制备方法
CN109301093A (zh) * 2018-09-30 2019-02-01 华南理工大学 一种导电可透光钙钛矿量子点薄膜的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004036A1 (en) * 2012-06-29 2014-01-03 University Of Washington Solution processed metal ion compound doped electron transport layers and uses in organic electronics
US20140070178A1 (en) * 2012-09-07 2014-03-13 Postech Academy-Industry Foundation Organic light-emitting device
CN108258133A (zh) * 2018-01-22 2018-07-06 苏州大学 钙钛矿发光二极管及其制备方法
CN108281572A (zh) * 2018-01-22 2018-07-13 苏州大学 含亚乙氧基化合物的钙钛矿发光二极管及其制备方法
CN109301093A (zh) * 2018-09-30 2019-02-01 华南理工大学 一种导电可透光钙钛矿量子点薄膜的制备方法

Also Published As

Publication number Publication date
CN111048674A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN105006522B (zh) 一种基于钙钛矿的倒置薄膜太阳能电池及其制备方法
WO2019061753A1 (zh) 全溶液oled器件及其制作方法
CN105161635A (zh) 一种具有自组装电子传输层的qled器件及其制备方法
CN105140411B (zh) 不含ito的qled及其制备方法
US10147898B2 (en) Organic light-emitting device and display device
WO2014180077A1 (zh) 柔性基板及制造方法、oled显示装置
CN106384769B (zh) 一种量子点发光二极管及其制备方法
CN105826483A (zh) 一种量子点发光二极管及其制备方法
CN111446378B (zh) 一种透明有机电致发光二极管的制作方法
KR101282564B1 (ko) 유기용매를 첨가한 전도성 유기박막의 제조방법 및 이를 이용한 유기태양전지
CN101373816B (zh) 一种有机电致发光器件的制备方法
CN109449317A (zh) 一种低温柔性全无机qled器件及其制备方法
WO2016023274A1 (zh) 有机发光显示器件及其制备方法、显示装置
CN102544391B (zh) 发光装置的制作方法及有机层的形成方法
WO2021103061A1 (zh) 发光器件的制备方法
US11549057B2 (en) Quantum dot luminescent material an method of producing thereof
US20180166645A1 (en) Organic light-emitting device and display panel
CN106159109A (zh) 一种qled及其制备方法
US20210159467A1 (en) Method of manufacturing light-emitting device
KR20110089549A (ko) 패터닝이 가능한 브러쉬 코팅공정을 적용한 유기전자소자의 제조방법
US20210408382A1 (en) Perovskite light-emitting diode and preparing method thereof
US11374190B2 (en) Light-emitting device having surface-treated hole transport layer and manufacturing method thereof
CN100449819C (zh) 一种适合聚合物电致发光器件的阴极
CN111584729A (zh) 有机电致发光器件及其制备方法
CN108807702B (zh) 串联多层qled器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954172

Country of ref document: EP

Kind code of ref document: A1