WO2014178353A1 - 熱サイクル用作動媒体 - Google Patents

熱サイクル用作動媒体 Download PDF

Info

Publication number
WO2014178353A1
WO2014178353A1 PCT/JP2014/061767 JP2014061767W WO2014178353A1 WO 2014178353 A1 WO2014178353 A1 WO 2014178353A1 JP 2014061767 W JP2014061767 W JP 2014061767W WO 2014178353 A1 WO2014178353 A1 WO 2014178353A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfo
working medium
hfc
mass
difluoroethylene
Prior art date
Application number
PCT/JP2014/061767
Other languages
English (en)
French (fr)
Inventor
真維 橋本
正人 福島
聡史 河口
智昭 谷口
優 竹内
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015514833A priority Critical patent/JP6384475B2/ja
Priority to CN201480024770.8A priority patent/CN105164228B/zh
Priority to EP14791372.7A priority patent/EP2993212B1/en
Publication of WO2014178353A1 publication Critical patent/WO2014178353A1/ja
Priority to US14/850,035 priority patent/US10053607B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Definitions

  • the present invention relates to a working medium for heat cycle.
  • CFC chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • CFCs and HCFCs have been pointed out as being affected by the stratospheric ozone layer and are now subject to regulation.
  • CFCs and HCFCs have been pointed out as being affected by the stratospheric ozone layer and are now subject to regulation.
  • the abbreviation of the compound is described in parentheses after the compound name, but in this specification, the abbreviation is used instead of the compound name as necessary.
  • HFC-32 difluoromethane
  • HFC-134 tetrafluoroethane
  • HFC- 125 pentafluoroethane
  • R410A a pseudo-azeotropic refrigerant mixture having a mass ratio of 1: 1 between HFC-32 and HFC-125
  • GWP global warming potential
  • HFOs hydrofluoroolefins
  • Patent Document 1 proposes a composition containing trifluoroethylene (HFO-1123).
  • HFO-1123 is used in combination with various HFCs and HFOs for the purpose of enhancing the nonflammability and cycle performance of the working medium.
  • HFO-1123 is produced by various methods, and impurities are present in the product in any production method.
  • HFO-1123 containing such impurities hereinafter also referred to as crude HFO-1123
  • a working medium having excellent cycle performance may not be obtained.
  • An object of the present invention is to provide a working medium for heat cycle that has little influence on the ozone layer, little influence on global warming, and excellent cycle performance and high productivity.
  • the present invention has been made to simplify the process of reducing impurities from the crude HFO-1123.
  • working media that can solve the above problems include working media that contain HFO-1123 and HFC-32 and have a low difluoroethylene content, and HFO-1123 and 2,3,3,3-tetrafluoropropene ( HFO-1234yf) and a low difluoroethylene content have also been found.
  • the present invention provides a working medium for heat cycle, which contains HFO-1123 and difluoroethylene, and the ratio of the difluoroethylene to the total amount of the working medium is less than 1.5% by mass. Further, the present invention is a working medium for heat cycle containing trifluoroethylene, difluoroethylene and difluoromethane, wherein the ratio of the difluoroethylene to the total amount of the working medium is less than 1.5% by mass, and the total amount of the working medium The ratio of the total amount of the said trifluoroethylene and the said difluoromethane with respect to is 80 mass% or more, The working medium for thermal cycles characterized by the above-mentioned is provided.
  • the present invention provides a working medium for heat cycle containing trifluoroethylene, difluoroethylene, and 2,3,3,3-tetrafluoropropene, wherein the ratio of the difluoroethylene to the total amount of the working medium is 1.5 mass. And a ratio of the total amount of the trifluoroethylene and the 2,3,3,3-tetrafluoropropene to the total amount of the working medium is 70% by mass or more. provide. Furthermore, the present invention also provides a working medium for heat cycle comprising trifluoroethylene, difluoroethylene, difluoromethane, and 2,3,3,3-tetrafluoropropene, wherein the difluoroethylene is used with respect to the total amount of the working medium. A working medium for heat cycle, characterized in that the ratio is less than 1.5% by mass.
  • the working medium for heat cycle of the present invention (hereinafter also referred to as working medium) has little influence on the ozone layer and little influence on global warming.
  • the content of difluoroethylene present as an impurity in the production of HFO-1123 is adjusted to less than 1.5% by mass with respect to the total amount of the working medium, the working medium for heat cycle having excellent cycle performance Is obtained.
  • FIG. 2 is a cycle diagram in which a change in state of a working medium in the refrigeration cycle system of FIG. 1 is described on a pressure-enthalpy diagram.
  • the working medium of the embodiment of the present invention contains HFO-1123 and difluoroethylene, and the ratio of difluoroethylene to the total amount of the working medium is less than 1.5% by mass.
  • the working medium of the embodiment may further contain a compound described later in addition to HFO-1123 and difluoroethylene.
  • HFO-1123 has a low global warming potential (GWP), has little impact on the ozone layer, and has little impact on global warming. Further, HFO-1123 is excellent in performance as a working medium, and particularly excellent in cycle performance (for example, a coefficient of performance and a refrigerating capacity required by a method described later).
  • the content of HFO-1123 is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more with respect to the total amount (100% by mass) of the working medium from the viewpoint of cycle performance.
  • HFO-1123 has a so-called self-decomposition property that causes a decomposition reaction when used alone when an ignition source is present at a high temperature or high pressure.
  • the content of HFO-1123 is preferably 80% by mass or less, more preferably 70% by mass or less, and more preferably 60% by mass or less, based on the total amount of the working medium. Is most preferred.
  • the self-decomposition reaction can be suppressed by mixing HFO-1123 with HFC-32 or the like to be described later to suppress the content of HFO-1123.
  • the content ratio of HFO-1123 is 80% by mass or less, since it does not have self-decomposability under temperature and pressure conditions when applied to a heat cycle system, a highly safe working medium can be obtained.
  • Difluoroethylene is a compound that is by-produced in the production of HFO-1123 and is present in the product composition as an impurity.
  • difluoroethylene include 1,1-difluoroethylene (HFO-1132a) and E- and / or Z-1,2-difluoroethylene (HFO-1132).
  • E- and / or Z- means a mixture of E-form and Z-form, and is also indicated as E / Z-.
  • the amount of difluoroethylene in the present invention means the total amount of HFO-1132a and HFO-1132, but as a working medium of the present invention, it is easily produced as a by-product particularly in the production of HFO-1123. It is preferable that the amount of HFO-1132a that remains easily is small.
  • the cycle performance is low.
  • the content of difluoroethylene is less than 1.5% by mass with respect to the total amount of the working medium, a working medium having sufficiently excellent cycle performance can be obtained.
  • the content of difluoroethylene is preferably 4 ppm or more, more preferably 50 ppm or more, and most preferably 100 ppm or more with respect to the total amount of the working medium. If the content is 4 ppm or more, there is an advantage that the process of purifying crude HFO-1123 and reducing difluoroethylene as an impurity can be simplified.
  • the working medium of the present invention may further contain hydrofluorocarbon (HFC) and other hydrofluoroolefins (HFO) in addition to HFO-1123 and difluoroethylene.
  • HFC hydrofluorocarbon
  • HFO hydrofluoroolefins
  • HFC-32 difluoromethane
  • HFC-152a 1,1-difluoroethane
  • HFC 1,1,1-trifluoroethane
  • HFC-134 1,1,2,2-tetrafluoroethane
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • pentafluoroethane HFC-125.
  • HFCs may be used alone or in combination of two or more.
  • HFC-32 is particularly preferable.
  • HFOs are 2,3,3,3-tetrafluoropropene (HFO-1234yf), 2-fluoropropene (HFO-1261yf), 1,1 because they have little influence on the ozone layer and have excellent cycle characteristics.
  • 2-trifluoropropene (HFO-1243yc) trans-1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), cis-1,2,3,3,3-pentafluoro Propene (HFO-1225ye (Z)), trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), cis-1,3,3,3-tetrafluoropropene (HFO-1234ze ( Z)), 3,3,3-trifluoropropene (HFO-1243zf) and the like.
  • HFCs may be used alone or in combination of two or more.
  • HFO-1234yf, HFO-1234ze (E), and HFO-1234ze (Z) are preferable, and HFO-1234yf is particularly preferable because of having a high critical temperature and excellent safety and cycle performance.
  • HFC-32 When the working medium of the present invention contains HFC-32, the ratio of each content of HFO-1123 and HFC-32 is set so that the total of HFO-1123 and HFC-32 is 100% by mass, and HFO-1123 is 10%.
  • HFC-32 is preferably 90 to 1 mass%
  • HFO-1123 is preferably 20 to 99 mass%
  • HFC-32 is more preferably 80 to 1 mass%
  • HFO-1123 is 25 to 99 mass%
  • 75 to 1% by mass of HFC-32 is particularly preferable.
  • a composition in which the content ratio of HFO-1123 is 90% by mass and the content ratio of HFC-32 is 10% by mass has a very small difference in the composition ratio between the gas and liquid phases and becomes an azeotropic composition. So it has excellent stability.
  • the total amount of HFO-1123 and HFC-32 is preferably 60% by mass or more, and more preferably 70% by mass or more with respect to the total amount of the working medium.
  • the content of HFO-1123 is preferably 20% by mass or more and more preferably 40% by mass or more with respect to the total amount of the working medium.
  • the ratio of the content of HFO-1123 to the total amount of HFO-1123 and HFO-1234yf is preferably 35 to 95% by mass, more preferably 40 to 95% by mass. Preferably, it is more preferably 50 to 90% by mass, still more preferably 50 to 85% by mass, and most preferably 60 to 85% by mass.
  • the ratio of the total amount of HFO-1123 and HFO-1234yf to the total amount of working medium is preferably 70% by mass or more. 80 mass% or more is more preferable, 90 mass% or more is further more preferable, and 95 mass% or more is especially preferable.
  • the content of HFO-1123 is preferably 20% by mass or more and more preferably 40% by mass or more with respect to the total amount of the working medium.
  • the total amount of HFO-1123 and HFO-1234yf is within the above range, good cycle performance can be obtained by increasing the efficiency while maintaining a certain capacity when used for thermal cycling.
  • the working medium of the present invention contains both HFC-32 and HFO-1234yf
  • the total amount of HFO-1123, HFC-32, and HFO-1234yf exceeds 90% by mass with respect to the total amount of the working medium.
  • the ratio of HFO-1123 to the total amount of HFO-1123, HFC-32, and HFO-1234yf is 20 mass% or more and less than 70 mass%, and the ratio of HFC-32 is 30 mass% or more and 75 mass% or less.
  • the ratio of HFO-1234yf is preferably 50% by mass or less.
  • the ratio of HFO-1234yf is more preferably 40% by mass or less, and most preferably 30% by mass.
  • the working medium of the present invention may contain other components in addition to HFO-1123, HFC-32, HFO-1234yf and difluoroethylene.
  • the content of other components is preferably less than 1.5% by mass, more preferably 1.4% by mass or less in terms of the total amount of difluoroethylene and other components, with the total amount of the working medium being 100% by mass.
  • the other components are impurities (impurities in the raw materials, intermediate products, by-products, etc.) contained in the composition produced during the production of HFO-1123 (for example, the outlet gas from the reactor; the same applies hereinafter). The same applies hereinafter), impurities contained in the composition produced during the production of HFC-32, and impurities contained in the composition produced during the production of HFO-1234yf.
  • Table 1 and Table 2 show the abbreviations, chemical formulas and names of the other component compounds. Tables 1 and 2 also show abbreviations, chemical formulas and names of HFO-1123, difluoroethylene (HFO-1132a and HFO-1132), HFC-32 and HFO-1234yf.
  • HFO-1123 examples include (I) hydrogen reduction of chlorotrifluoroethylene (CTFE) (CFO-1113), and (II) chlorodifluoromethane (HCFC-22) and chlorofluoromethane (HCFC-). There are three methods: synthesis involving thermal decomposition with 31) and (III) catalytic reaction of 1,1,1,2-tetrafluoroethane (HFC-134a) with a solid reactant.
  • CFE chlorotrifluoroethylene
  • HCFC-22 chlorodifluoromethane
  • HCFC- chlorofluoromethane
  • the ratio of CFO-1113 and hydrogen in the raw material composition is in the range of 0.01 to 4.0 moles of hydrogen per mole of CFO-1113.
  • the pressure in the reactor is preferably normal pressure from the viewpoint of handleability.
  • a palladium catalyst is preferable, and the palladium catalyst is used by being supported on a carrier such as activated carbon.
  • the temperature of the catalyst layer is set to a temperature equal to or higher than the dew point of the raw material composition (mixed gas) containing CFO-1113 and hydrogen. A range of 220 ° C to 240 ° C is preferred.
  • the contact time between the raw material compound CFO-1113 and the catalyst is preferably 4 to 60 seconds.
  • a composition containing HFO-1123 can be obtained as the outlet gas of the reactor.
  • compounds other than HFO-1123 contained in the outlet gas in addition to unreacted raw material CFO-1113, HFO-1132, HFO-1132a, HCFO-1122, HCFO-1122a, HFC-143, methane, HFC -152a, HCFC-142, HCFC-142b, HCFC-133, HCFC-133b, HCFC-123a, CFC-113, and CFO-1112.
  • the raw material composition may be introduced into the reactor at room temperature, but may be introduced into the reactor after being heated in advance in order to increase the reactivity in the reactor.
  • the temperature of HCFC-31 supplied to the reactor is preferably 0 to 600 ° C., and the temperature of HCFC-22 is preferably normal temperature (25 ° C.) or higher and 600 ° C. or lower.
  • the heat medium is a medium in which thermal decomposition does not occur at the temperature in the reactor, and it is preferable to use a gas containing 50% by volume or more of water vapor and the balance being nitrogen and / or carbon dioxide.
  • the supply amount of the heat medium is preferably 20 to 98% by volume with respect to the total supply amount of the heat medium and the raw material composition.
  • the contact time of the heat medium and the raw material composition in the reactor is preferably 0.01 to 10 seconds, and the pressure in the reactor is preferably 0 to 2.0 MPa in terms of gauge pressure.
  • a composition containing HFO-1123 can be obtained as the outlet gas of the reactor.
  • compounds other than HFO-1123 contained in the outlet gas in addition to HCFC-22 and HCFC-31 which are unreacted raw materials, HFO-1132, HFO-1132a, HFO-1141, CFO-1113, HCFO-1122 , HCFO-1122a, HFC-143, FO-1114, HCFO-1131, HFO-1252zf, HFO-1243zf, HFO-1234yf, HFO-1234ze, FO-1216, HFC-125, HFC-134, HFC-134a, HFC -143a, HCFC-124, HCFC-124a, HFC-227ca, HFC-227ea, HFC-236fa, HFC-236ea, CFC-12, HFC-23, HFC-32, HFC-41, HCC-40, RC-318 And Emissions, and the
  • the content of HFC-134a in the raw material gas (100 mol%) is preferably 5 to 100 mol%.
  • the temperature in the reactor is preferably 200 to 500 ° C., and the pressure is preferably 0 to 2 MPa as a gauge pressure.
  • a raw material containing HFC-134a in a layer of the solid reactant using a particulate solid reactant for example, potassium carbonate and / or calcium oxide
  • a particulate solid reactant for example, potassium carbonate and / or calcium oxide
  • the temperature at which HFC-134a is contacted with the solid reactant is preferably in the range of 100 ° C to 500 ° C.
  • a composition containing HFO-1123 can be obtained as the outlet gas of the reactor.
  • Compounds other than HFO-1123 and unreacted raw material component (HFC-134a) contained in the outlet gas include hydrogen fluoride, E / Z-HFO-1132, HFO-1132a, HFC-143, HFC-143a, Methane, ethane, ethylene, propane, propylene, butane, isobutane, 1-normal butene, 2-normal butene, isobutene, HFO-1141, HFO-1252zf, HFO-1243zf, HFO-1234yf, E / Z-HFO-1234ze, FO-1216, HFC-125, HFC-134, HFC-143a, HFC-227ca, HFC-227ea, HFC-236fa, HFC-236ea, HFC-32, HFC-23, and HFC-41.
  • the difluoroethylene compound HFO-132a and / or HFO-132
  • various compounds are used as the outlet gas from the reactor.
  • an impurity in the product composition A compound obtained by removing the difluoroethylene compound, HFC-32 and HFO-1234yf from these impurities is the first compound described above.
  • HFC-32 ⁇ Manufacture of HFC-32>
  • dichloromethane (HCC-30) and hydrogen fluoride are mixed with an aluminum fluoride catalyst, a catalyst in which aluminum fluoride is mixed with a support, or chromium fluoride is supported on a support.
  • An example is a method in which a gas phase reaction is performed at a temperature of 200 to 500 ° C. using a catalyst.
  • HFC-31 is contained in the outlet gas of the reactor together with the target HFO-32. Unreacted HCC-30 is also contained.
  • a fluorination catalyst such as HCC-30 and hydrogen fluoride, a mixture of antimony pentafluoride and antimony trifluoride, or a predetermined concentration of antimony pentafluoride.
  • a liquid phase temperature of 80 to 150 ° C., pressure of 8 to 80 kg / cm 2 .
  • HFC-31, HFC-23, and HCC-40 are generated as impurities in addition to HFC-32.
  • HCC-30, HFC-31, HFC-23, and HCC-40 are generated as impurities. These impurities are the first compound described above.
  • HFO-1234yf As a method for producing HFO-1234yf, (i) a method using an isomer mixture of dichloropentafluoropropane (HCFC-225) (method 225), (ii) hexafluoropropene (FO-1216) is used as a starting compound. Method (HFP method), (iii) Method using 1,1,2,3-tetrachloropropene (HCC-1230) as a starting material (TCP method), (iv) Thermal decomposition of the raw material composition in the presence of a heating medium And the like.
  • HFO-1234yf is produced using an isomer mixture of HCFC-225.
  • 1,1-dichloro-2,2,3,3,3-pentafluoropropane (HCFC-225ca) in the raw material is selectively defluorinated according to the reaction pathway shown in [Chemical Formula 4] below. Hydrogenation produces 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), and the resulting CFO-1214ya is reduced to produce HFO-1234yf.
  • the following compounds may be mentioned as impurities obtained together with HFO-1234yf. That is, examples of the impurities contained in the raw material include HCFC-225ca and its isomers HCFC-225cb and HCFC-225aa. Examples of intermediate products include CFO-1214ya, HCFO-1224yd, and the like. Further, as a by-product, HFC-254eb, which is a reduced form of HCFC-225ca, and HFO-1225zc and HFO-1243zf, which are hyperreduced forms of HFO-1234yf, obtained by reduction after HCFC-225aa is dehydrochlorinated. , HFO-1252zf and the like.
  • HFO-1234yf is produced by the reaction route shown in the following [Chemical Formula 5].
  • examples of impurities obtained together with HFO-1234yf include FO-1216, HFO-1225ye, and HFO-1234ze.
  • HFO-1234yf can be produced by the reaction route shown in the following [Chemical Formula 6] using 1,2,3-trichloropropane as a raw material compound.
  • HFC-245cb becomes an organic impurity.
  • HFO-1234yf is produced. That is, according to the reaction route shown in the following [Chemical Formula 7], HCC-1230 is fluorinated with hydrogen fluoride to 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), and then this HCFO -1233xf is reacted with hydrogen fluoride to give 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb), and HCFC-244bb is dehydrohalogenated to produce HFO-1234yf.
  • HCFO-1233xf, HCFC-244bb, HFO-1234ze, HFO-1243zf, 1,1,1,2,3-pentafluoropropane (HFC-245eb) and the like are generated as impurities.
  • the raw material composition a compound that can be decomposed by contact with a heat medium in a reactor to generate difluorocarbene (F 2 C :), and chloromethane or methane are mixed and used. Specifically, a raw material composition containing the following compounds (iv-1) to (iv-6) is used. In addition to the HFO-1234yf and unreacted raw material components, the compounds shown in the respective items are obtained as components (impurities) of the outlet gas from the reactor.
  • HFO-1234yf and HFO-1132a and unreacted raw material components contained in the outlet gas of the reactor include methane, ethylene, FO-1114, FO-1216, CFO-1113, HFO-1123, RC- 318, HFO-1234ze), HFO-1132, and the like.
  • HCFC-22, HCC-40 and FO-1114 HCFC-22, HCC-40, and FO-1114 are premixed or separately supplied to the reactor, retained in the reactor for a predetermined time, a heat medium is supplied to the reactor, and a raw material is supplied in the reactor. The composition and the heat medium are brought into contact. Then, HFO-1234yf and HFO-1132a are generated by a synthesis reaction involving thermal decomposition.
  • the temperature in the reactor is set to 400 to 1200 ° C.
  • the main reaction in the reactor is shown in the following [Chemical 9].
  • HFO-1234yf and HFO-1132a are produced from a raw material composition containing R318 and HCC-40 in the presence of a heat medium by a synthesis reaction involving thermal decomposition.
  • Compounds other than HFO-1234yf and HFO-1132a and unreacted raw material components contained in the outlet gas of the reactor include methane, ethylene, HFC-22, FO-1114, FO-1216, CFO-1113, HFO- 1123, HFO-1234ze, HFO-1132, and the like.
  • HFO-1234yf and HFO-1132a are produced from a raw material composition containing FO-1216 and HCC-40 in the presence of a heat medium by a synthetic reaction involving thermal decomposition.
  • Compounds other than HFO-1234yf and HFO-1132a and unreacted raw material components contained in the outlet gas of the reactor include methane, ethylene, HFC-22, HFC-23, FO-1114, FO-1216, CFO- 1113, RC318, HFO-1123, HFO-1234ze, HFO-1132, and the like.
  • HFO-1234yf is synthesized from a raw material composition containing HFC-22 and / or FO-1114 and methane by a synthesis reaction involving thermal decomposition. And HFO-1132a are manufactured.
  • compounds other than HFO-1234yf and HFO-1132a and unreacted raw material components contained in the outlet gas of the reactor methane, ethylene, FO-1114, FO-1216, CFO-1113, RC318, HFO-1123, HFO-1243zf etc. are mentioned.
  • HFO-1234yf is produced from a raw material composition containing FO-1114 and HCC-40 in the presence of a heat medium by a synthesis reaction involving thermal decomposition.
  • the temperature in the reactor to which the raw material composition and the heat medium are supplied is 400 to 870 ° C.
  • compounds other than HFO-1234yf and unreacted raw material components contained in the reactor outlet gas include methane, ethylene, FO-1216, CFO-1113, RC318, HFO-1132a, HFO-1123, HFO-1243zf, etc. Is mentioned.
  • the productivity as the working medium is high.
  • the working medium of the present invention has little influence on the ozone layer and little influence on global warming, and has excellent cycle performance, and is useful as a working medium for a heat cycle system.
  • Specific examples of the heat cycle system include refrigeration / refrigeration equipment, air conditioning equipment, power generation systems, heat transport devices, secondary coolers, and the like.
  • the air conditioner include room air conditioners, packaged air conditioners (store packaged air conditioners, building packaged air conditioners, facility packaged air conditioners, etc.), gas engine heat pumps, train air conditioners, automobile air conditioners, and the like.
  • Specific examples of the refrigeration / refrigeration equipment include showcases (built-in showcases, separate showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • the working medium is heated by geothermal energy, solar heat, waste heat in the middle to high temperature range of about 50 to 200 ° C in the evaporator, and the working medium turned into high-temperature and high-pressure steam is expanded.
  • An example is a system in which power is generated by adiabatic expansion by a machine, and a generator is driven by work generated by the adiabatic expansion.
  • a latent heat transport device is preferable.
  • the latent heat transport device include a heat pipe and a two-phase sealed thermosyphon device that transport latent heat using phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a heat generating part of a semiconductor element or an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for a gas-gas heat exchanger, for promoting snow melting on roads, and for preventing freezing.
  • Examples 1 to 3, 5, 7, and 9 are examples, and examples 4, 6, 8, and 10 are comparative examples.
  • Examples 1 to 10 A working medium containing HFO-1123 and HFC-32 and / or HFO-1234yf in the ratio shown in Table 3 and containing HFO-1132a in the ratio shown in the same table was manufactured. And about these working media, the refrigerating cycle performance (henceforth refrigeration capacity Q) was measured with the following method.
  • the refrigeration capacity Q means the ability to freeze the load fluid, and the higher the Q, the more work can be done in the same system. In other words, a large Q indicates that the target performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • the refrigeration capacity Q is measured by applying a working medium to the refrigeration cycle system 10 shown in FIG. 1, and the thermal cycle shown in FIG. 2, that is, adiabatic compression by the compressor 11 in the AB process, and isobaric pressure by the condenser 12 in the BC process. This was performed for cooling, isoenthalpy expansion by the expansion valve 13 during the CD process, and isobaric heating by the evaporator 14 during the DA process.
  • a refrigeration cycle system 10 shown in FIG. 1 includes a compressor 11 that compresses a working medium (steam), a condenser 12 that cools the steam of the working medium discharged from the compressor 11 to form a liquid, and a condenser 12.
  • the expansion valve 13 that expands the working medium (liquid) discharged from the gas generator and the evaporator 14 that heats the liquid working medium discharged from the expansion valve 13 to vapor are provided.
  • the temperature of the working medium rises from the inlet to the outlet of the evaporator 14 during evaporation, and conversely decreases during condensation from the inlet to the outlet of the condenser 12.
  • the evaporator 14 and the condenser 12 are configured by exchanging heat with a heat source fluid such as water or air that flows facing the working medium.
  • the heat source fluid is indicated by “E ⁇ E ′” in the evaporator 14 and “F ⁇ F ′” in the condenser 12 in the refrigeration cycle system 10.
  • the measurement conditions are: the average evaporating temperature of the working medium in the evaporator 14 is 0 ° C., the average condensing temperature of the working medium in the condenser 12 is 40 ° C., and the degree of supercooling (SC) of the working medium in the condenser 12 is 5 ° C.
  • the superheat degree (SH) of the working medium in the vessel 14 was set to 5 ° C.
  • fluorine-based brine (Asahi Clin AE-3000: manufactured by Asahi Glass Co., Ltd.) is used as the heat source fluid, and the refrigeration capacity Q of the working medium is determined from the temperature and flow rate of the heat source fluid before and after heat exchange in the evaporator 14. Asked.
  • Table 3 shows the evaluation results of the refrigerating capacity Q.
  • the refrigeration capacity Q is 1 when the content of HFO-1132a in each working medium composition is 0 ppm
  • the relative capacity value is 1 or more, ⁇ (excellent), 0.9 to 1 or more Is evaluated as ⁇ (good), 0.7 to 0.9 is evaluated as ⁇ (slightly poor), and less than 0.7 is evaluated as x (defective).
  • the working medium for heat cycle of the present invention includes refrigeration / refrigeration equipment (built-in showcase, separate-type showcase, commercial refrigeration / refrigerator, vending machine, ice maker, etc.), air conditioning equipment (room air conditioner, store packaged air conditioner). , Building packaged air conditioners, facility packaged air conditioners, gas engine heat pumps, train air conditioners, automotive air conditioners, etc.), power generation systems (waste heat recovery power generation, etc.), heat transport devices (heat pipes, etc.) .
  • refrigeration / refrigeration equipment built-in showcase, separate-type showcase, commercial refrigeration / refrigerator, vending machine, ice maker, etc.
  • air conditioning equipment room air conditioner, store packaged air conditioner.
  • power generation systems waste heat recovery power generation, etc.
  • heat transport devices heat pipes, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 オゾン層への影響が少なく地球温暖化への影響が少なく、サイクル性能が良好な熱サイクル用作動媒体の提供。 トリフルオロエチレンとジフルオロエチレンを含有し、作動媒体に対するジフルオロエチレンの含有量が1.5質量%未満である熱サイクル用作動媒体。

Description

熱サイクル用作動媒体
 本発明は、熱サイクル用作動媒体に関する。
 従来から、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクル用作動媒体としては、クロロトリフルオロメタン(CFC-13)、ジクロロジフルオロメタン(CFC-12)等のクロロフルオロカーボン(CFC)、またはクロロジフルオロメタン(HCFC-22)等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCやHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。
 なお、本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。
 前述の経緯から、熱サイクル用作動媒体としては、CFCやHCFCに代わって、オゾン層への影響が少ないジフルオロメタン(HFC-32)、テトラフルオロエタン(HFC-134)、ペンタフルオロエタン(HFC-125)等のヒドロフルオロカーボン(HFC)が用いられる。例えば、R410A(HFC-32とHFC-125の質量比1:1の擬似共沸混合冷媒)等は、従来から広く使用されてきた冷媒である。しかし、HFCに関しても、地球温暖化の原因となる可能性が指摘されているため、オゾン層への影響が少なく、地球温暖化係数(GWP)の低い熱サイクル用作動媒体の開発が急務となっている。
 最近、オゾン層への影響が少なく、地球温暖化への影響が少ない熱サイクル用作動媒体として、大気中のOHラジカルによって分解されやすい炭素-炭素二重結合を有するヒドロフルオロオレフィン(HFO)に期待が集まっている。なお、本明細書では、特に断りのない限り、飽和のHFCをHFCと示し、炭素-炭素二重結合を有するHFOとは区別して用いる。
 HFOを用いた作動媒体として、例えば特許文献1には、トリフルオロエチレン(HFO-1123)を含む組成物が提示されている。特許文献1においては、この作動媒体の不燃性、サイクル性能等を高める目的で、HFO-1123に各種のHFCやHFOを組み合わせて使用することも提示されている。
 このようにHFO-1123を含む作動媒体において、サイクル性能に優れる組成物が求められている。
 HFO-1123は各種の方法により製造されるが、どの製造方法を採る場合にも、生成物中に不純物が存在する。そして、このような不純物を含むHFO-1123(以下、粗HFO-1123ともいう。)をそのまま用いた場合には、サイクル性能に優れる作動媒体が得られない場合があった。
 そのため、作動媒体として用いるためには、粗HFO-1123からの不純物を低減する工程が必須である。
WO2012/157764号
 本発明は、オゾン層への影響が少なく、地球温暖化への影響が少ないうえに、サイクル性能優れる、生産性が高い熱サイクル用作動媒体を提供することを目的とする。また、本発明は、粗HFO-1123からの不純物を低減する工程を簡略化するためになされたものである。
 本発明者らは、種々の検討を重ねた結果、HFO-1123を含み、ジフルオロエチレンの含有量が低い作動媒体を用いることにより、上記課題を解決できることを見出し、本発明を完成させるに至った。さらに、上記課題を解決できる作動媒体として、HFO-1123とHFC-32とを含みかつジフルオロエチレンの含有量が低い作動媒体、および、HFO-1123と2,3,3,3-テトラフルオロプロペン(HFO-1234yf)とを含みかつジフルオロエチレンの含有量が低い作動媒体も見出した。
 すなわち、本発明は、HFO-1123とジフルオロエチレンを含有し、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であることを特徴とする熱サイクル用作動媒体を提供する。
 また本発明は、トリフルオロエチレンとジフルオロエチレンとジフルオロメタンとを含む熱サイクル用作動媒体であって、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であり、作動媒体の全量に対する前記トリフルオロエチレンと前記ジフルオロメタンの合計量の割合が80質量%以上であることを特徴とする熱サイクル用作動媒体を提供する。
 さらに本発明は、トリフルオロエチレンとジフルオロエチレンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であり、作動媒体の全量に対する前記トリフルオロエチレンと前記2,3,3,3-テトラフルオロプロペンの合計量の割合が70質量%以上であることを特徴とする熱サイクル用作動媒体を提供する。
 さらに、また、本発明は、トリフルオロエチレンとジフルオロエチレンとジフルオロメタンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であることを特徴とする熱サイクル用作動媒体を提供する。
 本発明の熱サイクル用作動媒体(以下、作動媒体とも記す。)は、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない。また、HFO-1123の製造の際に不純物として存在するジフルオロエチレンの含有量が、作動媒体の全量に対して1.5質量%未満に調整されているので、サイクル性能に優れる熱サイクル用作動媒体が得られる。
本発明の実施例において、作動媒体のサイクル性能を測定するために使用する冷凍サイクルシステムを示した概略構成図である。 図1の冷凍サイクルシステムにおける作動媒体の状態変化を、圧力-エンタルピ線図上に記載したサイクル図である。
<作動媒体>
 本発明の実施形態の作動媒体は、HFO-1123とジフルオロエチレンを含有し、作動媒体の全量に対するジフルオロエチレンの割合が1.5質量%未満である。
 実施形態の作動媒体は、HFO-1123とジフルオロエチレンの他に、後述する化合物をさらに含有してもよい。
<HFO-1123>
 HFO-1123は、地球温暖化係数(GWP)が低く、オゾン層への影響が少なく地球温暖化への影響が少ない。また、HFO-1123は、作動媒体としての能力に優れ、特にサイクル性能(例えば、後述する方法で求められる成績係数および冷凍能力)に優れている。
 HFO-1123の含有量は、サイクル性能の点から、作動媒体の全量(100質量%)に対して20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。
 HFO-1123は、単独で用いた場合に高温または高圧下で着火源があると分解反応を起こす、いわゆる自己分解性を有することが知られている。HFO-1123の自己分解反応防止の観点からは、HFO-1123の含有量は、作動媒体の全量に対して80質量%以下であることが好ましく、70質量%以下がより好ましく、60質量%以下が最も好ましい。
 本発明の作動媒体においては、HFO-1123を、後述するHFC-32等と混合してHFO-1123の含有量を抑えることで、自己分解反応を抑えることができる。HFO-1123の含有割合を80質量%以下とした場合、熱サイクルシステムに適用する場合の温度や圧力条件下では自己分解性を有しないため、安全性の高い作動媒体を得ることができる。
<ジフルオロエチレン>
 ジフルオロエチレンは、HFO-1123の製造の際に副生し、不純物として生成組成物中に存在する化合物である。ジフルオロエチレンとしては、1,1-ジフルオロエチレン(HFO-1132a)と、E-および/またはZ-1,2-ジフルオロエチレン(HFO-1132)を挙げることができる。なお、E-および/またはZ-は、E体とZ体の混合物を意味し、E/Z-とも示す。
 本発明におけるジフルオロエチレンの量はHFO-1132aとHFO-1132の合計量を意味するが、本発明の作動媒体としては特にHFO-1123の製造の際に副生し易く、不純物として生成組成物中に残存しやすいHFO-1132aが少ないことが好ましい。
 作動媒体がジフルオロエチレンを含有すると、サイクル性能が低い。しかし、ジフルオロエチレンの含有量を作動媒体の全量に対して1.5質量%未満とした場合には、十分に優れたサイクル性能を有する作動媒体を得ることができる。
 なお、ジフルオロエチレンの含有量は、作動媒体の全量に対して4ppm以上とすることが好ましく、50ppm以上がさらに好ましく、100ppm以上が最も好ましい。含有量が4ppm以上であれば、粗HFO-1123を精製し不純物としてのジフルオロエチレンを低減する工程が簡略化できるという利点がある。
<HFCおよび/またはHFO>
 本発明の作動媒体は、HFO-1123およびジフルオロエチレン以外に、ヒドロフルオロカーボン(HFC)、およびその他のヒドロフルオロオレフィン(HFO)をさらに含むことができる。
 オゾン層への影響が少なく、かつサイクル性能に優れる点から、HFCとしては、ジフルオロメタン(HFC-32)、1,1-ジフルオロエタン(HFC-152a)、1,1,1-トリフルオロエタン(HFC-143a)、1,1,2,2-テトラフルオロエタン(HFC-134)、1,1,1,2-テトラフルオロエタン(HFC-134a)、およびペンタフルオロエタン(HFC-125)が挙げられる。これらのHFCは、1種を単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、HFC-32が特に好ましい。
 その他のHFOとしては、オゾン層への影響が少なくサイクル特性に優れる点から、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、トランス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、シス-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、トランス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)等が挙げられる。これらのHFCは、1種を単独で用いても2種以上を組み合わせて用いてもよい。なかでも、高い臨界温度を有し、安全性、サイクル性能に優れる点から、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)が好ましく、HFO-1234yfが特に好ましい。
<HFC-32>
 本発明の作動媒体がHFC-32を含有する場合、HFO-1123とHFC-32の各含有量の割合は、HFO-1123とHFC-32との合計を100質量%として、HFO-1123を10~99質量%、HFC-32を90~1質量%が好ましく、HFO-1123を20~99質量%、HFC-32を80~1質量%がより好ましく、HFO-1123を25~99質量%、HFC-32を75~1質量%が特に好ましい。特に、HFO-1123の含有割合が90質量%であり、HFC-32の含有割合が10質量%である組成物は、気液両相の組成比の差が極めて小さく、共沸組成物となるので安定性に優れている。
 また、HFO-1123とHFC-32の合計量は、作動媒体の全量に対して60質量%以上であることが好ましく、70質量%以上がより好ましい。HFO-1123の含有量は、作動媒体の全量に対して20質量%以上であることが好ましく、40質量%以上であることがより好ましい。
<HFO-1234yf>
 本発明の作動媒体がHFO-1234yfを含有する場合、HFO-1123とHFO-1234yfの合計量に対するHFO-1123の含有量の割合は、35~95質量%が好ましく、40~95質量%がより好ましく、50~90質量%がさらに好ましく、50~85質量%がよりさらに好ましく、60~85質量%が最も好ましい。
 HFO-1123とHFO-1234yfの合計量の作動媒体の全量に対する割合は、70質量%以上が好ましい。80質量%以上がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。HFO-1123の含有量は、作動媒体の全量に対して20質量%以上であることが好ましく、40質量%以上であることがより好ましい。HFO-1123とHFO-1234yfの合計量が上記範囲内であれば、熱サイクルに用いた際に一定の能力を維持しながら効率をより高めることで、良好なサイクル性能が得られる。
 さらに、本発明の作動媒体が、HFC-32とHFO-1234yfの両方を含有する場合、HFO-1123とHFC-32とHFO-1234yfの合計量は、作動媒体の全量に対して90質量%超が好ましい。また、HFO-1123とHFC-32とHFO-1234yfの合計量に対する、HFO-1123の割合は20質量以上70質量%未満であり、同じくHFC-32の割合は30質量%以上75質量%以下であり、同じくHFO-1234yfの割合は50質量%以下であることが好ましい。HFO-1234yfの割合は、より好ましくは40質量%以下であり、最も好ましくは30質量%である。
 HFO-1123をはじめとする各成分の割合を前記範囲内にすることで、地球温暖化への影響を抑えつつ、熱サイクルに用いた際に実用上十分なサイクル性能が得られる作動媒体とすることができる。
<その他の成分>
 本発明の作動媒体には、HFO-1123、HFC-32、HFO-1234yfおよびジフルオロエチレン以外に、その他の成分を含有してもよい。その他の成分の含有量は、作動媒体の全量を100質量%として、ジフルオロエチレンとその他の成分の合計量で1.5質量%未満が好ましく、1.4質量%以下がより好ましい。
 その他の成分は、HFO-1123の製造の際に生成する組成物(例えば、反応器からの出口ガスをいう。以下同様である。)に含まれる不純物(原料中の不純物、中間生成物、副生物等が含まれる。以下同様である。)、HFC-32の製造の際に生成する組成物に含まれる不純物、HFO-1234yfの製造の際に生成する組成物に含まれる不純物である。
 その他の成分の化合物の略称、化学式および名称を、表1および表2に示す。なお、表1および表2は、HFO-1123、ジフルオロエチレン(HFO-1132aおよびHFO-1132)、HFC-32およびHFO-1234yfの略称、化学式および名称も併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、HFO-1123、HFC-32、およびHFO-1234yfの各化合物を製造する方法と、それらの製造時に得られた組成物に含有される不純物について説明する。
<HFO-1123の製造>
 HFO-1123を製造する方法としては、例えば、(I)クロロトリフルオロエチレン(CTFE)(CFO-1113)の水素還元と、(II)クロロジフルオロメタン(HCFC-22)とクロロフルオロメタン(HCFC-31)との熱分解を伴う合成、および(III)1,1,1,2-テトラフルオロエタン(HFC-134a)と固体反応剤との接触反応の3つの方法を挙げることができる。
(I)CFO-1113の水素還元
 CFO-1113と水素とを、触媒担持担体が充填された触媒層を有する反応器内で気相で反応させ、HFO-1123を含むガスを生成する。
 この方法では、反応器内で[化1]の反応式に示す反応が行われる。
Figure JPOXMLDOC01-appb-C000003
 原料組成物におけるCFO-1113と水素の割合は、CFO-1113の1モルに対して水素が0.01~4.0モルの範囲である。反応器内の圧力は、取り扱い性の点から、常圧が好ましい。触媒としてはパラジウム触媒が好ましく、パラジウム触媒は活性炭等の担体に担持して用いる。気相反応を行うために、触媒層の温度は、CFO-1113と水素を含む原料組成物(混合ガス)の露点以上の温度とする。220℃から240℃の範囲が好ましい。原料化合物であるCFO-1113と触媒との接触時間は、4~60秒間が好ましい。
 このようなCFO-1113の水素還元においては、HFO-1123を含む組成物を反応器の出口ガスとして得ることができる。出口ガスに含有されるHFO-1123以外の化合物としては、未反応原料であるCFO-1113に加えて、HFO-1132、HFO-1132a、HCFO-1122、HCFO-1122a、HFC-143、メタン、HFC-152a、HCFC-142、HCFC-142b、HCFC-133、HCFC-133b、HCFC-123a、CFC-113、およびCFO-1112等が挙げられる。
(II)HCFC-22とHCFC-31との熱分解を伴う合成
 HCFC-22とHCFC-31を含む原料組成物を用い、熱媒体の存在下で熱分解を伴う合成反応によりHFO-1123を製造する。
 この製造方法では、HCFC-22の1モルに対してHCFC-31を0.01~4.0モルの割合で予め混合し、または別々に反応器に供給して反応器内に滞留させ、一方熱媒体を反応器に供給し、反応器内で前記原料組成物と接触させる。反応器内の温度は、400~1200℃とすることが好ましい。
 この製造方法における反応器内の主な反応を、[化2]の式に示す。
Figure JPOXMLDOC01-appb-C000004
 原料組成物は、常温のまま反応器に導入してもよいが、反応器内での反応性を高めるために、予め加熱してから反応器に導入してもよい。反応器に供給するHCFC-31の温度は0~600℃とするのが好ましく、HCFC-22の温度は常温(25℃)以上600℃以下とするのが好ましい。
 熱媒体は、反応器内の温度で熱分解が生じない媒体であり、水蒸気を50体積%以上含み、残部が窒素および/または二酸化炭素である気体の使用が好ましい。熱媒体の供給量は、熱媒体と前記原料組成物の供給量の合計に対して20~98体積%が好ましい。熱媒体と原料組成物との反応器内での接触時間は、0.01~10秒間とするのが好ましく、反応器内の圧力は、ゲージ圧で0~2.0MPaとするのが好ましい。
 このようなHCFC-22とHCFC-31との熱分解を伴う合成においては、HFO-1123を含む組成物を反応器の出口ガスとして得ることができる。出口ガスに含有されるHFO-1123以外の化合物としては、未反応原料であるHCFC-22およびHCFC-31に加えて、HFO-1132、HFO-1132a、HFO-1141、CFO-1113、HCFO-1122、HCFO-1122a、HFC-143、FO-1114、HCFO-1131、HFO-1252zf、HFO-1243zf、HFO-1234yf、HFO-1234ze、FO-1216、HFC-125、HFC-134、HFC-134a、HFC-143a、HCFC-124、HCFC-124a、HFC-227ca、HFC-227ea、HFC-236fa、HFC-236ea、CFC-12、HFC-23、HFC-32、HFC-41、HCC-40、RC-318およびメタン等が挙げられる。
(III)HFC-134aと固体反応剤との接触反応
 HFC-134aを含む原料ガスと固体反応剤とを反応器内で接触させて反応させ、HFO-1123を含む組成物(ガス)を生成する。固体反応剤としては、例えば、粒子状の酸化カルシウムを使用することができる。
 この態様における反応器内の主な反応を、[化3]の式に示す。
Figure JPOXMLDOC01-appb-C000005
 原料ガス(100モル%)中のHFC-134aの含有量は、5~100モル%が好ましい。また、反応器内の温度は200~500℃が好ましく、圧力はゲージ圧で0~2MPaが好ましい。
 また、特に、所定の平均粒子径(1μm~5000μm)の粒子状の固体反応剤(例えば、炭酸カリウムおよび/または酸化カルシウム)を使用し、この固体反応剤の層中にHFC-134aを含む原料ガスを流通させて、固体反応剤層が流動化した状態でHFC-134aを接触させる方法を採ることもできる。この態様では、HFC-134aを固体反応剤と接触させる温度は100℃~500℃の範囲が好ましい。
 このようなHFC-134aと固体反応剤との接触反応においては、HFO-1123を含む組成物を反応器の出口ガスとして得ることができる。出口ガスに含有されるHFO-1123と未反応の原料成分(HFC-134a)以外の化合物としては、フッ化水素、E/Z-HFO-1132、HFO-1132a、HFC-143、HFC-143a、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、イソブタン、1-ノルマルブテン、2-ノルマルブテン、イソブテン、HFO-1141、HFO-1252zf、HFO-1243zf、HFO-1234yf、E/Z-HFO-1234ze、FO-1216、HFC-125、HFC-134、HFC-143a、HFC-227ca、HFC-227ea、HFC-236fa、HFC-236ea、HFC-32、HFC-23およびHFC-41等が挙げられる。
 このように、HFO-1123の各製造方法では、HFO-1123とともに、前記したジフルオロエチレン化合物(HFO-132aおよび/またはHFO-132)と、各種の化合物が、反応器からの出口ガスのような生成組成物中に不純物として存在する。これらの不純物から、前記ジフルオロエチレン化合物とHFC-32およびHFO-1234yfを除いた化合物が、前記した第1の化合物である。
<HFC-32の製造>
 HFC-32を製造する方法としては、ジクロロメタン(HCC-30)とフッ化水素とを、フッ化アルミニウム触媒、またはフッ化アルミニウムを担体と混合成型した触媒、あるいはフッ化クロムを担体に担持させた触媒を用い、200~500℃の温度で気相反応させる方法を挙げることができる。この方法では、反応器の出口ガスに、目的とするHFO-32とともに、HFC-31が含有される。また、未反応のHCC-30も含有される。
 また、HFC-32を製造する別の態様として、HCC-30とフッ化水素とを、五フッ化アンチモンと三フッ化アンチモンとの混合物、または所定濃度の五フッ化アンチモンのようなフッ素化触媒の存在下、液相で反応させる(80~150℃の温度、8~80kg/cmの圧力)方法を挙げることができる。この方法では、HFC-32の他に、不純物として、HFC-31、HFC-23およびHCC-40が生成する。
 このようにHFC-32の各製造方法では、不純物として、HCC-30、HFC-31、HFC-23、およびHCC-40が生成する。これらの不純物が前記した第1の化合物である。
<1234yfの製造>
 HFO-1234yfを製造する方法としては、(i)ジクロロペンタフルオロプロパン(HCFC-225)の異性体混合物を用いる方法(225法)、(ii)ヘキサフルオロプロペン(FO-1216)を原料化合物とする方法(HFP法)、(iii)1,1,2,3-テトラクロロプロペン(HCC-1230)を出発物質とする方法(TCP法)、(iv)熱媒体存在下、原料組成物を熱分解を伴う合成反応させる方法等を挙げることができる。
(i)225法
 HCFC-225の異性体混合物を用いてHFO-1234yfを製造する。この方法では、以下の[化4]に示す反応経路の通り、原料中の1,1-ジクロロ-2,2,3,3,3-ペンタフルオロプロパン(HCFC-225ca)を選択的に脱フッ化水素させて1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)を製造し、得られるCFO-1214yaを還元してHFO-1234yfを製造する。
Figure JPOXMLDOC01-appb-C000006
 この製造方法において、HFO-1234yfとともに得られる不純物として、以下の化合物が挙げられる。すなわち、原料に含まれる不純物として、HCFC-225ca、その異性体であるHCFC-225cb、HCFC-225aa等が挙げられる。また、中間生成物として、CFO-1214ya、HCFO-1224yd等が挙げられる。さらに、副生物として、HCFC-225caの還元体であるHFC-254eb、HCFC-225aaが脱塩化水素反応した後、還元して得られるHFO-1225zc、HFO-1234yfの過還元体であるHFO-1243zf、HFO-1252zf等が挙げられる。
(ii)HFP法
 FO-1216(PFO-1216yc)を原料化合物とし、以下の[化5]に示す反応経路によりHFO-1234yfを製造する。
Figure JPOXMLDOC01-appb-C000007
 この製造方法においては、HFO-1234yfとともに得られる不純物として、FO-1216、HFO-1225ye、HFO-1234ze等が挙げられる。
 さらに、1,2,3-トリクロロプロパンを原料化合物として、以下の[化6]に示す反応経路によりHFO-1234yfを製造することができる。この製造方法では、HFC-245cbが有機不純物となる。
Figure JPOXMLDOC01-appb-C000008
(iii)TCP法
 HCC-1230を出発物質として、HFO-1234yfを生成する。すなわち、以下の[化7]に示す反応経路の通り、HCC-1230をフッ化水素でフッ素化して2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)とした後、このHCFO-1233xfをフッ化水素と反応させて2-クロロ-1,1,1,2-テトラフルオロプロパン(HCFC-244bb)とし、さらにHCFC-244bbを脱ハロゲン化水素してHFO-1234yfを生成する。
Figure JPOXMLDOC01-appb-C000009
 この製造方法においては、HCFO-1233xf、HCFC-244bb、HFO-1234ze、HFO-1243zf、1,1,1,2,3-ペンタフルオロプロパン(HFC-245eb)等が、不純物として生成する。
(iv)熱分解を伴う合成法
 熱媒体存在下、原料組成物から熱分解を伴う合成反応によりHFO-1234yfを製造する。熱媒体としては、水蒸気、窒素、二酸化炭素等が使用される。水蒸気を50体積%以上含み、残部が窒素および/または二酸化炭素である気体の使用が好ましい。
 原料組成物としては、反応器内で熱媒体との接触により分解してジフルオロカルベン(FC:)を発生し得る化合物と、クロロメタンまたはメタンとが混合して用いられる。
 具体的には、以下の(iv-1)~(iv-6)に示す化合物を含む原料組成物が使用される。そして、それぞれの項に示す化合物が、HFO-1234yfおよび未反応の原料成分以外に、反応器からの出口ガスの成分(不純物)として得られる。
(iv-1)HCFC-22とHCC-40
 HCFC-22とHCC-40を所定の割合で混合して、または別々に反応器に供給するとともに、反応器に熱媒体を供給し、反応器内でHCFC-22とHCC-40を含む原料組成物と熱媒体とを接触させ、熱分解を伴う合成反応により、HFO-1234yfとHFO-1132aを生成する。反応器内の温度は、400~1200℃とする。反応器内の主な反応を以下の[化8]に示す。
Figure JPOXMLDOC01-appb-C000010
 反応器の出口ガスに含有されるHFO-1234yfとHFO-1132aおよび未反応の原料成分以外の化合物としては、メタン、エチレン、FO-1114、FO-1216、CFO-1113、HFO-1123、RC-318、HFO-1234ze)、HFO-1132等が挙げられる。
(iv-2)HCFC-22とHCC-40とFO-1114
 HCFC-22とHCC-40とFO-1114を、予め混合してまたは別々に反応器に供給し、反応器内に所定の時間滞留させ、熱媒体を反応器に供給し、反応器内で原料組成物と熱媒体とを接触させる。そして、熱分解を伴う合成反応により、HFO-1234yfとHFO-1132aを生成する。反応器内の温度は、400~1200℃とする。反応器内の主な反応を以下の[化9]に示す。
Figure JPOXMLDOC01-appb-C000011
 反応器の出口ガスに含有されるHFO-1234yfとHFO-1132aおよび未反応の原料成分以外の化合物としては、メタン、エチレン、FO-1114、FO-1216、CFO-1113、HFO-1123、RC318、HFO-1243zf等が挙げられる。
(iv-3)R318とHCC-40
 熱媒体存在下、R318とHCC-40を含む原料組成物から、熱分解を伴う合成反応によりHFO-1234yfおよびHFO-1132aを製造する。反応器の出口ガスに含有されるHFO-1234yfとHFO-1132aおよび未反応の原料成分以外の化合物としては、メタン、エチレン、HFC-22、FO-1114、FO-1216、CFO-1113、HFO-1123、HFO-1234ze、HFO-1132等が挙げられる。
(iv-4)FO-1216とHCC-40
 熱媒体存在下、FO-1216とHCC-40を含む原料組成物から、熱分解を伴う合成反応によりHFO-1234yfおよびHFO-1132aを製造する。反応器の出口ガスに含有されるHFO-1234yfとHFO-1132aおよび未反応の原料成分以外の化合物としては、メタン、エチレン、HFC-22、HFC-23、FO-1114、FO-1216、CFO-1113、RC318、HFO-1123、HFO-1234ze、HFO-1132等が挙げられる。
(iv-5)HFC-22および/またはFO-1114とメタン
 熱媒体存在下、HFC-22および/またはFO-1114と、メタンを含む原料組成物から、熱分解を伴う合成反応によりHFO-1234yfとHFO-1132aを製造する。反応器の出口ガスに含有されるHFO-1234yfとHFO-1132aおよび未反応の原料成分以外の化合物としては、メタン、エチレン、FO-1114、FO-1216、CFO-1113、RC318、HFO-1123、HFO-1243zf等が挙げられる。
(iv-6)FO-1114とHCC-40
 熱媒体存在下、FO-1114とHCC-40を含む原料組成物から、熱分解を伴う合成反応によりHFO-1234yfを製造する。原料組成物および熱媒体が供給される反応器内の温度は400~870℃とする。反応器の出口ガスに含有されるHFO-1234yfおよび未反応の原料成分以外の化合物としては、メタン、エチレン、FO-1216、CFO-1113、RC318、HFO-1132a、HFO-1123、HFO-1243zf等が挙げられる。
 以上記載したように、本発明の作動媒体は、その他の成分を含有することができるので、作動媒体としての生産性が高い。
 本発明の作動媒体は、オゾン層への影響が少なく、かつ地球温暖化への影響が少ないうえに、サイクル性能に優れており、熱サイクルシステム用の作動媒体として有用である。熱サイクルシステムとしては、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機等が挙げられる。
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、ガスエンジンヒートポンプ、列車空調装置、自動車用空調装置等が挙げられる。
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。
 発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
 熱輸送装置としては、潜熱輸送装置が好ましい。潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプおよび二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進および凍結防止等に広く利用される。
 以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されない。例1~3、5、7、9が実施例であり、例4、6、8、10が比較例である。
[例1~10]
 HFO-1123と、HFC-32および/またはHFO-1234yfを表3に示す割合で含み、かつ作動媒体に対してHFO-1132aを同表に示す割合で含有する作動媒体を作製した。そして、これらの作動媒体について、以下の方法で、冷凍サイクル性能(以下、冷凍能力Qという。)を測定した。
 なお、冷凍能力Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味している。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表しており、システムの小型化が可能となる。
[冷凍能力Qの測定]
 冷凍能力Qの測定は、図1に示す冷凍サイクルシステム10に作動媒体を適用して、図2に示す熱サイクル、すなわちAB過程で圧縮機11による断熱圧縮、BC過程で凝縮器12による等圧冷却、CD過程で膨張弁13による等エンタルピ膨張、DA過程で蒸発器14による等圧加熱を実施した場合について行った。
 なお、図1に示す冷凍サイクルシステム10は、作動媒体(蒸気)を圧縮する圧縮機11と、圧縮機11から排出された作動媒体の蒸気を冷却し液体とする凝縮器12と、凝縮器12から排出された作動媒体(液体)を膨張させる膨張弁13と、膨張弁13から排出された液状の作動媒体を加熱して蒸気とする蒸発器14とを備える。この冷凍サイクルシステム10において、作動媒体は、蒸発時、蒸発器14の入口から出口に向かい温度が上昇し、反対に凝縮時、凝縮器12の入口から出口に向かい温度が低下する。冷凍サイクルシステム10においては、蒸発器14および凝縮器12において、作動媒体と対向して流れる水や空気等の熱源流体との間で熱交換を行うことにより構成されている。熱源流体は、冷凍サイクルシステム10において、蒸発器14では「E→E’」で示され、凝縮器12では「F→F’」で示される。
 測定条件は、蒸発器14における作動媒体の平均蒸発温度を0℃、凝縮器12における作動媒体の平均凝縮温度を40℃、凝縮器12における作動媒体の過冷却度(SC)を5℃、蒸発器14における作動媒体の過熱度(SH)を5℃として実施した。
 蒸発器において、熱源流体としてフッ素系ブライン(アサヒクリンAE-3000:旭硝子株式会社製)を用い、蒸発器14での熱交換の前後の熱源流体の温度と流量から、作動媒体の冷凍能力Qを求めた。
 冷凍能力Qの評価結果を、表3に示す。表3において、各作動媒体組成物中のHFO-1132aの含有量が0ppmの時の冷凍能力Qを1とした際の相対能力の値が1以上を◎(優)、0.9~1以上を○(良)、0.7~0.9の場合を△(やや不良)、0.7未満を×(不良)と評価して記載した。
Figure JPOXMLDOC01-appb-T000012
 表3から、HFO-1123と、HFC-32および/またはHFO-1234yfと、HFO-1132aとを含み、かつHFO-1132aの含有量の作動媒体に対する割合が1.5質量%未満となっている例1~3、5、7、9の作動媒体は、冷凍能力Qに優れることがわかる。これに対して、HFO-1132aの含有量の作動媒体に対する割合が1.5質量%以上である例4、6,8,10の作動媒体は、冷凍能力Qが不良である。
 本発明の熱サイクル用作動媒体は、冷凍・冷蔵機器(内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、自動販売機、製氷機等)、空調機器(ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等)、発電システム(廃熱回収発電等)、熱輸送装置(ヒートパイプ等)に利用可能である。
 なお、2013年4月30日に出願された日本特許出願2013-095491号および2014年2月20日に出願された日本特許出願2014-030855号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ。

Claims (14)

  1.  トリフルオロエチレンとジフルオロエチレンを含有し、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であることを特徴とする熱サイクル用作動媒体。
  2.  前記ジフルオロエチレンが1,1-ジフルオロエチレンである、請求項1に記載の熱サイクル用作動媒体。
  3.  作動媒体の全量に対する前記トリフルオロエチレンの割合が20質量%以上である、請求項1または2に記載の熱サイクル用作動媒体。
  4.  さらに、ヒドロフルオロカーボンおよび/またはヒドロフルオロオレフィンを含む、請求項1~3のいずれか一項に記載の熱サイクル用作動媒体。
  5.  前記ヒドロフルオロカーボンがジフルオロメタンである、請求項4に記載の熱サイクル用作動媒体。
  6.  前記ヒドロフルオロオレフィンが2,3,3,3-テトラフルオロプロペンである、請求項4または5に記載の熱サイクル用作動媒体。
  7.  トリフルオロエチレンとジフルオロエチレンとジフルオロメタンとを含む熱サイクル用作動媒体であって、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であり、作動媒体の全量に対する前記トリフルオロエチレンと前記ジフルオロメタンの合計量の割合が80質量%以上であることを特徴とする熱サイクル用作動媒体。
  8.  前記ジフルオロエチレンが1,1-ジフルオロエチレンである、請求項7に記載の熱サイクル用作動媒体。
  9.  作動媒体の全量に対する前記トリフルオロエチレンの割合が20質量%以上である、請求項7または8に記載の熱サイクル用作動媒体。
  10.  トリフルオロエチレンとジフルオロエチレンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であり、作動媒体の全量に対する前記トリフルオロエチレンと前記2,3,3,3-テトラフルオロプロペンの合計量の割合が70質量%以上であることを特徴とする熱サイクル用作動媒体。
  11.  前記ジフルオロエチレンが1,1-ジフルオロエチレンである、請求項10に記載の熱サイクル用作動媒体。
  12.  作動媒体の全量に対する前記トリフルオロエチレンの割合が20質量%以上である、請求項10または11に記載の熱サイクル用作動媒体。
  13.  トリフルオロエチレンとジフルオロエチレンとジフルオロメタンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、作動媒体の全量に対する前記ジフルオロエチレンの割合が1.5質量%未満であることを特徴とする熱サイクル用作動媒体。
  14.  作動媒体の全量に対して、前記トリフルオロエチレンの割合が20質量以上70質量%未満であり、ジフルオロメタンの割合が30質量%以上75質量%以下であり、2,3,3,3-テトラフルオロプロペンの割合が50質量%以下である、請求項13に記載の熱サイクル用作動媒体。
PCT/JP2014/061767 2013-04-30 2014-04-25 熱サイクル用作動媒体 WO2014178353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015514833A JP6384475B2 (ja) 2013-04-30 2014-04-25 熱サイクル用作動媒体
CN201480024770.8A CN105164228B (zh) 2013-04-30 2014-04-25 热循环用工作介质
EP14791372.7A EP2993212B1 (en) 2013-04-30 2014-04-25 Working medium for heat cycle
US14/850,035 US10053607B2 (en) 2013-04-30 2015-09-10 Working fluid for heat cycle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013095491 2013-04-30
JP2013-095491 2013-04-30
JP2014-030855 2014-02-20
JP2014030855 2014-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/850,035 Continuation US10053607B2 (en) 2013-04-30 2015-09-10 Working fluid for heat cycle

Publications (1)

Publication Number Publication Date
WO2014178353A1 true WO2014178353A1 (ja) 2014-11-06

Family

ID=51843481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061767 WO2014178353A1 (ja) 2013-04-30 2014-04-25 熱サイクル用作動媒体

Country Status (5)

Country Link
US (1) US10053607B2 (ja)
EP (1) EP2993212B1 (ja)
JP (1) JP6384475B2 (ja)
CN (1) CN105164228B (ja)
WO (1) WO2014178353A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115551A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 作動媒体の製造方法
WO2015115548A1 (ja) * 2014-01-30 2015-08-06 旭硝子株式会社 トリフルオロエチレンの製造方法
WO2015115549A1 (ja) * 2014-01-30 2015-08-06 旭硝子株式会社 トリフルオロエチレンの製造方法
WO2015125874A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクル用作動媒体
WO2015141679A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2016110997A1 (ja) * 2015-01-09 2016-07-14 三菱電機株式会社 熱交換器およびその熱交換器を有する冷凍サイクル装置
US20160333244A1 (en) * 2014-01-31 2016-11-17 Asahi Glass Company, Limited Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2016190177A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 熱サイクル用作動媒体および熱サイクルシステム
WO2016194847A1 (ja) * 2015-06-01 2016-12-08 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JPWO2015129548A1 (ja) * 2014-02-28 2017-03-30 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
CN107532073A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统
WO2018047816A1 (ja) * 2016-09-07 2018-03-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
US10358591B2 (en) 2014-02-20 2019-07-23 AGC Inc. Composition for heat cycle system, and heat cycle system
WO2019208384A1 (ja) * 2018-04-25 2019-10-31 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
JP2020100844A (ja) * 2013-07-12 2020-07-02 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
WO2020196876A1 (ja) * 2019-03-28 2020-10-01 ダイキン工業株式会社 トリフルオロエチレンを含む共沸又は共沸様組成物
JP2021534283A (ja) * 2018-08-14 2021-12-09 メキシケム フロー エセ・ア・デ・セ・ヴェ 冷媒組成物およびその使用

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000096B1 (fr) * 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene
FR3000095B1 (fr) * 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene et du 1,2-difluoroethylene
EP2955214A4 (en) * 2013-02-05 2016-10-05 Asahi Glass Co Ltd HEAT PUMP WORKING MEDIUM AND HEAT PUMP SYSTEM
JP6379391B2 (ja) * 2013-04-30 2018-08-29 Agc株式会社 トリフルオロエチレンを含む組成物
EP3109302B1 (en) * 2014-02-20 2020-08-05 AGC Inc. Composition for heat cycle system, and heat cycle system
JP6614128B2 (ja) 2014-02-20 2019-12-04 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
EP3109301B1 (en) * 2014-02-20 2020-06-03 AGC Inc. Composition for heat cycle system, and heat cycle system
CN114933890A (zh) 2014-02-24 2022-08-23 Agc株式会社 热循环系统用组合物及热循环系统
EP3121241B1 (en) * 2014-03-18 2019-10-30 AGC Inc. Heat cycle system composition and heat cycle system
JPWO2015186557A1 (ja) * 2014-06-06 2017-04-27 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JPWO2015186670A1 (ja) * 2014-06-06 2017-04-20 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP6796831B2 (ja) 2015-05-14 2020-12-09 Agc株式会社 流体組成物の製造方法、冷媒組成物の製造方法及び空気調和機の製造方法
GB2562509B (en) * 2017-05-17 2020-04-29 Mexichem Fluor Sa De Cv Heat transfer compositions
JP6418284B1 (ja) * 2017-06-12 2018-11-07 ダイキン工業株式会社 冷媒を含有する組成物、その使用、それを用いた冷凍方法、及びそれを含む冷凍機
GB201712813D0 (en) 2017-08-10 2017-09-27 Mexichem Fluor Sa De Cv Compositions
KR102655619B1 (ko) 2017-12-18 2024-04-09 다이킨 고교 가부시키가이샤 냉동 사이클 장치
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
EP3730574B1 (en) * 2017-12-18 2023-08-30 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
JP6642756B2 (ja) * 2018-04-25 2020-02-12 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
EP3825381A4 (en) 2018-07-17 2022-07-27 Daikin Industries, Ltd. COMPOSITION WITH REFRIGERANT, HEAT TRANSFER MEDIUM AND HEAT CYCLE SYSTEM
CN114475162A (zh) * 2018-07-17 2022-05-13 大金工业株式会社 汽车用制冷循环装置
EP4230707A1 (en) * 2018-07-17 2023-08-23 Daikin Industries, Ltd. Refrigerant cycle apparatus
EP3919467A4 (en) * 2019-01-28 2022-11-02 Daikin Industries, Ltd. AZEOTROPIC COMPOSITION CONTAINING 1,2-DIFLUOROETHYLENE OR 1,1,2-TRIFLUOROETHYLENE AND HYDROGEN FLUORIDE
CN114656933A (zh) 2019-01-30 2022-06-24 大金工业株式会社 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
CN113396198A (zh) 2019-01-30 2021-09-14 大金工业株式会社 含有制冷剂的组合物、以及使用该组合物的冷冻方法、冷冻装置的运转方法和冷冻装置
EP3922922A4 (en) 2019-02-05 2022-12-21 Daikin Industries, Ltd. COMPOSITION CONTAINING A REFRIGERANT, AND REFRIGERATION METHOD, REFRIGERATION DEVICE OPERATING METHOD AND REFRIGERATION DEVICE USING THE SAME COMPOSITION
JP6791414B2 (ja) 2019-02-06 2020-11-25 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
GB201901890D0 (en) * 2019-02-11 2019-04-03 Mexichem Fluor Sa De Cv Compositions
JP6777260B1 (ja) * 2019-06-19 2020-10-28 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機、その冷凍機の運転方法、及びそれを有する冷凍サイクル装置
CN114891483B (zh) * 2022-06-09 2023-05-02 珠海格力电器股份有限公司 一种混合制冷剂和空调系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533151A (ja) * 2007-07-13 2010-10-21 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属フッ化物触媒上でのハロゲンおよび水素を有するアルケンの製造
WO2012157762A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2012157764A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP2013095491A (ja) 2011-11-01 2013-05-20 Kiyomichi Yamane ウォーターサーバー
JP2014030855A (ja) 2012-08-01 2014-02-20 Mito Koki Kk レンチ用ソケット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305542A (ja) * 1991-02-05 1992-10-28 A G Technol Kk ハロゲン化炭化水素類の製造法
MX2009011142A (es) * 2007-04-17 2010-04-12 Knorr Technologies Llc Despunte de pimientos.
WO2010042781A2 (en) * 2008-10-10 2010-04-15 E. I. Du Pont De Nemours And Company Compositions comprising 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoro-propyl acetate or zinc (2-chloro-2,3,3,3-tetrafluoropropoxy) chloride
US8961812B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising Z-1,2-difluoroethylene and uses thereof
US8961811B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising E-1,2-difluoroethylene and uses thereof
RU2570812C2 (ru) * 2010-07-01 2015-12-10 Солвей Спешиалти Полимерс Итали С.П.А. Способ и катализатор для синтеза трифторэтилена
CN105542720B (zh) * 2011-05-19 2020-01-24 Agc株式会社 热循环用工作介质及含工作介质的组合物
JP6379391B2 (ja) * 2013-04-30 2018-08-29 Agc株式会社 トリフルオロエチレンを含む組成物
GB2535383B (en) * 2013-07-30 2016-10-19 Mexichem Amanco Holding Sa Heat transfer compositions
WO2015125874A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクル用作動媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533151A (ja) * 2007-07-13 2010-10-21 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属フッ化物触媒上でのハロゲンおよび水素を有するアルケンの製造
WO2012157762A1 (ja) * 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
WO2012157764A1 (ja) 2011-05-19 2012-11-22 旭硝子株式会社 作動媒体および熱サイクルシステム
JP2013095491A (ja) 2011-11-01 2013-05-20 Kiyomichi Yamane ウォーターサーバー
JP2014030855A (ja) 2012-08-01 2014-02-20 Mito Koki Kk レンチ用ソケット

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131579B2 (ja) 2013-07-12 2022-09-06 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JP2020100844A (ja) * 2013-07-12 2020-07-02 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
US9802878B2 (en) 2014-01-30 2017-10-31 Asahi Glass Company, Limited Method for producing trifluoroethylene
WO2015115548A1 (ja) * 2014-01-30 2015-08-06 旭硝子株式会社 トリフルオロエチレンの製造方法
WO2015115549A1 (ja) * 2014-01-30 2015-08-06 旭硝子株式会社 トリフルオロエチレンの製造方法
US10093600B2 (en) 2014-01-30 2018-10-09 AGC Inc. Method for producing trifluoroethylene
JPWO2015115551A1 (ja) * 2014-01-31 2017-03-23 旭硝子株式会社 作動媒体の製造方法
US9862868B2 (en) * 2014-01-31 2018-01-09 Asahi Glass Company, Limited Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US11746272B2 (en) 2014-01-31 2023-09-05 AGC Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2015115551A1 (ja) * 2014-01-31 2015-08-06 旭硝子株式会社 作動媒体の製造方法
US20160333244A1 (en) * 2014-01-31 2016-11-17 Asahi Glass Company, Limited Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US9969917B2 (en) 2014-01-31 2018-05-15 Asahi Glass Company, Limited Method for producing working fluid
US11220619B2 (en) 2014-01-31 2022-01-11 AGC Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2015125874A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクル用作動媒体
US10851276B2 (en) 2014-02-20 2020-12-01 AGC Inc. Composition for heat cycle system, and heat cycle system
US10072194B2 (en) 2014-02-20 2018-09-11 Asahi Glass Company, Limited Working fluid for heat cycle
US10358591B2 (en) 2014-02-20 2019-07-23 AGC Inc. Composition for heat cycle system, and heat cycle system
JPWO2015129548A1 (ja) * 2014-02-28 2017-03-30 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JPWO2015141679A1 (ja) * 2014-03-18 2017-04-13 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141678A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2015141679A1 (ja) * 2014-03-18 2015-09-24 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JPWO2015141678A1 (ja) * 2014-03-18 2017-04-13 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
EP3244156A4 (en) * 2015-01-09 2018-08-29 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus having said heat exchanger
JPWO2016110997A1 (ja) * 2015-01-09 2017-04-27 三菱電機株式会社 熱交換器およびその熱交換器を有する冷凍サイクル装置
CN107003081A (zh) * 2015-01-09 2017-08-01 三菱电机株式会社 热交换器以及具有该热交换器的制冷循环装置
WO2016110997A1 (ja) * 2015-01-09 2016-07-14 三菱電機株式会社 熱交換器およびその熱交換器を有する冷凍サイクル装置
CN107532073A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统
WO2016190177A1 (ja) * 2015-05-25 2016-12-01 旭硝子株式会社 熱サイクル用作動媒体および熱サイクルシステム
CN107614651A (zh) * 2015-05-25 2018-01-19 旭硝子株式会社 热循环用工作介质以及热循环系统
JPWO2016194847A1 (ja) * 2015-06-01 2018-03-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2016194847A1 (ja) * 2015-06-01 2016-12-08 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
US11686506B2 (en) 2016-09-07 2023-06-27 AGC Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US11015840B2 (en) 2016-09-07 2021-05-25 AGC Inc. Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JPWO2018047816A1 (ja) * 2016-09-07 2019-06-27 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2018047816A1 (ja) * 2016-09-07 2018-03-15 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2019194311A (ja) * 2018-04-25 2019-11-07 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
WO2019208384A1 (ja) * 2018-04-25 2019-10-31 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
US11352535B2 (en) 2018-04-25 2022-06-07 Daikin Industries, Ltd. Composition containing coolant, heat transfer medium and heat cycle system
JP2021534283A (ja) * 2018-08-14 2021-12-09 メキシケム フロー エセ・ア・デ・セ・ヴェ 冷媒組成物およびその使用
JP7462612B2 (ja) 2018-08-14 2024-04-05 メキシケム フロー エセ・ア・デ・セ・ヴェ 冷媒組成物およびその使用
JP2020164436A (ja) * 2019-03-28 2020-10-08 ダイキン工業株式会社 トリフルオロエチレンを含む共沸又は共沸様組成物
WO2020196876A1 (ja) * 2019-03-28 2020-10-01 ダイキン工業株式会社 トリフルオロエチレンを含む共沸又は共沸様組成物

Also Published As

Publication number Publication date
CN105164228A (zh) 2015-12-16
US20150376486A1 (en) 2015-12-31
CN105164228B (zh) 2019-06-11
JPWO2014178353A1 (ja) 2017-02-23
EP2993212A4 (en) 2016-12-28
EP2993212A1 (en) 2016-03-09
US10053607B2 (en) 2018-08-21
EP2993212B1 (en) 2019-08-28
JP6384475B2 (ja) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6384475B2 (ja) 熱サイクル用作動媒体
JP6481680B2 (ja) 熱サイクル用作動媒体
JP2015229767A (ja) 熱サイクル用作動媒体
US10858561B2 (en) Heat transfer method
US9267066B2 (en) Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene
US9011711B2 (en) Heat transfer fluid replacing R-410A
JP6432528B2 (ja) 作動媒体の製造方法
JP2019032155A (ja) 熱伝達方法
ES2946170T3 (es) Composiciones que contienen HFO-1234ZE, HFO-1225ZC y HFO-1234YF
JP7060017B2 (ja) 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
US11866634B2 (en) HFO-1234ze, HFO-1225zc and HFO-1234yf containing compositions and processes for producing and using the compositions
JP2015229768A (ja) 熱サイクル用作動媒体およびその製造方法
JP6801714B2 (ja) 熱サイクルシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480024770.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015514833

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014791372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE