WO2014180054A1 - 一种led背光驱动电路及其驱动方法、液晶显示装置 - Google Patents

一种led背光驱动电路及其驱动方法、液晶显示装置 Download PDF

Info

Publication number
WO2014180054A1
WO2014180054A1 PCT/CN2013/078293 CN2013078293W WO2014180054A1 WO 2014180054 A1 WO2014180054 A1 WO 2014180054A1 CN 2013078293 W CN2013078293 W CN 2013078293W WO 2014180054 A1 WO2014180054 A1 WO 2014180054A1
Authority
WO
WIPO (PCT)
Prior art keywords
controllable switch
coupled
voltage
resistor
led backlight
Prior art date
Application number
PCT/CN2013/078293
Other languages
English (en)
French (fr)
Inventor
张先明
杨翔
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/006,676 priority Critical patent/US9258862B2/en
Publication of WO2014180054A1 publication Critical patent/WO2014180054A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to an LED backlight driving circuit, a driving method thereof, and a liquid crystal display device.
  • the liquid crystal display device comprises a liquid crystal panel and a backlight module.
  • the backlight module comprises a plurality of LED strips and a driving circuit thereof.
  • some voltage differences are caused by different voltages of the LED strips, and the voltage difference is loaded to the constant On a stream driver chip or other device, it will cause the temperature of the constant current driver chip or other device temperature to rise, so there is a solution to this problem: keep each string by changing the current and duty cycle of each string.
  • the average current on the same is the same as the voltage. For example, if the voltage of a string of LED strips is too small, the current of the string of LED strips can be increased, so that the voltage can be increased, and PWM dimming can be performed at the same time.
  • the differential pressure can be adjusted by adjusting the duty ratio. Decrease while maintaining power.
  • the LED backlight driving circuit using the above technology cannot be recognized when one or more LED beads are short-circuited in the LED strip, and therefore cannot provide effective short-circuit protection of the LED strip.
  • the technical problem to be solved by the present invention is to provide an LED backlight driving circuit and a driving method thereof, and a liquid crystal display device which provide a short circuit protection function when a LED lamp bead is short-circuited.
  • An LED backlight driving circuit the LED backlight driving circuit comprises an LED light bar and a power module for driving the LED light bar, wherein the output ends of the LED light bar are respectively coupled with a short circuit protection module and a voltage dividing resistor; the short circuit protection module a comparison unit, a driving unit coupled to the comparison unit, a voltage across the voltage dividing resistor is coupled to the comparison unit as a feedback voltage; the comparison unit is further coupled with a preset first reference voltage; When the value of the feedback voltage exceeding the first reference voltage is greater than a preset deviation value, the driving unit controls the power module to be turned off;
  • the first reference voltage is greater than or equal to the maximum voltage across the voltage dividing resistor when the maximum brightness of the normal LED strip is maximized.
  • the preset deviation value is a value range of the difference between the feedback voltage and the first reference voltage, and can be set by means of device selection or software adjustment, for example, the feedback voltage exceeds the first reference voltage 1V/2V/3V/5V.
  • the driving unit controls the power module to be turned off.
  • the preset deviation value may also be zero, that is, once the feedback voltage is greater than the first reference voltage, the driving unit controls the power module to be turned off.
  • the comparison unit includes a subtractor, a first input of the subtractor coupled to the feedback voltage, and a second input coupled to the first reference voltage.
  • the subtractor can directly output the difference between the feedback voltage and the first reference voltage, so that the subsequent drive unit only needs to judge whether the difference exceeds the preset deviation value. If it is exceeded, the drive power module is turned off.
  • the driving unit includes a comparator, a first input end of the comparator is coupled to an output end of the subtractor, and a second input end of the comparator is coupled to a second reference voltage;
  • the second reference voltage is equal to the preset offset value, and when the output voltage of the subtractor is greater than the second reference voltage, the comparator driving power module is turned off.
  • This is a specific driving unit circuit. By coupling a comparator and a subtractor of the previous stage, it can be determined whether the difference between the feedback voltage and the first reference voltage is greater than the deviation value, and the amplified output of the comparator has a strong
  • the driving ability can start the short-circuit protection function when the LED lamp bead is short-circuited.
  • the circuit structure is simple, and the device cost is low, which is beneficial to reduce the design and production cost.
  • the comparison unit includes a first controllable switch, a first resistor, a second resistor, and a third resistor; a source of the first controllable switch is coupled to a reference high level signal through the first resistor, and the drain a pole coupled to a ground terminal of the LED backlight driving circuit through a second resistor; the feedback voltage coupled to a gate of the first controllable switch through a third resistor; the first reference voltage coupled to a drain of the first controllable switch The source of the first controllable switch is further coupled with an inverter, and the output of the inverter is coupled to the drive Moving unit
  • the conduction conditions of the controllable switch such as the MOS transistor and the triode include: the gate voltage is greater than a certain threshold of the drain voltage; meanwhile, the gate voltage itself exceeds a certain threshold; therefore, the conduction condition of the first controllable switch itself
  • the preset deviation value is defined; the value of the feedback voltage exceeding the first reference voltage is greater than the deviation value, and the first controllable switch can be turned on.
  • the first controllable switch is turned off, its source voltage is equal to the voltage of the reference high level signal; when the first controllable switch is turned on, the source voltage is pulled down by the resistor divider;
  • the inverter source voltage can be controlled to change the inverter inversion.
  • the technical solution utilizes the conduction condition of the controllable switch to provide the deviation value, and uses the conduction and the off to control the inverter, thereby controlling the driving unit, and the circuit structure is simple, and the device cost is low.
  • the inverter prevents the first reference voltage from being directly coupled to the drive unit, avoiding malfunctions.
  • the inverter includes a second controllable switch, a third controllable switch, and a fourth resistor and a fifth resistor;
  • a source of the second controllable switch coupled to the reference high level signal via a fourth resistor and coupled to a gate of the third controllable switch; a drain of the second controllable switch coupled to a ground terminal of the LED backlight driving circuit; a gate thereof coupled to a source of the first controllable switch;
  • a source of the third controllable switch is coupled to the reference high level signal, a drain thereof coupled to a ground of the LED backlight drive circuit via a fifth resistor, and coupled to the drive unit.
  • the source of the first controllable switch When the source of the first controllable switch outputs a high level voltage, the second controllable switch is turned on, and the gate voltage of the third controllable switch is pulled down, the third The controllable switch is turned off, and the drain thereof outputs a low level voltage; conversely, when the source of the first controllable switch outputs a low level voltage, the third controllable switch is turned off, and the drain thereof outputs a high level voltage. In this way, the input voltage of the inverter is always opposite to the output voltage, thus realizing the function of the inverter.
  • the driving unit includes a sixth resistor, a fourth controllable switch that is turned on at a low level, and a fifth controllable switch that is turned on at a high level; a source of the fourth controllable switch coupled to the reference high level signal via a sixth resistor; a drain coupled to an output of the inverter and a gate of a fifth controllable switch, respectively; a drain of the five controllable switch is coupled to a ground end of the LED backlight driving circuit; a source is coupled to a gate of the fourth controllable switch; and a source output driving voltage of the fourth controllable switch drives the power module to be turned off .
  • the technical solution provides a driving unit with a self-locking function, that is, once the inverter controls the fifth controllable switch to be turned on, the gate voltage of the fourth controllable switch is immediately pulled low, and the fourth controllable switch is turned on.
  • the reference high level signal is then coupled to the gate of the fifth controllable switch, and even if the drive signal of the inverter is turned off, the fifth controllable switch can remain in the on state; the fourth controllable switch and the fifth can be
  • the control switch is turned off, the source output voltage of the fourth controllable switch is equal to the voltage of the reference high level signal; when the fourth controllable switch and the fifth controllable switch are turned on, the source output of the fourth controllable switch is The voltage is pulled low, which drives the power module to turn off.
  • the self-locking function is designed to prevent the comparison unit from malfunction due to fluctuations in the acquisition voltage, which improves the reliability of protection.
  • the inverter includes a second controllable switch, a third controllable switch, and a fourth resistor and a fifth resistor;
  • a source of the second controllable switch coupled to the reference high level signal via a fourth resistor and coupled to a gate of the third controllable switch; a drain of the second controllable switch coupled to a ground terminal of the LED backlight driving circuit; a gate thereof coupled to a source of the first controllable switch;
  • a source of the third controllable switch is coupled to the reference high level signal, and a drain thereof is coupled to a ground terminal of the LED backlight driving circuit through a fifth resistor;
  • the driving unit includes a sixth resistor, a fourth controllable switch that is turned on at a low level, and a fifth controllable switch that is turned on at a high level;
  • a source of the fourth controllable switch coupled to the reference high level signal through a sixth resistor; a drain coupled to a drain of the third controllable switch and a gate of the fifth controllable switch, respectively; a drain of the fifth controllable switch is coupled to a ground end of the LED backlight driving circuit; a source is coupled to a gate of the fourth controllable switch; and a source output driving voltage of the fourth controllable switch drives the power module Shut down.
  • the conduction conditions of the controllable switch such as the MOS transistor and the triode include: the gate voltage is greater than the drain voltage At the same time, the gate voltage itself also exceeds a certain threshold; therefore, the conduction condition of the first controllable switch itself limits the preset deviation value; the value of the feedback voltage exceeding the first reference voltage is only greater than the deviation value
  • the first controllable switch can be turned on. When the first controllable switch is turned off, its source voltage is equal to the voltage of the reference high level signal; when the first controllable switch is turned on, the source voltage is pulled down by the resistor divider; The inverter source voltage can be controlled to change the inverter inversion.
  • the technical solution utilizes the conduction condition of the controllable switch to provide the deviation value, and uses the conduction and the off to control the inverter, thereby controlling the driving unit, and the circuit structure is simple, and the device cost is low.
  • the presence of the inverter prevents the first reference voltage from being directly coupled to the drive unit, avoiding malfunctions.
  • the second controllable switch When the source of the first controllable switch outputs a high level voltage, the second controllable switch is turned on, the gate voltage of the third controllable switch is pulled down, the third controllable switch is turned off, and the drain output thereof is low. Level voltage; Conversely, when the source of the first controllable switch outputs a low level voltage, the third controllable switch is turned off, and the drain thereof outputs a high level voltage. In this way, the input voltage of the inverter is always opposite to the output voltage, thus realizing the function of the inverter.
  • the driving unit of the technical solution has a self-locking function, that is, once the inverter drives the fifth controllable switch to be turned on, the gate voltage of the fourth controllable switch is immediately pulled down, the fourth controllable switch is turned on, and then the reference height is high.
  • the level signal is coupled to the gate of the fifth controllable switch, and the fifth controllable switch can remain in an on state even if the driving signal of the inverter is turned off; when the fourth controllable switch and the fifth controllable switch are turned off.
  • the source output voltage of the fourth controllable switch is equal to the voltage of the reference high level signal; when the fourth controllable switch and the fifth controllable switch are turned on, the source output voltage of the fourth controllable switch is pulled low, Thereby the drive power module is turned off.
  • the self-locking function is designed to prevent the comparison unit from malfunction due to fluctuations in the acquisition voltage, which improves the reliability of protection.
  • the power module is coupled with an enable control signal for controlling startup and shutdown of the power module;
  • the LED backlight drive circuit further includes a sixth controllable switch, and the enable control signal passes the sixth controllable switch Coupled to the ground of the LED backlight drive circuit;
  • the driving unit of the short circuit protection module drives the sixth controllable switch to be turned on.
  • the general power module works by the enable control signal sent by the main monitor of the liquid crystal display device.
  • the control signal When the control signal is high level, the power module works normally; when the control signal is low level, the power module stops working; therefore, the technical solution directly connects the wire connecting the control signal with the ground terminal of the LED backlight driving circuit.
  • the sixth controllable switch is connected in series, and the short circuit protection module directly controls the sixth controllable switch to be turned on, and the voltage of the enable control signal is forcibly pulled down, thereby controlling the power module to be turned off.
  • a driving method of an LED backlight driving circuit comprising an LED light bar and a power module for driving the LED light bar, the driving method comprising the steps of:
  • A a voltage dividing resistor is connected in series at the output end of the LED light bar; preset a first reference voltage and a deviation value; and the first reference voltage is greater than or equal to a maximum voltage across the voltage dividing resistor when the maximum brightness of the normal LED light bar is greater;
  • the voltage across the voltage dividing resistor is used as a feedback voltage to compare with the first reference voltage. If the difference between the feedback voltage and the first reference voltage exceeds a preset deviation value, the control power module is turned off.
  • a liquid crystal display device comprising the LED backlight driving circuit of the present invention.
  • the voltage dividing resistor is connected in series at the output end of each LED light bar (in order to reduce the energy loss caused by the heat of the resistor, the resistance of the voltage dividing resistor is not too large, and a resistor of 1 ⁇ can be selected). The voltage across the voltage dividing resistor is measured when the maximum brightness of the normal LED strip is measured.
  • the voltage is used as the first reference voltage, and the voltage across the voltage dividing resistor is collected as a feedback voltage by the short-circuit protection module, and the feedback voltage is compared with the first reference voltage. In comparison, if the first reference voltage is exceeded, it can be basically determined that the LED strip has a short-circuit fault. At this time, the power module is turned off by the driving unit of the short-circuit protection module to protect the LED strip. In order to prevent misjudgment, a preset offset value can be set. When the feedback voltage exceeds the value of the first reference voltage by more than the preset offset value, the power module is controlled to be turned off.
  • 1 is a circuit diagram of an LED backlight driving circuit of the present invention
  • 2 is a circuit diagram of a short circuit protection module according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of a short circuit protection module according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a driving method of an LED backlight driving circuit according to a third embodiment of the present invention.
  • LED backlight drive circuit 20, power module; 30, LED light bar; 40, short circuit protection module; 41, comparison unit; 42, drive unit; 43, inverter; 50, constant current drive module.
  • a liquid crystal display device comprising an LED backlight driving circuit.
  • the LED backlight driving circuit 10 includes a power module 20 , an LED strip 30 coupled to the power module 20 , and a short circuit protection module 40 , a voltage dividing resistor R0 and a constant current driving module 50 , and the LED strip 30 is coupled to the constant current driving module 50 through the voltage dividing resistor R0;
  • the short circuit protection module 40 includes a comparison unit 41 coupled to the comparison unit 41, and a voltage across the voltage dividing resistor R0 is coupled to the comparison unit 41 as a feedback voltage (V1, V2); the comparison unit 41 further Coupled with a preset first reference voltage VF1;
  • the driving unit 42 controls the power module 20 to be turned off;
  • the first reference voltage VF1 is greater than or equal to the maximum voltage across the voltage dividing resistor R0 when the maximum brightness of the normal LED strip 30 is high.
  • Each of the LED strips 30 can correspond to a short-circuit protection module 40.
  • the first reference voltage VF1 and the deviation value of each short-circuit protection module 40 can be independently set. As long as one short-circuit protection module 40 starts protection, the power module 20 is turned off. Broken output.
  • a plurality of LED strips 30 can share a short circuit protection module 40, and then the highest value of the voltage across the maximum brightness time divider resistor R0 of the normal LED strip 30 is used as the first reference voltage VF1, as long as there is a way
  • the power module 20 can be turned off when the voltage across the voltage dividing resistor R0 of the LED strip 30 exceeds the value of the first reference voltage VF1 by more than a preset offset value.
  • the preset deviation value is a value range in which the feedback voltage exceeds the difference of the first reference voltage VF1, and can pass Set by device selection or software adjustment, such as feedback voltage exceeding the first reference voltage
  • the preset value of 1V/2V/3V/5V the driving unit 42 controls the power module 20 to be turned off.
  • the preset deviation value may also be zero, that is, once the feedback voltage is greater than the first reference voltage VF1, the driving unit 42 The power module 20 is controlled to be turned off.
  • the voltage dividing resistor R0 is connected in series at the output end of each LED light bar 30 (in order to reduce the energy loss caused by the resistance heating, the voltage dividing resistor R0 should not be too large, and a 1 ⁇ resistor can be selected). The voltage across the voltage dividing resistor R0 is measured when the normal LED strip 30 is at the maximum brightness.
  • the voltage is used as the first reference voltage VF1, and the voltage across the voltage dividing resistor R0 is collected as a feedback voltage in real time through the short circuit protection module 40, and the feedback voltage is applied.
  • the power module 20 is controlled to be turned off by the driving unit 42 of the short circuit protection module 40.
  • a preset offset value may be set. When the feedback voltage exceeds the value of the first reference voltage VF1 by more than a preset offset value, the power module 20 is controlled to be turned off.
  • the comparison unit 41 of the present embodiment includes a subtractor U1, the first input of the subtractor U1 is coupled to the feedback voltage VI; and the second input is coupled to the first reference Voltage VF1.
  • the subtracter U1 can directly output the difference between the feedback voltage and the first reference voltage VF1, so that the subsequent drive unit only needs to judge whether the difference exceeds the preset deviation value. If it is exceeded, the drive power module is turned off.
  • the drive unit includes a comparator U2, a first input of the comparator U2 is coupled to the output of the subtractor U1; a second input of the comparator U2 is coupled to a second reference voltage VF2;
  • the second reference voltage VF2 is equal to the preset offset value, when the output of the subtractor U1 is When the voltage is greater than the second reference voltage VF2, the comparator U2 drives the power module 20 to turn off.
  • the power module 20 is operated by the enable control signal BL sent by the main monitor of the liquid crystal display device.
  • the control signal BL is high (logic 1), the power module operates normally; the enable control signal BL is low.
  • the present invention can directly connect a controllable switch between the wire connecting the enable control signal BL and the ground terminal of the LED backlight drive circuit (as shown in the figure) a six controllable switch Q6), and then coupling the driving signal V4 outputted by the comparator U2 to the control end of the sixth controllable switch, when the output voltage V3 of the subtractor U1 is greater than the second reference voltage VF2,
  • the comparator U2 drives the sixth controllable switch Q6 to be turned on, forcibly pulling down the voltage of the enable control signal BL, thereby controlling the power module 20 to be turned off.
  • the comparison unit 41 of the present embodiment includes a first controllable switch Q1, a first resistor R1, a second resistor R2, and a third resistor R3.
  • the source of the first controllable switch Q1 passes.
  • the first resistor R1 is coupled to a reference high level signal VCC, and the drain is coupled to the ground terminal of the LED backlight driving circuit via a second resistor R2;
  • the feedback voltage VI is coupled to the first controllable switch Q1 via a third resistor R3 a first reference voltage VF1 is coupled to a drain of the first controllable switch Q1;
  • a source of the first controllable switch Q1 is further coupled with an inverter 43, an output of the inverter 43 Coupled with the drive unit;
  • the inverter 43 includes a second controllable switch Q2, a third controllable switch Q3, and a fourth resistor R4 and a fifth resistor R5;
  • a source of the second controllable switch Q2 is coupled to the reference high level signal VCC through a fourth resistor R4 and coupled to a gate of the third controllable switch Q3; the second controllable switch Q2 a drain coupled to the ground of the LED backlight drive circuit; a gate coupled to the source of the first controllable switch Q1;
  • the source of the third controllable switch Q3 is coupled to the reference high level signal VCC, and the drain thereof is coupled to the ground terminal of the LED backlight driving circuit through the fifth resistor R5;
  • the driving unit includes a sixth resistor R6, a fourth controllable switch Q4 that is turned on at a low level, and a fifth controllable switch Q5 that is turned on at a high level;
  • the source of the fourth controllable switch Q4 is coupled to the reference high level signal VCC through a sixth resistor R6; the drain is coupled to the drain of the third controllable switch Q3 and the fifth controllable switch Q5, respectively a gate of the fifth controllable switch Q5 coupled to the ground of the LED backlight driving circuit; a source coupled to the gate of the fourth controllable switch Q4; the fourth controllable switch Q4
  • the source output driving voltage drives the power module 20 to turn off.
  • the control terminal of the five controllable switch Q5 drives the fifth controllable switch Q5 to be turned on, the gate voltage of the fourth controllable switch Q4 is then pulled low, the fourth controllable switch Q4 is turned on, and the source of the fourth controllable switch Q4 The pole output voltage is pulled low, thereby driving the power module 20 to turn off.
  • the power module 20 is operated by the enable control signal BL sent by the main monitor of the liquid crystal display device.
  • the control signal BL When the control signal BL is enabled, the power module 20 operates normally; when the control signal BL is low, the power module is enabled. 20 stops working; therefore, the present invention can directly connect a controllable switch (the sixth controllable switch Q6 as shown in the figure) between the wire connecting the enable control signal BL and the ground of the LED backlight drive circuit, and then
  • the driving signal outputted from the source of the fourth controllable switch Q4 is coupled to the control end of the sixth controllable switch Q6, when the value of the feedback voltage exceeds the first reference voltage VF is greater than a preset offset value (ie, the first
  • the fourth controllable switch Q4 drives the sixth controllable switch Q6 to be turned on, forcibly lowering the voltage of the enable control signal BL, thereby controlling the power module 20 to be turned off.
  • the first controllable switch Q1 is used as the comparison unit.
  • the conduction conditions of the controllable switch such as the MOS transistor and the triode include: the gate voltage is greater than a certain threshold of the drain voltage; meanwhile, the gate voltage itself also exceeds a certain threshold; therefore, the conduction condition of the first controllable switch Q1 itself Limit the preset bias
  • the value of the feedback voltage exceeding the first reference voltage VF1 is only greater than the deviation value, and the first controllable switch Q1 can be turned on.
  • the first controllable switch Q1 When the first controllable switch Q1 is turned off, its source voltage is equal to the voltage of the reference high level signal VCC; when the first controllable switch Q1 is turned on, the source voltage is pulled low by the resistor divider; The change of the source voltage of a controllable switch Q1 can control the inverter 43 to reverse.
  • the conduction condition of the controllable switch is used to provide the deviation value, and the inverter 43 is controlled by its on and off, thereby controlling the driving unit, and the circuit structure is simple, and the device cost is low.
  • the presence of the inverter 43 prevents the first reference voltage VF1 from being directly coupled to the drive unit to avoid malfunction.
  • the drive unit of the present embodiment has a self-locking function, and once the protection is activated, an additional reset signal is required to cancel the protection action. Specifically, after the fifth controllable switch Q5 is turned on, the gate voltage of the fourth controllable switch Q4 is then pulled low, the fourth controllable switch Q4 is turned on, and then the reference high level signal VCC is coupled to the fifth Controlling the gate of the switch Q5, even if the driving signal of the inverter 43 is turned off, the fifth controllable switch Q5 can maintain the on state; only the additional reset signal is used to forcibly lower the gate voltage of the fifth controllable switch Q5. In order to turn off the self-working system consisting of the fourth controllable switch Q4 and the fifth controllable switch Q5.
  • the source output voltage of the fourth controllable switch Q4 is equal to the voltage of the reference high level signal VCC; when the fourth controllable switch Q4 and the fifth controllable When the switch Q5 is turned on, the source output voltage of the fourth controllable switch Q4 is pulled low, thereby driving the power module 20 to be turned off.
  • a driving method of an LED backlight driving circuit includes an LED light bar and a power module for driving the LED light bar, and the driving method includes the following steps:
  • A The voltage dividing resistor R0 is connected in series at the output end of the LED light bar; the first reference voltage VF1 and the deviation value are preset;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种LED背光驱动电路及其驱动方法、液晶显示装置,其中LED背光驱动电路(10)包括LED灯条(30)、驱动LED灯条(30)的电源模块(20),所述LED灯条(30)的输出端分别耦合有短路保护模块(40)和分压电阻(R0);所述短路保护模块(40)包括比较单元(41),与比较单元(41)耦合的驱动单元(42),分压电阻(R0)两端的电压作为反馈电压(VI、V2)耦合到所述比较单元(41);所述比较单元(41)还耦合有预设的第一基准电压(VF1);当反馈电压(Vl、V2)超出第一基准电压(VF1)的数值大于预设的偏差值时,所述驱动单元(42)控制所述电源模块(20)关断;所述第一基准电压(VF1)大于或等于正常LED灯条最大亮度时分压电阻(R0)两端的电压。所述LED背光驱动电路(10)可以在LED灯珠短路时提供短路保护功能。

Description

一种 LED背光驱动电路及其驱动方法、 液晶显示装置
【技术领域】
本发明涉及液晶显示领域, 更具体的说, 涉及一种 LED背光驱动电路及其 驱动方法、 液晶显示装置。
【背景技术】
液晶显示装置包括液晶面板和背光模组, 背光模组包括多串 LED灯条及其 驱动电路, 在现行的设计中, 由于 LED灯条的电压不同会导致有些电压差, 这 个电压差加载到恒流驱动芯片或者其他器件上, 会导致恒流驱动芯片的温度或 者其他器件温度的升高, 所以就有一种方案来解决此问题: 通过改变每一串的 电流大小与占空比, 保持每串上的平均电流相同以及电压相同。 例如, 若一串 LED灯条的电压太小, 就可以增大这一串 LED灯条的电流, 这样就可以增大其 电压, 同时进行 PWM调光, 通过调节占空比就可以将压差减小, 同时保持功率 不变。
在 LED灯条中有一颗或者多颗 LED灯珠短路时采用上述技术的 LED背光 驱动电路无法识别, 因此不能提供有效的 LED灯条的短路保护。
【发明内容】
本发明所要解决的技术问题是提供一种在 LED灯珠短路时提供短路保护功 能的 LED背光驱动电路及其驱动方法、 液晶显示装置。
本发明的目的是通过以下技术方案来实现的:
一种 LED背光驱动电路,所述 LED背光驱动电路包括 LED灯条、驱动 LED 灯条的电源模块,所述 LED灯条的输出端分别耦合有短路保护模块和分压电阻; 所述短路保护模块包括比较单元, 与比较单元耦合的驱动单元, 分压电阻 两端的电压作为反馈电压耦合到所述比较单元; 所述比较单元还耦合有预设的 第一基准电压; 当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述驱动单元 控制所述电源模块关断;
所述第一基准电压大于或等于正常 LED灯条最大亮度时分压电阻两端的最 大电压。
预设的偏差值是反馈电压超过第一基准电压的差值的取值范围, 可以通过 器件选型或软件调节的方式来设定, 比如反馈电压超过第一基准电压 1V/2V/3V/5V 等预设值, 驱动单元就控制所述电源模块关断, 当然, 预设的偏 差值也可以为零, 即一旦反馈电压大于第一基准电压, 驱动单元就控制所述电 源模块关断。
进一步的, 所述比较单元包括减法器, 所述减法器的第一输入端耦合到所 述反馈电压; 其第二输入端耦合到所述第一基准电压。 通过减法器可以直接输 出反馈电压和第一基准电压的差值, 这样后面的驱动单元只需要判断该差值是 否超出预设的偏差值, 如果超出, 驱动电源模块关断。
进一步的, 所述驱动单元包括比较器, 所述比较器的第一输入端耦合到所 述减法器的输出端; 所述比较器的第二输入端耦合有第二基准电压;
所述第二基准电压等于所述预设的偏差值, 当所述减法器的输出电压大于 所述第二基准电压时, 所述比较器驱动电源模块关断。 此为一种具体的驱动单 元电路, 通过一个比较器和前一级的减法器耦合, 就可以判断反馈电压超过第 一基准电压的差值是否大于偏差值, 加之比较器的放大输出具备强劲的驱动能 力, 完全可以在 LED灯珠出现短路时启动短路保护功能, 电路结构筒单, 器件 成本低, 有利于降低设计和生产成本。
进一步的, 所述比较单元包括第一可控开关, 第一电阻、 第二电阻和第三 电阻; 所述第一可控开关的源极通过第一电阻耦合到一基准高电平信号, 漏极 通过第二电阻耦合到 LED背光驱动电路的接地端; 所述反馈电压通过第三电阻 耦合到第一可控开关的门极; 所述第一基准电压耦合到第一可控开关的漏极; 所述第一可控开关的源极还耦合有反相器, 所述反相器的输出端耦合有所述驱 动单元;
当所述第一可控开关导通时, 所述反相器的输出电压反转, 控制所述驱动 单元驱动电源模块关断。
MOS管、 三极管等可控开关的导通条件包括: 门极电压要大于漏极电压一 定阈值; 同时, 门极电压本身也要超过一定的阈值; 因此第一可控开关的导通 条件本身就限定了预设的偏差值; 反馈电压超出第一基准电压的数值只有大于 该偏差值, 第一可控开关才能导通。 第一可控开关关断时, 其源极电压等于基 准高电平信号的电压; 当第一可控开关导通后, 通过电阻分压, 其源极电压被 拉低; 通过第一可控开关源极电压的变化就可以控制反相器反转。
本技术方案利用了可控开关的导通条件来提供偏差值, 并利用其导通和关 断来控制反相器, 进而控制驱动单元, 电路结构筒单, 器件成本低。
反相器的存在可以防止第一基准电压直接耦合到驱动单元, 避免误动作。 进一步的, 所述反相器包括第二可控开关、 第三可控开关以及第四电阻、 第五电阻;
所述第二可控开关的源极通过第四电阻耦合到所述基准高电平信号, 并耦 合到所述第三可控开关的门极; 所述第二可控开关的漏极耦合到 LED背光驱动 电路的接地端; 其门极耦合到所述第一可控开关的源极;
所述第三可控开关的源极耦合到所述基准高电平信号, 其漏极通过第五电 阻耦合到 LED背光驱动电路的接地端, 并耦合到所述驱动单元。
此为一种具体的反相器结构, 当第一可控开关的源极输出高电平电压时, 第二可控开关导通, 第三可控开关的门极电压被拉低, 第三可控开关关断, 其 漏极输出低电平电压; 反之, 第一可控开关的源极输出低电平电压时, 第三可 控开关关断, 其漏极输出高电平电压。 这样反相器的输入电压跟输出电压总是 相反的, 从而实现了反相器的功能。
进一步的, 所述驱动单元包括第六电阻, 低电平导通的第四可控开关和高 电平导通的第五可控开关; 所述第四可控开关的源极通过第六电阻耦合到所述基准高电平信号; 漏极 分别耦合到所述反相器的输出端和第五可控开关的门极; 所述第五可控开关的 漏极耦合到 LED背光驱动电路的接地端;源极耦合到所述第四可控开关的门极; 所述第四可控开关的源极输出驱动电压驱动电源模块关断。
本技术方案提供了一种具备自锁功能的驱动单元, 即一旦反相器驱动第五 可控开关导通, 第四可控开关的门极电压随即拉低, 第四可控开关导通, 然后 将基准高电平信号耦合到第五可控开关的门极, 即便切断了反相器的驱动信号, 第五可控开关仍然可以维持导通状态; 在第四可控开关和第五可控开关关闭时, 第四可控开关的源极输出电压等于基准高电平信号的电压; 当第四可控开关和 第五可控开关导通时, 将第四可控开关的源极输出电压拉低, 从而驱动电源模 块关断。 自锁功能的设计可以防止比较单元端由于采集电压的波动造成误动作, 提高了保护的可靠性。
进一步的, 所述反相器包括第二可控开关、 第三可控开关以及第四电阻、 第五电阻;
所述第二可控开关的源极通过第四电阻耦合到所述基准高电平信号, 并耦 合到所述第三可控开关的门极; 所述第二可控开关的漏极耦合到 LED背光驱动 电路的接地端; 其门极耦合到所述第一可控开关的源极;
所述第三可控开关的源极耦合到所述基准高电平信号, 其漏极通过第五电 阻耦合到 LED背光驱动电路的接地端;
所述驱动单元包括第六电阻, 低电平导通的第四可控开关和高电平导通的 第五可控开关;
所述第四可控开关的源极通过第六电阻耦合到所述基准高电平信号; 漏极 分别耦合到所述第三可控开关的漏极和第五可控开关的门极; 所述第五可控开 关的漏极耦合到 LED背光驱动电路的接地端; 源极耦合到所述第四可控开关的 门极; 所述第四可控开关的源极输出驱动电压驱动电源模块关断。
MOS管、 三极管等可控开关的导通条件包括: 门极电压要大于漏极电压一 定阈值; 同时, 门极电压本身也要超过一定的阈值; 因此第一可控开关的导通 条件本身就限定了预设的偏差值; 反馈电压超出第一基准电压的数值只有大于 该偏差值, 第一可控开关才能导通。 第一可控开关关断时, 其源极电压等于基 准高电平信号的电压; 当第一可控开关导通后, 通过电阻分压, 其源极电压被 拉低; 通过第一可控开关源极电压的变化就可以控制反相器反转。
本技术方案利用了可控开关的导通条件来提供偏差值, 并利用其导通和关 断来控制反相器, 进而控制驱动单元, 电路结构筒单, 器件成本低。
反相器的存在可以防止第一基准电压直接耦合到驱动单元, 避免误动作。 当第一可控开关的源极输出高电平电压时, 第二可控开关导通, 第三可控开关 的门极电压被拉低, 第三可控开关关断, 其漏极输出低电平电压; 反之, 第一 可控开关的源极输出低电平电压时, 第三可控开关关断, 其漏极输出高电平电 压。 这样反相器的输入电压跟输出电压总是相反的, 从而实现了反相器的功能。
本技术方案的驱动单元具备自锁功能, 即一旦反相器驱动第五可控开关导 通, 第四可控开关的门极电压随即拉低, 第四可控开关导通, 然后将基准高电 平信号耦合到第五可控开关的门极, 即便切断了反相器的驱动信号, 第五可控 开关仍然可以维持导通状态; 在第四可控开关和第五可控开关关闭时, 第四可 控开关的源极输出电压等于基准高电平信号的电压; 当第四可控开关和第五可 控开关导通时, 将第四可控开关的源极输出电压拉低, 从而驱动电源模块关断。 自锁功能的设计可以防止比较单元端由于采集电压的波动造成误动作, 提高了 保护的可靠性。
进一步的, 所述电源模块耦合有控制电源模块启动和关断的使能控制信号; 所述 LED背光驱动电路还包括第六可控开关, 所述使能控制信号通过所述第六 可控开关耦合到 LED背光驱动电路的接地端;
当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述短路保护 模块的驱动单元驱动所述第六可控开关导通。
一般电源模块都是通过液晶显示装置的主监控发送的使能控制信号来工作 的, 使能控制信号高电平时, 电源模块正常工作; 使能控制信号低电平时, 电 源模块停止工作; 因此本技术方案直接在使能控制信号连接的导线与 LED背光 驱动电路的接地端之间串接第六可控开关, 短路保护模块直接控制第六可控开 关导通, 即可将使能控制信号的电压强制拉低, 从而控制电源模块关断。
一种 LED背光驱动电路的驱动方法, 所述 LED背光驱动电路包括 LED灯 条, 驱动 LED灯条的电源模块, 所述驱动方法包括步骤:
A: 在 LED灯条的输出端串接分压电阻; 预设第一基准电压和偏差值; 所述第一基准电压大于或等于正常 LED灯条最大亮度时分压电阻两端的最 大电压;
B: 将分压电阻两端的电压作为反馈电压跟所述第一基准电压比较, 如果反 馈电压和第一基准电压的差值超过预设的偏差值, 控制电源模块关断。
一种液晶显示装置, 包括本发明所述的 LED背光驱动电路。
经研究发现, 当 LED灯条有一个甚至多个 LED灯珠短路时, 整个 LED灯 条的电压会降低,而现有的 LED背光驱动电路侦测到 LED灯条的电压降低会误 认为电源模块的输出电压不够,从而加大电源模块的输出电压,造成更多的 LED 灯珠烧毁。 本发明由于在每条 LED灯条输出端串接分压电阻(为了减少电阻发 热造成的能量损耗, 分压电阻阻值不宜太大, 可以选用 1 Ω的电阻)。 测量正常 的 LED灯条最大亮度时分压电阻两端的电压, 将该电压作为第一基准电压, 通 过短路保护模块来实时采集分压电阻两端的电压作为反馈电压, 将反馈电压跟 第一基准电压相比较, 如果超过第一基准电压, 则基本可以判断为该 LED灯条 发生了短路故障, 此时通过短路保护模块的驱动单元控制电源模块关断, 保护 LED灯条。 为了防止误判断, 可以设定一个预设的偏差值, 当反馈电压超出第 一基准电压的数值大于预设的偏差值时, 才控制电源模块关断。
【附图说明】
图 1是本发明 LED背光驱动电路的电路示意图; 图 2是本发明实施例一短路保护模块的电路示意图;
图 3是本发明实施例二短路保护模块的电路示意图;
图 4是本发明实施例三 LED背光驱动电路的驱动方法示意图。
其中: 10、 LED背光驱动电路; 20、 电源模块; 30、 LED灯条; 40、 短路 保护模块; 41、 比较单元; 42、 驱动单元; 43、 反相器; 50、 恒流驱动模块。
【具体实施方式】
一种液晶显示装置,包括 LED背光驱动电路。如图 1所示, LED背光驱动电 路 10包括电源模块 20、 与电源模块 20耦合的 LED灯条 30; 还包括短路保护 模块 40、 分压电阻 R0和恒流驱动模块 50, 所述 LED灯条 30通过所述分压电 阻 R0耦合到所述恒流驱动模块 50;
所述短路保护模块 40包括比较单元 41 , 与比较单元 41耦合的驱动单元 42, 分压电阻 R0两端的电压作为反馈电压 (Vl、 V2)耦合到所述比较单元 41; 所述 比较单元 41还耦合有预设的第一基准电压 VF1;
当反馈电压超出第一基准电压 VF1的数值大于预设的偏差值时,所述驱动单 元 42控制所述电源模块 20关断;
所述第一基准电压 VF1 大于或等于正常 LED灯条 30最大亮度时分压电阻 R0两端的最大电压。
每条 LED灯条 30都可以对应一个短路保护模块 40, 每个短路保护模块 40 的第一基准电压 VF1和偏差值都可以独立设置,只要有一个短路保护模块 40启 动保护, 电源模块 20都会关断输出。 当然为了节约成本, 也可以多条 LED灯 条 30共用一个短路保护模块 40,然后将正常 LED灯条 30最大亮度时分压电阻 R0两端电压的最高值作为第一基准电压 VF1 , 只要有一路 LED灯条 30的分压 电阻 R0两端的电压超过第一基准电压 VF1 的数值大于预设的偏差值, 就可以 关断电源模块 20。
预设的偏差值是反馈电压超过第一基准电压 VF1的差值的取值范围,可以通 过器件选型或软件调节的方式来设定, 比如反馈电压超过第一基准电压
1V/2V/3V/5V等预设值, 驱动单元 42就控制所述电源模块 20关断, 当然, 预 设的偏差值也可以为零, 即一旦反馈电压大于第一基准电压 VF1 , 驱动单元 42 就控制所述电源模块 20关断。
经研究发现, 当 LED灯条 30有一个甚至多个 LED灯珠短路时, 整个 LED 灯条 30的电压会降低, 而现有的 LED背光驱动电路 10侦测到 LED灯条 30的 电压降低会误认为电源模块 20的输出电压不够, 从而加大电源模块 20的输出 电压, 造成更多的 LED灯珠烧毁。 本发明由于在每条 LED灯条 30输出端串接 分压电阻 R0 (为了减少电阻发热造成的能量损耗, 分压电阻 R0阻值不宜太大, 可以选用 1 Ω的电阻)。测量正常的 LED灯条 30最大亮度时分压电阻 R0两端的 电压, 将该电压作为第一基准电压 VF1 , 通过短路保护模块 40来实时采集分压 电阻 R0两端的电压作为反馈电压, 将反馈电压跟第一基准电压 VF1相比较, 如果超过第一基准电压 VF1 , 则基本可以判断为该 LED灯条 30发生了短路故 障, 此时通过短路保护模块 40的驱动单元 42控制电源模块 20关断, 保护 LED 灯条 30。 为了防止误判断, 可以设定一个预设的偏差值, 当反馈电压超出第一 基准电压 VF1的数值大于预设的偏差值时, 才控制电源模块 20关断。
下面结合附图和较佳的实施例对本发明作进一步说明。
实施例一
如图 1、 2所示, 本实施方式的比较单元 41包括减法器 U1 , 所述减法器 U1 的第一输入端耦合到所述反馈电压 VI; 其第二输入端耦合到所述第一基准电压 VF1。通过减法器 U1可以直接输出反馈电压和第一基准电压 VF1的差值, 这样 后面的驱动单元只需要判断该差值是否超出预设的偏差值, 如果超出, 驱动电 源模块关断。
所述驱动单元包括比较器 U2,所述比较器 U2的第一输入端耦合到所述减法 器 U1的输出端; 所述比较器 U2的第二输入端耦合有第二基准电压 VF2;
所述第二基准电压 VF2等于所述预设的偏差值, 当所述减法器 U1的输出电 压大于所述第二基准电压 VF2时, 所述比较器 U2驱动电源模块 20关断。
一般电源模块 20都是通过液晶显示装置的主监控发送的使能控制信号 BL来 工作的, 使能控制信号 BL高电平 ( logic 1 ) 时, 电源模块正常工作; 使能控制 信号 BL低电平 (logic 0)时, 电源模块停止工作; 因此本发明可以直接在使能控 制信号 BL连接的导线与 LED背光驱动电路的接地端之间串接一个可控开关(如 图中所示的第六可控开关 Q6 ) , 然后将比较器 U2输出的驱动信号 V4耦合到第 六可控开关的控制端, 当所述减法器 U1的输出电压 V3大于所述第二基准电压 VF2时, 所述比较器 U2驱动第六可控开关 Q6导通, 将使能控制信号 BL的电 压强制拉低, 从而控制电源模块 20关断。
本实施方式通过一个比较器 U2和前一级的减法器 U1耦合, 就可以判断反 馈电压超过第一基准电压 VF1的差值是否大于偏差值, 加之比较器 U2的放大 输出具备强劲的驱动能力,完全可以在 LED灯珠出现短路时启动短路保护功能, 电路结构筒单, 器件成本低, 有利于降低设计和生产成本。
实施例二
如图 1、 3所示, 本实施方式的比较单元 41 包括第一可控开关 Q1 , 第一电 阻 Rl、 第二电阻 R2和第三电阻 R3; 所述第一可控开关 Q1的源极通过第一电 阻 R1耦合到一基准高电平信号 VCC, 漏极通过第二电阻 R2耦合到 LED背光 驱动电路的接地端;所述反馈电压 VI通过第三电阻 R3耦合到第一可控开关 Q1 的门极; 所述第一基准电压 VF1耦合到第一可控开关 Q1的漏极; 所述第一可 控开关 Q1的源极还耦合有反相器 43, 所述反相器 43的输出端耦合有所述驱动 单元;
所述反相器 43包括第二可控开关 Q2、 第三可控开关 Q3以及第四电阻 R4、 第五电阻 R5;
所述第二可控开关 Q2的源极通过第四电阻 R4耦合到所述基准高电平信号 VCC, 并耦合到所述第三可控开关 Q3的门极; 所述第二可控开关 Q2的漏极耦 合到 LED背光驱动电路的接地端;其门极耦合到所述第一可控开关 Q1的源极; 所述第三可控开关 Q3的源极耦合到所述基准高电平信号 VCC, 其漏极通过 第五电阻 R5耦合到 LED背光驱动电路的接地端;
所述驱动单元包括第六电阻 R6 ,低电平导通的第四可控开关 Q4和高电平导 通的第五可控开关 Q5;
所述第四可控开关 Q4的源极通过第六电阻 R6耦合到所述基准高电平信号 VCC;漏极分别耦合到所述第三可控开关 Q3的漏极和第五可控开关 Q5的门极; 所述第五可控开关 Q5的漏极耦合到 LED背光驱动电路的接地端; 源极耦合到 所述第四可控开关 Q4的门极; 所述第四可控开关 Q4的源极输出驱动电压驱动 电源模块 20关断。
当所述第一可控开关 Q1导通时, 所述第二可控开关 Q2关闭; 所述第三可 控开关 Q3导通; 基准高电平信号 VCC通过第三可控开关 Q3耦合到第五可控 开关 Q5的控制端, 驱动第五可控开关 Q5导通, 第四可控开关 Q4的门极电压 随即拉低, 第四可控开关 Q4导通, 第四可控开关 Q4的源极输出电压拉低, 从 而驱动电源模块 20关断。
一般电源模块 20都是通过液晶显示装置的主监控发送的使能控制信号 BL来 工作的, 使能控制信号 BL高电平时, 电源模块 20正常工作; 使能控制信号 BL 低电平时, 电源模块 20停止工作; 因此本发明可以直接在使能控制信号 BL连 接的导线与 LED背光驱动电路的接地端之间串接一个可控开关(如图中所示的 第六可控开关 Q6 ),然后将第四可控开关 Q4源极输出的驱动信号耦合到第六可 控开关 Q6的控制端, 当所述反馈电压超过第一基准电压 VF的数值大于预设的 偏差值时 (即第一可控开关的导通阀值), 所述第四可控开关 Q4驱动第六可控 开关 Q6导通, 将使能控制信号 BL的电压强制拉低, 从而控制电源模块 20关 断。
本实施方式采用第一可控开关 Q1作为比较单元。 MOS管、 三极管等可控开 关的导通条件包括: 门极电压要大于漏极电压一定阈值; 同时, 门极电压本身 也要超过一定的阈值; 因此第一可控开关 Q1的导通条件本身就限定了预设的偏 差值; 反馈电压超出第一基准电压 VF1的数值只有大于该偏差值, 第一可控开 关 Q1才能导通。第一可控开关 Q1关断时,其源极电压等于基准高电平信号 VCC 的电压; 当第一可控开关 Q1导通后, 通过电阻分压, 其源极电压被拉低; 通过 第一可控开关 Q1源极电压的变化就可以控制反相器 43反转。
利用可控开关的导通条件来提供偏差值, 并利用其导通和关断来控制反相器 43 , 进而控制驱动单元, 电路结构筒单, 器件成本低。 而反相器 43的存在可以 防止第一基准电压 VF1直接耦合到驱动单元, 避免误动作。
本实施方式的驱动单元具备自锁功能, 一旦启动保护, 需要额外的复位信号 才能取消保护动作。 具体来说, 第五可控开关 Q5 导通后, 第四可控开关 Q4 的门极电压随即拉低, 第四可控开关 Q4导通, 然后将基准高电平信号 VCC耦 合到第五可控开关 Q5的门极, 即便切断了反相器 43的驱动信号, 第五可控开 关 Q5仍然可以维持导通状态; 只有额外提供复位信号将第五可控开关 Q5的门 极电压强制拉低, 才能关断这个由第四可控开关 Q4和第五可控开关 Q5组成的 自工作系统。在第四可控开关 Q4和第五可控开关 Q5关闭时,第四可控开关 Q4 的源极输出电压等于基准高电平信号 VCC的电压; 当第四可控开关 Q4和第五 可控开关 Q5导通时, 将第四可控开关 Q4的源极输出电压拉低, 从而驱动电源 模块 20关断。
由于需要额外的复位信号才能取消保护动作, 可以防止比较单元端由于采集 电压的波动造成误动作, 提高了保护的可靠性。
实施例三
如图 4所示, 一种 LED背光驱动电路的驱动方法, 所述 LED背光驱动电路 包括 LED灯条, 驱动 LED灯条的电源模块, 所述驱动方法包括步骤:
A: 在 LED灯条的输出端串接分压电阻 R0; 预设第一基准电压 VF1和偏差 值;
所述第一基准电压 VF1 大于或等于正常 LED灯条最大亮度时分压电阻 R0 两端的最大电压; B: 将分压电阻 R0两端的电压作为反馈电压跟所述第一基准电压 VF1比较, 如果反馈电压和第一基准电压 VF1的差值超过预设的偏差值, 控制电源模块关 断。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技 术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干筒单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求
1、 一种 LED背光驱动电路, 所述 LED背光驱动电路包括 LED灯条、 驱动 LED灯条的电源模块,所述 LED灯条的输出端分别耦合有短路保护模块和分压 电阻;
所述短路保护模块包括比较单元, 与比较单元耦合的驱动单元, 分压电阻 两端的电压作为反馈电压耦合到所述比较单元; 所述比较单元还耦合有预设的 第一基准电压;
当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述驱动单元 控制所述电源模块关断;
所述第一基准电压大于或等于正常 LED灯条最大亮度时分压电阻两端的最 大电压。
2、 如权利要求 1所述的 LED背光驱动电路, 其中, 所述比较单元包括减 法器, 所述减法器的第一输入端耦合到所述反馈电压; 其第二输入端耦合到所 述第一基准电压。
3、 如权利要求 2所述的 LED背光驱动电路, 其中, 所述驱动单元包括比 较器, 所述比较器的第一输入端耦合到所述减法器的输出端; 所述比较器的第 二输入端耦合有第二基准电压;
所述第二基准电压等于所述预设的偏差值, 当所述减法器的输出电压大于 所述第二基准电压时, 所述比较器驱动电源模块关断。
4、 如权利要求 3所述的 LED背光驱动电路, 其中, 所述电源模块耦合有 控制电源模块启动和关断的使能控制信号; 所述 LED背光驱动电路还包括第六 可控开关, 所述使能控制信号通过所述第六可控开关耦合到 LED背光驱动电路 的接地端;
当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述短路保护 模块的驱动单元驱动所述第六可控开关导通。
5、 如权利要求 1所述的 LED背光驱动电路, 其中, 所述比较单元包括第 一可控开关, 第一电阻、 第二电阻和第三电阻; 所述第一可控开关的源极通过 第一电阻耦合到一基准高电平信号, 漏极通过第二电阻耦合到 LED背光驱动电 路的接地端; 所述反馈电压通过第三电阻耦合到第一可控开关的门极; 所述第 一基准电压耦合到第一可控开关的漏极; 所述第一可控开关的源极还耦合有反 相器, 所述反相器的输出端耦合有所述驱动单元;
当所述第一可控开关导通时, 所述反相器的输出电压反转, 控制所述驱动 单元驱动电源模块关断。
6、 如权利要求 5所述的 LED背光驱动电路, 其中, 所述电源模块耦合有 控制电源模块启动和关断的使能控制信号; 所述 LED背光驱动电路还包括第六 可控开关, 所述使能控制信号通过所述第六可控开关耦合到 LED背光驱动电路 的接地端;
当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述短路保护 模块的驱动单元驱动所述第六可控开关导通。
7、 如权利要求 5所述的 LED背光驱动电路, 其中, 所述反相器包括第二 可控开关、 第三可控开关以及第四电阻、 第五电阻;
所述第二可控开关的源极通过第四电阻耦合到所述基准高电平信号, 并耦 合到所述第三可控开关的门极; 所述第二可控开关的漏极耦合到 LED背光驱动 电路的接地端; 其门极耦合到所述第一可控开关的源极;
所述第三可控开关的源极耦合到所述基准高电平信号, 其漏极通过第五电 阻耦合到 LED背光驱动电路的接地端, 并耦合到所述驱动单元。
8、 如权利要求 5所述的 LED背光驱动电路, 其中, 所述驱动单元包括第 六电阻, 低电平导通的第四可控开关和高电平导通的第五可控开关;
所述第四可控开关的源极通过第六电阻耦合到所述基准高电平信号; 漏极 分别耦合到所述反相器的输出端和第五可控开关的门极; 所述第五可控开关的 漏极耦合到 LED背光驱动电路的接地端;源极耦合到所述第四可控开关的门极; 所述第四可控开关的源极输出驱动电压驱动电源模块关断。
9、 如权利要求 5所述的 LED背光驱动电路, 其中, 所述反相器包括第二 可控开关、 第三可控开关以及第四电阻、 第五电阻;
所述第二可控开关的源极通过第四电阻耦合到所述基准高电平信号, 并耦 合到所述第三可控开关的门极; 所述第二可控开关的漏极耦合到 LED背光驱动 电路的接地端; 其门极耦合到所述第一可控开关的源极;
所述第三可控开关的源极耦合到所述基准高电平信号, 其漏极通过第五电 阻耦合到 LED背光驱动电路的接地端;
所述驱动单元包括第六电阻, 低电平导通的第四可控开关和高电平导通的 第五可控开关;
所述第四可控开关的源极通过第六电阻耦合到所述基准高电平信号; 漏极 分别耦合到所述第三可控开关的漏极和第五可控开关的门极; 所述第五可控开 关的漏极耦合到 LED背光驱动电路的接地端; 源极耦合到所述第四可控开关的 门极; 所述第四可控开关的源极输出驱动电压驱动电源模块关断。
10、 如权利要求 9所述的 LED背光驱动电路, 其中, 所述电源模块耦合有 控制电源模块启动和关断的使能控制信号; 所述 LED背光驱动电路还包括第六 可控开关, 所述使能控制信号通过所述第六可控开关耦合到 LED背光驱动电路 的接地端;
当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述短路保护 模块的驱动单元驱动所述第六可控开关导通。
11、一种 LED背光驱动电路的驱动方法,所述 LED背光驱动电路包括 LED 灯条, 驱动 LED灯条的电源模块, 所述驱动方法包括步骤:
A: 在 LED灯条的输出端串接分压电阻; 预设第一基准电压和偏差值; 所 述第一基准电压大于或等于正常 LED 灯条最大亮度时分压电阻两端的最大电 压;
B: 将分压电阻两端的电压作为反馈电压跟所述第一基准电压比较, 如果反 馈电压和第一基准电压的差值超过预设的偏差值, 控制电源模块关断。
12、 一种液晶显示装置, 包括 LED背光驱动电路; 所述 LED背光驱动电路 包括 LED灯条、 驱动 LED灯条的电源模块, 所述 LED灯条的输出端分别耦合 有短路保护模块和分压电阻;
所述短路保护模块包括比较单元, 与比较单元耦合的驱动单元, 分压电阻 两端的电压作为反馈电压耦合到所述比较单元; 所述比较单元还耦合有预设的 第一基准电压;
当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述驱动单元 控制所述电源模块关断;
所述第一基准电压大于或等于正常 LED灯条最大亮度时分压电阻两端的最 大电压。
13、如权利要求 12所述的液晶显示装置, 其中, 所述比较单元包括减法器, 所述减法器的第一输入端耦合到所述反馈电压; 其第二输入端耦合到所述第一 基准电压。
14、如权利要求 13所述的液晶显示装置, 其中, 所述驱动单元包括比较器, 所述比较器的第一输入端耦合到所述减法器的输出端; 所述比较器的第二输入 端耦合有第二基准电压;
所述第二基准电压等于所述预设的偏差值, 当所述减法器的输出电压大于 所述第二基准电压时, 所述比较器驱动电源模块关断。
15、 如权利要求 14所述的液晶显示装置, 其中, 所述电源模块耦合有控制 电源模块启动和关断的使能控制信号; 所述液晶显示装置还包括第六可控开关, 所述使能控制信号通过所述第六可控开关耦合到 LED背光驱动电路的接地端; 当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述短路保护 模块的驱动单元驱动所述第六可控开关导通。
16、 如权利要求 12所述的液晶显示装置, 其中, 所述比较单元包括第一可 控开关, 第一电阻、 第二电阻和第三电阻; 所述第一可控开关的源极通过第一 电阻耦合到一基准高电平信号, 漏极通过第二电阻耦合到 LED背光驱动电路的 接地端; 所述反馈电压通过第三电阻耦合到第一可控开关的门极; 所述第一基 准电压耦合到第一可控开关的漏极; 所述第一可控开关的源极还耦合有反相器, 所述反相器的输出端耦合有所述驱动单元;
当所述第一可控开关导通时, 所述反相器的输出电压反转, 控制所述驱动 单元驱动电源模块关断。
17、 如权利要求 16所述的液晶显示装置, 其中, 所述反相器包括第二可控 开关、 第三可控开关以及第四电阻、 第五电阻;
所述第二可控开关的源极通过第四电阻耦合到所述基准高电平信号, 并耦 合到所述第三可控开关的门极; 所述第二可控开关的漏极耦合到 LED背光驱动 电路的接地端; 其门极耦合到所述第一可控开关的源极;
所述第三可控开关的源极耦合到所述基准高电平信号, 其漏极通过第五电 阻耦合到 LED背光驱动电路的接地端, 并耦合到所述驱动单元。
18、 如权利要求 16所述的液晶显示装置, 其中, 所述驱动单元包括第六电 阻, 低电平导通的第四可控开关和高电平导通的第五可控开关;
所述第四可控开关的源极通过第六电阻耦合到所述基准高电平信号; 漏极 分别耦合到所述反相器的输出端和第五可控开关的门极; 所述第五可控开关的 漏极耦合到 LED背光驱动电路的接地端;源极耦合到所述第四可控开关的门极; 所述第四可控开关的源极输出驱动电压驱动电源模块关断。
19、 如权利要求 16所述的液晶显示装置, 其中, 所述反相器包括第二可控 开关、 第三可控开关以及第四电阻、 第五电阻;
所述第二可控开关的源极通过第四电阻耦合到所述基准高电平信号, 并耦 合到所述第三可控开关的门极; 所述第二可控开关的漏极耦合到 LED背光驱动 电路的接地端; 其门极耦合到所述第一可控开关的源极;
所述第三可控开关的源极耦合到所述基准高电平信号, 其漏极通过第五电 阻耦合到 LED背光驱动电路的接地端; 所述驱动单元包括第六电阻, 低电平导通的第四可控开关和高电平导通的 第五可控开关;
所述第四可控开关的源极通过第六电阻耦合到所述基准高电平信号; 漏极 分别耦合到所述第三可控开关的漏极和第五可控开关的门极; 所述第五可控开 关的漏极耦合到 LED背光驱动电路的接地端; 源极耦合到所述第四可控开关的 门极; 所述第四可控开关的源极输出驱动电压驱动电源模块关断。
20、 如权利要求 19所述的液晶显示装置, 其中, 所述电源模块耦合有控制 电源模块启动和关断的使能控制信号; 所述液晶显示装置还包括第六可控开关, 所述使能控制信号通过所述第六可控开关耦合到 LED背光驱动电路的接地端; 当反馈电压超出第一基准电压的数值大于预设的偏差值时, 所述短路保护 模块的驱动单元驱动所述第六可控开关导通。
PCT/CN2013/078293 2013-05-08 2013-06-28 一种led背光驱动电路及其驱动方法、液晶显示装置 WO2014180054A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/006,676 US9258862B2 (en) 2013-05-08 2013-06-28 LED backlight driving circuit, LCD device, and method for driving the LED backlight driving circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310167121.0A CN103295547B (zh) 2013-05-08 2013-05-08 一种led背光驱动电路及其驱动方法、液晶显示装置
CN201310167121.0 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014180054A1 true WO2014180054A1 (zh) 2014-11-13

Family

ID=49096312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078293 WO2014180054A1 (zh) 2013-05-08 2013-06-28 一种led背光驱动电路及其驱动方法、液晶显示装置

Country Status (2)

Country Link
CN (1) CN103295547B (zh)
WO (1) WO2014180054A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587423A (zh) * 2018-09-28 2019-04-05 深圳市鼎盛光电有限公司 背光启动电路
CN110955081A (zh) * 2018-09-27 2020-04-03 苹果公司 用于控制显示器背光的方法和装置
CN111984055A (zh) * 2020-08-20 2020-11-24 山东云海国创云计算装备产业创新中心有限公司 一种集成电路及其基准电压生成电路
CN113823229A (zh) * 2021-09-03 2021-12-21 惠州视维新技术有限公司 驱动电路及其故障检测方法、背光模组和显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098720A (zh) * 2015-07-10 2015-11-25 昆山龙腾光电有限公司 一种pfm升压型电源转换电路的保护电路
CN106601193B (zh) * 2015-10-14 2023-06-23 江苏帝奥微电子股份有限公司 一种发光二极管背光驱动电路
TWI594664B (zh) * 2016-08-17 2017-08-01 緯創資通股份有限公司 發光二極體驅動裝置及驅動裝置的短路保護方法
CN112992080B (zh) * 2021-02-09 2022-06-10 海信视像科技股份有限公司 显示设备及其保护方法
JP2022163267A (ja) * 2021-04-14 2022-10-26 シャープディスプレイテクノロジー株式会社 発光装置、表示装置、およびled表示装置
CN114120927B (zh) * 2021-12-06 2023-03-28 Tcl华星光电技术有限公司 背光模组及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130377A (ja) * 2006-11-21 2008-06-05 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
CN101527120A (zh) * 2008-03-05 2009-09-09 三星电子株式会社 驱动光源的方法、光源装置和具有该光源装置的显示装置
CN102110418A (zh) * 2009-12-28 2011-06-29 乐金显示有限公司 背光单元及其驱动方法,以及使用其的液晶显示器件
CN102110401A (zh) * 2009-12-23 2011-06-29 统宝光电股份有限公司 具有显示面板的电子系统
KR20110129644A (ko) * 2010-05-26 2011-12-02 주식회사엘디티 액정표시장치의 백라이트 고장 검출회로
TW201215219A (en) * 2010-09-20 2012-04-01 Novatek Microelectronics Corp Short detection circuit, light-emitting diode chip, light-emitting diode device and short detection method
CN103021343A (zh) * 2012-11-22 2013-04-03 深圳市华星光电技术有限公司 一种led背光驱动电路、背光模组和液晶显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123536B (zh) * 2010-01-12 2013-10-30 冠捷投资有限公司 发光二极管驱动电路
CN102446492A (zh) * 2010-10-08 2012-05-09 联咏科技股份有限公司 短路侦测电路及方法与发光二极管驱动芯片及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130377A (ja) * 2006-11-21 2008-06-05 Matsushita Electric Works Ltd Led点灯回路およびそれを用いる照明器具
CN101527120A (zh) * 2008-03-05 2009-09-09 三星电子株式会社 驱动光源的方法、光源装置和具有该光源装置的显示装置
CN102110401A (zh) * 2009-12-23 2011-06-29 统宝光电股份有限公司 具有显示面板的电子系统
CN102110418A (zh) * 2009-12-28 2011-06-29 乐金显示有限公司 背光单元及其驱动方法,以及使用其的液晶显示器件
KR20110129644A (ko) * 2010-05-26 2011-12-02 주식회사엘디티 액정표시장치의 백라이트 고장 검출회로
TW201215219A (en) * 2010-09-20 2012-04-01 Novatek Microelectronics Corp Short detection circuit, light-emitting diode chip, light-emitting diode device and short detection method
CN103021343A (zh) * 2012-11-22 2013-04-03 深圳市华星光电技术有限公司 一种led背光驱动电路、背光模组和液晶显示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955081A (zh) * 2018-09-27 2020-04-03 苹果公司 用于控制显示器背光的方法和装置
CN109587423A (zh) * 2018-09-28 2019-04-05 深圳市鼎盛光电有限公司 背光启动电路
CN109587423B (zh) * 2018-09-28 2023-11-21 深圳市鼎盛光电有限公司 背光启动电路
CN111984055A (zh) * 2020-08-20 2020-11-24 山东云海国创云计算装备产业创新中心有限公司 一种集成电路及其基准电压生成电路
CN111984055B (zh) * 2020-08-20 2022-07-15 山东云海国创云计算装备产业创新中心有限公司 一种集成电路及其基准电压生成电路
CN113823229A (zh) * 2021-09-03 2021-12-21 惠州视维新技术有限公司 驱动电路及其故障检测方法、背光模组和显示装置

Also Published As

Publication number Publication date
CN103295547B (zh) 2015-05-20
CN103295547A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2014180054A1 (zh) 一种led背光驱动电路及其驱动方法、液晶显示装置
WO2014079038A1 (zh) 一种led背光驱动电路、背光模组和液晶显示装置
WO2014190577A1 (zh) 一种背光驱动电路、液晶显示装置和背光驱动方法
JP6069535B2 (ja) Ledバックライト駆動回路及びバックライトモジュール
KR101228370B1 (ko) 열 제어 드라이버/스위칭 조정기와, 드라이버 및/또는 스위칭 조정기를 제어 및/또는 조정하는 방법
US9258862B2 (en) LED backlight driving circuit, LCD device, and method for driving the LED backlight driving circuit
KR101789946B1 (ko) Led 백라이트시스템 및 디스플레이 장치
CN103500557A (zh) 一种led背光驱动电路和液晶显示装置
US9183788B2 (en) Backlight driving circuit, LCD device, and method for driving the backlight driving circuit
JP2005160178A5 (zh)
WO2014183329A1 (zh) 一种过压保护电路、过压保护方法及面板驱动电路
US11467436B2 (en) Drive circuit and drive method for dimming glass, and dimming glass device
WO2014101313A1 (zh) 一种液晶显示装置的驱动电路、驱动方法和液晶显示装置
CN102456326B (zh) 一种液晶显示器单输入单输出led灯管控制电路
CN103401209A (zh) Led背光短路保护电路
WO2014180056A1 (zh) 一种led背光驱动电路、液晶显示装置和一种驱动方法
US9165511B2 (en) Backlight driving circuit, LCD device, and driving method
WO2014187002A1 (zh) 一种低损耗异常保护电路及其驱动电路
WO2014139154A1 (zh) 一种led背光驱动电路、液晶显示装置和一种led背光驱动电路的驱动方法
WO2023029962A1 (zh) 一种抑制电源启动浪涌的电路、方法、充电装置及存储介质
CN103379705B (zh) 一种led灯管驱动装置
CN102237051A (zh) 驱动电路及其驱动方法和液晶显示器
TWI442828B (zh) 發光二極體驅動電路
CN106710532A (zh) 一种背光驱动电路及液晶显示器
WO2013166739A1 (zh) Led背光驱动电路、液晶显示装置及一种驱动电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14006676

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884073

Country of ref document: EP

Kind code of ref document: A1