WO2014174367A1 - Einlegesohle - Google Patents

Einlegesohle Download PDF

Info

Publication number
WO2014174367A1
WO2014174367A1 PCT/IB2014/001039 IB2014001039W WO2014174367A1 WO 2014174367 A1 WO2014174367 A1 WO 2014174367A1 IB 2014001039 W IB2014001039 W IB 2014001039W WO 2014174367 A1 WO2014174367 A1 WO 2014174367A1
Authority
WO
WIPO (PCT)
Prior art keywords
sole
spring steel
gel
steel plate
gel layer
Prior art date
Application number
PCT/IB2014/001039
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Grabher
Werner Mucha
Tobias Zimmerer
Original Assignee
Fleximed Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fleximed Ag filed Critical Fleximed Ag
Priority to US14/786,052 priority Critical patent/US20160073734A1/en
Priority to JP2016509563A priority patent/JP6298880B2/ja
Priority to EP14744375.8A priority patent/EP2840923B1/de
Priority to KR1020157032876A priority patent/KR102127031B1/ko
Publication of WO2014174367A1 publication Critical patent/WO2014174367A1/de
Priority to HK15104380.3A priority patent/HK1203781A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/06Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined with metal springs
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/003Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined characterised by the material
    • A43B17/006Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined characterised by the material multilayered
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/02Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined wedge-like or resilient
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/04Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined with metal insertions or coverings

Definitions

  • the innovation relates to an insole for a shoe that extends at least over the forefoot, preferably the entire foot, the sole, with a spring steel plate, the bending stiff in the transverse direction of the sole, especially in Abroll Scheme the sole, however, in the longitudinal direction of the sole is bendable vertically and after Resetting load elastically, wherein the spring steel plate has over the entire sole region a preferably perpendicular, running to the sole longitudinal direction transverse profile, and with a plastic layer in which the spring steel plate is arranged.
  • Such insoles are known from EP 373 336 A1 and EP 1 189 527 A1.
  • a disadvantage of a spring steel material is its limited shock absorption property, i. the energy applied to the spring steel material by a falling part of the weight is absorbed only to a limited extent by such a metal plate, the remaining energy being dissipated via the spring back of the metal plate to the rebounding part of the weight.
  • Transferred to such in-shoe insole, for the wearer means that the shoe rebounds when running, with the rebound energy delivered being introduced into and absorbed by the foot of the wearer.
  • shoe insoles In order to improve the shock absorption ability, gel shoe inserts have been proposed as a shoe insole. Such shoe insoles are shown, for example, in "Kunststoffe” Heft 8 (2005), pages 56 to 58. Further shoe insoles made of a gel are described in DE 20 2005 005011 U1, US 2012 / 0023776A1 or WO 2007/092091 A2.
  • Gel materials have the property that they are not only compressed as plastic foams when pressure is applied, but also dodge sideways and thus deform elastically in all three spatial directions and reset after relief again on the nature of the memory effect. Parts of the gel molecules are quasi-liquid and flowable within the remaining gel matrix. They are partly chemically bound, partly physically held on the matrix in a highly complex equilibrium process and are deformed under pressure loading under deformation of the matrix. This deformation is essentially reversible and thus leads to absorption and absorption of the transmitted kinetic energy of the impacting body when loaded.
  • the novelty is therefore based on the object to provide an insole of the type mentioned above, which has an improved shock absorption behavior.
  • polyurethane components can be used, as described in EP 57 838 A1 and EP 51 1 570 A1.
  • two components namely an isocyanate component and a polyol component are used, the usual way mixed in the one-shot process and then processed during the pot life.
  • the polyurethane gel is prepared from prepolymers in which the product of isocyanate functionality and functionality of the polyol component is at least 5.2, preferably at least 6.5. Based on the weight ratio, this ratio is advantageously 1: 6.5 - 1: 8.
  • the polyol component for the preparation of the gel consists of a mixture of
  • reaction mixture is in the range of 15-59.81 and the product of isocyanate functionality and functionality of the polyol component is at least 6.15.
  • the raw materials consist of the preparation of the gel
  • polyols (b 2) having hydroxyl numbers in the range
  • Hydroxyl groups and d) optionally from polyurethane chemistry known fillers and / or additives, wherein the weight ratio of components (b1) to component (b2) is between 90:10 and 10:90, the isocyanate index of the reaction mixture in the range is from 15-59.81 and the product of isocyanate functionality and functionality of the polyol component is at least 6.15.
  • the polyol component consists of one or more polyols having a molecular weight between 1,000 and 12,000 and an OH number between 20 and 12, the product of the functionalities of the polyurethane-forming components being at least 5.2 and the isocyanate index between 15 and 15 and 60 is.
  • isocyanates may be used for gel preparation preferably those of the formula Q (NCO) n, wherein the letter n is 2 to 4 and Q is an aliphatic hydrocarbon textt with 8 - 18 carbon atoms, a cycloaliphatic hydrocarbon radical with 4-15 C. Atoms or an aromatic hydrocarbon radical having 8-15 carbon atoms.
  • Q isocyanates
  • the isocyanates can be present either in pure form or as modified isocyanate.
  • fillers and / or additives known from polyurethane chemistry may be added in a total amount of up to 50% by weight, based on the total weight of the gel mass.
  • the weight ratio of the polyisocyanate component to the polyol component is 1: 6.5 to 1: 8. This leads with increasing weight ratio to an ever softer elastic solid gel. Thus, with an increase in the weight ratio, the Shore hardness 00 (measured to ASTM D 2240) falls from about 80 to about 35 at room temperature.
  • inventive Shore-hardening 00 are in a range of 45-70, in particular 52-64 at room temperature and are determined according to ASTM D 2240.
  • the isocyanate component and the polyol component are mixed together in the one-shot process, wherein the resulting mixture within the pot life (usually 5-15 minutes) must be processed and poured into the mold.
  • the choice of the mixing ratio of the polyisocyanate component and polyol component depends on the desired hardness of the gel, wherein the specific structure of the materials used and optionally an added catalyst, the effect of which has an increased hardness value of the gel result, is observed. Ultimately, the determined One skilled in the art empirically the mixing ratio and the mixing parameters to get to the desired hardness value of the gel.
  • the integrated sole of gel and metal plate is made in a conventional casting process in a conventional form, such as used in gel manufacture.
  • the composite formed in the inventive sole has improved spring and cushioning properties over those of the individual materials, resulting in an improvement in the shock absorbency properties of the inventive sole.
  • the sole made of gel and metal plate at least on one side an outer cover layer, which is impermeable to the polyurethane gel.
  • Such a cover layer may consist of a film, leather, synthetic leather or a textile material, for example a microfiber material impermeable to the PU gel.
  • the cover material used is leather or a plastic material simulated to the leather. The cover layer not only pursues the purpose of serving for the comfort of the shoe user, but also for the stabilization of the gel surface during the action of the underside of the foot in the state of use.
  • the novel process for producing the integrated sole of gel and metal plate comprises a casting process in which the following steps are carried out in a first embodiment: a) During the pot life, a first part of the liquid, not yet fully cured gel mass is poured into a mold Formation of a first gel layer, which has the usual sticky properties on its surface. b) On the first gel layer, the metal plate is placed and pressed with gentle pressure in the gel layer. c) After placing the metal plate, a second layer of gel in the mold is applied to the metal plate. d) Optionally, a cover layer is placed on the still sticky second gel layer or the cover layer is in a second embodiment before the Insertion of the first gel layer inserted into the mold, after which the gel mass for the first gel layer is introduced into the mold.
  • the metal plate is arranged in a mold so that both a top layer and a bottom layer of gel can be formed. After arranging the metal plate in the mold, the gel is then continuously introduced into the entire mold while displacing the air or into a mold evacuated from air, so that the molded body is formed in situ.
  • the inventive insole has a sole made essentially of spring steel and gel, which is usually used as a separate support sole in the shoe. On the other hand, however, this insole can be used as an insole with appropriate design of the edges.
  • the spring steel sole used as inlay within the gel bed is flexible in the longitudinal direction and stiff in the transverse direction and usually cushions the foot in its ball area.
  • a transverse or wave profile supports the rolling of the foot.
  • the support sole grasps only the front ball area, while a second embodiment covers the entire foot with front area and heel area. It is anatomically adjusted according to the shape of the shoe or the shape of the foot, so available in sizes corresponding to the different shoe sizes.
  • the transverse profiling may extend over both the forefoot and heel regions.
  • the transverse profile advantageously proceeds in the manner of a sinusoidal wave, wherein the size of the total height is 0.5-2 mm, advantageously about 1, 3-1, 6 mm.
  • the wavelength of the wave is advantageously 3-5 mm, preferably 7-12, in particular about 10 mm.
  • the transverse profiling itself preferably runs at least in the forefoot region at a specific first angle to the longitudinal direction of the sole, in particular between 70 ° -90 °, advantageously between 75 ° and 80 °. Even in the heel area, the transverse profiling can extend at these angles.
  • the waves in the rear or rear foot region can also extend at a second angle deviating from the first angle, which is preferably between 90 ° and 110 °.
  • the angle in both areas is approximately 90 °.
  • the spring-elastic hard plate material has a uniform thickness of 0.1-0.6 mm, preferably about 0.2 mm-0.4 mm, especially 0.25 mm-0.35 mm.
  • the transverse and / or longitudinal profiling can also have a different shape in cross section, for example a groove, groove, rib, gutter, corrugation or bead shape.
  • the respective troughs of the transverse profiling are completely filled with the PU gel, wherein the thickness of the gel layer is additionally greater than the total height of the transverse profile.
  • the thickness of the gel layer is uniform, so that the composite sole has a flat and smooth surface both on its upper side and its underside with a completely smooth structure.
  • the total height of the transverse profiling of the spring steel plate itself is between 0.5 and 2.5 mm, preferably 1-2 mm, in particular about 1, 5 mm.
  • the thickness of the gel layer is 1, 5-4 times, in particular the 1, 8-3.5 times, particularly preferably about 2.5-3 times based on the total height of the transverse profiling.
  • total height is to be understood as indicating the height of a profile of any kind extending out of the plane.
  • the overall height of the profile including the plate thickness is approximately 1.5mm and the total thickness of the gel is approximately 4mm, with the thickness of the spring steel plate being approximately 0.3mm.
  • the spring steel plate with its respective wave crests at equal distances to the upper and lower outer surfaces of the PU Layer is disposed in the gel layer, that is, the gel layer by the same amount d1 and d2 respectively on the bottom and top of the profile
  • the size of the protruding layers d1 and d2 may be different.
  • d1 and d2 of the gel layers as well as the total height H of the profile are measured.
  • the ratio of d1: H or d2: H can assume an amount of 0.5: 1 to 1.5: 1, preferably 0.8: 1 to 1.2: 1.
  • the rigid plate-shaped material is completely surrounded by a gel edge, which thus surrounds the side edges of the plate material substantially annular.
  • a complete sheathing of the plate-shaped material is achieved, thus achieving a further stabilization of this composite arrangement.
  • the cured gel Due to its adhesiveness during the polymerization phase, the cured gel has high adhesion to the plate-shaped material and can only be detached from the spring steel plate by destroying the entire arrangement. If the plate-shaped material is deformed in the longitudinal direction while walking, the gel layer is compressed on the upper side of the plate and stretched on the underside, so that the recoverability of the plate-shaped material is improved from the deformed state to the initial state. In the process, the gel layer does not detach from the metal surface during compression nor during stretching and remains adherent there.
  • insole all sorts of shoes, here not only low shoes, but also boots, high shoes and the like are understood.
  • the sole itself supports and protects the arch of the foot and offers protection in the ball area, whereby the foot is less fatigued due to the improved shock absorption capacity of the load pressure.
  • the innovative sole for normal shoes such as road and running shoes, especially sports shoes can be used. It has a performance-enhancing and health-protective effect.
  • the rigid plate structure prevents the risk of injury to feet, especially in the working area.
  • Figure 1 is a plan view of the underside of an insole with forefoot and heel area
  • Figure 2 is another plan view of the underside of an insole for the forefoot and
  • Figure 3 is an enlarged sectional view taken along the line A - A through the insole gem.
  • FIG. 1 A first figure.
  • an insole 10 is shown from the underside, which has a forefoot portion 12, a midfoot portion 14 and a heel portion 16 and a longitudinal axis L-L.
  • the insole 10 has, as the first component, a PU gel layer 18, the edge 20 of which represents the outer boundary of the insole 10.
  • the PU gel layer 18 is substantially transparent, so that a spring steel insert 22 with its outline 24, which represents the outer boundary of the spring steel insert 22, can be seen.
  • the spring steel insert 22 extends substantially parallel to the edge 20 of the PU gel layer 18, wherein between the contour line 24 and the edge 20, an intermediate edge region 26 is formed of PU gel.
  • first transverse profiles 28 in the forefoot area 12 and second transverse profiles 30 in the heel area 16 can be seen.
  • the profiles 28/30 extend at an angle ⁇ to the longitudinal axis L-L.
  • FIG. 2 shows a second insole 40 which only grasps the forefoot region 12.
  • FIG. 2 shows a second insole 40 which only grasps the forefoot region 12.
  • the second spring steel insert 42 extends only in the forefoot area.
  • FIG. 3 shows an enlarged sectional view through the insole 10 according to FIG.
  • the spring steel insert is shown having a wavy structure with Wave crests 52 and troughs 54 as profile 55 has.
  • the distance H of the wave crests from the wave troughs corresponds to the height of the profile 55.
  • the length of a wave corresponds to the distance W.
  • the spring steel insert 50 is embedded in a PU gel layer 56 having a thickness S. It extends on the bottom by the thickness d1 beyond the wave trough 54 of the spring steel insert 50 on the bottom. Similarly, the supernatant of the PU gel layer 56 above the corrugation 52 of the spring steel insert 50 has the thickness d2.
  • the total thickness S of the PU gel layer 50 represents the amount H plus the d1 plus d2.
  • d2 is greater than d1.
  • the insole 10 according to FIG. 3 has on its upper side a covering layer 58 firmly connected to the PU gel layer 56, which consists of leather or a plastic layer, such as a microfiber view.
  • the shock absorption test was carried out in accordance with ASTM F 1976 in the heel and ball area.
  • the impact of the human foot on the ground is simulated using a free-falling mass of 7.5 kg.
  • the impact of the free-falling mass on the test specimen takes place at a precisely defined speed of 0.5 m / s.
  • the change in speed per unit time is a measure of the braking effect of the material.
  • the maximum acceleration of the mass is measured on contact with the test specimen and at the same time the penetration depth and the rebound height are determined.
  • the absorbed energy, the emitted and absorbed energy are measured.
  • the percentage absorption ratio and the spring constant is calculated.
  • the spring steel sole has a thickness of 0.285 mm and a profiling that extends over both the forefoot and the rear foot area with a total profile height of 1, 5 mm and a wavelength of 1 cm.
  • the gel sole itself is 4 mm thick.
  • the spring steel sole is uniformly inserted with a peripheral edge of about 5 mm, the gel over the total height of the profile extends on both sides by about 1, 25 mm.
  • the spring constant is measured in N / mm.
  • the following values for the ball area / heel area resulted:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Einlegesohle (10) für einen Schuh mit einer Federstahlplatte (50), die in Sohlenquerrichtung, insbesondere im Abrollbereich der Sohle biegesteif, dagegen in der Sohlenlängsrichtung vertikal biegeweich ist und sich nach Belastung elastisch rückstellt, wobei die Federstahlplatte (50) im Wesentlichen über den gesamten Sohlenbereich ein vorzugsweise senkrecht, zur Sohlenlängsrichtung laufendes Querprofil (55) aufweist, und mit einer Kunststoffschicht, in der die Federstahlplatte (50) angeordnet ist, wobei die Kunststoffschicht eine Polyurethan-Gelschicht (18) mit einer Shore-Härte 00 von 45-70 ist.

Description

Einlegesohle
Die Neuerung betrifft eine Einlegesohle für einen Schuh, die sich zumindest über den Vorderfußbereich, vorzugsweise den gesamten Fußbereich, der Sohle erstreckt, mit einer Federstahlplatte, die in Sohlenquerrichtung, insbesondere im Abrollbereich der Sohle biegesteif, dagegen in der Sohlenlängsrichtung vertikal biegeweich ist und sich nach Belastung elastisch rückstellt, wobei die Federstahlplatte im Wesentlichen über den gesamten Sohlenbereich ein vorzugsweise senkrecht, zur Sohlenlängsrichtung laufendes Querprofil aufweist, und mit einer Kunststoffschicht, in der die Federstahlplatte angeordnet ist.
Derartige Einlegesohlen sind aus der EP 373 336 A1 und EP 1 189 527 A1 bekannt.
Sie verleihen dem Träger eines Schuhes ein angenehmes Tragegefühl, da die Einlegesohlen aufgrund ihrer Stabilität der Sohle eines Schuhes eine höhere Stabilität verleihen als übliche Sohlen. Weiterhin verleiht die hohe Federkraft des Federstahls der Einlegesohle ein verbessertes Laufgefühl, da sich die Feder- und Rückstelleingenschaften des Metallmaterials günstig auf das Gehbefinden des Trägers auswirken.
Nachteilig an einem Federstahlmaterial ist jedoch seine beschränkte Schockabsorptionseigenschaft, d.h. die durch ein fallendes Gewichtsteil auf das Federstahlmaterial aufgebrachte Energie wird nur beschränkt von einer derartigen Metallplatte absorbiert, wobei die restliche Energie über die Rückfederung der Metallplatte an das zurückprallende Gewichtsteil abgegeben wird.
Übertragen auf eine derartige in einem Schuh befindliche Einlegesohle bedeutet dies für den Schuhträger, dass der Schuh beim Laufen nachfedert, wobei die abgegebene Rückprallenergie in den Fuß des Trägers eingeleitet wird und dort absorbiert werden muss.
Führt man in Anlehnung an ASTM F 1976 einen Schockabsorptionstest durch, so stellt man an einer Federstahlsohle gemäß EP373336 fest, dass je nach Messung des Schocks im Ballen- oder Fersenbereich ca. 61% bzw. 60% der auf das Metallmaterial ausgeübten Energie absorbiert werden, während die restliche Energie in das zurückprallende Gewichtsteil zurückgeführt wird. Wünschenswert ist daher eine verbesserte Einlegesohle mit erhöhten Schockabsorptionseigenschaften, gegenüber in der EP 373 336 A1 beschriebenen Einlegesohle aus einem metallischen Federmaterial.
Zu Verbesserung der Schockabsorptionsfähigkeit wurden bereits Schuheinlagen aus Gel als Schuheinlegesohle vorgeschlagen. Derartige Schuheinlegesohlen sind beispielsweise in „Kunststoffe" Heft 8 (2005), Seite 56 - 58 gezeigt. Weitere Schuheinlegesohlen aus einem Gel sind in der DE 20 2005 005011 U1. US 2012/0023776A1 oder WO 2007/092091 A2 beschrieben.
Gel-Materialien haben die Eigenschaft, dass sie anders als Kunststoffschäume bei Ausübung von Druck nicht nur zusammengedrückt werden, sondern vielmehr auch seitlich ausweichen und somit sich in allen drei Raumrichtungen elastisch verformen und sich nach Entlastung wieder nach Art des Memory-Effekts zurückstellen. Teile der Gelmoleküle sind nämlich quasi-flüssig und innerhalb der übrigen Gelmatrix fließfähig. Sie sind teils chemisch gebunden, teils physikalisch an der Matrix gehalten in einem hochkomplexen Gleichgewichtsprozess und werden bei Druckbelastung unter Deformierung der Matrix verformt. Diese Verformung läuft im Wesentlichen reversibel ab und führt bei Belastung somit zur Aufnahme und Absorption der übertragenen kinetischen Energie des aufprallenden Körpers.
Ein analoger Test, wie vorstehend beschrieben, hat nun ergeben, dass die Schockabsorptionsqualität einer Einlegesohle aus Gelmaterial allein kein wesentlich besseres Absorptionsverhalten hat als die Metallsohle allein. So absorbiert eine Gelsohle im Ballen-/Fersenbereich ca. 65% bzw. 63% der eingetragenen Energie gemäß dem vorstehend genannten Test.
Der Neuerung liegt daher die Aufgabe zugrunde, eine Einlegesohle der eingangs erwähnten Art zur Verfügung zu stellen, die ein verbessertes Schockabsorptionsverhalten aufweist.
Die Lösung der Aufgabe erfolgt durch die kennzeichnenden Merkmale des Anspruchs 1.
Überraschender Weise konnte Neuerungsgemäß festgestellt werden, dass die Einbettung einer Federstahlsohle in eine Gelschicht, wobei das Gel die Metallschicht vollständig umhüllt, die Schockabsorptionseigenschaften dieser Kombinationssohle überraschend auf 73,8% im Ballenbereich und 76,1 % im Fersenbereich anhebt. Diese Tatsache war für den Fachmann nicht zu erwarten, der bei dieser Kombination, allenfalls mit einem Wert von 61-63% im Ballenbereich / Fersenbereich gerechnet hätte.
Zur Herstellung von weichen festen Gelen können Polyurethan-Komponenten eingesetzt werden, wie sie in der EP 57 838 A1 und EP 51 1 570 A1 beschrieben sind. Dabei werden zwei Komponenten, nämlich eine Isocyanat-Komponente und eine Polyol-Komponente eingesetzt, die üblicher Weise im One-Shot-Verfahren vermischt und dann während der Topfzeit verarbeitet werden.
Vorteilhafter Weise wird das Polyurethan-Gel aus Präpolymeren hergestellt, bei denen das Produkt aus Isocyanat-Funktionalität und Funktionalität der Polyol-Komponente mindestens 5,2, vorzugsweise mindestens 6,5 beträgt. Bezogen auf das Gewichtsverhältnis, beträgt dieses Verhältnis in vorteilhafter Weise 1:6,5 - 1 :8. In einer besonders bevorzugten Ausführungsform besteht die Polyol-Komponente zur Herstellung des Gels aus einem Gemisch aus
a) einem oder mehreren Polyolen mit Hydroxylzahlen unter 112 und
b) einem oder mehreren Polyolen mit Hydroxylzahlen im Bereich 112 - 600,
wobei das Gewichtsverhältnis der Komponente a zur Komponente b
zwischen 90:10 und 10:90 liegt, die Isocyanatkennzahl
des Reaktionsgemisches im Bereich von 15 - 59,81 liegt und das Produkt aus Isocyanat - Funktionalität und Funktionalität der Polyol-Komponente mindestens 6,15 beträgt.
In einer weiteren vorteilhaften Ausführungsform bestehen die Rohstoffe zur Herstellung des Gels aus
a) einem oder mehreren Polyisocyanaten
b) einer Polyol-Komponente bestehend aus einem oder mehreren Polyolen
(b 1 ) mit Hydroxylzahlen unter 1 12 und
einem oder mehreren Polyolen (b 2 ) mit Hydroxylzahlen im Bereich
von 12 bis 600 und
c) ggf. einem Katalysator für die Reaktion zwischen Isocyanat- und
Hydroxylgruppen und d) ggf. aus der Polyurethanchemie an sich bekannten Füll- und/oder Zusatzstoffen, wobei das Gewichtsverhältnis der Komponenten (b1 ) zur Komponente (b2)zwischen 90:10 und 10:90 liegt, die Isocyanat-Kennzahl des Reaktionsgemisches im Bereich von 15 - 59,81 liegt und das Produkt aus Isocyanat Funktionalität und Funktionalität der Polyol-Komponente mindestens 6,15 beträgt.
In einer weiteren Ausführungsform besteht die Polyol-Komponente aus einem oder mehreren Polyolen mit einem Molekulargewicht zwischen 1.000 und 12.000 und einer OH-Zahl zwischen 20 und 1 12, wobei das Produkt der Funktionalitäten der polyurethanbildenden Komponenten mindestens 5,2 beträgt und die Isocyanatkennzahl zwischen 15 und 60 liegt.
Als Isocyanate kann man für die Gelherstellung vorzugsweise solche der Formel Q(NCO)n einsetzten, wobei der Buchstabe n für 2 bis 4 steht und Q einen aliphatischen Kohlenwassers toffrest mit 8 - 18 C-Atomen, einen cycloaliphatischen Kohlenwasserstoff rest mit 4 - 15 C-Atomen oder einen aromatischen Kohlenwasserstoffrest mit 8 - 15 C-Atomen bedeutet. Die Isocyanate können entweder in Reinform oder als modifizierte Isocyante vorliegen.
Gelmassen können zusätzlich aus der Polyurethanchemie bekannte Füll- und/oder Zusatzstoffe in einer Menge von insgesamt bis zu 50 Gew.-%, bezogen auf das Gesamtgewicht der Gelmasse, enthalten.
Wie bereits vorstehend erwähnt, beträgt in einer bevorzugten Ausführungsform das Gewichtsverhältnis der Polyisocyanat-Komponente zur Polyol-Komponente 1 :6,5 bis 1 :8. Dies führt mit steigendem Gewichtsverhältnis zu einem immer weicheren elastischen festen Gel. Es fällt also mit Zunahme des Gewichtsverhältnisses die Shore-Härte 00 (gemessen nach ASTM D 2240) von ca. 80 auf ca. 35 bei Raumtemperatur.
Die Neuerungsgemäßen Shore-Härten 00 liegen in einem Bereich von 45 - 70, insbesondere 52 - 64 bei Raumtemperatur und werden nach ASTM D 2240 bestimmt.
Bei dem Neuerungsgemäßen Herstellungsverfahrens des Gels werden die Isocyanat- Komponente und die Polyol-Komponente im One-Shot-Verfahren miteinander vermischt, wobei das erhaltene Gemisch innerhalb der Topfzeit (üblicherweise 5 - 15 Minuten) verarbeitet und in Form gegossen werden muss.
Die Wahl des Mischungsverhältnisses vom Polyisocyanat-Komponente und Polyol- Komponente hängt von der gewünschten Härte des Gels ab, wobei die spezifische Struktur der eingesetzten Materialien und ggf. eines zugesetzten Katalysators, dessen Wirkung einen erhöhten Härtewert des Gels zur Folge hat, zu beachten ist. Letztlich bestimmt der Fachmann empirisch das Mischungsverhältnis und die Mischungsparameter, um zu dem gewünschten Härtewert des Gels zu gelangen.
Die integrierte Sohle aus Gel und Metallplatte wird in einem üblichen Gussverfahren in einer üblichen Form, wie sie beispielsweise bei der Gelherstellung verwendet wird, hergestellt. Das in der Neuerungsgemäßen Sohle gebildete Verbundmaterial weist verbesserte Feder- und Dämpfungseigenschaften gegenüber denjenigen der Einzelmaterialien auf, so dass sich eine Verbesserung der Schockabsorsoptionseigenschaften der Neuerungsgemäßen Sohle ergibt.
Vorteilerhafterweise weist die aus Gel- und Metallplatte bestehende Sohle zumindest einseitig eine äußere Abdeckschicht auf, die für das Polyurethan-Gel undurchlässig ist.
Eine solche Abdeckschicht kann aus einer Folie, Leder, Kunstleder oder einem textilem Material, beispielsweise einem für das PU-Gel undurchlässigen Mikrofasermaterial bestehen. Vorzugweise wird als Abdeckmaterial Leder oder ein dem Leder nachgebildetes Kunststoffmaterial eingesetzt. Die Abdeckschicht verfolgt dabei nicht nur den Zwecke, für den Komfort des Schuhbenutzers, sondern vielmehr auch für die Stabilisierung der Gel- Oberfläche bei dem Einwirken der Fußunterseite im Benutzungszustand zu dienen.
Das Neuerungsgemäße Verfahren zur Herstellung der integrierten Sohle aus Gel und Metallplatte umfasst ein Gussverfahren, bei dem in einer ersten Ausführungsform folgende Schritte durchgeführt werden: a) Man giesst während der Topfzeit einen ersten Teil der flüssigen, noch nicht durchgehärteten Gel-Masse in eine Form unter Bildung einer ersten Gelschicht, die auf ihrer Oberfläche die üblichen klebrigen Eigenschaften aufweist. b) Auf die erste Gelschicht wird die Metallplatte aufgelegt und mit sanftem Druck in die Gelschicht gedrückt. c) Nach dem Auflegen der Metallplatte wird eine zweite Gelschicht in der Form auf die Metallplatte aufgetragen. d) Gegebenenfalls wird auf die noch klebrige zweite Gelschicht eine Abdeckschicht aufgelegt bzw. die Abdeckschicht wird in einer zweiten Ausführungsform vor dem Eintrag der ersten Gelschicht in die Form eingelegt, woraufhin die Gelmasse für die erste Gelschicht in die Form eingeführt wird.
In einer weiteren Ausführungsform des Herstellungsverfahrens wird die Metallplatte in einer Form so angeordnet, dass sowohl eine Oberschicht als auch eine Unterschicht aus Gel gebildet werden kann. Nach Anordnung der Metallplatte in der Form wird dann das Gel kontinuierlich in die gesamte Form unter Verdrängung der Luft bzw. in eine von Luft durch Evakuieren befreite Form eingeführt, so dass der Formkörper in situ gebildet wird.
Die Neuerungsgemäße Einlegesohle weist eine im Wesentlichen aus Federstahl und Gel gefertigte Sohle auf, die üblicherweise als separate Stützsohle im Schuh eingesetzt wird. Andererseits kann aber auch diese Einlegesohle als Brandsohle bei entsprechender Ausbildung der Ränder verwendet werden.
Die als Inlay innerhalb des Gelbettes verwendete Federstahlsohle ist in Längsrichtung flexibel und Querrichtung steif und polstert üblicherweise den Fuß in seinem Ballenbereich ab. Zusätzlich unterstützt ein Quer- bzw. Wellenprofil das Abrollen des Fußes.
Gemäß seiner ersten Ausführungsform erfasst die Stützsohle nur den vorderen Ballenbereich, während eine zweite Ausführungsform den gesamten Fuß mit Vorderbereich und Fersenbereich abdeckt. Dabei ist sie entsprechend der Schuhform bzw. der Form des Fußes anatomisch angepasst, also in Größen entsprechend den verschiedenen Schuhgrößen erhältlich. Die Querprofilierung kann sich sowohl über den Vorderfußbereich als auch über den Fersenbereich erstrecken. Dabei verläuft das Querprofil vorteilhafterweise nach Art einer Sinus-Welle, wobei die Größe der Gesamthöhe bei 0,5-2 mm, vorteilhafterweise bei ca. 1 ,3-1 ,6 mm liegt. Die Wellenlänge der Welle liegt vorteilhafterweise bei 3-5 mm, bevorzugt bei 7-12, insbesondere bei ca. 10 mm.
Die Querprofilierung selbst verläuft vorzugsweise zumindest im Vorderfußbereich in einem bestimmten ersten Winkel zur Längsrichtung der Sohle, insbesondere zwischen 70° - 90°, vorteilhafterweise zwischen 75° und 80°. Auch im Fersenbereich kann sich die Querprofilierung mit diesen Winkeln erstrecken. Um eine natürliche Abrollbewegung zu unterstützen, können die Wellen im Rück- oder Hinterfussbereich (Fersenbereich) auch in einem vom ersten Winkel abweichenden zweiten Winkel verlaufen, welcher vorzugsweise zwischen 90° und 110° liegt.
Gemäß einer weiteren bevorzugten Ausführungsform beträgt der Winkel in beiden Bereichen (Vorderfuss- und Hinterfussbereich) etwa 90°.
Das aus Federstahl bestehende harte elastische Plattenmaterial weist eine gleichförmige Dicke, von 0,1-0,6 mm, vorzugweise ca. 0,2 mm - 0,4 mm, insbesondere 0,25 mm - 0,35 mm auf.
Gemäß einer weiteren Ausführungsform kann die Quer- und/oder Längsprofilierung auch eine andere Form im Querschnitt aufweisen, beispielsweise eine Rillen-, Riefen-, Rippen-, Rinnen-, Riffel- oder Sickenform.
Bei dem Neuerungsgemäßen Verbundplattenmaterial sind die jeweiligen Wellentäler der Querprofilierung vollständig mit dem PU-Gel ausgefüllt, wobei die Dicke der Gelschicht zusätzlich größer ist als die Gesamthöhe des Querprofils. Vorteilhafterweise ist die Dicke der Gelschicht einheitlich, so dass die Verbundsohle eine ebene und glatte Oberfläche sowohl auf ihrer Oberseite als auch ihrer Unterseite mit völlig glatter Struktur aufweist.
Die Gesamthöhe der Querprofilierung der Federstahlplatte selbst liegt zwischen 0,5 und 2,5 mm, vorzugsweise bei 1-2 mm, insbesondere bei ca. 1 ,5 mm.
Desweiteren beträgt die Dicke der Gelschicht das 1 ,5-4-fache, insbesondere das 1 ,8-3,5 fache, besonders bevorzugt ca. das 2,5-3-fache bezogen auf die Gesamthöhe der Querprofilierung.
Zum Begriff„Gesamthöhe" ist zu bemerken, dass dieser die Höhe eines sich aus der Ebene erstreckenden Profils beliebiger Art kennzeichnet.
Bei einer besonders bevorzugten Ausführungsform beträgt die Gesamthöhe des Profils einschließlich der Plattenstärke ca. 1 ,5mm und die Gesamtstärke des Gels ca. 4mm, wobei die Dicke der Federstahlplatte bei ca. 0,3 mm liegt.
Während gemäß einer ersten Ausführungsform die Federstahlplatte mit ihren jeweiligen Wellenbergen mit gleichen Abständen zu den oberen und unteren Außenflächen der PU- Schicht in der Gelschicht angeordnet ist, also die Gelschicht um den gleichen Betrag d1 und d2 jeweils auf der Unter- und Oberseite des Profils übersteht, kann gemäß einer zweiten Ausführungsform auch die Größe der überstehenden Schichten d1 und d2 unterschiedlich sein. Gemessen werden jeweils d1 und d2 der Gelschichten sowie die Gesamthöhe H des Profils. Dabei kann das Verhältnis von d1 : H bzw. d2 : H einen Betrag von 0,5:1 bis 1 ,5:1 , vorzugsweise 0,8:1 bis 1 ,2:1 annehmen.
Gemäß einer weiteren bevorzugten Ausführungsform ist das starre plattenförmige Material vollständig von einem Gelrand umfasst, der somit die Seitenränder des Plattenmaterials im Wesentlichen ringförmig umgibt. Hierdurch wird eine vollständige Ummantelung des plattenförmigen Materials erreicht und damit eine weitere Stabilisierung dieser Verbundanordnung erreicht. Das ausgehärtete Gel besitzt aufgrund seiner Klebefähigkeit während der Polymerisationsphase eine hohe Haftung an dem plattenförmigen Material erhält und kann nur unter Zerstörung der gesamten Anordnung von der Federstahlplatte abgelöst werden. Wird das plattenförmige Material in Längsrichtung beim Gehen verformt, so wird die Gelschicht auf der Oberseite der Platte gestaucht und auf der Unterseite gestreckt, so dass die Rückstellfähigkeit des plattenförmigen Materials vom verformten Zustand in den Ausgangszustand verbessert wird. Dabei löst sich die Gelschicht weder beim Stauchen noch beim Strecken von der Metalloberfläche und bleibt dort haften.
Es lassen sich mit der Neuerungsgemäßen Einlegesohle alle möglichen Arten von Schuhen verwenden, wobei hier nicht nur Halbschuhe, sondern auch Stiefel, hohe Schuhe und dergleichen verstanden werden. Die Sohle selbst unterstützt und schützt das Fußgewölbe und bietet Schutz im Ballenbereich, wobei der Fuß durch die verbesserte Schockabsorptionsfähigkeit des Belastungsdrucks weniger ermüdet.
Des Weiteren lässt sich die Neuerungsgemäße Sohle für normale Schuhe, beispielsweise Straßen- und Laufschuhe, insbesondere Sportschuhe verwenden. Sie hat eine leistungssteigernde und gesundheitsschützende Wirkung. Desgleichen wird durch die starre Plattenstruktur der Verletzungsgefahr bei Füßen, insbesondere im Arbeitsbereich vorgebeugt.
Weitere Merkmale und Vorteile der Neuerung sind Gegenstand der nachfolgenden Beschreibung und der zeichnerischen Darstellung von Ausführungsbeispielen. Es zeigen
Figur 1 eine Draufsicht auf die Unterseite einer Einlegesohle mit Vorderfuß- und Fersenbereich
Figur 2 eine weitere Draufsicht auf die Unterseite einer Einlegesohle für den Vorderfußbereich und
Figur 3 eine vergrößerte Schnittansicht entlang der Linie A - A durch die Einlegesohle gem.
Figur 1.
In Figur 1 ist eine Einlegesohle 10 von der Unterseite her gezeigt, die einen Vorderfußbereich 12, einen Mittelfußbereich 14 und einen Fersenbereich 16 und eine Längsachse L-L aufweist.
Die Einlegesohle 10 weist als erste Komponente eine PU-Gelschicht 18 auf, deren Rand 20 die Außenbegrenzung der Einlegesohle 10 darstellt.
Die PU-Gelschicht 18 ist im Wesentlichen transparent, so dass eine Federstahleinlage 22 mit ihrer Umrisslinie 24, die die Außenbegrenzung der Federstahleinlage 22 darstellt, ersichtlich ist. Die Federstahleinlage 22 erstreckt sich im Wesentlichen parallel zum Rand 20 der PU- Gelschicht 18, wobei zwischen der Umrisslinie 24 und dem Rand 20 ein Zwischenrandbereich 26 aus PU-Gel gebildet ist.
Aufgrund der transparenten Struktur des PU-Gels sind erste querverlaufende Profile 28 im Vorderfußbereich 12 und zweite querverlaufende Profile 30 im Fersenbereich 16 ersichtlich.
Die Profile 28/30 erstrecken sich mit einem Winkel α zur Langsachse L-L.
In Figur 2 ist eine zweite Einlegesohle 40 darstellt, die lediglich den Vorderfußbereich 12 erfasst. In Folge dessen werden die gleichen Bezugszeichen wie in Figur 1 verwendet.
Lediglich der Rand 44 erstreckt sich nur im Vorderfußbereich 12.
Desgleichen erstreckt sich die zweite Federstahleinlage 42 nur im Vorderfußbereich.
In Figur 3 ist eine vergrößerte Schnittansicht durch die Einlegesohle 10 gemäß Figur 1 dargestellt. Mit 50 ist die Federstahleinlage gezeigt, die eine wellenförmige Struktur mit Wellenbergen 52 und Wellentälern 54 als Profil 55 aufweist. Der Abstand H der Wellenberge von den Wellentälern entspricht der Höhe des Profils 55.
Desgleichen entspricht die Länge einer Welle dem Abstand W.
Die Federstahleinlage 50 ist in eine PU-Gelschicht 56 eingebettet, die eine Dicke S hat. Sie erstreckt sich auf der Unterseite um die Dicke d1 über das Wellental 54 der Federstahleinlage 50 auf der Unterseite hinaus. Desgleichen hat der Überstand der PU- Gelschicht 56 oberhalb des Wellenbergs 52 der Federstahleinlage 50 die Dicke d2.
Demzufolge stellt also die Gesamtdicke S der PU-Gelschicht 50 den Betrag H plus der d1 plus d2 dar.
Im Beispielfall gemäß Figur 3 ist d2 größer als d1.
Weiterhin weist die Einlegesohle 10 gemäß Figur 3 auf ihre Oberseite eine fest mit der PU- Gelschicht 56 verbundene Abdeckschicht 58 auf, die aus Leder oder einer Kunststoffschicht, wie Mikrofasersicht, besteht.
Bei der Messung von physikalischen Parametern kommen folgende Test-Methoden zum Einsatz.
Bei der Schockabsorption (Impact Test) wurde in Anlehnung an ASTM F 1976 Prüfungen im Fersen- und Ballenbereich durchgeführt. Hierbei wird der Aufprall des menschlichen Fußes auf den Boden mit Hilfe einer freifallenden Masse von 7,5 kg simuliert. Der Aufprall der freifallenden Masse auf den Prüfling erfolgt bei einer genau festgelegten Geschwindigkeit von 0,5 m/s. Während der Deformation des Materials nimmt die Geschwindigkeit der Fallmasse ab. Dabei ist die Änderung der Geschwindigkeit pro Zeiteinheit ein Maß für die Bremswirkung des Materials.
Bei der Durchführung des Versuchs wird die Maximalbeschleunigung der Masse beim Kontakt mit dem Prüfkörper gemessen und gleichzeitig die Eindringtiefe und die Rückprallhöhe ermittelt. Außerdem werden die aufgenommene Energie, die abgegebene und absorbierte Energie gemessen. Anschließend wird u.a. das prozentuale Absorptionsverhältnis und die Federkonstante berechnet. Zum Einsatz kamen eine Federstahlsohle, eine Gelsohle sowie eine Kombinationssohle aus Gel, in das die Federstahlsohle eingebettet ist.
Die Federstahlsohle weist eine Dicke von 0,285 mm und eine Profilierung auf, die sich sowohl über den Vorderfußbereich als auch den Hinterfußbereich mit einer Gesamtprofilhöhe von 1 ,5 mm und einer Wellenlänge von 1 cm erstreckt.
Die Gelsohle selbst ist 4 mm dick.
In die Kombinationsgelsohle mit Federstahleinlage ist die Federstahlsohle gleichförmig mit einem umlaufenden Rand von etwa 5 mm eingelegt, wobei sich das Gel über die Gesamthöhe des Profils auf beiden Seiten um etwa 1 ,25 mm erstreckt.
Bei der Schockabsorptionsmessung ergab sich folgendes Absorptionsverhältnis für den vorderen Ballenbereich:
Federstahlsohle 61 ,23 %
Gelsohle 64,99 %
Gelsohle mit integrierter Federstahlsohle 72,84 %.
Im Fersenbereich wurden folgende Schockabsorptionswerte erhalten:
Federstahlsohle 59,85 %
Gelsohle 63,33 %
Gelsohle mit integrierter Stahlsohle 76,12 %.
Die Federkonstante wird in N/mm gemessen. Es ergaben sich folgende Werte für den Ballenbereich/Fersenbereich:
Federstahlsohle 2959,56/3792,82
Gelsohle 2008,97/2042,34
Gelsohle mit integrierter Stahlsohle 2483,38/2909,34.
An den Gel-Sohlen mit integrierter Federstahlsohle wurde weiterhin die Biegefestigkeit gemäß DIN EN 12568/DIN EN ISO 20344/DIN EN ISO 20345 überprüft.
Es wurden nach 5 Millionen Biegungen keine Beschädigungen an den Mustern festgestellt. Bezugszeichenliste
Einlegesohle
Vorderfußbereich
Mittelfußbereich
Fersenbereich
PU-Gelschicht
Rand
Federstahleinlage
Umrisslinie
Zwischenrandbereich
erstes Profil
zweites Profil
Einlegesohle
Federstahleinlage
Rand
Federstahleinlage
Wellenberg
Wellental
Profil
PU-Gelschicht
Abdeckschicht

Claims

Patentansprüche
Einlegesohle (10) für einen Schuh, die sich zumindest über den Vorderfußbereich (12), vorzugsweise den gesamten Fußbereich (12,14,16), der Sohle erstreckt, mit einer Federstahlplatte (22,50), die in Sohlenquerrichtung, insbesondere im Abrollbereich der Sohle biegesteif, dagegen in der Sohlenlängsrichtung vertikal biegeweich ist und sich nach Belastung elastisch rückstellt, wobei die Federstahlplatte (22,50) im Wesentlichen über den gesamten Sohlenbereich ein vorzugsweise senkrecht, zur
Sohlenlängsrichtung laufendes Querprofil (28,30,55) aufweist, und mit einer
Kunststoffschicht, in der die Federstahlplatte (22,50) angeordnet ist,
dadurch gekennzeichnet, dass
die Kunststoffschicht eine Polyurethan-Gelschicht (18) mit einer Shore-Härte 00 von 45-70 ist,
die Polyurethan-Gelschicht(18) mindestens das gesamte Querprofil (28,30,55) der Federstahlplatte (22,50) ausfüllt und an der Federstahlplatte (22,50) haftet und die Dicke der Polyurethan-Gelschicht (18) das 1 ,5-4-fache der Gesamthöhe H des Querprofils (28,30,55) beträgt.
Einlegesohle nach Anspruch 1 dadurch gekennzeichnet, dass die Shore-Härte 00 52-64 beträgt.
Einlegesohle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dicke der Gelschicht (18) das 1 ,8-2,5-fache, vorzugsweise das 2,5-3-fache der Gesamthöhe des Querprofils (28,30,55) beträgt.
Einlegesohle nach einem der Ansprüche 1 -3, dadurch gekennzeichnet, dass das Querprofil (28,30,55) wellenförmig ausgebildet ist, wobei die Gesamthöhe des Profils (28,30,55) 0,5-2 mm vorteilhafterweise 1 ,3-1 ,6 mm beträgt und die Wellenlänge der Welle 3-15 mm, vorzugsweise 7-12 mm beträgt.
Einlegesohle nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Gelschicht (18) jeweils auf der Ober- und Unterseite des Querprofils (28,30,55) mit einheitlichem Abstand übersteht und eine im Wesentlichen ebene und glatte
Oberfläche bildet.
6. Einlegesohle nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die Gelschicht (18) jeweils mit unterschiedlichen Abständen auf der Oberseite bzw.
Unterseite des Querprofils (28,30,55) übersteht.
7. Einlegesohle nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass der Rand der Federstahlplatte (22,50) von einem Zwischenrandbereich (26) aus Polyurethan-Gel umgeben ist.
8. Einlegesohle nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass eine
Abdeckschicht (58) an der Oberfläche der Polyurethan-Gelschicht (18) fixiert ist.
PCT/IB2014/001039 2013-04-23 2014-04-22 Einlegesohle WO2014174367A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/786,052 US20160073734A1 (en) 2013-04-23 2014-04-22 Insole
JP2016509563A JP6298880B2 (ja) 2013-04-23 2014-04-22 中敷き
EP14744375.8A EP2840923B1 (de) 2013-04-23 2014-04-22 Einlegesohle
KR1020157032876A KR102127031B1 (ko) 2013-04-23 2014-04-22 인솔
HK15104380.3A HK1203781A1 (en) 2013-04-23 2015-05-08 Insole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013006962.9A DE102013006962A1 (de) 2013-04-23 2013-04-23 Einlegesohle
DE102013006962.9 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014174367A1 true WO2014174367A1 (de) 2014-10-30

Family

ID=51228463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/001039 WO2014174367A1 (de) 2013-04-23 2014-04-22 Einlegesohle

Country Status (7)

Country Link
US (1) US20160073734A1 (de)
EP (1) EP2840923B1 (de)
JP (1) JP6298880B2 (de)
KR (1) KR102127031B1 (de)
DE (1) DE102013006962A1 (de)
HK (1) HK1203781A1 (de)
WO (1) WO2014174367A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165734A1 (de) * 2015-04-13 2016-10-20 Fleximed Ag Schuheinlage, verfahren zur herstellung einer derartigen schuheinlage, verwendung einer derartigen schuheinlage und schuh
CN106858881A (zh) * 2015-12-14 2017-06-20 天津红晨岛服饰有限公司 防穿刺保暖工鞋
US11622602B2 (en) 2020-08-18 2023-04-11 Puma SE Article of footwear having a sole plate
USD969469S1 (en) 2020-12-22 2022-11-15 Puma SE Shoe
USD1011718S1 (en) 2020-12-22 2024-01-23 Puma SE Shoe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057838A1 (de) 1981-02-03 1982-08-18 Bayer Ag Gel-Polster, Verfahren zu deren Herstellung und deren Verwendung
EP0373336A1 (de) 1988-12-13 1990-06-20 Helmut Mayer Einlage für einen Schuh
EP0511570A1 (de) 1991-05-01 1992-11-04 Bayer Ag Gelmassen, sowie deren Herstellung und Verwendung
WO1997046125A2 (de) * 1996-05-30 1997-12-11 Helmut Mayer Schuh und verfahren zu dessen herstellung sowie verwendung desselben
EP1189527A1 (de) 2000-03-28 2002-03-27 Helmut Mayer Brandsohle und verwendung derselben zur herstellung eines schuhs
DE202005005011U1 (de) 2005-03-24 2005-06-02 Atuforma Gmbh Einlegesohle für Schuhe
WO2007092091A2 (en) 2005-12-23 2007-08-16 Polyworks, Inc. Methods of making polymeric articles and the polymeric articles formed thereby
US20120023776A1 (en) 2009-03-09 2012-02-02 Aetrex Worldwide, Inc. Shoe sole inserts for pressure distribution
DE202013003797U1 (de) * 2013-04-23 2013-05-27 Fleximed Ag Einlegesohle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1308395A (en) * 1919-07-01 Jesse a
US1504908A (en) * 1923-01-03 1924-08-12 Sato Ryuji Insole for shoes
US1659339A (en) * 1924-12-29 1928-02-14 Wollheim Seidner & Hitzigrath Insole with insertion of wire netting
US2124819A (en) * 1937-08-23 1938-07-26 Henry G Halloran Shoe bottom filler
US2677906A (en) * 1952-08-14 1954-05-11 Reed Arnold Cushioned inner sole for shoes and meth od of making the same
US5836917A (en) 1995-01-10 1998-11-17 Specialized Health Products, Inc. Self retracting medical needle apparatus and methods
JP2002501393A (ja) * 1996-05-30 2002-01-15 ヘルムート メイヤー 靴、その製造方法及び使用
ITRM20040573A1 (it) * 2004-11-23 2005-02-23 Ks Italia S A S Di Ambrosone M Plantare per stimolazione propriocettiva, esterocettiva, pressocettiva e/0 reflessogena.
WO2007100922A2 (en) * 2006-02-28 2007-09-07 Polyworks, Inc. Methods of making polymeric articles and polymeric articles formed thereby
US20090320324A1 (en) * 2008-06-27 2009-12-31 Schering-Plough Healthcare Products, Inc. Cushioning device
US8176880B2 (en) * 2009-08-21 2012-05-15 I Did It, Inc. Therapeutic pet boot

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0057838A1 (de) 1981-02-03 1982-08-18 Bayer Ag Gel-Polster, Verfahren zu deren Herstellung und deren Verwendung
EP0373336A1 (de) 1988-12-13 1990-06-20 Helmut Mayer Einlage für einen Schuh
US5720118A (en) * 1988-12-13 1998-02-24 Helmut Mayer Inlay for a shoe
EP0511570A1 (de) 1991-05-01 1992-11-04 Bayer Ag Gelmassen, sowie deren Herstellung und Verwendung
WO1997046125A2 (de) * 1996-05-30 1997-12-11 Helmut Mayer Schuh und verfahren zu dessen herstellung sowie verwendung desselben
EP1189527A1 (de) 2000-03-28 2002-03-27 Helmut Mayer Brandsohle und verwendung derselben zur herstellung eines schuhs
DE202005005011U1 (de) 2005-03-24 2005-06-02 Atuforma Gmbh Einlegesohle für Schuhe
WO2007092091A2 (en) 2005-12-23 2007-08-16 Polyworks, Inc. Methods of making polymeric articles and the polymeric articles formed thereby
US20110256353A1 (en) * 2005-12-23 2011-10-20 Polyworks, Inc. Methods of making polymeric articles and polymeric articles formed thereby
US20120023776A1 (en) 2009-03-09 2012-02-02 Aetrex Worldwide, Inc. Shoe sole inserts for pressure distribution
DE202013003797U1 (de) * 2013-04-23 2013-05-27 Fleximed Ag Einlegesohle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNSTSTOFFE, vol. 8, 2005, pages 56 - 58

Also Published As

Publication number Publication date
HK1203781A1 (en) 2015-11-06
KR20160023650A (ko) 2016-03-03
JP6298880B2 (ja) 2018-03-20
EP2840923B1 (de) 2017-12-13
US20160073734A1 (en) 2016-03-17
EP2840923A1 (de) 2015-03-04
KR102127031B1 (ko) 2020-06-26
DE102013006962A1 (de) 2014-10-23
JP2016516519A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
EP2840923B1 (de) Einlegesohle
AT402680B (de) Stoss-dämpfende, energie-speichernde fersenfeder- und stabilisierungseinrichtungfür einen sportschu h
DE102013202353B4 (de) Sohle für einen Schuh
DE60034569T2 (de) Federgefämpfter Schuh
DE202013003797U1 (de) Einlegesohle
DE102006011222B4 (de) Stoß dämpfender elastischer Flachkörper für Schuhe, Dämpfungspolster aus dem elastischen Flachkörper und Schuh mit einem solchen Dämpfungspolster
DE102008059030B4 (de) Einlegesohle
DE112005003570T5 (de) Stoßabsorptionsvorrichtung für Schuhsohle
DE8423344U1 (de) Schuhsole mit einer aus mehreren Schichten bestehenden Zwischensohle
DE102010046278A1 (de) Schuh mit einem Schuh-Oberteil und einer Sohle
DE102020108911A1 (de) Mittelsohlenstruktur für einen sportschuh
DE69402933T2 (de) Gymnastikschuhe
EP2308335A1 (de) Einlegesohle
EP3270727B1 (de) Schuh mit bandscheibenwerkstoff-dämpfungselement
DE102013012097B4 (de) Belastungsadaptierende Struktursohle als kontrollierendes Dämpfungssystem
DE3887994T2 (de) Schockdämpfende struktur.
DE3108359A1 (de) Sohle fuer sicherheitsschuhe
DE102010016010A1 (de) Fräseinlagenrohling für die Herstellung einer orthopädischen Schuheinlage
DE102019214944A1 (de) Sohlenelement
DE102014008513B4 (de) Kontakteinlage für Fußsohlen
DE202008018366U1 (de) Einlegesohle
WO2020193034A1 (de) Laufschuhsohle mit faserverbundplatte
CH702899A1 (de) Schuhsohle und schuh.
DE102014019786B3 (de) Sohle
DE3604958A1 (de) Verfahren zur daempfung der beim gehen oder laufen auf den menschlichen organismus uebertragenen erschuetterungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014744375

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14744375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14786052

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016509563

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032876

Country of ref document: KR

Kind code of ref document: A