WO2014174579A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2014174579A1
WO2014174579A1 PCT/JP2013/061799 JP2013061799W WO2014174579A1 WO 2014174579 A1 WO2014174579 A1 WO 2014174579A1 JP 2013061799 W JP2013061799 W JP 2013061799W WO 2014174579 A1 WO2014174579 A1 WO 2014174579A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling hole
permanent magnets
rotor
hole
rotating electrical
Prior art date
Application number
PCT/JP2013/061799
Other languages
English (en)
French (fr)
Inventor
博久 横田
拓真 笹井
盛幸 枦山
慎介 茅野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/769,851 priority Critical patent/US9935513B2/en
Priority to CN201380075880.2A priority patent/CN105144548B/zh
Priority to DE112013006967.9T priority patent/DE112013006967T5/de
Priority to PCT/JP2013/061799 priority patent/WO2014174579A1/ja
Priority to JP2015513386A priority patent/JP6042976B2/ja
Publication of WO2014174579A1 publication Critical patent/WO2014174579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • This invention relates to a rotating electrical machine in which a permanent magnet is embedded in a rotor core.
  • the rotor core strength associated with the increased centrifugal force and the cooling associated with increased loss density are major problems. Furthermore, since the eddy current generated on the surface of the permanent magnet increases and generates heat as the speed increases, it causes thermal demagnetization (irreversible demagnetization) and remarkably deteriorates the performance such as the efficiency of the motor. It has become.
  • a cooling hole having a cross-sectional shape that protrudes toward the outer peripheral side is formed in the rotor core between a pair of permanent magnets opposed to the V shape, and the refrigerant is allowed to pass through the cooling hole.
  • the rotor is cooled to prevent a decrease in efficiency due to a temperature rise (see, for example, Patent Document 1).
  • the electric motor forms the cooling hole to secure the strength of the rotor core and suppresses the temperature rise
  • the cooling hole is formed in the magnetic path of the rotor core generated by the permanent magnet. Therefore, the temperature rise caused by the magnetic resistance due to the cooling hole cannot be suppressed, and the efficiency of the electric motor is reduced.
  • An object of the present invention is to solve such problems, and an object of the present invention is to obtain a rotating electrical machine with improved efficiency by suppressing heat generation due to magnetic resistance caused by a cooling hole.
  • a rotating electrical machine includes an annular stator, and a rotor provided rotatably inside the stator,
  • the rotor includes a rotor core that is formed in a plurality along the circumferential direction and has a cooling hole through which a refrigerant passes, and a plurality of permanent magnets that are arranged at intervals on the outer periphery of the rotor core.
  • An electric machine In the rotor core, a magnet housing hole for housing the permanent magnet on both sides with a line extending in the radial direction from the center of each cooling hole as a symmetric axis extends in a closing direction toward the radially outer side.
  • the cooling hole is formed outside an arc region having a radius of a distance between the intersection and an intermediate point of the side surface of the permanent magnet, with an intersection of extension lines of the inner side surfaces of the adjacent permanent magnets as a center. Has been.
  • the cooling hole is an arc whose radius is the distance between this intersection and the intermediate point of the side surface of the permanent magnet, with the intersection between the extension lines of the inner side surfaces of the adjacent permanent magnets as the center. Therefore, the heat generation due to the magnetic resistance caused by the cooling hole is suppressed, and the efficiency is improved.
  • Embodiment 1 is a front sectional view showing an electric motor according to Embodiment 1 of the present invention. It is a principal part enlarged view of the rotor core of FIG. It is a principal part enlarged view of the magnet accommodation hole of FIG. It is a principal part front sectional view which shows the electric motor of Embodiment 2 of this invention. It is a front view which shows each modification of a cooling hole.
  • FIG. 1 is a front sectional view showing an electric motor according to Embodiment 1 of the present invention.
  • the electric motor which is a rotating electrical machine, includes an annular stator 1 and a rotor 2 that is rotatably provided on the central axis of the stator 1.
  • the stator 1 is formed by laminating a plurality of annular electromagnetic steel plates, and a stator core 3 having teeth 4 that define slots at equal intervals along the circumferential direction, and a conductive wire is concentrated around each tooth 4. Armature windings 5 formed in this manner.
  • the rotor 2 is fixed to the shaft 20, and is formed at equal intervals along the circumferential direction and has a rotor core 6 having cooling holes 7 through which refrigerant passes, and an outer peripheral portion of the rotor core 6. And permanent magnets 8 arranged at equal intervals.
  • FIG. 2 is an enlarged view of a main part showing the rotor core 6 of FIG.
  • the rotor iron core 6 is formed with track-shaped magnet housing holes 11 each housing a permanent magnet 8 with a line extending radially from the center of each cooling hole 7 as an axis of symmetry.
  • the pair of magnet housing holes 11 are formed in a V shape that closes toward the radially outer side.
  • a first bridge portion 9 is formed between adjacent magnet housing holes 11 on the outer diameter side.
  • the cooling hole 7 is formed outside the circular arc region with the radius R as the distance between the intersection A and the intermediate point B of the permanent magnet 8, centering on the intersection A between the extension lines of the inner side surfaces of the adjacent permanent magnets 8. ing. Further, the shortest distance C between the magnet housing hole 11 and the cooling hole 7 sandwiched between the pair of magnet housing holes 11 is larger than the shortest distance D between the adjacent permanent magnets 8 in the first bridge portion 9. Further, the radial width E of the cooling hole 7 is larger than the shortest distance F between the permanent magnets 8 in the second bridge portion 12 between the adjacent magnet housing holes 11 on the inner diameter side.
  • a concave portion 10 is formed on the outer peripheral surface of the rotor core 6 so as to face the first bridge portion 9.
  • the cooling hole 7 is an oblong hole having a curved surface extending outward on both sides in the circumferential direction.
  • Each magnet housing hole 11 is formed with a first cavity portion 11a and a second cavity portion 11b for preventing leakage magnetic flux of the permanent magnet 8 on both sides.
  • the first cavity portion 11a and the second cavity portion 11b have curved surfaces that spread outward.
  • This curved surface has a radius of curvature r1 at the intermediate portion and a radius of curvature r2 smaller than the radius of curvature r1 at both sides.
  • a rotating magnetic field is generated in the stator 1 by passing a three-phase alternating current through the armature winding 5 of the stator 1, and this rotating magnetic field pulls the magnetic pole of the rotor 2, thereby rotating the rotor. 2 rotates around the shaft 20.
  • the rotor iron core 6 has the magnet housing holes 11 for housing the permanent magnets 8 on both sides about the line extending in the radial direction from the cooling hole 7 as the axis of symmetry. It extends in the closing direction and is formed in a V shape.
  • the cooling hole 7 is a circular arc region having a radius between the intersection A and an intermediate point B on the side surface of the permanent magnet 8 around the intersection A between the extension lines of the inner side surfaces of the adjacent permanent magnets 8. It is formed outside.
  • Adjacent permanent magnets 8 are arranged in a V shape so that the side surface of one permanent magnet 8 is an N pole and the side surface of the other permanent magnet 8 facing the N pole is an S pole.
  • a magnetic path is formed from one permanent magnet 8 to the other permanent magnet 8.
  • the magnetic resistance increases, and from the intermediate point B of the permanent magnet 8 in the radial inner direction.
  • Magnetic field lines hardly flow.
  • the cooling hole 7 is formed in a region where the magnetic lines of force hardly flow, and therefore hardly causes resistance of the magnetic lines of force, so that a small and highly efficient electric motor can be obtained.
  • the rotor core 6 is formed with a recess 10 for suppressing the cogging torque of the rotor 2 at a portion of the outer peripheral surface facing the first bridge portion 9. Therefore, in the armature winding 5 formed by concentrated winding, the iron loss due to harmonics and field weakening increases, but the recess 10 is formed on the outer periphery of the rotor core 6 facing the first bridge portion 9. By doing so, Lq (q-axis inductance) can be reduced, and the number of rotations of the field-weakening rotor 2 can be increased. In addition, although the radial dimension in the 1st bridge part 9 becomes small by forming the recessed part 10, and the stress in the 1st bridge part 9 becomes high, by forming the above-mentioned cooling hole 7, This stress is relaxed.
  • the shortest distance C between the magnet housing hole 11 and the cooling hole 7 is larger than the shortest distance D between the adjacent permanent magnets 8, 8 of the first bridge portion 9, and the radial direction of the cooling hole 7 is set. Since the width E is larger than the shortest distance F between the permanent magnets 8 and 8 in the second bridge portion 12, the first bridge portion 9 and the second bridge portion 12 due to the centrifugal force due to the rotation of the rotor 2. The stress concentration is relaxed. The relaxation of the stress concentration has been confirmed by the strength analysis by the present inventor. Further, the expansion of the width E of the cooling hole 7 increases the cross-sectional area of the cooling passage, improving the cooling performance and reducing the weight of the rotor 2.
  • the cooling hole 7 has a curved surface extending outward on both sides in the circumferential direction, the stress concentration in the cooling hole 7 is alleviated.
  • the cooling hole 7 is a long hole extending in the circumferential direction, which is a region in which almost no magnetic lines of force are generated.
  • the child 2 is reduced in weight.
  • first hollow portion 11 a and the second hollow portion 11 b are respectively formed in the magnet housing hole 11, it is possible to prevent magnetic flux from leaking to the rotor core 6 from both sides of the permanent magnet 8. .
  • first cavity portion 11a and the second cavity portion 11b have curved surfaces extending outward, and the curved surfaces have smaller curvature radii r2 on both sides than the curvature radii r1 of the intermediate portion.
  • the stress concentration on the first bridge portion 9 and the second bridge portion 12 is alleviated.
  • FIG. FIG. 4 is a cross-sectional view of a main part showing a rotor 2 of an electric motor according to Embodiment 2 of the present invention.
  • the cooling hole 7A is circular.
  • Other configurations are the same as those of the electric motor of the first embodiment.
  • the same effect as that of the electric motor of the first embodiment can be obtained, and the cooling hole 7A is circular, so that the cooling hole 7A is used for positioning the rotor 2 when the electric motor is assembled. There is also an advantage that can be used.
  • cooling holes 7 and 7A may be cooling holes 7B, 7C, 7D, 7E, 7F, 7G, and 7H having the shapes shown in FIGS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 この発明に係る電動機によれば、冷却穴は、隣接した永久磁石の内側の側面の延長線同士の交点を中心として、この交点と永久磁石の側面の中間点との距離を半径とした円弧の領域の外側に形成されているので、冷却穴に起因した磁気抵抗による発熱は抑制され、効率が向上する。

Description

回転電機
 この発明は、回転子鉄心に永久磁石が埋め込まれた回転電機に関する。
 近年、永久磁石の目ざましい研究開発により、高磁気エネルギー積の永久磁石が開発され、電動機の小型・高出力化が進められている。
 特に、ハイブリッド自動車向けのような車両用を用途とする電動機では、限られた空間の中で高トルク、高出力化を要求されており、これを達成するためには永久磁石量を増やして高速化する必要がある。
 この場合、高遠心力化に伴う回転子鉄心強度、損失密度増加に伴う冷却が大きな問題となる。
 更に、高速化に伴って永久磁石表面に発生する渦電流が増大、発熱することにより、熱減磁(不可逆減磁)を生じ、電動機の効率等の性能を著しく低下させるため、深刻な問題となっている。
 そこで、従来の電動機は、V字形状に対向した一対の永久磁石間に、回転子鉄心に外周側に向かって凸となる断面形状を有する冷却穴を形成し、この冷却穴に冷媒を通過させることで回転子を冷却して、温度上昇による効率の低下を防いでいる(例えば、特許文献1参照)。
特許第4660406号明細書
 上記電動機は、上記冷却穴を形成することで、回転子鉄心の強度を確保しつつ、温度上昇を抑制しているものの、冷却穴は、永久磁石により生じる回転子鉄心の磁路に形成されているので、この冷却穴による磁気抵抗で生じる温度上昇を抑えることができず、電動機の効率が低下してしまうという問題点があった。
 この発明は、かかる問題点を解決することを課題とするものであって、冷却穴に起因した磁気抵抗による発熱を抑制し、効率が向上した回転電機を得ることを目的とする。
 この発明に係る回転電機は、環状の固定子と、この固定子の内側に回転自在に設けられた回転子と、を備え、
 この回転子は、周方向に沿って複数形成され冷媒が通る冷却穴を有する回転子鉄心と、この回転子鉄心の外周部に間隔を空けて配置された複数個の永久磁石と、を含む回転電機であって、
 前記回転子鉄心には、各前記冷却穴の中心から径方向に延びた線を対称軸として両側に前記永久磁石を収納する磁石収納穴が、径外側方向に向かって閉じる方向に延びたV字状であって前記回転子鉄心の外径側の隣接した前記永久磁石間が第1のブリッジ部を介して離間するように形成され、
 前記冷却穴は、隣接した前記永久磁石の内側の側面の延長線同士の交点を中心として、この交点と前記永久磁石の前記側面の中間点との距離を半径とした円弧の領域の外側に形成されている。
 この発明に係る回転電機によれば、冷却穴は、隣接した永久磁石の内側の側面の延長線同士の交点を中心として、この交点と永久磁石の側面の中間点との距離を半径とした円弧の領域の外側に形成されているので、冷却穴に起因した磁気抵抗による発熱は抑制され、効率が向上する。
この発明の実施の形態1の電動機を示す正断面図である。 図1の回転子鉄心の要部拡大図である。 図2の磁石収納穴の要部拡大図である。 この発明の実施の形態2の電動機を示す要部正断面図である。 冷却穴の各変形例を示す正面図である。
 以下、この発明の各実施の形態の電動機について図に基づいて説明するが、各図において同一または相当部材、部位については同一符号を付して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1の電動機を示す正断面図である。
 この回転電機である電動機は、環状の固定子1と、この固定子1の中心軸線上に回転自在に設けられた回転子2と、を備えている。
 固定子1は、環状の電磁鋼板を複数枚積層して形成され、周方向に沿って等間隔でスロットを画成したティース4を有する固定子鉄心3と、各ティース4に導線が集中巻きして形成された電機子巻線5と、を備えている。
 回転子2は、シャフト20と、このシャフト20に固定され、周方向に沿って等分間隔で形成され冷媒が通る冷却穴7を有する回転子鉄心6と、この回転子鉄心6の外周部に等分間隔で配置された永久磁石8と、を備えている。
 図2は図1の回転子鉄心6を示す要部拡大図である。
 この回転子鉄心6は、各冷却穴7の中心から径方向に延びた線を対称軸として両側には永久磁石8を収納したトラック状の磁石収納穴11がそれぞれ形成されている。これら一対の磁石収納穴11は、径外側方向に向かって閉じるV字状になるように形成されている。外径側の隣接した磁石収納穴11間には、第1のブリッジ部9が形成されている。
 冷却穴7は、隣接した永久磁石8の内側側面の延長線同士の交点Aを中心として、交点Aと永久磁石8の中間点Bとの距離を半径Rとした円弧の領域の外側に形成されている。
 また、磁石収納穴11と、一対の磁石収納穴11で挟まれた冷却穴7との最短距離Cは、第1のブリッジ部9での隣接した永久磁石8間の最短距離Dよりも大きい。
 また、冷却穴7の径方向の幅Eは、内径側の隣接した磁石収納穴11間の第2のブリッジ部12での永久磁石8間の最短距離Fよりも大きい。
 また、回転子鉄心6の外周面には、第1のブリッジ部9と対向して凹部10が形成されている。
 冷却穴7は、小判状であって周方向の両側に外側に拡がる曲面を有した長穴である。
 各磁石収納穴11は、両側に永久磁石8の漏洩磁束を防止するための第1の空洞部11a及び第2の空洞部11bが形成されている。
 第1の空洞部11a及び第2の空洞部11bは、外側に拡がった曲面を有している。この曲面は、中間部が曲率半径r1、両側が曲率半径r1よりも小さい曲率半径r2の値を有している。
 なお、第1の空洞部11a及び第2の空洞部11bの一方のみに、曲率半径r1、曲率半径r2を有する曲面を形成してもよい。
 上記構成の電動機では、固定子1の電機子巻線5に三相交流電流を流すことで固定子1には回転磁界が生じ、この回転磁界が回転子2の磁極を引っ張ることで、回転子2は、シャフト20を中心にして回転する。
 この実施の形態の電動機によれば、回転子鉄心6には、冷却穴7から径方向に延びた線を対称軸として両側に永久磁石8を収納する磁石収納穴11が、径外側方向に向かって閉じる方向に延びてV字状に形成されている。
 また、冷却穴7は、隣接した永久磁石8の内側の側面の延長線同士の交点Aを中心として、この交点Aと永久磁石8の側面の中間点Bとの距離を半径とした円弧の領域の外側に形成されている。
 隣接した永久磁石8同士は、一方の永久磁石8の側面がN極であって、このN極に対向した他方の永久磁石8の側面がS極になるようにV字状に配置されており、一方の永久磁石8から他方の永久磁石8に磁路が形成される。
 隣接した永久磁石8間の第1のブリッジ部9から径内側方向に進むに従って両者の周方向の距離が増大することで磁気抵抗は増大し、永久磁石8の中間点Bから径方向の内側では、磁力線は殆ど流れない。
 この実施の形態では、冷却穴7は、磁力線が殆ど流れない領域に形成されているので、磁力線の抵抗となることは殆どなく、因って小型で高効率の電動機を得ることができる。
 また、回転子鉄心6は、外周面のうち、第1のブリッジ部9と対向した部位に回転子2のコギングトルクを抑制するための凹部10が形成されている。
 従って、集中巻きして形成された電機子巻線5では高調波で弱め界磁での鉄損が大きくなるが、第1のブリッジ部9と対向した回転子鉄心6の外周に凹部10を形成することで、Lq(q軸インダクタンス)を小さくでき、弱め界磁の回転子2の回転数を高速にすることができる。
 なお、凹部10を形成することで、第1のブリッジ部9での径方向の寸法が小さくなり、第1のブリッジ部9での応力が高くなるものの、上記冷却穴7を形成することで、この応力は緩和される。
 また、磁石収納穴11と冷却穴7との間の最短距離Cは、第1のブリッジ部9の隣接した永久磁石8,8間の最短距離Dよりも大きく、また冷却穴7の径方向の幅Eは、第2のブリッジ部12での永久磁石8,8間の最短距離Fよりも大きいので、回転子2の回転による遠心力による第1のブリッジ部9、第2のブリッジ部12への応力集中が緩和される。
 この応力集中の緩和に関しては、本願発明者による強度解析により確認されている。
 また、冷却穴7の幅Eの拡大により、冷却通路の断面積が増大し、冷却性能が向上するとともに、回転子2が軽量化される。
 また、冷却穴7は、周方向の両側に外側に拡がる曲面を有しているので、冷却穴7の応力集中が緩和される。
 また、冷却穴7は、磁力線が殆ど生じない領域である周方向に延びた長穴であるので、通過磁束を妨げることなく、冷却通路の断面積が増大し、冷却性能が向上するとともに、回転子2が軽量化される。
 また、磁石収納穴11は、第1の空洞部11a及び第2の空洞部11bがそれぞれ形成されているので、永久磁石8の両側から磁束が回転子鉄心6に洩れるのを防止することができる。
 また、第1の空洞部11a及び第2の空洞部11bには、外側に拡がる曲面を有しており、この曲面は、中間部の曲率半径r1よりも両側の曲率半径r2が小さいので、第1のブリッジ部9及び第2のブリッジ部12への応力集中が緩和される。
 実施の形態2.
 図4はこの発明の実施の形態2の電動機の回転子2を示す要部断面図である。
 この実施の形態では、冷却穴7Aが円形である。
 他の構成は、実施の形態1の電動機と同じである。
 この実施の形態では、実施の形態1の電動機と同様な効果を得ることができるとともに、冷却穴7Aが円形であるので、電動機の組立て時において、この冷却穴7Aを回転子2の位置決め用としても利用できる利点がある。
 なお、上記各実施の形態では回転電機として電動機について説明したが、発電機にもこの発明は適用できる。
 また、冷却穴7,7Aについては、例えば図5(a)~(g)に示す形状の冷却穴7B,7C,7D,7E,7F,7G,7Hであってもよい。
 1 固定子、2 回転子、3 固定子鉄心、4 ティース、5 電機子巻線、6 回転子鉄心、7 冷却穴、8 永久磁石、9 第1のブリッジ部、10 凹部、11 磁石収納穴、11a 第1の空洞部、11b 第2の空洞部、20 シャフト、A 交点、B 中間点、C,D,F 最短距離、E 幅、R 半径、r1,r2 曲率半径。

Claims (7)

  1.  環状の固定子と、この固定子の内側に回転自在に設けられた回転子と、を備え、
     この回転子は、周方向に沿って複数形成され冷媒が通る冷却穴を有する回転子鉄心と、この回転子鉄心の外周部に間隔を空けて配置された複数個の永久磁石と、を含む回転電機であって、
     前記回転子鉄心には、各前記冷却穴の中心から径方向に延びた線を対称軸として両側に前記永久磁石を収納する磁石収納穴が、径外側方向に向かって閉じる方向に延びたV字状であって前記回転子鉄心の外径側の隣接した前記永久磁石間が第1のブリッジ部を介して離間するように形成され、
     前記冷却穴は、隣接した前記永久磁石の内側の側面の延長線同士の交点を中心として、この交点と前記永久磁石の前記側面の中間点との距離を半径とした円弧の領域の外側に形成されている回転電機。
  2.  前記回転子鉄心は、外周面のうち、前記ブリッジ部と対向した部位に凹部が形成されている請求項1に記載の回転電機。
  3.  前記磁石収納穴と前記冷却穴との間の最短距離は、前記第1のブリッジ部の隣接した前記永久磁石間の最短距離よりも大きく、また前記冷却穴の径方向の幅は、前記回転子鉄心の内径側の隣接した前記磁石収納穴間の第2のブリッジ部での前記永久磁石間の最短距離よりも大きい請求項1または2に記載の回転電機。
  4.  前記冷却穴は、周方向の両側に外側に拡がる曲面を有している請求項1~3の何れか1項に記載の回転電機。
  5.  前記冷却穴は、周方向に延びた長穴である請求項4に記載の回転電機。
  6.  前記磁石収納穴は、両側に前記永久磁石の漏洩磁束を防止するための第1の空洞部及び第2の空洞部がそれぞれ形成されている請求項1~5の何れか1項に記載の回転電機。
  7.  前記第1の空洞部及び前記第2の空洞部の少なくとも一方は、外側に拡がる曲面を有しており、この曲面は、中間部の曲率半径よりも両側の曲率半径が小さい請求項1~6の何れか1項に記載の回転電機。
PCT/JP2013/061799 2013-04-22 2013-04-22 回転電機 WO2014174579A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/769,851 US9935513B2 (en) 2013-04-22 2013-04-22 Rotating electrical machine
CN201380075880.2A CN105144548B (zh) 2013-04-22 2013-04-22 旋转电机
DE112013006967.9T DE112013006967T5 (de) 2013-04-22 2013-04-22 Rotierende elektrische Maschine
PCT/JP2013/061799 WO2014174579A1 (ja) 2013-04-22 2013-04-22 回転電機
JP2015513386A JP6042976B2 (ja) 2013-04-22 2013-04-22 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061799 WO2014174579A1 (ja) 2013-04-22 2013-04-22 回転電機

Publications (1)

Publication Number Publication Date
WO2014174579A1 true WO2014174579A1 (ja) 2014-10-30

Family

ID=51791190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061799 WO2014174579A1 (ja) 2013-04-22 2013-04-22 回転電機

Country Status (5)

Country Link
US (1) US9935513B2 (ja)
JP (1) JP6042976B2 (ja)
CN (1) CN105144548B (ja)
DE (1) DE112013006967T5 (ja)
WO (1) WO2014174579A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180044976A (ko) * 2015-11-02 2018-05-03 미쓰비시덴키 가부시키가이샤 전동기, 로터, 압축기 및 냉동 공조 장치
JP2019041489A (ja) * 2017-08-25 2019-03-14 本田技研工業株式会社 回転電機用ロータ、回転電機用電磁鋼板および電動車両
WO2019181001A1 (ja) * 2018-03-20 2019-09-26 株式会社 東芝 回転電機
WO2019181754A1 (ja) * 2018-03-22 2019-09-26 株式会社富士通ゼネラル 圧縮機
JP2020061874A (ja) * 2018-10-10 2020-04-16 本田技研工業株式会社 ロータ
WO2022074898A1 (ja) * 2020-10-06 2022-04-14 株式会社日立産機システム 回転電機

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108092429A (zh) * 2018-01-11 2018-05-29 哈尔滨理工大学 一种高效永磁轮毂电机定转子结构
JP7055668B2 (ja) * 2018-03-08 2022-04-18 本田技研工業株式会社 回転電機のロータ
JP6824942B2 (ja) * 2018-10-19 2021-02-03 本田技研工業株式会社 ロータ
JP6755921B2 (ja) * 2018-10-19 2020-09-16 本田技研工業株式会社 ロータ
JP2020078200A (ja) * 2018-11-08 2020-05-21 本田技研工業株式会社 回転電機のロータ
JP2020096410A (ja) * 2018-12-10 2020-06-18 本田技研工業株式会社 ロータ
CN110571955B (zh) * 2019-09-27 2021-03-02 珠海格力电器股份有限公司 电机转子和同步磁阻电机
CN211830367U (zh) * 2020-03-17 2020-10-30 台达电子工业股份有限公司 转子
DE102020111215A1 (de) 2020-04-24 2021-10-28 Schaeffler Technologies AG & Co. KG Rotorbaugruppe mit rotatorischer Sicherung zumindest eines Scheibenelementes; sowie elektrische Maschine
CN113410932B (zh) * 2021-06-28 2023-03-14 珠海格力节能环保制冷技术研究中心有限公司 冲片组件、转子组件和电机
DE102022208565A1 (de) 2022-08-18 2024-02-29 Vitesco Technologies Germany Gmbh Rotorblechpaket mit Magnettasche, elektrische Maschine und Kraftfahrzeug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005184957A (ja) * 2003-12-18 2005-07-07 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP2005192365A (ja) * 2003-12-26 2005-07-14 Honda Motor Co Ltd 電動機
US20070096578A1 (en) * 2005-10-31 2007-05-03 Jahns Thomas M Device having permanent-magnet pieces
JP2007159196A (ja) * 2005-12-01 2007-06-21 Aichi Elec Co 永久磁石回転機及び圧縮機
JP2010183800A (ja) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp 電動機の回転子及び電動機及び送風機及び圧縮機
JP2011223864A (ja) * 2010-03-23 2011-11-04 Shin Etsu Chem Co Ltd 回転子及び永久磁石式回転機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899885B2 (ja) * 2001-10-05 2007-03-28 株式会社日立製作所 永久磁石式回転電機
JP4660406B2 (ja) 2005-09-07 2011-03-30 株式会社東芝 回転電機
US8274190B2 (en) * 2010-05-28 2012-09-25 General Electric Company Electric machine rotor bar and method of making same
US8487494B2 (en) * 2011-09-21 2013-07-16 GM Global Technology Operations LLC Interior permanent magnet machine with radially asymmetric magnet configuration
US8664823B2 (en) * 2012-05-30 2014-03-04 GM Global Technology Operations LLC Magnetic barrier for minimizing demagnetization in bi-permanent magnet synchronous machines
US9479017B2 (en) * 2014-07-22 2016-10-25 GM Global Technology Operations LLC Deep V-magnet cavity structure rotor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005184957A (ja) * 2003-12-18 2005-07-07 Toshiba Corp 永久磁石式リラクタンス型回転電機
JP2005192365A (ja) * 2003-12-26 2005-07-14 Honda Motor Co Ltd 電動機
US20070096578A1 (en) * 2005-10-31 2007-05-03 Jahns Thomas M Device having permanent-magnet pieces
JP2007159196A (ja) * 2005-12-01 2007-06-21 Aichi Elec Co 永久磁石回転機及び圧縮機
JP2010183800A (ja) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp 電動機の回転子及び電動機及び送風機及び圧縮機
JP2011223864A (ja) * 2010-03-23 2011-11-04 Shin Etsu Chem Co Ltd 回転子及び永久磁石式回転機

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010200B1 (ko) 2015-11-02 2019-08-12 미쓰비시덴키 가부시키가이샤 전동기, 로터, 압축기 및 냉동 공조 장치
KR20180044976A (ko) * 2015-11-02 2018-05-03 미쓰비시덴키 가부시키가이샤 전동기, 로터, 압축기 및 냉동 공조 장치
JP2019041489A (ja) * 2017-08-25 2019-03-14 本田技研工業株式会社 回転電機用ロータ、回転電機用電磁鋼板および電動車両
JP7166066B2 (ja) 2018-03-20 2022-11-07 株式会社東芝 回転電機
WO2019181001A1 (ja) * 2018-03-20 2019-09-26 株式会社 東芝 回転電機
US11837919B2 (en) 2018-03-20 2023-12-05 Kabushiki Kaisha Toshiba Rotary electric machine
JP2019165593A (ja) * 2018-03-20 2019-09-26 株式会社東芝 回転電機
JP2019170003A (ja) * 2018-03-22 2019-10-03 株式会社富士通ゼネラル 圧縮機
WO2019181754A1 (ja) * 2018-03-22 2019-09-26 株式会社富士通ゼネラル 圧縮機
US11349362B2 (en) 2018-10-10 2022-05-31 Honda Motor Co., Ltd. Rotor
JP2020061874A (ja) * 2018-10-10 2020-04-16 本田技研工業株式会社 ロータ
WO2022074898A1 (ja) * 2020-10-06 2022-04-14 株式会社日立産機システム 回転電機
JP2022061130A (ja) * 2020-10-06 2022-04-18 株式会社日立産機システム 回転電機
JP7489284B2 (ja) 2020-10-06 2024-05-23 株式会社日立産機システム 回転電機

Also Published As

Publication number Publication date
JP6042976B2 (ja) 2016-12-14
CN105144548A (zh) 2015-12-09
CN105144548B (zh) 2018-01-02
DE112013006967T5 (de) 2015-12-31
US9935513B2 (en) 2018-04-03
JPWO2014174579A1 (ja) 2017-02-23
US20160006307A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6042976B2 (ja) 回転電機
US7705503B2 (en) Rotating electrical machine
JP4660406B2 (ja) 回転電機
JP5260563B2 (ja) 永久磁石式発電機またはモータ
JP5774081B2 (ja) 回転電機
CN112838693B (zh) 旋转电机
JP6595443B2 (ja) 回転電機
JP4900132B2 (ja) 回転子及び回転電機
JP5951131B2 (ja) 回転電機
JP2008104323A (ja) 永久磁石式リラクタンス型回転電機
JP6157340B2 (ja) 永久磁石式回転電機
JP6048191B2 (ja) マルチギャップ型回転電機
WO2018066654A1 (ja) 同期リラクタンス型回転電機
WO2014162804A1 (ja) 永久磁石埋め込み式回転電機
JP6025998B2 (ja) 磁気誘導子型電動機
JP2013046466A (ja) 回転子
JP6766575B2 (ja) 回転電機
JP6760014B2 (ja) 回転電機
JP2015050803A (ja) 回転電機
WO2016080191A1 (ja) 磁石埋込型回転電機
WO2022210237A1 (ja) 磁気ギアード回転機械、発電システム、および磁極片回転子
JP2019161828A (ja) 回転電機
JP5679695B2 (ja) 永久磁石式回転電機
JP6169496B2 (ja) 永久磁石式回転電機
JP6766574B2 (ja) 回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075880.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769851

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130069679

Country of ref document: DE

Ref document number: 112013006967

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882957

Country of ref document: EP

Kind code of ref document: A1