WO2014171635A1 - 신규 d-솔비톨 탈수소화효소 및 이를 이용한 l-소르보스의 생산방법 - Google Patents
신규 d-솔비톨 탈수소화효소 및 이를 이용한 l-소르보스의 생산방법 Download PDFInfo
- Publication number
- WO2014171635A1 WO2014171635A1 PCT/KR2014/002131 KR2014002131W WO2014171635A1 WO 2014171635 A1 WO2014171635 A1 WO 2014171635A1 KR 2014002131 W KR2014002131 W KR 2014002131W WO 2014171635 A1 WO2014171635 A1 WO 2014171635A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sorbitol dehydrogenase
- sorbitol
- sorbose
- gene
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01014—L-Iditol 2-dehydrogenase (1.1.1.14), i.e. sorbitol-dehydrogenase
Definitions
- the present invention relates to a novel D-sorbitol dehydrogenase and a method for preparing L-sorbose using the same, and more particularly, D-sorbitol dehydrogenase, a nucleic acid molecule encoding the same, a vector comprising the nucleic acid molecule, A transformant comprising a vector and a method for producing L-sorbose using the D-sorbitol dehydrogenase.
- L-carbohydrates and nucleoside derivatives thereof have been greatly increased, and modified nucleosides have shown considerable potential as useful antiviral agents.
- L-xylulose is a key pentose sugar that constitutes the backbone in the synthesis of L-ribonucleosides, L-oligoribonucleosides and many therapeutic agents.
- L-nucleosides are high potential candidates that can be used as therapeutic materials because they have high stability against nucleases and the like in the body when compared to D-nucleosides.
- L-sorbose is the starting material for the preparation of 2-keto-L-gulonic acid, in which L-ascorbic acid is synthesized in large quantities.
- the production of ascorbic acid or a precursor thereof, such as L-sorbose has the advantage of producing the desired product in enantiomerically pure form. It is also used as an intermediate to produce gulose.
- the present invention solves the above problems, and the first object of the present invention is to provide a gene of D- sorbitol dehydrogenase derived from Gluconobacter oxidans.
- a fifth object of the present invention is to provide a recombinant D-sorbitol dehydrogenase using transformed recombinant E. coli.
- a sixth object of the present invention is to provide a method for preparing L-sorbose from D-sorbitol using the enzyme.
- the present invention is characterized by using the D-sorbitol dehydrogenase of the Gluconobacter oxyduns strain in the production method of L-sorbose.
- the present invention is characterized by cloning the D-sorbitol dehydrogenase gene from Gluconobacter oxidans through Southern hybridization and colony hybridization.
- the present invention provides a D-sorbitol dehydrogenase having an amino acid sequence of SEQ ID NO: 4 or a functional fragment thereof.
- the D-sorbitol dehydrogenase is preferably derived from Gluconobacter oxidans, but is not limited thereto.
- the D-sorbitol dehydrogenase is characterized in that it is specific for D-sorbitol.
- the molecular weight of the enzyme of the present invention is characterized in that 53 kDa.
- the enzyme of the present invention is characterized by having the highest activity among the enzymes known to produce L-sorbose.
- the present invention also provides a D-sorbitol dehydrogenase gene encoding the enzyme of the present invention.
- the gene of the present invention preferably has a nucleotide sequence of SEQ ID NO: 3, but is not limited thereto.
- the present invention provides a method for producing a D-sorbitol dehydrogenase by culturing a strain transformed with a recombinant expression vector comprising the D- sorbitol dehydrogenase gene.
- the present invention also provides a method for preparing L-sorbose from D-sorbitol using the D-sorbitol dehydrogenase.
- the present invention provides a composition for producing L-sorbose comprising the D- sorbitol dehydrogenase of the present invention as an active ingredient.
- the present invention provides a composition for producing L-sorbose comprising the gene encoding the D-sorbitol dehydrogenase of the present invention as an active ingredient.
- D-sorbitol dehydrogenase of the present invention is characterized by having an amino acid sequence represented by SEQ ID NO: 4.
- the amino acid sequence of SEQ ID NO: 4 may be deleted, substituted, or added to at least one mutation of one or more amino acids within a range in which the D-sorbitol dehydrogenase activity indicated by the protein having these amino acid sequences is not impaired.
- the mutant D-sorbitol dehydrogenase into which the is introduced is also included in the D-sorbitol dehydrogenase according to the present invention.
- the D-sorbitol dehydrogenase gene encoding the D-sorbitol dehydrogenase having the amino acid sequence of SEQ ID NO: 4 is included, and the gene sequence thereof is represented by SEQ ID NO: 3.
- the mutant D-sorbitol dehydrogenase gene encoding the above-described variant D-sorbitol dehydrogenase gene obtained by mutating these nucleotide sequences of SEQ ID NO: 3 is also included in the D-sorbitol dehydrogenase gene of the present invention.
- the present invention includes a recombinant vector containing the D-sorbitol dehydrogenase gene and a transformant transformed with the recombinant vector.
- the present invention includes a method for producing D-sorbitol dehydrogenase, wherein the transformant is cultured to separate D-sorbitol dehydrogenase from the culture obtained.
- the D-sorbitol dehydrogenase gene of the present invention is isolated from the cells of Gluconobacter oxydans.
- chromosomal DNA is obtained from a strain having a D-sorbitol dehydrogenase gene.
- PCR polymerase chain reaction
- the PCR amplification fragments thus obtained were fragments with a homology close to 100% of the D-sorbitol dehydrogenase gene of the Gluconobacter oxydans strain, and showed high S / N ratio as a probe when colony hybridization was performed. At the same time, it facilitates stringency control of hybridization.
- the PCR amplification fragments are labeled using appropriate reagents, and colony hybridization is performed on the chromosomal DNA library to select D-sorbitol dehydrogenase gene (Current Protocols in Molecular Biology, Vol. 1, p. 603, 1994).
- DNA fragments containing the D-sorbitol dehydrogenase gene can be obtained by recovering the plasmid from the Escherichia coli selected by the above method using the alkaline method (Current Protocols in Molecular Biology, Vol. 1, p. 161, 1994). have. After determining the nucleotide sequence by the above method, it is possible to obtain the entire gene of the present invention by hybridizing the DNA fragment having the nucleotide sequence prepared by digestion with a restriction enzyme as a probe.
- SEQ ID NO: 3 shows the nucleotide sequence of the D-sorbitol dehydrogenase gene of the present invention
- SEQ ID NO: 4 shows the amino acid sequence encoded by the gene.
- the transformed microorganism of the present invention is obtained by introducing the recombinant vector of the present invention into an expression vector and a suitable host used in the preparation of the recombinant vector.
- a suitable host used in the preparation of the recombinant vector.
- the recombinant vector according to the present invention can autonomously replicate in the host, and at the same time, include a promoter, DNA containing a D-sorbitol dehydrogenase gene, and transcription termination sequence. It is preferable to have a structure necessary for the expression of.
- PGEX-KG was used as the expression vector used in the present invention, but any expression vector satisfying the above requirements can be used.
- D-sorbitol dehydrogenase In the production of D-sorbitol dehydrogenase according to the present invention, a transformant obtained by transforming a host with a recombinant vector having a gene encoding the same is cultured, and is a gene product in a culture (culture cell or culture supernatant). This is done by generating and accumulating D-sorbitol dehydrogenase and obtaining enzyme from the culture.
- D-sorbitol dehydrogenase Acquisition and purification of D-sorbitol dehydrogenase can be carried out by centrifuging the cells or supernatants from the cultures obtained, followed by cell disruption, affinity chromatography, cation or anion exchange chromatography alone or in combination. have.
- the present invention clones a gene encoding D-sorbitol dehydrogenase from the gene of Gluconobacter oxydans to produce an industrially useful D-sorbitol dehydrogenase, and the base sequence of the gene and the amino acid sequence inferred therefrom. Analyze
- the D-sorbitol dehydrogenase of the present invention is an enzyme that forms L-sorbose by catalyzing the dehydrogenation reaction using D-sorbitol as a substrate, and more preferably has L-sorbitol having a specificity for dehydrogenation. D-sorbitol dehydrogenase with the ability to convert to sorbose.
- the D-sorbitol dehydrogenase of the present invention has the following characteristics: (1) the molecular weight is about 53 kDa and (2) the enzyme activity appears in the presence of NADP + .
- the known D-sorbitol dehydrogenase shows L-sorbose conversion rate due to low activity and stability.
- the D-sorbitol dehydrogenase of the present invention produces L-sorbose with high yield using D-sorbitol. do. Therefore, the enzyme of the present invention which produces L-sorbose in high yield in D-sorbitol will be very specific and will be usefully applied in the production of L-sorbose from sugar mixture.
- L-sorbose produced by the D-sorbitol dehydrogenase of the present invention is a starting material for preparing 2-keto-L-gulonic acid, and L-ascorbic acid is produced in large quantities from the 2-keto-L-gulonic acid. Are synthesized.
- the production of ascorbic acid or a precursor thereof, such as L-sorbose, by biological methods has the advantage of producing the desired product in enantiomerically pure form.
- 1 is a vector map of the vector pUC-GoSLDH to find a fragment carrying the D-sorbitol dehydrogenase gene on the chromosome of Gluconobacter oxydans and cloned into a vector used in Escherichia coli.
- FIG. 2 is a diagram illustrating a method of preparing an expression vector comprising a D-sorbitol dehydrogenase gene derived from a Gluconobacter oxidans strain.
- FIG. 3 is a SDS-PAGE gel photograph of D-sorbitol dehydrogenase derived from Gluconobacter oxydans strain.
- FIG. 5 shows the results of high pressure liquid chromatography (HPLC) analysis of the production of L-sorbose only from sorbitol without the production of L-sorbose using D-sorbitol dehydrogenase derived from Gluconobacter oxydans. It is shown.
- HPLC high pressure liquid chromatography
- FIG. 6 is a diagram showing the amount of L-sorbose produced per time zone obtained using D-sorbitol dehydrogenase derived from Gluconobacter oxydans.
- D-sorbitol dehydrogenase To isolate the strain producing D-sorbitol dehydrogenase, 10 ul of culture medium of various bacteria was suspended in 10 ml of saline solution, 10 ul (1 ⁇ 10 4 cfu ml ⁇ 1 ) of the suspension was taken, and 3% malt extract After spreading on the added peptone agar medium (Malt extract peptone agar) and incubated for 2 days at 37 °C. D-sorbitol dehydrogenase is produced from a variety of bacteria by forming colonies in solid peptone media and taking colonies to select bacteria having D-sorbitol as an substrate, that is, those having D-sorbitol dehydrogenase activity. The bacteria were searched for.
- KCTC2779 Bacterial Gluconobacter oxydans (KCTC2779) was used to obtain the nucleotide sequence of the D-sorbitol dehydrogenase gene. In general, genes with similar functions are known to be somewhat similar in size to each nucleotide sequence. Therefore, the gene of D-sorbitol dehydrogenase of Gluconobacter oxydans (KCTC2779) was estimated to have a size of about 1.5 kb, and based on the known D-sorbitol dehydrogenase sequence of other bacteria, The entire gene of D-Solbitol dehydrogenase of Dans (KCTC2779) was cloned.
- E. coli XL1-Blue and pUC18 vectors were used for cloning.
- a culture medium of E. coli LB medium having a general composition was used, and the peptone agar medium (Malt extract peptone agar) was used for culturing Gluconobacter oxydans (KCTC2779).
- a plate medium of E. coli agar plates containing LB agar, 3-5% sugar, 0.3-0.5% beef extract, 0.9-1.1% bactopeptone, and 1.3-1.7% agar composition were used. 50 ⁇ g / ml ampicillin was added as needed.
- the culture method was inoculated in a 250 ml Erlenmeyer flask containing 50 ml of Gluconobacter oxydans (KCTC2779) and incubated at 37 ° C. and 200 rpm for 1 day, and 37 ° C. and 200 rpm for E. coli. Incubated for 16 hours. Most DNA was identified by agarose gel (TAE buffer, 0.5%) electrophoresis. The purification of DNA bands on the gel was performed using a QiaXII gel extractor (QIAGEN, USA), and the ligation reaction between DNAs was T4 DNA. Ligase (NEB) was used.
- Glucobacter oxydans (KCTC2779) chromosome was isolated.
- Glunobacter oxydans (KCTC2779) Degraded primer, SLDH F-5'- ATC GTY TCS MTG ACS ATC ACS GAA GGC GGC TAC-3 '(SEQ ID NO: 1) and SLDH R-5'- GCR WCT GGT CSG MMA TCG CCT KGT TGG AGA ARC -3' (SEQ ID NO: 2).
- Gluconobacter Oxidans (KCTC2779) chromosome by chain polymerization.
- the genomic DNA of Gluconobacter oxydans (KCTC2779) was completely cleaved using restriction enzymes BamHI, EcoRI, HindIII, SalI, and XbaI, which do not have a cleavage site, in the partial sequence amplified. And a radiolabeled probe was made using a DNA fragment obtained through the polymerase chain reaction. Using this, we searched for DNA fragments containing genes to be searched by Southern hybridization. When the chromosome was cut by BamHI, HindIII, and XbaI, the DNA having D-sorbitol dehydrogenase gene as a result of Southern hybridization was about 20-23 kb and was not used because it was too large.
- the desired gene was searched using the fragment cut by EcoRI of about kb and the fragment cut by SalI of about 5.5 kb.
- the penicillium pinopylum chromosome was digested with EcoRI, separated from the 2.5 kb DNA fragment and the 5.6 kb DNA fragment isolated from SalI, cloned into pUC18 and named pUC-GoSLDH (Fig. 1).
- Colony hybridization was performed using the 1.0 kb probe prepared in the pUC-GoSLDH library to determine clones with the gene of the desired D-sorbitol dehydrogenase.
- the clone was analyzed to determine the base sequence of 1,458 bp of D-sorbitol dehydrogenase (SEQ ID NO: 3). As expected, it was similar in size to the D-sorbitol dehydrogenase gene found in several other bacteria.
- Gluconobacter oxydans (KCTC2779) D-sorbitol dehydrogenase was found to have the nucleotide sequence common to other D-sorbitol dehydrogenase.
- the recombinant strain prepared in Example 3 was inoculated in LB medium and cultured at 16 ° C. for 24 hours to confirm the protein expressed in the SDS-PAGE gel (FIG. 3).
- the recombinant strain culture solution was centrifuged (8000 ⁇ g, 10 minutes) to collect only the cells, and then subjected to sonication to break down the cell wall of E. coli. The precipitate was removed by centrifugation at 20,000 ⁇ g for 20 minutes to obtain a supernatant. Finally, Ni-NTA His-tag binding chromatography (Qiagen, Germany) was performed to purely separate the recombinant D-sorbitol dehydrogenase.
- Example 4 The physicochemical properties of D-sorbitol dehydrogenase isolated in Example 4 were investigated, and D-sorbitol was used as a substrate.
- the enzyme reaction experiment was carried out under the following conditions.
- the enzyme activity was measured after adding NAD + , NADP + as a coenzyme using D-sorbitol as a substrate.
- the bacterial culture and enzyme purification methods were carried out as in Example 2, and the enzyme and the substrate were reacted at 25 ° C. in the presence of 10 mM D-sorbitol substrate solution, 10 mM NAD + , 10 mM NADP + .
- Enzymatic reaction was carried out as in Example 4-1 using sorbitol (10-400 mM) of various concentrations of substrate, and then the dynamic parameters were measured by nonlinear regression analysis (FIG. 4).
- the K m value of D-sorbitol dehydrogenase for D-sorbitol was determined to be about 38.91 mM
- the value of k cat was about 3818 sec -1
- the value of k cat / K m was 98.12 sec -1 mM -1 . This corresponds to the highest activity among the oxidases producing L-sorbose reported to date (Table 2).
- D-sorbitol dehydrogenase derived from Gluconobacter oxydans is GoSLDH; Mannitol dehydrogenase derived from Pseudomonas fluorescens was named PfMDH.
- the maximum production time of L-sorbose was 3 hours, the amount of L-sorbose produced was 7.5 mM, and the conversion rate of L-sorbose from D-sorbitol was 75%. These final concentrations are very good for D-sorbitol to L-sorbose production.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
본 발명은 D-솔비톨 탈수소화효소 (D-sorbitol dehydrogenase) 활성을 갖는 글루코노박터 옥시단스 (Gluconobacter oxydans) 균주로부터 유래한 신규 D-솔비톨 탈수소화효소의 유전자로부터 발현되는 D-솔비톨 탈수소화효소, 상기 유전자를 포함하는 재조합 발현벡터로 형질 전환된 균주로부터 D-솔비톨 탈수소화효소를 제조하는 방법 및 상기 효소를 이용한 L-소르보스의 생산 방법에 관한 것이다. 본 발명의 재조합 D-솔비톨 탈수소화효소는 특이적으로 D-솔비톨을 전환시키며, 안정적으로 효소반응을 촉매 할 수 있다. 글루코노박터 옥시단스 유래 D-솔비톨 탈수소화효소 및 이를 이용한 L-소르보스의 생산방법은 L-소르보스의 대량 생산에 효율적으로 사용될 수 있다.
Description
본 발명은 신규 D-솔비톨 탈수소화효소 및 그를 이용한 L-소르보스의 제조방법에 관한 것으로서, 보다 상세하게는 D-솔비톨 탈수소화효소, 이를 코딩하는 핵산 분자, 상기 핵산 분자를 포함하는 벡터, 상기 벡터를 포함하는 형질전환체 및 상기 D-솔비톨 탈수소화효소를 이용한 L-소르보스의 제조방법에 관한 것이다.
최근 의약분야에서 L-탄수화물 및 그의 뉴클레오사이드 유도체의 사용이 크게 증가하고 있는 가운데 변형된 뉴클레오사이드는 유용한 항바이러스제로서 상당한 잠재성을 보이고 있다. L-자일룰로스는 L-리보뉴클레오사이드, L-올리고리보뉴클레오사이드 및 많은 치료용 제재의 합성에 있어서 골격을 구성하는 핵심 오탄당이다. L-뉴클레오사이드는 D-뉴클레오사이드와 비교할 때, 체내의 뉴클레아제 등의 공격으로부터 높은 안정성을 가지므로 치료용 재료로서 사용될 수 있는 잠재성이 높은 후보 물질이다.
L-소르보스는 2-케토-L-굴론산을 제조하기 위한 출발 물질이고, 상기 2-케토-L-굴론산으로부터 L-아스코르브산이 대량으로 합성된다. 발효에 의한 미생물학적 방법에서 아스코르브산 또는 그의 전구체, 예컨대, L-소르보스를 제조하는 것은 원하는 생성물을 거울상 이성질체적으로 순수한 형태로 제조하는 장점이 있다. 또한 굴로스를 생산하기위한 중간체로 사용되기도 한다.
상기의 중요성 및 유용성에도 불구하고, L-소르보스를 생성하는 솔비톨 탈수소화 효소는 효소의 안정성이 낮아 생체외 반응이 어렵다. 따라서 발효 방법에 의해 L-소르보스를 생성하는 방법이 유일한 방법이었다. 그러나, 현재까지 L-소르보스를 제조하는 데 사용된 발효 방법은 많은 단점이 있다. 이 방법에 있어서 지금까지 공지되어 있는 가장 심각한 단점 중 하나는 출발 물질인 D-소르비톨이 상대적으로 낮은 농도, 즉 1 내지 15 중량%로만 사용될 수 있다는 점이다. 따라서, 발효를 완결한 후에도 L-소르보스 농도는 매우 낮았다. 두 번째로 심각한 단점은 반응을 배치식으로 수행해야 한다는 요구조건이었다. 이것은 각 제조 배치를 위한 새로운 접종물을 다단계에서 먼저 준비해야함을 의미한다. 이것은 특히 노동 집약적이며, L-소르보스의 대량 제조에 있어서 심각한 단점이다. 따라서 이러한 기존 생산법의 단점을 극복하고 효소적 생산법을 확립하기 위해서는 L-소르보스를 생산하는 효소의 안정성과 높은 활성이 확보되어야 한다.
본 발명에서는 D-솔비톨로부터 L-소르보스를 생산할 수 있는 D-솔비톨 탈수소화효소 및 그와 같은 효소를 이용하여 L-소르보스를 생산할 수 있는 최적 반응 조건을 제시함으로써, L-소르보스를 높은 수율로 저렴하게 대량 생산할 수 있는 방법을 제공하고자 한다.
본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 첫 번째 목적은 글루코노박터 옥시단스로부터 유래된 D-솔비톨 탈수소화효소의 유전자를 제공하는 것이다.
본 발명의 두 번째 목적은 상기 유전자로부터 발현된 D-솔비톨 탈수소화효소를 제공하는 것이다.
본 발명의 세 번째 목적은 상기 D-솔비톨 탈수소화효소의 유전자를 포함한 재조합 발현벡터를 제공하는 것이다.
본 발명의 네 번째 목적은 형질전환된 재조합 대장균을 포함하는 모든 형질전환 균주를 제공하는 것이다.
본 발명의 다섯 번째 목적은 형질전환된 재조합 대장균을 이용한 재조합 D-솔비톨 탈수소화효소를 제공하는 것이다.
본 발명의 여섯 번째 목적은 상기 효소를 이용하여 D-솔비톨로부터 L-소르보스를 제조하는 방법을 제공하는 것이다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
본 발명은 L-소르보스의 생산방법에 있어서, 글루코노박터 옥시단스 (Gluconobacter oxyduns) 균주의 D-솔비톨 탈수소화효소를 이용하는 것을 특징으로 한다. 또한 본 발명은 서어던 하이브리다이제이션과 콜로니 혼성화를 통하여 글루코노박터 옥시단스 로부터 D-솔비톨 탈수소화효소 유전자를 클로닝하는 것을 특징으로 한다.
상기의 목적을 달성하기 위하여 본 발명은 서열번호 4의 아미노산 서열 또는 그 기능적 단편을 가지는 D-솔비톨 탈수소화효소를 제공한다.
본 발명의 일 구체예에 있어서 상기 D-솔비톨 탈수소화효소는 글루코노박터 옥시단스에서 유래한 것이 바람직하나 이에 한정되지 아니한다.
또한 본 발명의 바람직한 일 구체예에 있어서 상기 D-솔비톨 탈수소화효소는 D-솔비톨에 특이적인 것을 특징으로 한다.
본 발명의 일 구체예에 있어서, 본 발명의 상기 효소의 분자량은 53 kDa인 것을 특징으로 한다.
또한 본 발명의 상기 효소는 기존에 알려진 L-소르보스를 생산하는 효소 중 가장 높은 활성을 갖는 것을 특징으로 한다.
또한 본 발명은 본 발명의 상기 효소를 코딩하는 D-솔비톨 탈수소화효소 유전자를 제공한다.
본 발명의 상기 유전자는 서열번호 3의 염기서열을 가지는 것이 바람직하나, 이에 한정되지 아니한다.
또한 본 발명은 상기 D-솔비톨 탈수소화효소 유전자를 포함하는 재조합 발현벡터로 형질전환된 균주를 배양하여 D-솔비톨 탈수소화효소를 제조하는 방법을 제공한다.
또한 본 발명은 상기 D-솔비톨 탈수소화효소를 이용하여 D-솔비톨로부터 L-소르보스를 제조하는 방법을 제공한다.
또한 본 발명은 상기 본 발명의 D-솔비톨 탈수소화효소를 유효성분으로 포함하는 L-소르보스 제조용 조성물을 제공한다.
또한 본 발명은 상기 본 발명의 D-솔비톨 탈수소화효소를 코딩하는 유전자를 유효성분으로 포함하는 L-소르보스 제조용 조성물을 제공한다.
이하, 본 발명을 설명한다.
본 발명의 D-솔비톨 탈수소화효소는 서열번호 4로 표시되는 아미노산서열을 가진 것을 특징으로 한다. 또, 서열번호 4의 아미노산서열에 대해서, 이들 아미노산서열을 가진 단백질이 표시하는 D-솔비톨 탈수소화효소 활성이 손상되지 않는 범위 내에서, 1이상의 아미노산의 결실, 치환 및 부가의 적어도 1종의 변이가 도입된 변이 D-솔비톨 탈수소화효소도 본 발명에 관한 D-솔비톨 탈수소화효소에 포함된다.
또, 본 발명에는 서열번호 4의 아미노산서열을 가진 D-솔비톨 탈수소화효소를 코딩하는 D-솔비톨 탈수소화효소 유전자가 포함되고, 그 유전자서열로서는 서열번호 3으로 표시되는 것을 들 수 있다. 또, 이들 서열번호 3의 염기서열을 변이시켜서 얻게 되는 상기한 변이 D-솔비톨 탈수소화효소를 코딩하는 변이 D-솔비톨 탈수소화효소 유전자도 본 발명에 관한 D-솔비톨 탈수소화효소 유전자에 포함된다.
또, 본 발명에는, 상기 D-솔비톨 탈수소화효소 유전자를 함유하는 재조합벡터, 상기 재조합벡터에 의해서 형질전환된 형질전환체가 포함된다. 또한, 본 발명에는, 이 형질전환체를 배양하여, 얻게 되는 배양물로부터 D-솔비톨 탈수소화효소를 분리하는 것을 특징으로 하는 D-솔비톨 탈수소화효소의 제조방법이 포함된다.
이하, 본 발명을 더욱 상세히 설명한다.
본 발명의 D-솔비톨 탈수소화효소 유전자는 글루코노박터 옥시단스의 균체로부터 분리된 것이다. 먼저, D-솔비톨 탈수소화효소 유전자를 가진 균주로부터 염색체 DNA를 취득한다. 다음에, 설계한 올리고뉴클레오타이드를 프라이머로 하고, 글루코노박터 옥시단스 균주의 염색체 DNA를 주형으로 해서 폴리머라제 연쇄반응(PCR)을 행하여, D-솔비톨 탈수소화효소 유전자를 부분적으로 증폭한다. 이와 같이 해서 얻게 된 PCR 증폭 단편은 글루코노박터 옥시단스 균주의 D-솔비톨 탈수소화효소 유전자에 100% 가까운 상동성을 가진 단편으로서, 콜로니하이브리디제이션을 행할 때의 프로브로서 높은 S/N비를 기대할 수 있는 동시에, 하이브리디제이션의 스트린전시(stringency)제어를 용이하게 한다. 상기의 PCR 증폭 단편을 적당한 시약을 사용해서 표지하고, 상기 염색체 DNA라이브러리에 대해서 콜로니 하이브리디제이션을 행하여, D-솔비톨 탈수소화효소 유전자를 선발한다(Current Protocols in Molecular Biology, 1권, 603페이지, 1994년).
상기의 방법에 의해 선발된 대장균으로부터 알칼리법(Current Protocols in Molecular Biology, 1권, 161페이지, 1994년)을 사용해서 플라스미드를 회수함으로써, D-솔비톨 탈수소화효소 유전자를 함유하는 DNA단편을 얻을 수 있다. 또한, 상기 방법에 의해 염기서열을 결정한 후에는, 제한효소로 분해하여 조제한 상기 염기서열을 가진 DNA 단편을 프로브로 해서 하이브리다이즈함으로써 본 발명의 전체 유전자를 얻는 것이 가능하다. 서열번호 3에는 본 발명의 D-솔비톨 탈수소화효소 유전자의 염기서열을 서열번호 4에는 상기 유전자가 코딩하는 아미노산서열을 표시한다.
본 발명의 형질전환된 미생물은 본 발명의 재조합벡터를 상기 재조합벡터의 제작 시에 사용한 발현벡터 및 적합한 숙주 속에 도입함으로써 얻게 된다. 예를 들면 대장균 등의 세균을 숙주로서 사용하는 경우, 본 발명에 관한 재조합벡터는 그 자신이 숙주 속에서 자율복제 가능한 동시에, 프로모터, D-솔비톨 탈수소화효소 유전자를 함유하는 DNA 및 전사종결서열 등의 발현에 필요한 구성을 가진 것임이 바람직하다. 본 발명에 사용된 발현벡터로서는 pGEX-KG를 사용하였으나 상기의 요건을 만족하는 발현벡터이면 어느 것이나 사용가능하다.
본 발명에 관한 D-솔비톨 탈수소화효소의 제조는, 이것을 코딩하는 유전자를 가진 재조합벡터에 의해 숙주를 형질전환해서 얻은 형질전환체를 배양하고, 배양물(배양균체 또는 배양상청액)속에 유전자 산물인 D-솔비톨 탈수소화효소를 생성 축적시켜, 배양물로부터 효소를 취득함으로써 행하여진다.
D-솔비톨 탈수소화효소의 취득 및 정제는, 얻게 되는 배양물중으로부터, 균체 또는 상청액을 원심 회수하여, 균체파쇄, 친화성크로마토그래피, 양이온 또는 음이온교환크로마토그래피 등을 단독으로 또는 조합함으로써 행할 수 있다.
본 발명자는 높은 수율로 L-소르보스를 제조할 수 있는 효소를 개발하고자 글루코노박터 옥시단스로부터 D-솔비톨 탈수소화효소의 유전자를 클로닝하였다. 전기 유전자를 삽입한 재조합 균주가 D-솔비톨로부터 높은 수율로 L-소르보스를 제조할 수 있을 뿐만 아니라, 부산물의 생성을 크게 감소시킬 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명은 산업적으로 유용한 D-솔비톨 탈수소화효소를 제조하기 위하여 글루코노박터 옥시단스의 유전자로부터 D-솔비톨 탈수소화효소를 암호화하는 유전자를 클로닝하고, 전기 유전자의 염기서열 및 그로부터 유추되는 아미노산 서열을 분석한다.
본 발명의 D-솔비톨 탈수소화효소는 D-솔비톨을 기질로 하여 탈수소화반응을 촉매하여 L-소르보스를 형성하는 효소로서, 보다 바람직하게는 탈수소화에 대한 특이성을 갖고 D-솔비톨을 L-소르보스로 전환시킬 수 있는 능력을 갖는 D-솔비톨 탈수소화효소를 의미한다.
본 발명의 D-솔비톨 탈수소화효소는 다음의 특징을 갖는다: (1) 분자량이 약 53 kDa이며 (2) NADP+ 존재 시에 효소 활성이 나타난다.
기존에 알려진 D-솔비톨 탈수소화효소는 낮은 활성 및 안정성으로 인해 L-소르보스 전환율을 보이는 반명, 본 발명의 D-솔비톨 탈수소화효소는 D-솔비톨을 이용하여 높은 수율로 L-소르보스를 생산한다. 따라서 D-솔비톨에서 L-소르보스를 높은 수율로 생산하는 본 발명의 효소는 매우 특이하다 할 것이며, 당 혼합물로부터 L-소르보스의 생산에 유용하게 적용될 것이다.
본 발명의 D-솔비톨 탈수소화효소에 의해 생산된 L-소르보스는 2-케토-L-굴론산을 제조하기 위한 출발 물질이고, 상기 2-케토-L-굴론산으로부터 L-아스코르브산이 대량으로 합성된다. 생물학적 방법에 의해 아스코르브산 또는 그의 전구체, 예컨대, L-소르보스를 제조하는 것은 원하는 생성물을 거울상이성질체적으로 순수한 형태로 제조한다는 장점이 있다.
도 1은 벡터 pUC-GoSLDH의 벡터맵으로 글루코노박터 옥시단스의 염색체에서 D-솔비톨 탈수소화효소 유전자를 지니고 있는 단편을 찾아 대장균에서 이용되는 벡터에 클로닝한 것이다.
도 2는 글루코노박터 옥시단스 균주로부터 유래된 D-솔비톨 탈수소화효소 유전자를 포함하는 발현벡터의 제조방법을 나타내는 도면이다.
도 3은 글루코노박터 옥시단스 균주로부터 유래된 D-솔비톨 탈수소화효소의 SDS-PAGE 젤 사진이다.
도 4는 글루코노박터 옥시단스 균주로부터 유래된 D-솔비톨 탈수소화효소의 동역학적 매개변수 그래프이다.
도 5는 글루코노박터 옥시단스 유래의 D-솔비톨 탈수소화효소를 사용한 L-소르보스 생산 시 부가물의 생성 없이 솔비톨로부터 L-소르보스만이 생산되는 것을 고압 액체 크로마토그래피(HPLC)로 분석한 결과를 나타낸 것이다.
도 6은 글루코노박터 옥시단스 유래의 D-솔비톨 탈수소화효소를 이용하여 얻어진 시간대별 L-소르보스의 생산량을 나타낸 도이다.
이하, 본 발명을 다음의 실시예에 의하여 더욱 상세히 설명하나, 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재되니 것으로서 본 발명의 범위는 실시예에 의하여 제한되는 것으로 해석되지 아니한다.
실시예 1: D-솔비톨 탈수소화효소 생산균의 선별
D-솔비톨 탈수소화효소를 생산하는 균주를 분리하기 위하여 각종 균의 배양액 10 ul를 생리식염수 10 ml에 현탁하고, 현탁액의 10 ul(1× 104 cfu ml-1)를 취하여 3% malt extract가 첨가된 펩톤 한천배지 (Malt extract peptone agar)에 도말한 후, 37 ℃에서 2일간 배양 하였다. 고체 펩톤배지에서 콜로니가 형성된 후 콜로니를 취하여 D-솔비톨을 기질로 하여 효소 활성을 가지는, 즉 D-솔비톨 탈수소화효소 활성을 갖는 균들을 선별하는 방법으로 다양한 세균으로부터 D-솔비톨 탈수소화효소를 생산하는 세균을 탐색하였다.
실시예 2: 글루코노박터 옥시단스(KCTC2779)로부터 신규 D-솔비톨 탈수소화효소 유전자의 클로닝
D-솔비톨 분해 효소인 D-솔비톨 탈수소화효소 유전자의 염기서열을 얻기 위해 세균인 글루코노박터 옥시단스(KCTC2779)를 사용하였다. 일반적으로 유사한 기능을 지니는 유전자의 경우에는 각 염기서열과 크기가 어느 정도 유사하다고 알려져 있다. 따라서 글루코노박터 옥시단스(KCTC2779)의 D-솔비톨 탈수소화효소의 유전자도 약 1.5 kb정도의 크기를 지녔을 것으로 추정하고 다른 세균의 이미 알려진 D-솔비톨 탈수소화효소 염기서열을 바탕으로 글루코노박터 옥시단스(KCTC2779)의 D-솔비톨 탈수소화효소 전체 유전자를 클로닝 하였다.
클로닝에는 대장균 XL1-Blue와 pUC18 벡터를 사용하였다. 대장균의 배양 배지로는 일반적 조성의 LB 배지를 사용하였고, 글루코노박터 옥시단스(KCTC2779)의 배양에는 상기 펩톤한천배지 (Malt extract peptone agar)를 사용하였다. 대장균의 평판(plate) 배지로는 각각 LB 아가(agar)와 3~5% 설탕, 0.3~0.5% 쇠고기 추출물, 0.9~1.1% 박토 펩톤, 1.3~1.7% 아가 조성의 아가 플레이트를 사용하였다. 필요에 따라 50 ㎍/ml 엠피실린(amipicillin)을 첨가하였다.
배양 방법은 글루코노박터 옥시단스(KCTC2779)의 경우, 배지 50 ml이 들어 있는 250 ml의 삼각 플라스크에 접종하여 37℃, 200 rpm 조건에서 1일간 배양하였고, 대장균의 경우에는 37℃, 200 rpm 조건에서 16 시간 배양하였다. 대부분의 DNA는 아가로스겔(TAE buffer, 0.5%) 전기영동법으로 확인하였고, 겔 상에서 DNA 밴드의 정제는 QiaXII 겔 추출장치(QIAGEN, USA)를 이용하였으며, DNA간의 연결(ligation) 반응은 T4 DNA 연결효소(NEB)를 이용하였다. D-솔비톨 탈수소화효소 유전자를 클로닝하기 위하여 글루코노박터 옥시단스(KCTC2779) 염색체를 분리하였다. 글루코노박터 옥시단스(KCTC2779) D-솔비톨 탈수소화효소 유전자의 일부분을 증폭하기위해 다른 세균에서 이미 알려진 D-솔비톨 탈수소화효소 염기서열을 바탕으로 비특이적 프라이머(degenerated primer), SLDH F-5'- ATC GTY TCS MTG ACS ATC ACS GAA GGC GGC TAC -3' (서열번호 1)와 SLDH R-5'- GCR WCT GGT CSG MMA TCG CCT KGT TGG AGA ARC -3' (서열번호 2)를 제작하였다. 이를 이용하여 연쇄중합반응에 의해 740 bp 크기에 해당하는 D-솔비톨 탈수소화효소 유전자 일부를 글루코노박터 옥시단스(KCTC2779) 염색체에서 증폭하였다.
그리고 증폭된 상기의 부분 염기서열 중 그 절단 부위가 존재하지 않는 제한 효소인 BamHI, EcoRI, HindIII, SalI, XbaI을 이용하여 글루코노박터 옥시단스(KCTC2779)의 genomic DNA를 완전히 절단하였다. 그리고 앞서 중합효소 연쇄반응을 통하여 얻은 DNA 단편을 이용하여 방사능 표지된 탐침자(probe)를 만들었다. 이를 이용하여 서어던 하이브리다이제이션으로 찾고자 하는 유전자를 지닌 DNA 단편을 탐색하였다. BamHI, HindIII, XbaI으로 염색체를 자른 경우에 있어서는 서어던 하이브리다이제이션의 결과 나타난 D-솔비톨 탈수소화효소의 유전자를 지닌 DNA의 크기가 약 20~23 kb정도 되어 너무 큰 관계로 이용하지 않았고, 2.5kb 정도의 EcoRI으로 잘린 조각과 약 5.5 kb정도의 SalI으로 잘린 조각을 이용하여 원하는 유전자를 탐색하였다. 페니실륨 피노필럼 염색체를 EcoRI으로 절단한 후 분리한 2.5kb 정도 크기의 DNA 조각과 SalI으로 절단한 5.6kb 정도의 DNA 단편들을 pUC18에 클로닝하고 이를 pUC-GoSLDH라고 명명하였다(도 1).
pUC-GoSLDH 라이브러리에서 앞서 만든 1.0kb 크기의 탐침자를 이용하여 콜로니 혼성화를 수행하여 원하는 D-솔비톨 탈수소화효소의 유전자를 지닌 클론을 결정하였다. 그리고 결정한 클론을 이용하여 염기서열을 분석하여 D-솔비톨 탈수소화효소의 전체 유전자 염기서열 1,458 bp를 밝혔다 (서열번호 3). 이는 앞서 예상한 바와 같이 다른 여러 균에서 밝혀진 D-솔비톨 탈수소화효소 유전자와 크기가 비슷하였다. 또한 글루코노박터 옥시단스(KCTC2779) D-솔비톨 탈수소화효소는 다른 D-솔비톨 탈수소화효소에서 공통적으로 나타나는 염기서열을 지니고 있음을 확인하였다.
실시예 3: 재조합 발현 벡터 및 재조합 균주 제조
실시예 2에 따른 D-솔비톨 탈수소화효소를 암호화하는 유전자를 이용하여, 전기 D-솔비톨 탈수소화효소를 대장균에서 대량으로 발현시키기 위하여, 발현 벡터 pET28a(Novagen, 미국) NdeI과 XhoI 부위에 상기 효소 유전자를 삽입한 후 대장균 BL21(DE3) codon plus(NEB, 영국)에 형질 전환시켰다 (도 2).
실시예 4: 재조합 D-솔비톨 탈수소화효소의 발현 및 순수 분리
상기 실시예 3에서 제조된 재조합 균주를 LB 배지에 접종하고 16℃에서 24시간 동안 배양한 후 SDS-PAGE 젤에서 발현된 단백질을 확인하였다 (도 3).
상기 실시예 4의 방법으로 발현시킨 재조합 D-솔비톨 탈수소화효소효소를 정제하기 위하여, 재조합 균주 배양액을 원심분리 (8000×g, 10분)하여 균체만을 모은 후, 초음파 처리하여 대장균의 세포벽을 파쇄하고, 20,000×g에서 20분간 원심분리 하여 침전물(균체)을 제거하고 상등액을 수득하였다. 최종적으로 Ni-NTA His-tag 결합 크로마토그래피(Qiagen, 독일)를 수행하여, 재조합 D-솔비톨 탈수소화효소를 순수 분리하였다.
실시예 5: 재조합 D-솔비톨 탈수소화효소의 특성 실험
상기 실시예 4에서 분리된 D-솔비톨 탈수소화효소의 물리 화학적 특성을 조사하였으며, 기질로서 D-솔비톨을 사용하였다.
실시예 5-1: 조효소
상기 실시예 4의 방법으로 정제한 제조한 D-솔비톨 탈수소화효소의 조효소를 알아보기 위하여, 효소 반응실험을 다음과 같은 조건에서 수행하였다. D-솔비톨을 기질로 하여 NAD+, NADP+를 조효소로 첨가한 뒤 효소 활성을 측정하였다. 균 배양과 효소 정제 방법은 실시예 2과 같이 수행하였으며, 10 mM의 D-솔비톨 기질 용액, 10 mM NAD+, 10 mM NADP+의 존재 하에서 25℃에서 효소와 기질을 반응시켰다. 표1에 나타난 바와 같이, 10 mM NADP+ 존재 시 제조한 D-솔비톨 탈수소화효소의 활성이 나타났으며, NADH+ 존재 시에는 그 활성이 거의 나타나지 않았다. 따라서, 본 발명의 L-소르보스 생산 방법에서 D-솔비톨 탈수소화효소의 조효소로는 NADP+가 필요함을 알 수 있었다.
표 1
조효소 | 상대적 활성 (%)(글루코노박터 옥시단스(KCTC2779)의 D-솔비톨 탈수소화효소) |
NAD+ | 100 |
NADP+ | 2.5 |
실시예 5-2: D-솔비톨 탈수소화효소의 동역학변수
다양한 농도의 기질의 솔비톨 (10-400 mM)을 이용하여 실시예 4-1과 같이 효소 반응을 시킨 후, 비선형 회귀분석을 통하여 동역학적 매개변수를 측정하였다 (도 4). D-솔비톨 탈수소화효소의 D-솔비톨에 대한 Km 값은 약 38.91 mM, k
cat 값은 약 3818 sec-1, k
cat/Km 값은 98.12 sec-1mM-1로 결정되었다. 이는 현재까지 보고된 L-소르보스를 생산하는 산화화원효소 중 가장 높은 활성에 해당한다 (표2). 글루코노박터 옥시단스(KCTC2779) 유래의 D-솔비톨 탈수소화효소를 GoSLDH, 아세토박터 서복사이단스 유래의 아라비톨 탈수소효소를 AsARDH, 글루코노박터 옥시단스(KCTC2779) 유래의 아라비톨 탈수소화효소를 GoArDH, 슈도모나스 플루오레센스 유래의 만니톨 탈수소화효소를 PfMDH라 명명하였다.
표 2
효소 | Km(mM) | kcat(S-1) | kcat/Km(S-1mM-1) |
GoSLDH | 38.91 | 3818 | 98.12 |
AsARDH | 127.3 | 19.7 | 0.15 |
GoArDH | 125 | 2.57 | 0.02 |
PfMDH | 462 | 12.8 | 0.03 |
실시예 6: 글루코노박터 옥시단스(KCTC2779) 유래 신규 D-솔비톨 탈수소화효소를 이용한 최적 조건에서의 L-소르보스 생산
신규 D-솔비톨 탈수소화효소를 이용한 최대 L-소르보스 생산을 위하여 최적 조건에서 이성화 반응을 수행하였다. 10 mM의 기질 용액, D-솔비톨 탈수소화효소 89.60 ㎍/ml, 25℃, 10 mM NADP+의 존재 하에서 L-소르보스의 생산 실험을 수행하였다. 도 5와 같이 솔비톨 탈수소화효소를 사용한 L-소르보스 생산 시 솔비톨로부터 L-소르보스만이 생산되는 것을 ELSD 검출기와 코스모실 칼럼이 장착된 고압 액체 크로마토그래피 (HPLC)를 실시하여 분석하였다.
도 6에 나타난 바와 같이, L-소르보스의 최대 생산 시간은 3시간 이었으며 생산된 L-소르보스의 양은 7.5 mM, D-솔비톨로부터 L-소르보스의 전환율은 75%이었다. 이러한 최종 농도는 D-솔비톨부터 L-소르보스 생산에서 매우 우수한 수치이다.
Claims (11)
- 서열번호 4의 아미노산 서열을 가지는 D-솔비톨 탈수소화효소.
- 제 1항에 있어서, 상기 D-솔비톨 탈수소화효소는 글루코노박터 옥시단스에서 유래한 것을 특징으로 하는 D-솔비톨 탈수소화효소.
- 제 1항 또는 제 2항에 있어서, 상기 D-솔비톨 탈수소화효소는 D-솔비톨에 특이적인 것을 특징으로 하는 D-솔비톨 탈수소화효소.
- 제 1항 또는 제 2항에 있어서, 상기 효소의 분자량은 53 kDa인 것을 특징으로 하는 D-솔비톨 탈수소화효소.
- 제 1항 또는 제 2항에 있어서, 상기 효소는 NADP+ 존재 시 효소 활성이 나타나는 것을 특징으로 하는 D-솔비톨 탈수소화효소.
- 제 1항의 효소를 코딩하는 D-솔비톨 탈수소화효소 유전자.
- 제 6항에 있어서, 상기 유전자는 서열번호 3의 염기서열을 가지는 D-솔비톨 탈수소화효소 유전자.
- 제 6항 또는 제7항의 D-솔비톨 탈수소화효소 유전자를 포함하는 재조합 발현벡터로 형질전환된 균주를 배양하여 D-솔비톨 탈수소화효소를 제조하는 방법.
- 제 1항의 D-솔비톨 탈수소화효소를 이용하여 D-솔비톨로부터 L-소르보스를 제조하는 방법.
- 제 9항에 있어서, 상기 방법은 NADP+ 를 첨가하는 단계를 더욱 포함하는 것을 특징으로 하는 D-솔비톨로부터 L-소르보스를 제조하는 방법.
- 제 1항의 D-솔비톨 탈수소화효소를 유효성분으로 포함하는 L-소르보스 제조용 조성물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130042438A KR101479133B1 (ko) | 2013-04-17 | 2013-04-17 | 신규 d-솔비톨 탈수소화효소 및 이를 이용한 l-소르보스의 생산방법 |
KR10-2013-0042438 | 2013-04-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014171635A1 true WO2014171635A1 (ko) | 2014-10-23 |
Family
ID=51731540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/002131 WO2014171635A1 (ko) | 2013-04-17 | 2014-03-13 | 신규 d-솔비톨 탈수소화효소 및 이를 이용한 l-소르보스의 생산방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101479133B1 (ko) |
WO (1) | WO2014171635A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023122805A1 (en) * | 2021-12-20 | 2023-06-29 | Vestaron Corporation | Sorbitol driven selection pressure method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102060253B1 (ko) * | 2018-08-24 | 2019-12-27 | 건국대학교 산학협력단 | L-소르보스의 생산용 조성물 및 이의 용도 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747301A (en) * | 1995-02-27 | 1998-05-05 | Roche Vitamins Inc. | D-sorbitol dehydrogenase |
KR19980069057A (ko) * | 1997-02-26 | 1998-10-26 | 박원훈 | 글루코노박터 서브옥시단스의 솔비톨 탈수소효소 및 이의 유전자 |
WO1999020763A1 (fr) * | 1997-10-17 | 1999-04-29 | Fujisawa Pharmaceutical Co., Ltd. | D-sorbitol deshydrogenase, genes et utilisation de celle-ci |
KR20010111574A (ko) * | 1999-03-17 | 2001-12-19 | 후지야마 아키라 | 소르비톨 데하이드로게나제, 그를 코딩하는 유전자 및그의 용도 |
JP4394761B2 (ja) * | 1997-08-21 | 2010-01-06 | ディーエスエム アイピー アセッツ ビー.ブイ. | D−ソルビトール・デヒドロゲナーゼ遺伝子 |
-
2013
- 2013-04-17 KR KR20130042438A patent/KR101479133B1/ko active IP Right Grant
-
2014
- 2014-03-13 WO PCT/KR2014/002131 patent/WO2014171635A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747301A (en) * | 1995-02-27 | 1998-05-05 | Roche Vitamins Inc. | D-sorbitol dehydrogenase |
KR19980069057A (ko) * | 1997-02-26 | 1998-10-26 | 박원훈 | 글루코노박터 서브옥시단스의 솔비톨 탈수소효소 및 이의 유전자 |
JP4394761B2 (ja) * | 1997-08-21 | 2010-01-06 | ディーエスエム アイピー アセッツ ビー.ブイ. | D−ソルビトール・デヒドロゲナーゼ遺伝子 |
WO1999020763A1 (fr) * | 1997-10-17 | 1999-04-29 | Fujisawa Pharmaceutical Co., Ltd. | D-sorbitol deshydrogenase, genes et utilisation de celle-ci |
KR20010111574A (ko) * | 1999-03-17 | 2001-12-19 | 후지야마 아키라 | 소르비톨 데하이드로게나제, 그를 코딩하는 유전자 및그의 용도 |
Non-Patent Citations (1)
Title |
---|
DATABASE NCBI 11 July 2000 (2000-07-11), accession no. AA99414.1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023122805A1 (en) * | 2021-12-20 | 2023-06-29 | Vestaron Corporation | Sorbitol driven selection pressure method |
Also Published As
Publication number | Publication date |
---|---|
KR20140124649A (ko) | 2014-10-27 |
KR101479133B1 (ko) | 2015-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE34851E (en) | Biosynthesis of 2 keto-L-gulonic acid | |
CN110396508B (zh) | 源自Nocardia cyriacigeorgica的L-泛解酸内酯脱氢酶及应用 | |
US5126256A (en) | Process for the preparation of glucose dehydrogenase from bacillus megaterium | |
JP5118132B2 (ja) | グルクロン酸発酵によるグルクロン酸の製造方法 | |
WO2011052819A1 (ko) | 글리세롤로부터 3-하이드록시프로피온산을 생산하는 새로운 방법 | |
CN110396507B (zh) | 源自Cnuibacter physcomitrellae的L-泛解酸内酯脱氢酶 | |
WO2009145576A2 (ko) | 알도헥소오스 에피머라아제 및 이를 이용한 알도헥소오스 에피머의 효소적 제조 방법 | |
WO2014171635A1 (ko) | 신규 d-솔비톨 탈수소화효소 및 이를 이용한 l-소르보스의 생산방법 | |
CN106701723A (zh) | D‑果糖‑6‑磷酸醛缩酶a突变体、重组表达载体、基因工程菌及其应用和反应产物 | |
US5250415A (en) | Process for the preparation of glucose dehydrogenase from Bacillus megaterium | |
JP4769255B2 (ja) | Xmpをgmpに転換させることができながら、gmpの分解に関連される遺伝子が不活性化されているエシェリキア菌株及びそれを用いる方法 | |
CN113174377B (zh) | 羰基还原酶、突变体及其在制备地尔硫卓中间体中的应用 | |
WO2014171636A1 (ko) | 신규 리비톨 탈수소화효소 및 이를 이용한 l-리불로스의 생산방법 | |
CN115975964A (zh) | 一种高活性酮基泛解酸内酯还原酶突变体及其编码基因和应用 | |
CN110396506B (zh) | 源自Nocardia asteroides的L-泛解酸内酯脱氢酶及其应用 | |
WO2015137565A1 (ko) | 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법 | |
EP1233072B1 (en) | Novel use of uridine diphosphate glucose 4-epimerase | |
WO2010090359A1 (ko) | 신규 l-아라비니톨 탈수소화효소 및 이를 이용한 l-리불로스의 생산방법 | |
US9005937B2 (en) | Dual cofactor specific ribitol dehydrogenase and use thereof | |
WO2017065457A1 (ko) | L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법 | |
WO2009157736A2 (ko) | 갈락토오스 이용이 억제된 미생물을 이용한 타가토오즈 제조방법 | |
WO2015190633A1 (ko) | 활성이 개선된 대장균 유래의 돌연변이 당 이성질화 효소 및 그를 이용한 l-굴로스의 생산 | |
WO2014171570A2 (ko) | 화농연쇄구균 유래 신규 nadh 산화효소 및 l-아라비니톨 산화효소와의 커플링에 의한 l-자일룰로스의 생산 | |
CN110527671B (zh) | 源自Nocardia farcinica的L-泛解酸内酯脱氢酶及其应用 | |
JP2768473B2 (ja) | Nadhオキシダーゼの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14785886 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14785886 Country of ref document: EP Kind code of ref document: A1 |