WO2014171760A1 - 동시진공증발공정 기반의 cztse 광흡수층 제조방법 - Google Patents

동시진공증발공정 기반의 cztse 광흡수층 제조방법 Download PDF

Info

Publication number
WO2014171760A1
WO2014171760A1 PCT/KR2014/003352 KR2014003352W WO2014171760A1 WO 2014171760 A1 WO2014171760 A1 WO 2014171760A1 KR 2014003352 W KR2014003352 W KR 2014003352W WO 2014171760 A1 WO2014171760 A1 WO 2014171760A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
evaporation
cztse
temperature
evaporation process
Prior art date
Application number
PCT/KR2014/003352
Other languages
English (en)
French (fr)
Inventor
곽지혜
윤재호
안승규
신기식
안세진
조아라
윤경훈
어영주
조준식
박주형
유진수
박상현
최혜림
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to CN201480021343.4A priority Critical patent/CN105340081B/zh
Publication of WO2014171760A1 publication Critical patent/WO2014171760A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a light absorption layer of a CZTSe solar cell, and more particularly, to a method of manufacturing a light absorption layer of a CZTSe solar cell through a simultaneous vacuum evaporation process.
  • the materials of such thin-film solar cells include amorphous silicon, CdTe and CIS (CuInSe 2 ,
  • CIS-based thin film is one of the I-m-IV compound semiconductors.
  • It has the highest conversion efficiency (about 20.4%) among laboratory thin film solar cells.
  • it can be manufactured to a thickness of within 2-3 microns, and it is stable even when used for a long time.
  • In and Ga which are rare elements, are used.
  • CZTS-based (Cu 2 ZnSn (S x S ei . X ) 4 ) compound semiconductors replacing Zn and Sn as general-purpose elements are being actively studied as an alternative to CIGS thin film materials.
  • the present invention is to solve the above-mentioned problems of the prior art.
  • the purpose is to provide.
  • step a Method for manufacturing a light absorption layer, the step of evaporating Cu, Zn, Sn and Se at the same time to deposit on the substrate (step a); And evaporating Zn, Sn, and Se at the same time while depositing the silver on the substrate to deposit it on the substrate (step b).
  • the present inventors cannot form CZTSe having a desired composition due to the reduction of Sn-Se when the CZTSe light absorption layer is deposited by a simultaneous vacuum evaporation process while maintaining the substrate at a high temperature.
  • the present invention comprises a step of performing a co-evaporation process on a high temperature substrate and a step of performing a co-evaporation process while cooling the substrate. .
  • the present invention comprises the steps of evaporating Cu, Zn, Sn and Se at the same time to deposit on the substrate (step a); And evaporating Zn, Sn, and Se at the same time while lowering the temperature of the substrate, and depositing the same on the substrate (step b).
  • step b is It is advisable to proceed until the temperature of the substrate is less than 360 ° C.
  • step a is performed at a substrate temperature of less than 450 ° C, the temperature of the substrate is low, resulting in poor crystal growth, and above 600 ° C, Sn loss due to evaporation of Sn-Se or deformation of a substrate such as glass This can happen.
  • the temperature of the substrate is lower than that at which step a proceeds. o Proceed below C until it is in the range above 360 ° C.
  • the method includes the steps of: simultaneously evaporating Cu, Zn, Sn, and Se onto a substrate (step a-1); Simultaneously evaporating and depositing Zn, Sn, and Se on the substrate while maintaining the temperature of the substrate (step a-2); Simultaneously lowering the temperature of the substrate and simultaneously evaporating Cu, Zn, Sn and Se onto the substrate (step b-1); And simultaneously evaporating and depositing Zn, Sn, and Se on the substrate while maintaining the temperature of the substrate (step b-2).
  • the present inventors perform a simultaneous vacuum evaporation process on a high temperature substrate by dividing all materials at the same time by evaporation and depositing by evaporating materials except Cu at the same time. Invented a method for performing deposition using an evaporation source except for.
  • the present invention the step of evaporating Cu, Zn, Sn and Se at the same time to deposit on the substrate (step a-1); Simultaneously evaporating and depositing Zn, Sn, and Se on the substrate while maintaining the temperature of the substrate (step a-2); Simultaneously lowering the temperature of the substrate, simultaneously depositing Zn, Sn, and Se on the substrate (step b-1); And evaporating Zn, Sn, and Se at the same time while maintaining the temperature of the substrate, and depositing the same on the substrate (step b-2).
  • step b-2 Sn and Se may be simultaneously evaporated and deposited on the substrate.
  • the temperature of the substrate in step a-1 is less than or equal to at least 450 ° C 600 ° C
  • the temperature of the substrate on which the step b-2 progress is preferably in the range of less than 450 o C at least 360 ° C.
  • the solar cell is characterized in that it comprises a CZTSe light absorption layer thin film manufactured by one of the methods described above.
  • the present invention configured as described above, by performing the co-evaporation process at a high temperature and additional evaporation process while lowering the temperature of the substrate, there is an effect that can solve the problems caused by Sn loss in the high temperature co-evaporation process have.
  • the CZTSe light absorbing layer formed by the manufacturing method of the present invention has excellent film quality, the photoelectric conversion efficiency of the CZTSe solar cell is improved.
  • FIG. 17 and 18 are surface photographs of thin films prepared according to Example 3 and Comparative Example 3.
  • FIG. 17 and 18 are surface photographs of thin films prepared according to Example 3 and Comparative Example 3.
  • Example 19 is an I-V of a solar cell including a light absorption layer formed according to Example 1
  • a molybdenum back electrode was deposited to a thickness of about 1 by using a DC sputtering process on a soda-lime glass substrate.
  • the substrate on which the back electrode is formed is provided with Cu, Zn, Sn and Se evaporation sources.
  • Evaporation was carried out by mounting the vacuum evaporator and heating the substrate to open the shutters of all evaporation sources while maintaining the substrate silver (T sub ) at 500 ° C.
  • the evaporation temperature of each evaporation source is 1330 o C for Cu evaporation source, 360 o C for Zn evaporation source,
  • Sn evaporation source is 1360 ° C
  • Se evaporation source was 140 ° C.
  • Deposition by Se evaporation source was carried out.
  • the temperature of the substrate was 400 o C, all the evaporation sources were closed, and when the temperature of the substrate was 70 C, the evaporator was removed from the co-evaporator.
  • Example 1 is a graph showing the process conditions of the co-evaporation process of Example 1.
  • the temperature of the substrate is adjusted with the shutters of the Cu evaporation source and the Zn evaporation source closed.
  • FIG. 2 is a graph showing the process conditions of the simultaneous vacuum evaporation process of Example 2.
  • the evaporation temperature of each evaporation source was 1480 ° C for the Cu evaporation source, 335 ° C for the Zn evaporation source, 1480 ° C for the Sn evaporation source, and 210 ° C for the Se evaporation source.
  • the temperature of the substrate was lowered while the Cu, Zn, and Sn evaporation sources were closed, and deposition was performed by the Se evaporation source.
  • the temperature of the substrate reached 400 ° C, the shutters of all evaporation sources were closed, and the substrate When the temperature reached 70 ° C, it was removed from the simultaneous evaporator.
  • the evaporation degree of each evaporation source was 1400 ° C. for the Cu evaporation source, 430 ° C. for the Zn evaporation source, 1390 ° C. for the Sn evaporation source, and 140 ° C. for the Se evaporation source.
  • the deposition of Se evaporation source was performed by lowering the silver of the substrate with the shutters of Cu, Zn and Sn evaporation sources closed, and closing the shutters of all evaporation sources when the temperature of the substrate reached 400 ° C. When the substrate temperature reached 70 o C, it was removed from the co-evaporator.
  • Table 1 shows the results of the EDS component analysis on the thin film formed under the above process conditions and the composition ratio between the components.
  • 4 and 5 are a cross-sectional photograph and a surface photograph of the thin film prepared according to Example 1
  • 6 and 7 are cross-sectional photographs and surface photographs of the thin film prepared according to Example 2.
  • FIGS 8 and 9 are cross-sectional photographs and surface photographs of the thin film prepared according to Comparative Example 1
  • Figures 10 and 11 are cross-sectional photographs and surface photographs of the thin film prepared according to Comparative Example 2.
  • FIG. 12 shows the results of XRD analysis on the thin film prepared according to Example 1.
  • the thin film formed under the process conditions of the first embodiment is a rear electrode.
  • FIG. 13 shows XRD analysis results of the thin film prepared according to Comparative Example 1.
  • a molybdenum back electrode was deposited to a thickness of about 1 by using a DC sputtering process on a soda-lime glass substrate.
  • Cu, Zn, Sn, and Se evaporation sources are installed on the substrate on which the rear electrode is formed.
  • the temperature of the substrate was lowered while the shutter of the Cu evaporation source was opened again, and deposition was performed by Zn, Sn, and Se evaporation sources.
  • the shutter of the Cu evaporation source was closed and the substrate was removed.
  • Deposition was carried out by Zn, Sn and Se evaporation sources for 5 minutes while maintaining the temperature. [72] Afterwards, the shutters of all evaporation sources are closed and the substrate has a silver temperature of 70 ° C.
  • FIG. 14 is a graph showing the process conditions of the co-evaporation process of Example 3.
  • the evaporation temperature of each evaporation source was 1495 0 C for Cu evaporation source, 400 ° C for Zn evaporation source, 1410 ° C for Sn evaporation source, and 140 o C for Se evaporation source.
  • the deposition was carried out by evaporation of Zn, Sn and Se evaporation sources, and the deposition by Zn, Sn and Se evaporation sources was carried out for 5 minutes while maintaining the temperature of the substrate when the substrate had a silver content of 375 ° C. .
  • FIG. 15 is a graph showing the process conditions of the simultaneous evaporation process of Example 3.
  • the deposition was performed by the Se evaporation source by lowering, and the deposition by the Se evaporation source was performed for 5 minutes while maintaining the silver of the substrate when the temperature of the substrate became 375 ° C.
  • Table 2 shows the results of the EDS component analysis on the thin film formed under the above process conditions and the composition ratio between the components.
  • Example 1 Example 2 and Comparative Example 3, the substrate of 500 o C or more is
  • 17 and 18 are surface photographs of thin films prepared according to Example 3 and Comparative Example 3.
  • Example 3 Although the thin film prepared by Example 3 was found to have a high crystallinity and a dense thin film, the thin film prepared by Comparative Example 3 was found to have many defects on the surface thereof.
  • Example 19 is an I-V of a solar cell including a light absorption layer formed according to Example 1
  • the solar cell manufactured according to the present embodiment has an open circuit voltage (V oc ) of 0.3262 V, a short circuit current (J sc ) of 32.22 mA / cm 2 , and a fill factor (FF, fill factor). ) Is 58.45, and the final conversion efficiency (Eff.) Is 6.14%.
  • the CZTS compound thin film formed by the simultaneous vacuum evaporation process according to Example 1 can operate efficiently as the light absorbing layer of the solar cell.
  • the photoelectric conversion efficiency is shown in the table below.
  • the solar cell using the light absorbing layer manufactured at the other condition which is the highest at 6.14%, exhibits photoelectric conversion efficiency of about 3.5% or more.
  • the CZTS compound thin film formed on the basis of the simultaneous vacuum evaporation process can operate efficiently as the light absorption layer of the solar cell.
  • the thin films formed by all the comparative examples of the present invention did not function as the light absorbing layer of the solar cell.
  • the thin films did not form CZTSe but consist only of impurities, and in Comparative Examples 2 and 3, It is considered to be due to a defect formed therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본발명은 동시진공증발공정을 기반으로 양질의 CZTSe 광흡수층 박막을 제조하는 방법에 관한 것으로, Cu, Zn, Sn및 Se를 동시에 증발시켜 기판에 증착하는단계 (단계 a);및 상기 기판의 온도를 내리면서, Zn, Sn및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b)를 포함한다. 본 발명은, 고온에서 동시 진공증발공정을 수행하고 기판의 온도를 낮추면서 추가적인 증발공정을 수행함으로써, 고온의 동시진공증발공정에서 수반되는 Sn손실에 따른 문제점을 해결할 수 있는 효과가 있다. 또한, 본 발명의제조방법으로 형성된 CZTSe 광흡수층은 막질이 뛰어나기 때문에 이를 이용하여 제조된 CZTSe태양전지의 광전변환 효율이향상되는 효과가 있다.

Description

명 세서
발명의 명칭 : 동시진공증발공정 기 반의 CZTSE 광흡수층 제조방법 기술분야
[1] 본 발명은 CZTSe 태양전지의 광흡수층을 제조하는 방법에 관한 것으로,더욱 자세하게는 동시 진공증발공정을 통해서 CZTSe 태양전지의 광흡수층을 제조하는 방법에 관한 것이다.
배경기술
[2] 최근 실리콘의 공급부족으로 가격 이 급등하면서 , 실리콘 태양전지를 대신할 박막형 태양전지에 대한 관심 이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가벼을 뿐만 아니라 활용범위가 넓다.
[3] 이 러한 박막형 태양전지의 재료로는 비 정 질 실리콘과 CdTe, CIS계 (CuInSe2,
CuIn|_xGaxSe2, CuIn,_xGaxS2 등)에 대한 연구가 활발하게 진행되고 있다.
[4] CIS계 박막은 I-m-IV 화합물 반도체 중의 하나이며 , 이중 CIGS 태양전지는
실험실적으로 만든 박막 태양전지 중에서 가장 높은 변환효율 (약 20.4%)을 기록하고 있다. 특히 2-3 마이크론 이내의 두께로 제작이 가능하고, 장시간 사용 시에도 안정적 인 특성 이 있어,실리콘을 대체할 수 있는 저가의 고효율
태양전지로 기 대되고 있다. 그러나 이에 사용되는 In은 상대적 매장량이 적은 희소원소로 디스플레이 산업에 이용되는 ΠΌ 소재의 수요에 의해 그 가격 이 불안정하여 양산화에 하나의 걸림돌로 작용할 수 있다.
[5] 이를 극복하고 저가 태양전지 개발에 이용하기 위해 희소원소인 In과 Ga을
범용원소인 Zn 및 Sn으로 대체하는 CZTS계 (Cu2ZnSn(SxSei.x)4) 화합물 반도체가 CIGS 박막 재료의 대안으로써 활발히 연구되고 있디-.
[6] 관련 연구는 최근에 활발히 이루어지고 있으며 , 2009년부터 연구논문 급증
추세에 있는데, 현재까지 스퍼터 링법에 기반한 2단계 공정에 의해 3.2%의
CZTSe(Cu2ZnSnSe4) 및 6.7%»의 CZTS(Cu2ZnSnS4) 태양전지 효율 달성 이 보고된 바 있으며 (문헌 [Appl. Phys. Express 1, 2008, 041201, H. Katagiri et al.; Prog.
Photovolt: Res. Appl. 2009; 17: 315-319, G. Zoppi et al.] 등 참고),최근 비 진공 방식을 이용하여 제조된 CZTSSe(Cu2ZnSn(S,Se)4) 태양전지가 1 1.1%의
변환효율을 생산하여 세계 최고기록을 갱신한바 있다 (문헌 [Prog. Photovolt: Res. Appl. 20 (2012) 6, D.A.R. Barkhouse et al.] 등 참고). 반면,동시진공증발법에 의한 Cu-Zn-Sn— Se계 연구는 박막 조성 조절이 상대적으로 용이하다는 장점에도 불구하고, 상대적으로 공개된 연구결과의 양이 적으며 그 효율에 대한 보고는 특히 미미하다-
[7] 참고문헌 (Thin Solid Films (2012) in press, http://dx.doi.org/10.1016/
j.tsf.2012.10.082)에 따르면 , 4가지 원소를 동시에 진공증발시켜 증착하는 종래의 CZTSe 제조방법을 이용할 때, Sn의 손실은 200°C 내지 400°C에서는 크지 않지만, 400°C 이상에서 급속히 발생하여 박막 성 장에 요구되는 고은의 기판 온도를 Cu-Zn-Sn-Se계 박막 제조공정에 적용하는데 어려움이 있다. 이와 같은 Sn 손실은 동시 진공증발공정 증 Sn이 Se와 만나 증발되고 증착되지 못하는 것에 기 인하며, 결과적으로 상분리 및 두께 감소의 원인이 되어 태양전지 박막으로 사용시 에너지 변환효율이 저하될 수 있다. 따라서 , Sn 손실에 따른 에너지 변환효율의 저하를 최소화하기 위해 동시진공증발 공정의 단계를 최적화할 필요성 이 존재한다.
[8] 이에 제조효율을 향상시키기 위하여 진공증발법을 이용하되 , 다른 원소들을 먼저 순차적으로 증착하고 셀렌화 또는 황화 처리하는 기술이 발명 (대한민국 공개특허 10-2013— 0016528)되었으나,이 또한 증착 시의 기판은도가 낮기 때문에,본 발명의 공정과는 차이가 있다.
[9] [선행기술문헌]
[10] 1. 대한민국 공개특허 10-2013-0016528
[11] 2. Appl. Phys. Express 1, 2008, 041201, H. Katagiri et al.; Prog. Photovolt: Res.
Appl. 2009; 17: 315-319, G. Zoppi et al.
[12] 3. Prog. Photovolt: Res. Appl. 20 (2012) 6, D.A.R. Barkhouse et al.
[13] 4. Thin Solid Films (2012) in press, http://dx.doi.Org/10.1016/j.tsf.2012.10.082 발명의 상세한 설명
기술적 과제
[14] 본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서
동시증발공정올 기반으로 양질의 CZTSe 광흡수층을 제조하는 방법을
제공하는데 그 목적 이 있다.
과제 해결 수단
[15] 상기 목적을 달성하기 위한 본 발명에 의한 동시증발공정 기반의 CZTSe
광흡수층 제조방법은, Cu, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a); 및 상기 기판의 은도를 내리면서, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b)를 포함한다.
[16] 본 발명자들은 기판올 고온으로 유지하면서 동시 진공증발 공정으로 CZTSe 광흡수층을 증착하는 경우 Sn-Se의 감소로 인하여 원하는 조성의 CZTSe를 형성하지 못하고, 이를 해소하기 위하여 Sn과 Se를 과량 공급하는 경우에는 광흡수층의 막질이 나빠지는 문제 점을 해결하기 위하여,고온의 기판에 대하여 동시진공증발 공정을 수행하는 단계와 기판을 냉각시키면서 동시증발 공정을 수행하는 단계로 구성 되는 본 발명을 발명하였다.
[17] 본 발명은, Cu, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a); 및 상기 기판의 온도를 내리면서 , Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b)를 포함할 수 있다.
[18] 그리고 단계 a에서 기판의 온도는 450°C 이상 600oC 이하의 범위 이고, 단계 b는 기판의 온도가 360°C 미 만이 되 기 전까지 진행하는 것이 바람직하다.
450°C 미만의 기판 온도에서 단계 a를 수행하면 기판의 온도가 낮아서 층분한 결정 성 장을 하지 못하며 , 600°C 이상에서는 Sn-Se의 증발로 인한 Sn 손실이 일어나거나 유리 등의 기판의 변형 이 일어날 수 있다. 또한,단계 b에서 기판 은도가 360°C 미만이 될 때까지 진행하면,원하지 않는 불순물이 박막 표면에 생성되어 막 특성 이 나빠지므로, 단계 b는 기판의 온도가 단계 a가 진행되는 온도보다 낮은 450oC 미만에서 360°C 이상인 범위가 될 때까지 진행한다.
본 발명의 다른 형 태에 의한, 동시증발공정 기반의 CZTSe 광흡수층
제조방법은, Cu, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a-1); 상기 기판의 온도를 유지하면서 , Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a-2); 상기 기판의 온도를 내리면서 , Cu, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b-1); 및 상기 기판의 온도를 유지하면서 , Zn, Sn 및 Se를 동시 에 증발시켜 기판에 증착하는 단계 (단계 b— 2)를 포함한다.
본 발명자들은 고온의 기판에 동시 진공증발 공정을 수행하는 단계를 모든 재료를 동시에 증발시켜 증착하는 단계와 Cu을 제외한 물질을 동시에 증발시켜 증착하는 단계로 나누어 수행하고,기판의 온도를 낮춘 상태에서 Cu를 제외한 증발원을 이용해서 증착을 수행하는 제조방법을 발명하였다.
이때, 본 발명은, Cu, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a-1); 상기 기판의 온도를 유지하면서 , Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a-2); 상기 기판의 온도를 내리면서 , Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b-1); 및 상기 기판의 온도를 유지하면서, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b-2)를 포함할 수 있다.
또한, 단계 b-2에서 Sn 및 Se를 동시에 증발시켜 기판에 증착할 수도 있다. 그리고 단계 a-1에서 기판의 온도는 450°C 이상 600°C 이하이고,단계 b-2가 진행되는 기판의 온도는 360°C 이상에서 450oC 미만의 범위 인 것이 바람직하다. 또 다른 형 태에 의한, 태양전지는 상기한 방법들 중에 하나의 방법으로 제조된 CZTSe 광흡수층 박막을 포함하는 것을 특징으로 한다.
발명의 효과
상술한 바와 같이 구성된 본 발명은, 고온에서 동시증발 공정을 수행하고 기판의 온도를 낮추면서 추가적 인 증발 공정을 수행함으로써 , 고온의 동시증발 공정에서 수반되는 Sn 손실에 따른 문제점을 해결할 수 있는 효과가 있다.
또한,본 발명의 제조방법으로 형성된 CZTSe 광흡수층은 막질이 우수하기 때문에 CZTSe 태양전지의 광전변환효율이 향상되는 효과가 있다.
도면의 간단한 설명
Figure imgf000005_0001
도 1 내지 도 3은 실시 예 1과 2 및 비교예 1의 동시 진공증발공정의 공정 조건을 나타낸 그래프이다.
[29] 도 4 내지 도 11은 실시 예 1과 2 및 비교예 1과 2의 동시진공증발공정으로
제조된 박막에 대한 단면 사진과 표면 사진이다.
[30] . 도 12와 도 13은 실시 예 1과 비교예 1에 따라 제조된 박막에 대한 XRD 분석 결과를 나타낸다.
[31] 도 14 내지 도 16은 실시 예 3과 4 및 비교예 3의 동시진공증발공정의 공정
조건을 나타낸 그래프이디-.
[32] 도 17과 도 18은 실시 예 3과 비교예 3에 따라 제조된 박막의 표면 사진이다.
[33] 도 19는 실시 예 1에 따라 형성된 광흡수층을 포함하는 태양전지의 I-V
곡선이다.
발명의 실시를 위한 형 태
[34] 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세히 설명한다.
[35]
[36] [실시 예 1]
[37] 먼저 , 소다라임 유리 기판에 DC 스퍼 터 링 공정으로 몰리브덴 후면 전극을 약 1 의 두께로 증착하여 준비하였다.
[38] 후면전극이 형성된 기판을 Cu, Zn, Sn 및 Se 증발원이 설치된
동시 진공증발장치에 장착하고, 기판을 가열하여 기판 은도 (Tsub)가 500°C로 유지된 상태에서 모든 증발원의 셔터를 열어서 60분 동안 증착을 수행하였다. 증착을 위한, 각 증발원의 증발 온도는 Cu 증발원이 1330oC, Zn 증발원이 360oC,
Sn 증발원이 1360°C이며 , Se 증발원은 140°C였다.
[39] 다음으로 Cu 증발원의 셔터만 닫은 상태로 기판의 온도를 하강시켜 Zn, Sn 및
Se 증발원에 의한 증착을 수행하였으며 , 기판의 온도가 400oC가 되 었을 때 모든 증발원의 셔터를 닫고,기판의 온도가 70 C가 되 었을 때 동시진공증발장치에서 꺼 냈다.
[40] 도 1은 실시 예 1의 동시증발공정의 공정 조건을 나타낸 그래프이다.
[41]
[42] [실시 예 ¾
[43] 실시 예 1과 동일한 유리기판을 준비하여 , Cu, Zn, Sn 및 Se 증발원이 설치된 동시진공증발장치에 장착하고, 기판을 가열하여 Tsub = 500oC로 유지된 상태에서 모든 증발원의 셔터를 열어서 40분 동안 증착을 수행하였다. 증착을 위한,각 증발원의 증발 온도는 Cu 증발원이 1320oC, Zn 증발원이 360oC, Sn 증발원이 1480oC이며 , Se 증발원은 140oC였다.
[44] 다음으로 Cu 증발원과 Zn 증발원의 셔터를 닫은 상태로 기판의 온도를
하강시켜 Sn 및 Se 증발원에 의한 증착을 수행하였으며,기판의 온도가 400oC가 되 었을 때 모든 증발원의 셔터를 닫고,기판의 은도가 70°C가 되었을 때 동시 진공증발장치에서 꺼냈다. [45] 도 2는 실시 예 2의 동시진공증발공정의 공정 조건을 나타낸 그래프이다.
[46]
[47] [비교예 1]
[48] 실시 예 1과 동일한 유리 기판을 준비하여, Cu, Zn, Sn 및 Se 증발원이 설치된 동시 진공증발장치에 장착하고,기판을 가열하여 Tsub = 500°C로 유지된 상태에서 모든 증발원의 셔터를 열어서 60분 동안 증착을 수행하였다. 증착을 위한, 각 증발원의 증발 온도는 Cu 증발원이 1480°C, Zn 증발원이 335°C, Sn 증발원이 1480°C이며, Se 증발원은 210°C였다.
[49] 다음으로 Cu, Zn 및 Sn 증발원의 셔터를 닫은 상태로 기판의 온도를 하강시켜 Se 증발원에 의한 증착을 수행하였으며 , 기판의 온도가 400°C가 되었을 때 모든 증발원의 셔터를 닫고, 기판의 온도가 70 C가 되 었을 때 동시진공증발장치에서 꺼냈다.
[50] 도 3은 비교예 1의 동시증발공정의 공정 조건을 나타낸 그래프이다.
[51]
[52] [비교예 2]
[53] 실시 예 1과 동일한 유리 기판을 준비하여, Cu, Zn, Sn 및 Se 증발원이 설치된 동시 진공증발장치에 장착하고, 기판을 가열하여 Tsub = 500°C로 유지된 상태에서 모든 증발원의 셔터를 열어서 40분 동안 증착을 수행하였다. 증착을 위한, 각 증발원의 증발 은도는 Cu 증발원이 1400oC, Zn 증발원이 430°C, Sn 증발원이 1390°C이며, Se 증발원은 140°C였다.
[54] 다음으로 Cu, Zn 및 Sn 증발원의 셔터를 닫은 상태로 기판의 은도를 하강시켜 Se 증발원에 의한 증착을 수행하였으며 , 기판의 온도가 400°C가 되 었을 때 모든 증발원의 셔 터를 닫고, 기판의 온도가 70oC가 되 었을 때 동시진공증발장치에서 꺼냈다.
[55]
[56] 상기한 공정 조건으로 형성된 박막에 대하여 EDS 성분 분석을 수행한 결과 및 성분 간의 조성비를 표 1에 나타내었다.
[57] 표 1
[Table 1]
Figure imgf000007_0001
도 4와 도 5는 실시 예 1에 따라 제조된 박막의 단면 사진과 표면 사진이고, 도 6과 도 7은 실시 예 2에 따라 제조된 박막의 단면 사진과 표면 사진이다.
[60] 도 8과 도 9는 비교예 1에 따라 제조된 박막의 단면 사진과 표면 사진이고, 도 10과 도 11은 비교예 2에 따라 제조된 박막의 단면 사진과 표면 사진이다.
[61] 실시 예 1과 실시 예 2의 경우는 500oC 이상의 기판온도에서 동시진공증발
공정을 수행하였음에도 불구하고 Sn함량에 손실이 없이 적합한 조성 비율의 박막을 형성한 것을 확인할 수 있으며 , 도 4와 도 6에 도시된 것과 같이 , 약 1 um 두께의 몰리브덴 후면전극의 위에 863 nm와 784 nm의 박막이 형성된 것을 확인할 수 있다. 또한,양질의 치밀한 박막이 형성되었음을 도 5과 도 7의 표면 사진을 통해 확인할 수 있다.
[62] 반면에 , 비교예 1의 경우는 고온의 기판온도에서 부적 절한 공정 조건에 의해 Sn이 모두 손실되 었고, 도 8 및 도 9에서와 같이 1.76 의 두께로 결정성 이 큰 박막이 형성되었으나 표 1에 나타낸 바와 같이 Sn이 모두 소실되어 CZTSe를 형성하지 못하였음을 알 수 있으며 , 비교예 2의 경우는 고온의 기판온도에도 불구하고 Sn 및 Se 증발원의 적 절한 온도 조절을 통해 Sn 손실 방지가
가능하였으나, 도 10 및 도 11에서와 같이 실시 예 1과 2에 의해서 제조된 박막에 비하여 상대적으로 결함이 많고 막질이 떨어지는 것을 확인할 수 있다.
[63] 도 12는 실시 예 1에 따라 제조된 박막에 대한 XRD 분석 결과를 나타낸다.
[64] 도시된 것과 같이 , 실시 예 1의 공정조건으로 형성된 박막은 후면전극으로
증착된 몰리브덴의 피크를 제외하고는 CZTSe의 피크만이 검출되어,원하는 조성의 CZTSe를 형성하였음을 확인할 수 있다.
[65] 도 13은 비교예 1에 따라 제조된 박막에 대한 XRD 분석 결과를 나타낸다.
[66] 비교예 1의 공정조건을 형성된 박막은 Sn이 모두 소실되었기 때문에 CuxSe와 ZnSe의 피크만 관찰되 어, CZTSe를 형성하지 못한 것을 확인할 수 있다.
[67]
[68] [실시 예 3]
[69] 먼저 , 소다라임 유리 기판에 DC 스퍼터 링 공정으로 몰리브덴 후면 전극을 약 1의 두께로 증착하여 준비하였다.
[70] 후면전극이 형성된 기판을 Cu, Zn, Sn 및 Se 증발원이 설치된
동시진공증발장치에 장착하고, 기판을 가열하여 Tsub = 500°C로 유지된 상태에서 모든 증발원의 셔터를 열어서 15분 동안 증착을 수행한 뒤에,기판의 은도를 유지한 상태에서 Cu 증발원의 셔터만을 닫은 상태로 25분 동안 Zn, Sn 및 Se 증발원에 의한 증착을 수행하였다. 증착을 위한, 각 증발원의 증발 온도는 Cu 증발원이 1430°C, Zn 증발원이 360°C, Sn 증발원이 1420°C이며 , Se 증발원은 140°C였다.
[71] 다음으로 Cu 증발원의 셔터을 다시 연 상태로 기판의 온도를 하강시켜 Zn, Sn 및 Se 증발원에 의한 증착을 수행하였으며,기판의 온도가 375°C가 되었을 때 Cu 증발원의 셔터를 닫고 기판의 온도를 유지한 상태로 5분 동안 Zn, Sn 및 Se 증발원에 의한 증착을 수행하였다. [72] 이후에 모든 증발원의 셔터를 닫고, 기판의 은도가 70°C가 되 었을 때
동시진공증발장치에서 꺼냈다.
[73] 도 14는 실시 예 3의 동시증발공정의 공정 조건을 나타낸 그래프이다.
[74]
[75] [실시 예 4]
[76] 실시 예 3과 동일한 유리기판을 준비하여 , Cu, Zn, Sn 및 Se 증발원이 설치된 동시 진공증발장치에 장착하고,기판을 가열하여 Tsub= 500°C로 유지된 상태에서 모든 증발원의 셔터를 열어서 15분 동안 증착을 수행한 뒤에 , 기판의 온도를 유지한 상태에서 Cu 증발원의 셔터 만을 닫은 상태로 40분 동안 Zn, Sn 및 Se 증발원에 의 한 증착을 수행하였다. 증착을 위 한, 각 증발원의 증발 온도는 Cu 증발원이 14950C, Zn 증발원이 400°C, Sn 증발원이 1410°C이며 , Se 증발원은 140oC였다.
[77] 다음으로 Cu 증발원의 셔터을 닫은 상태를 유지하면서 기판의 온도를
하강시켜 Zn, Sn 및 Se 증발원에 의한 증착을 수행하였으며,기판의 은도가 375°C가 되 었을 때 기판의 온도를 유지한 상태로 5분 동안 Zn, Sn 및 Se 증발원에 의 한 증착을 수행하였다.
[78] 이후에 모든 증발원의 셔터를 닫고, 기판의 온도가 70oC가 되었을 때
동시 진공증발장치에서 꺼 냈다.
[79] 도 15는 실시 예 3의 동시증발공정의 공정 조건을 나타낸 그래프이다.
[80]
[81] [비교예 3]
[82] 실시 예 3과 동일한 유리기판을 준비하여 , Cu, Zn, Sn 및 Se 증발원이 설치된 동시진공증발장치 에 장착하고, 기판을 가열하여 Tsub= 500oC로 유지된 상태에서 모든 증발원의 셔터를 열어서 15분 동안 증착을 수행한 뒤에 , 기판의 온도를 유지 한 상태에서 Cu 증발원의 셔터 만을 닫은 상태로 25분 동안 Zn, Sn 및 Se 증발원에 의한 증착을 수행하였다. 증착을 위한,각 증발원의 증발 온도는 Cu 증발원이 1400oC, Zn 증발원이 360°C, Sn 증발원이 1500oC이며, Se 증발원은 140oC였다.
[83] 다음으로 Zn 증발원과 Sn 증발원의 셔터을 추가로 닫고 기판의 은도를
하강시켜 Se 증발원에 의한 증착을 수행하였으며,기판의 온도가 375°C가 되었을 때 기판의 은도를 유지한 상태로 5분 동안 Se 증발원에 의한 증착을 수행하였다.
[84] 이후에 모든 증발원의 셔터를 닫고, 기판의 온도가 70oC가 되 었을 때
동시진공증발장치에서 꺼 냈다.
[85] 도 16은 비교예 3의 동시증발공정의 공정 조건을 나타낸 그래프이디-.
[86]
[87] 상기한 공정 조건으로 형 성된 박막에 대하여 EDS 성분 분석을 수행한 결과 및 성분간의 조성비를 표 2에 나타내었다.
[88] 표 2 [Table 2]
Figure imgf000010_0001
[90] 실시예 1과실시예 2및비교예 3의경우에 500oC이상의기판은도에서
동시진공증발공정을수행하였음에도불구하고 Sn함량의손실이없이적합한 조성비율의박막을형성한것을확인할수있다.
[91] 도 17과도 18은실시예 3과비교예 3에따라제조된박막의표면사진이다.
[92] 실시예 3에의해제조된박막은결정성이크고치밀한박막이형성된것을 확인할수있으나,비교예 3에의해제조된박막은표면에많은결함이생성된 것으로나타났다.
[93] 상기한조건으로형성된박막위에, 60 rnn두께의 CdS완충층과 450 nm두께의 ZnO창층및 1 두께의 A1그리드전극을순차적으로형성하여태양전지를 구성하고,광전변환효율을측정하였다.
[94] 도 19는실시예 1에따라형성된광흡수층을포함하는태양전지의 I-V
곡선이다.
[95] 도시된것과같이,본실시예에따라서제조된태양전지는개방회로전압 (Voc )이 0.3262 V이고,단락전류 (Jsc)는 32.22 mA/cm2이며,충진율 (FF, fill factor)은 58.45를나타내어최종적인변환효율 (Eff.)은 6.14%로확인되었다.
[96] 이로부터,실시예 1에의하여동시진공증발공정으로형성된 CZTS계화합물 박막이태양전지의광흡수층으로써효율적으로작동할수있음을확인할수 있다.
[97] 본발명의모든실시예로형성된광흡수층을이용한태양전지의
광전변환효율을표로나타내면다음과같다.
[98] 표 3
[Table 3]
Figure imgf000010_0002
[100] 도 19에나타낸실시예 1의광흡수층을이용한태양전지의광전변환효율이
6.14%로가장높았으며,나머지조건으로제조된광흡수층을이용한태양전지의 경우도약 3.5%이상의광전변환효율을나타내어,본발명의
동시진공증발공정을기반으로형성된 CZTS계화합물박막이태양전지의 광흡수층으로써효율적으로작동할수있음을확인할수있다.
[101] 본발명의모든비교예로형성된박막은태양전지의광흡수층으로작용하지 못하였는데,비교예 i의경우는박막이 CZTSe를형성하지못하고불순물로만 이루어졌기때문이며,비교예 2및 3의경우는박막내부에형성된결함에의한 것으로여겨진다.
[102]
[103] 이상본발명을바람직한실시예를통하여설명하였는데,상술한실시예는본 발명의기술적사상올예시적으로설명한것에불과하며,본발명의기술적 사상을벗어나지않는범위내에서다양한변화가가능함은이분야에서통상의 지식을가진자라면이해할수있을것이다.따라서본발명의보호범위는특정 실시예가아니라특허청구범위에기재된사항에의해해석되어야하며,그와 동등한범위내에있는모든기술적사상도본발명의권리범위에포함되는 것으로해석되어야할것이다.

Claims

청구범위
[청구항 1] 동시진공증발공정으로 CZTSe 태양전지의 광흡수층을 제조하는 방법으로서,
Cu, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a); 상기 기판의 온도를 내리면서, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b)를 포함하는 것을 특징으로 하는
동시진공증발공정 기반의 CZTSe 광흡수층 제조방법 .
[청구항 2] 청구항 1에 있어서,
상기 단계 b는, Sn 및 Se와 함께 Zn을 동시 에 증발시켜 기판에 증착하는 것을 특징으로 하는 동시진공증발공정 기반의 CZTSe 광흡수층 제조방법 .
[청구항 3] 청구항 1에 있어서 ,
상기 단계 a에서,상기 기판의 온도가 450°C 이상에서 600oC 이하의 범위 인 것을 특징으로 하는 동시진공증발공정 기반의 CZTSe 광흡수층 제조방법 .
[청구항 4] 청구항 1에 있어서,
상기 단계 b를, 상기 기판의 은도가 360°C 이상에서 450°C 미만의 범위가 될 때까지 수행하는 것을 특징으로 하는 동시진공증발공정 기반의 CZTSe 광흡수층 제조방법 .
[청구항 5] CZTSe 태양전지의 광흡수층을 제조하는 방법으로서,
Cu, Zn, Sn 및 Se를 동시 에 증발시켜 기판에 증착하는 단계 (단계 a-1); 、
상기 기판의 온도를 유지하면서, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 a-2);
상기 기판의 은도를 내리면서, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b-1); 및
상기 기판의 은도를 유지하면서, Zn, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 단계 (단계 b-2)를 포함하는 것올 특징으로 하는 동시진공증발공정 기반의 CZTSe 광흡수층 제조방법 .
[청구항 6] 청구항 5에 있어서 ,
상기 단계 b-1은, Zn, Sn 및 Se와 함께 Cu를 동시에 증발시켜 기판에 증착하는 것을 특징으로 하는 동시 진공증발공정 기반의 CZTSe 광흡수층 제조방법 .
[청구항 7] 청구항 5에 있어서 ,
상기 단계 b-2에서, Sn 및 Se를 동시에 증발시켜 기판에 증착하는 것을 특징으로 하는 동시진공증발공정 기 반의 CZTSe 광흡수층 제조방법.
[청구항 8] 청구항 5에있어서,
상기단계 a-1에서,상기기판의온도가 450°C이상에서 600°C 이하의범위인것을특징으로하는동시진공증발공정기반의 CZTSe광흡수층제조방법.
[청구항 9] 청구항 5에있어서,
상기단계 b-2가수행되는상기기판의은도가 360°C이상에서 450°C미만의.범위인것을특징으로하는동시진공증발공정 기반의 CZTSe광흡수층제조방법 .
[청구항 10] 청구항 1의방법으로제조된 CZTSe광흡수층박막을포함하는 것을특징으로하는태양전지.
PCT/KR2014/003352 2013-04-18 2014-04-17 동시진공증발공정 기반의 cztse 광흡수층 제조방법 WO2014171760A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480021343.4A CN105340081B (zh) 2013-04-18 2014-04-17 基于同时真空蒸发工艺的cztse光吸收层制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130042782A KR101406704B1 (ko) 2013-04-18 2013-04-18 동시진공증발공정 기반의 CZTSe 광흡수층 제조방법
KR10-2013-0042782 2013-04-18

Publications (1)

Publication Number Publication Date
WO2014171760A1 true WO2014171760A1 (ko) 2014-10-23

Family

ID=51132680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003352 WO2014171760A1 (ko) 2013-04-18 2014-04-17 동시진공증발공정 기반의 cztse 광흡수층 제조방법

Country Status (3)

Country Link
KR (1) KR101406704B1 (ko)
CN (1) CN105340081B (ko)
WO (1) WO2014171760A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016053016A1 (ko) * 2014-09-29 2016-04-07 이화여자대학교 산학협력단 CZTSe계 박막 및 이의 제조 방법, 및 상기 CZTSe계 박막을 이용한 태양전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135316A (ja) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc 光電素子及びその製造方法
KR20110085721A (ko) * 2010-01-21 2011-07-27 전남대학교산학협력단 단일 공정 전기증착법을 이용한 czts 박막의 제조방법
JP2012124232A (ja) * 2010-12-06 2012-06-28 Toyota Central R&D Labs Inc p型半導体及び光電素子
KR20130016528A (ko) * 2011-08-08 2013-02-18 한국에너지기술연구원 태양전지용 CZT(S,Se)계 박막의 제조방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439096A (zh) 2009-05-21 2012-05-02 纳幕尔杜邦公司 制备硫化铜锡和硫化铜锌锡薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135316A (ja) * 2007-11-30 2009-06-18 Toyota Central R&D Labs Inc 光電素子及びその製造方法
KR20110085721A (ko) * 2010-01-21 2011-07-27 전남대학교산학협력단 단일 공정 전기증착법을 이용한 czts 박막의 제조방법
JP2012124232A (ja) * 2010-12-06 2012-06-28 Toyota Central R&D Labs Inc p型半導体及び光電素子
KR20130016528A (ko) * 2011-08-08 2013-02-18 한국에너지기술연구원 태양전지용 CZT(S,Se)계 박막의 제조방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막

Also Published As

Publication number Publication date
CN105340081B (zh) 2017-12-08
CN105340081A (zh) 2016-02-17
KR101406704B1 (ko) 2014-06-12

Similar Documents

Publication Publication Date Title
Romeo et al. Low substrate temperature CdTe solar cells: A review
US8969720B2 (en) Photoelectronically active, chalcogen-based thin film structures incorporating tie layers
Gershon et al. Understanding the relationship between Cu2ZnSn (S, Se) 4 material properties and device performance
KR101893411B1 (ko) 황화아연 버퍼층을 적용한 czts계 박막 태양전지 제조방법
Buffière et al. Physical characterization of Cu2ZnGeSe4 thin films from annealing of Cu–Zn–Ge precursor layers
WO2011074685A1 (ja) Cis系薄膜太陽電池の製造方法
Moon et al. Cu (In, Ga) Se 2 thin films without Ga segregation prepared by the single-step selenization of sputter deposited Cu-In-Ga-Se precursor layers
KR20130016528A (ko) 태양전지용 CZT(S,Se)계 박막의 제조방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막
EP2702615B1 (en) Method of preparing a solar cell
US20160005912A1 (en) Cigs film production method, and cigs solar cell production method using the cigs film production method
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
US20140220729A1 (en) Method of producing cigs film, and method of producing cigs solar cell by using same
Zhang et al. Investigation on Sb-doped induced Cu (InGa) Se2 films grain growth by sputtering process with Se-free annealing
US8846438B2 (en) Method for indium sputtering and for forming chalcopyrite-based solar cell absorber layers
WO2010150864A1 (ja) Cis系薄膜太陽電池
WO2014171760A1 (ko) 동시진공증발공정 기반의 cztse 광흡수층 제조방법
KR102227799B1 (ko) Cigs 박막 태양전지 제조방법
US20130316490A1 (en) Solar cell and solar cell production method
KR102057234B1 (ko) Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지
KR102025091B1 (ko) CZT(S,Se)계 박막, 시드가 형성된 전구체층을 이용하는 CZT(S,Se)계 박막 형성방법 및 CZT(S,Se)계 박막 태양전지와 그 제조방법
US20210210645A1 (en) Chalcogenide solar cell having transparent conducting oxide back contact, and method of manufacturing the chalcogenide solar cell
KR101504318B1 (ko) 박막형 태양전지
Kumar et al. Effect of buffer layer composition and surface features on large area and high efficiency CuIn x Ga 1− x Se 2 solar cells
JP5575163B2 (ja) Cis系薄膜太陽電池の製造方法
US20180212092A1 (en) Adhesive Layer For Printed CIGS Solar Cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021343.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784637

Country of ref document: EP

Kind code of ref document: A1