WO2014171443A1 - 排気ガス浄化用触媒 - Google Patents

排気ガス浄化用触媒 Download PDF

Info

Publication number
WO2014171443A1
WO2014171443A1 PCT/JP2014/060691 JP2014060691W WO2014171443A1 WO 2014171443 A1 WO2014171443 A1 WO 2014171443A1 JP 2014060691 W JP2014060691 W JP 2014060691W WO 2014171443 A1 WO2014171443 A1 WO 2014171443A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
platinum
supported
carrier
catalyst
Prior art date
Application number
PCT/JP2014/060691
Other languages
English (en)
French (fr)
Inventor
康吉 佐々木
辻 誠
啓人 今井
木下 圭介
大輔 落合
Original Assignee
株式会社キャタラー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー, トヨタ自動車株式会社 filed Critical 株式会社キャタラー
Priority to EP14784916.0A priority Critical patent/EP2992955B1/en
Priority to CN201480021826.4A priority patent/CN105121006B/zh
Priority to BR112015025876-0A priority patent/BR112015025876B1/pt
Priority to US14/785,028 priority patent/US9522385B2/en
Publication of WO2014171443A1 publication Critical patent/WO2014171443A1/ja
Priority to ZA2015/08158A priority patent/ZA201508158B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/396
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst.
  • Exhaust gas discharged from an internal combustion engine such as an engine contains harmful substances such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). Since these substances cause air pollution, it is necessary to purify the exhaust gas.
  • harmful substances such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). Since these substances cause air pollution, it is necessary to purify the exhaust gas.
  • Exhaust gas can be purified using an exhaust gas purification catalyst.
  • the exhaust gas purifying catalyst is usually composed of a base material and a catalyst layer disposed on the base material, and the catalyst layer includes a support and a catalyst metal supported on the support.
  • noble metals such as platinum, palladium and rhodium are used as the catalyst metal.
  • Patent Document 1 discloses an exhaust gas purifying catalyst for purifying NOx.
  • the catalyst includes a base material, a lower catalyst layer and an upper catalyst layer disposed on the base material, the lower catalyst layer includes rhodium, and the upper catalyst layer includes at least one of platinum and palladium and rhodium. Is included.
  • Patent Document 2 also discloses an exhaust gas purifying catalyst for purifying NOx.
  • the catalyst includes a base material, a lower catalyst layer and an upper catalyst layer disposed on the base material, the lower catalyst layer includes rhodium, and the upper catalyst layer includes platinum and palladium.
  • Patent Documents 1 and 2 As disclosed in Patent Documents 1 and 2, many exhaust gas purifying catalysts for purifying NOx are known. However, there is still a need for further improvement in NOx purification performance.
  • an object of the present invention is to provide a new exhaust gas purification catalyst having excellent NOx purification performance.
  • Platinum used for purification of exhaust gas causes sintering and particle size increases when used for a long time. Thereby, the catalytic activity of platinum decreases, and the NOx purification performance decreases.
  • platinum sintering can be significantly suppressed by supporting platinum and palladium on the same carrier at a certain ratio. As a result, a decrease in the catalytic activity of platinum can be suppressed, and excellent NOx purification performance can be achieved.
  • the present invention includes the following.
  • a substrate [1] a substrate; and a catalyst layer including a first carrier, platinum supported on the first carrier, and a first palladium disposed on the substrate; Including An exhaust gas purifying catalyst, wherein a weight ratio of the platinum and the first palladium is 3: 1 to 8: 1.
  • the catalyst layer further includes a second carrier and second palladium supported on the second carrier, and platinum is not supported on the second carrier, [1] or [ [2]
  • a new exhaust gas purification catalyst excellent in NOx purification performance can be provided.
  • An example of the exhaust gas purifying catalyst is shown. A part of sectional drawing of the catalyst for exhaust gas purification is shown. A part of sectional drawing of the catalyst for exhaust gas purification is shown. The relationship between the weight ratio of platinum on the first carrier and the first palladium and the NOx purification rate is shown. The relationship between the weight ratio of platinum on the first carrier to the first carrier and the NOx purification rate is shown. The relationship between the presence or absence of second palladium and the NOx purification rate is shown. The relationship between the weight ratio of platinum and first palladium on the first support and the particle size of platinum is shown. The relationship between the weight ratio of platinum and first palladium on the first carrier and the amount of NO 2 produced is shown.
  • the present invention includes a substrate; and a catalyst layer that is disposed on the substrate and includes a first support, platinum supported on the first support, and first palladium.
  • the present invention relates to an exhaust gas purifying catalyst having a weight ratio with the first palladium of 3: 1 to 8: 1.
  • platinum and palladium are supported on the same carrier at a constant ratio, so that sintering of the platinum is greatly suppressed. As a result, a decrease in the catalytic activity of platinum is suppressed, and excellent NOx purification performance is obtained.
  • the exhaust gas purifying catalyst according to the present invention can preferentially purify NOx even in a lean atmosphere.
  • HC and CO emissions are small, but NOx emissions are very large, so a general three-way catalyst cannot sufficiently purify NOx.
  • the exhaust gas purifying catalyst according to the present invention it is possible to efficiently purify NOx discharged from the lean burn engine while suppressing a decrease in the catalytic activity of platinum.
  • Examples of the base material of the exhaust gas purification catalyst according to the present invention include those generally used in exhaust gas purification catalysts.
  • a straight flow type or wall flow type monolith substrate may be used.
  • the material of the base material is not particularly limited, and examples thereof include base materials such as ceramic, silicon carbide, and metal.
  • the catalyst layer disposed on the substrate contains the first carrier, platinum and first palladium supported on the first carrier.
  • the weight ratio of platinum supported on the first carrier with respect to the first carrier is not particularly limited, but is preferably 0.04 or less. By supporting platinum at such a weight ratio, the NOx purification performance can be further improved. Although the minimum of the weight ratio of the said platinum is not specifically limited, For example, 0.001, 0.005 etc. can be mentioned.
  • the amount of platinum supported on the first carrier is not particularly limited, but is preferably 0.1 to 2 g per liter of the base material from the viewpoint of efficiently purifying NOx and the viewpoint of production cost. It is more preferably 0.5 to 1.8 g, particularly preferably 0.8 to 1.6 g.
  • the catalyst layer disposed on the substrate may contain any other component in addition to the first carrier and platinum and first palladium supported on the first carrier.
  • the catalyst layer may further include a second carrier and a second palladium supported on the second carrier. It is preferable that platinum is not supported on the second carrier.
  • the catalyst layer may further contain rhodium. When the catalyst layer contains rhodium, rhodium is preferably supported on a carrier different from the first and second carriers.
  • the first carrier, the second carrier, and the carrier supporting rhodium may be the same type of carrier or different types of carriers.
  • the weight ratio of the first palladium to the second palladium is not particularly limited, but is preferably 1: 0.5 to 1: 3. By setting such a weight ratio, the NOx purification performance can be further improved.
  • the total amount of palladium contained in the catalyst layer is not particularly limited, but is preferably 0.1 to 1 g per liter of the base material from the viewpoint of efficiently purifying NOx and the manufacturing cost, and 0.2 to It is more preferably 0.8 g, and particularly preferably 0.4 to 0.6 g.
  • the amount of rhodium contained in the catalyst layer is not particularly limited, but is preferably 0.1 to 2 g per liter of the base material from the viewpoint of efficiently purifying NOx and the manufacturing cost. 0.5 g is more preferable, and 0.1 to 1.2 g is particularly preferable.
  • examples of the carrier include zirconia, alumina, titania, silica, ceria, magnesia and the like.
  • examples of the carrier include composite oxides of cerium and at least one selected from the group consisting of zirconium, hafnium, neodymium, yttrium, lanthanum, praseodymium, and nickel.
  • One type of carrier may be used alone, or two or more types may be used in combination.
  • the catalyst layer may further contain a substance having a function of storing NOx (hereinafter referred to as “NOx storage substance”).
  • NOx storage substances include alkali metals, alkaline earth metals, and rare earth elements.
  • alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium.
  • Alkaline earth metals include beryllium, magnesium, calcium, strontium, barium, and radium.
  • rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the NOx storage material may be supported on the support, or may be present in the catalyst layer without being supported on the support. One type of NOx storage material may be used alone, or two or more types may be used in combination.
  • the amount of the NOx occlusion substance is not particularly limited, but from the viewpoint of efficiently purifying NOx, it is preferably 0.01 to 5 mol, more preferably 0.05 to 1 mol, per 1 L of the substrate. Particularly preferred is 1 to 0.5 mol.
  • the weight ratio of platinum supported on the first carrier and the first palladium is 3: 1 to 8: 1.
  • the oxidation performance of NOx can be improved and NO 2 can be efficiently generated.
  • oxygen is excessively present, so it is difficult to purify (reduce) NOx.
  • NOx was oxidized to NO 2 in the lean atmosphere, the NO 2 by keeping by the NOx occluding substance, it is possible to reduce the emission of NOx.
  • a reducing agent HC, CO, etc.
  • the exhaust gas purifying catalyst according to the present invention is mainly composed of a base material and a catalyst layer, but may contain any layer within a range not impairing the effects of the present invention.
  • an arbitrary layer may be included between the base material and the catalyst layer.
  • the catalyst layer may be a single catalyst layer (FIG. 2) or may be composed of a plurality of catalyst layers. Although it does not specifically limit, it is preferable that a catalyst layer contains the lower layer catalyst layer arrange
  • the catalyst layer contains rhodium
  • rhodium, platinum and the first palladium are present in different catalyst layers.
  • rhodium is preferably present in the lower catalyst layer
  • platinum and first palladium are preferably present in the upper catalyst layer.
  • the catalyst layer contains the second palladium
  • the second palladium, platinum and the first palladium are present in the same catalyst layer.
  • the second palladium, platinum and the first palladium are present in the upper catalyst layer.
  • the NOx storage material is preferably present in both the upper catalyst layer and the lower catalyst layer.
  • Base material As one embodiment of the present invention, Base material; A lower catalyst layer disposed on the substrate, comprising a carrier, rhodium supported on the carrier, and a NOx storage material; and a first carrier and the first catalyst disposed on the lower catalyst layer.
  • An upper catalyst layer comprising platinum and first palladium supported on a carrier of the catalyst and a NOx storage material; And an exhaust gas purifying catalyst in which the weight ratio of the platinum to the first palladium is 3: 1 to 8: 1.
  • Base material As another embodiment of the present invention, Base material; A lower catalyst layer disposed on the substrate, comprising a carrier, rhodium supported on the carrier, and a NOx storage material; and a first carrier and the first catalyst disposed on the lower catalyst layer.
  • An upper catalyst layer comprising platinum and first palladium supported on the carrier, a second carrier, the second palladium supported on the second carrier, and a NOx storage material; And an exhaust gas purifying catalyst in which the weight ratio of the platinum to the first palladium is 3: 1 to 8: 1 and platinum is not supported on the second carrier. .
  • Example 1 ⁇ Manufacture of exhaust gas purification catalyst> [Example 1] Zirconia (30 g) was suspended in water, and then rhodium nitrate was added. The mixture was evaporated to dryness to obtain rhodium-supported powder. The amount of rhodium supported on zirconia is 1% by weight.
  • Alumina (10 g) (first carrier) was suspended in water, and then platinum nitrate and palladium nitrate (first palladium) were added at a weight ratio of 3: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder.
  • the supported amounts of platinum and palladium on alumina are 10% by weight and 3.3% by weight, respectively.
  • Alumina (5 g) (second carrier) was suspended in water, and then palladium nitrate (second palladium) was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 3.4% by weight.
  • the coating material [1-1] was coated on the monolith substrate (1L) and baked to form a lower catalyst layer.
  • a coating material [1-2] was coated on the lower catalyst layer and baked to form an upper catalyst layer.
  • Barium and potassium were contained in the lower catalyst layer and the upper catalyst layer. The barium and potassium contents per liter of monolith substrate are both 0.1 mol.
  • Example 2 (1) Alumina (10 g) was suspended in water, and then platinum nitrate and palladium nitrate were added at a weight ratio of 5: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder. The supported amounts of platinum and palladium on alumina are 10% by weight and 2% by weight, respectively.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 6% by weight.
  • Example 3 (1) Alumina (10 g) was suspended in water, and then platinum nitrate and palladium nitrate were added at a weight ratio of 8: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder. The supported amounts of platinum and palladium on alumina are 10% by weight and 1.25% by weight, respectively.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 7.5% by weight.
  • Example 4 (1) Alumina (25 g) was suspended in water, and then platinum nitrate and palladium nitrate were added at a weight ratio of 3: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder. The supported amounts of platinum and palladium on alumina are 4% by weight and 1.32% by weight, respectively.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 3.4% by weight.
  • Example 5 (1) Alumina (45 g) was suspended in water, and then platinum nitrate and palladium nitrate were added at a weight ratio of 3: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder. The supported amounts of platinum and palladium on alumina are 2.22% by weight and 0.733% by weight, respectively.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 3.4% by weight.
  • Example 6 (1) Alumina (45 g) was suspended in water, and then platinum nitrate and palladium nitrate were added at a weight ratio of 3: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder. The supported amounts of platinum and palladium on alumina are 2.22% by weight and 0.733% by weight, respectively.
  • Example 7 (1) Alumina (10 g) was suspended in water, and then platinum nitrate and palladium nitrate were added at a weight ratio of 3: 1 (Pt: Pd). The mixture was evaporated to dryness to obtain a platinum-palladium supported powder. The supported amounts of platinum and palladium on alumina are 10% by weight and 3.3% by weight, respectively.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 1% by weight.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 8% by weight.
  • Alumina (5 g) was suspended in water, and then palladium nitrate was added. The mixture was evaporated to dryness to obtain a palladium-supported powder. The amount of palladium supported on alumina is 10% by weight.
  • NOx concentration and NO concentration were measured, and NO oxidation ability (NO 2 concentration) was evaluated from the difference.

Abstract

 本発明はNOx浄化性能に優れた新たな排気ガス浄化用触媒を提供することを課題とする。 上記課題は、基材;及び前記基材上に配置された、第1の担体と当該第1の担体上に担持された白金及び第1のパラジウムとを含む触媒層;を含み、前記白金と前記第1のパラジウムとの重量比が3:1~8:1である、排気ガス浄化用触媒によって解決することができる。

Description

排気ガス浄化用触媒
 本発明は、排気ガス浄化用触媒に関する。
 エンジン等の内燃機関から排出される排気ガスには、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害な物質が含まれている。これらの物質は大気汚染の原因となるため、排気ガスを浄化することが必要とされる。
 排気ガスは、排気ガス浄化用触媒を用いて浄化することができる。排気ガス浄化用触媒は、通常、基材と当該基材上に配置された触媒層とから構成され、触媒層には担体と当該担体上に担持された触媒金属とが含まれている。触媒金属としては、一般的に、白金、パラジウム、ロジウム等の貴金属が使用されている。
 例えば、特許文献1はNOxを浄化するための排気ガス浄化用触媒を開示している。前記触媒は、基材と当該基材上に配置された下層触媒層及び上層触媒層とを含み、下層触媒層はロジウムを含んでおり、上層触媒層は白金及びパラジウムの少なくとも1種とロジウムとを含んでいる。
 また、特許文献2もNOxを浄化するための排気ガス浄化用触媒を開示している。前記触媒は、基材と当該基材上に配置された下層触媒層及び上層触媒層とを含み、下層触媒層はロジウムを含んでおり、上層触媒層は白金及びパラジウムを含んでいる。
特開2009-285604号公報 特開2010-201284号公報
 特許文献1及び2が開示するように、NOxを浄化するための排気ガス浄化用触媒は数多く知られている。しかしながら、未だ、NOx浄化性能の更なる向上が必要とされている。
 そのため、本発明は、NOx浄化性能に優れた新たな排気ガス浄化用触媒を提供することを目的とする。
 排気ガスの浄化に使用する白金は、長期間使用するとシンタリングを起こし、粒径が大きくなる。これにより、白金の触媒活性が低下し、NOx浄化性能が低下する。ここで、本発明者らが鋭意検討した結果、白金とパラジウムとを一定の比率で同一の担体上に担持することにより、白金のシンタリングを大幅に抑制できることを見出した。その結果、白金の触媒活性の低下を抑制し、優れたNOx浄化性能を達成することができる。
 すなわち、本発明は以下を包含する。
[1]基材;及び
 前記基材上に配置された、第1の担体と当該第1の担体上に担持された白金及び第1のパラジウムとを含む触媒層;
を含み、
 前記白金と前記第1のパラジウムとの重量比が3:1~8:1である、排気ガス浄化用触媒。
[2]第1の担体に対する、当該第1の担体上に担持された白金の重量比が0.04以下である、[1]に記載の排気ガス浄化用触媒。
[3]触媒層が、第2の担体と当該第2の担体上に担持された第2のパラジウムとを更に含み、前記第2の担体上に白金が担持されていない、[1]又は[2]に記載の排気ガス浄化用触媒。
 本明細書は本願の優先権の基礎である日本国特許出願2013-088405号に記載された全ての内容を包含する。
 本発明によれば、NOx浄化性能に優れた新たな排気ガス浄化用触媒を提供することができる。
排気ガス浄化用触媒の一例を示す。 排気ガス浄化用触媒の断面図の一部を示す。 排気ガス浄化用触媒の断面図の一部を示す。 第1の担体上の白金と第1のパラジウムとの重量比と、NOx浄化率との関係を示す。 第1の担体に対する第1の担体上の白金の重量比と、NOx浄化率との関係を示す。 第2のパラジウムの有無と、NOx浄化率との関係を示す。 第1の担体上の白金と第1のパラジウムとの重量比と、白金の粒径との関係を示す。 第1の担体上の白金と第1のパラジウムとの重量比と、NOの生成量との関係を示す。
 以下、本発明について詳細に説明する。
 本発明は、基材;及び前記基材上に配置された、第1の担体と当該第1の担体上に担持された白金及び第1のパラジウムとを含む触媒層;を含み、前記白金と前記第1のパラジウムとの重量比が3:1~8:1である、排気ガス浄化用触媒に関する。
 本発明に係る排気ガス浄化用触媒では、白金とパラジウムとが一定の比率で同一の担体上に担持されていることにより、当該白金のシンタリングが大幅に抑制される。その結果、白金の触媒活性の低下が抑制され、優れたNOx浄化性能が得られる。
 本発明に係る排気ガス浄化用触媒は、リーン雰囲気においてもNOxを優先的に浄化することができる。リーンバーンエンジンを使用する場合、HC及びCOの排出量は少ないが、NOxの排出量は非常に多いため、一般的な三元触媒では十分にNOxを浄化することはできない。しかし、本発明に係る排気ガス浄化用触媒を使用することにより、白金の触媒活性の低下を抑制しながら、リーンバーンエンジンから排出されるNOxを効率的に浄化することができる。
 本発明に係る排気ガス浄化用触媒の基材としては、排気ガス浄化用触媒において一般的に使用されているものを挙げることができる。例えば、ストレートフロー型又はウォールフロー型のモノリス基材等を挙げることができる。基材の材質も特に限定されず、例えば、セラミック、炭化ケイ素、金属等の基材を挙げることができる。
 基材上に配置された触媒層は、第1の担体、並びに当該第1の担体上に担持された白金及び第1のパラジウムを含む。
 第1の担体に対する、当該第1の担体上に担持された白金の重量比は特に限定されないが、好ましくは0.04以下である。このような重量比で白金を担持することにより、NOx浄化性能を更に向上させることができる。当該白金の重量比の下限は特に限定されないが、例えば、0.001、0.005等を挙げることができる。
 第1の担体上に担持されている白金の量は特に限定されないが、NOxを効率的に浄化する観点及び製造コストの観点から、基材1L当たり、0.1~2gであることが好ましく、0.5~1.8gであることがより好ましく、0.8~1.6gであることが特に好ましい。
 基材上に配置された触媒層は、第1の担体、並びに当該第1の担体上に担持された白金及び第1のパラジウムに加えて、任意の他の成分を含んでいてもよい。
 触媒層は、第2の担体、及び当該第2の担体上に担持された第2のパラジウムを更に含んでいてもよい。第2の担体上には白金が担持されていないことが好ましい。また、触媒層はロジウムを更に含んでいてもよい。触媒層がロジウムを含む場合、第1及び第2の担体とは異なる担体上にロジウムが担持されていることが好ましい。第1の担体、第2の担体、及びロジウムを担持する担体はそれぞれ、同じ種類の担体であってもよいし、異なる種類の担体であってもよい。
 第1のパラジウムと第2のパラジウムとの重量比は特に限定されないが、1:0.5~1:3であることが好ましい。このような重量比とすることにより、NOx浄化性能を更に向上させることができる。
 触媒層に含まれるパラジウムの合計量は特に限定されないが、NOxを効率的に浄化する観点及び製造コストの観点から、基材1L当たり、0.1~1gであることが好ましく、0.2~0.8gであることがより好ましく、0.4~0.6gであることが特に好ましい。
 触媒層に含まれるロジウムの量は特に限定されないが、NOxを効率的に浄化する観点及び製造コストの観点から、基材1L当たり、0.1~2gであることが好ましく、0.1~1.5gであることがより好ましく、0.1~1.2gであることが特に好ましい。
 担体としては、ジルコニア、アルミナ、チタニア、シリカ、セリア、マグネシア等を挙げることができる。また、担体として、セリウムと、ジルコニウム、ハフニウム、ネオジム、イットリウム、ランタン、プラセオジム、及びニッケルからなる群から選択される少なくとも1種との複合酸化物等を挙げることもできる。担体は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 触媒層は、NOxを吸蔵する機能を有する物質(以下「NOx吸蔵物質」という)を更に含んでいてもよい。NOx吸蔵物質としては、アルカリ金属、アルカリ土類金属、希土類元素等を挙げることができる。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、及びフランシウムを挙げることができる。アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、及びラジウムを挙げることができる。希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムを挙げることができる。NOx吸蔵物質は担体上に担持されていてもよいし、担体上に担持されることなく触媒層中に存在していてもよい。NOx吸蔵物質は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 NOx吸蔵物質の量は特に限定されないが、NOxを効率的に浄化する観点から、基材1L当たり、0.01~5molであることが好ましく、0.05~1molであることがより好ましく、0.1~0.5molであることが特に好ましい。
 第1の担体上に担持された白金と第1のパラジウムとの重量比は上記の通り、3:1~8:1である。このような重量比で担持された白金と第1のパラジウムとを使用することにより、NOxの酸化性能を向上させ、NOを効率的に生成することができる。リーン雰囲気では酸素が過剰に存在しているため、NOxを浄化(還元)することは困難である。しかし、リーン雰囲気においてNOxをNOに酸化させ、NOをNOx吸蔵物質に吸蔵させておくことにより、NOxの排出を低減させることができる。そして、リッチ雰囲気に変化した際に、NOx吸蔵物質からNOを放出させ、還元剤(HC、CO等)と反応させることにより、Nに浄化することができる。つまり、NOxの酸化性能を向上させることにより、NOxの浄化性能を向上させることができる。
 本発明に係る排気ガス浄化用触媒は、基材及び触媒層から主に構成されているが、本発明の効果を損なわない範囲において任意の層を含んでいてもよい。例えば、基材と触媒層との間等に任意の層を含んでいてもよい。
 触媒層は、単一の触媒層であってもよいし(図2)、複数の触媒層から構成されていてもよい。特に限定するものではないが、触媒層が、基材上に配置された下層触媒層と、当該下層触媒層上に配置された上層触媒層とを含むことが好ましい(図3)。
 ここで、触媒層がロジウムを含む場合、ロジウムと、白金及び第1のパラジウムとは異なる触媒層に存在していることが好ましい。特に、ロジウムが下層触媒層に存在し、白金及び第1のパラジウムが上層触媒層に存在していることが好ましい。
 触媒層が第2のパラジウムを含む場合、第2のパラジウムと、白金及び第1のパラジウムとは同一の触媒層に存在していることが好ましい。特に、第2のパラジウムと、白金及び第1のパラジウムとが上層触媒層に存在していることが好ましい。
 触媒層がNOx吸蔵物質を含む場合、NOx吸蔵物質は上層触媒層及び下層触媒層のいずれにも存在していることが好ましい。
 本発明の一実施形態としては、
 基材;
 前記基材上に配置された、担体と当該担体上に担持されたロジウムと、NOx吸蔵物質とを含む下層触媒層;及び
 前記下層触媒層上に配置された、第1の担体と当該第1の担体上に担持された白金及び第1のパラジウムと、NOx吸蔵物質とを含む上層触媒層;
を含み、前記白金と前記第1のパラジウムとの重量比が3:1~8:1である、排気ガス浄化用触媒を挙げることができる。
 本発明の別の実施形態としては、
 基材;
 前記基材上に配置された、担体と当該担体上に担持されたロジウムと、NOx吸蔵物質とを含む下層触媒層;及び
 前記下層触媒層上に配置された、第1の担体と当該第1の担体上に担持された白金及び第1のパラジウムと、第2の担体と当該第2の担体上に担持された第2のパラジウムと、NOx吸蔵物質とを含む上層触媒層;
を含み、前記白金と前記第1のパラジウムとの重量比が3:1~8:1であり、前記第2の担体上に白金が担持されていない、排気ガス浄化用触媒を挙げることができる。
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
<排気ガス浄化用触媒の製造>
[実施例1]
(1)水にジルコニア(30g)を懸濁させ、その後、硝酸ロジウムを加えた。混合物を蒸発乾固し、ロジウム担持粉末を得た。ジルコニアに対するロジウムの担持量は1重量%である。
 得られたロジウム担持粉末、アルミナ(140g)、及び水を混合し、コート材料[1-1]を得た。
(2)水にアルミナ(10g)(第1の担体)を懸濁させ、その後、硝酸白金及び硝酸パラジウム(第1のパラジウム)を3:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ10重量%及び3.3重量%である。
 水にアルミナ(5g)(第2の担体)を懸濁させ、その後、硝酸パラジウム(第2のパラジウム)を加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は3.4重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(65g)、並びに水を混合し、コート材料[1-2]を得た。
(3)モノリス基材(1L)にコート材料[1-1]をコートし、焼成し、下層触媒層を形成した。下層触媒層上にコート材料[1-2]をコートし、焼成し、上層触媒層を形成した。下層触媒層及び上層触媒層にバリウム及びカリウムを含有させた。モノリス基材1L当たりのバリウム及びカリウムの含有量は共に0.1molである。
[実施例2]
(1)水にアルミナ(10g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを5:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ10重量%及び2重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は6重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(65g)、並びに水を混合し、コート材料[2-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[2-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[実施例3]
(1)水にアルミナ(10g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを8:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ10重量%及び1.25重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は7.5重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(65g)、並びに水を混合し、コート材料[3-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[3-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[実施例4]
(1)水にアルミナ(25g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを3:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ4重量%及び1.32重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は3.4重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(50g)、並びに水を混合し、コート材料[4-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[4-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[実施例5]
(1)水にアルミナ(45g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを3:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ2.22重量%及び0.733重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は3.4重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(30g)、並びに水を混合し、コート材料[5-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[5-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[実施例6]
(1)水にアルミナ(45g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを3:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ2.22重量%及び0.733重量%である。
 得られた白金-パラジウム担持粉末、アルミナ(35g)、及び水を混合し、コート材料[6-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[6-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[実施例7]
(1)水にアルミナ(10g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを3:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ10重量%及び3.3重量%である。
 得られた白金-パラジウム担持粉末、アルミナ(70g)、及び水を混合し、コート材料[7-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[7-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[比較例1]
(1)水にアルミナ(10g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを2.2:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ10重量%及び4.5重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は1重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(65g)、並びに水を混合し、コート材料[1X-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[1X-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[比較例2]
(1)水にアルミナ(10g)を懸濁させ、その後、硝酸白金及び硝酸パラジウムを10:1(Pt:Pd)の重量比で加えた。混合物を蒸発乾固し、白金-パラジウム担持粉末を得た。アルミナに対する白金及びパラジウムの担持量はそれぞれ10重量%及び1重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は8重量%である。
 得られた白金-パラジウム担持粉末、及びパラジウム担持粉末、アルミナ(65g)、並びに水を混合し、コート材料[2X-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[2X-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
[比較例3]
 (1)水にアルミナ(10g)を懸濁させ、その後、硝酸白金を加えた。混合物を蒸発乾固し、白金担持粉末を得た。アルミナに対する白金の担持量は10重量%である。
 水にアルミナ(5g)を懸濁させ、その後、硝酸パラジウムを加えた。混合物を蒸発乾固し、パラジウム担持粉末を得た。アルミナに対するパラジウムの担持量は10重量%である。
 得られた白金担持粉末、及びパラジウム担持粉末、アルミナ(65g)、並びに水を混合し、コート材料[3X-2]を得た。
(2)実施例1におけるコート材料[1-2]の代わりにコート材料[3X-2]を使用したこと以外は、実施例1と同様に排気ガス浄化用触媒を製造した。
<性能評価試験>
(1)各実施例及び比較例で製造した排気ガス浄化用触媒をコンバーターに内蔵した。触媒内蔵コンバーターを2Lエンジンに取り付け、触媒床温750℃及びストイキオメトリーで150時間耐久試験を行った。
(2)上記耐久試験後、触媒内蔵コンバーターをリーンバーンガソリンエンジンに取り付け、リーン60秒及びリッチ3秒のサイクルでNOx浄化率を測定した。なお、この際の触媒床温は400℃とした。
(3)各実施例及び比較例で調製した白金-パラジウム担持粉末及び白金担持粉末について700℃で10時間耐久試験を行った。その後、第1の担体上に担持された白金の粒径をX線回折により分析した。
(4)NOx濃度及びNO濃度を測定し、その差分からNOの酸化能(NO濃度)を評価した。
 結果を表1及び図4~8に示す。
Figure JPOXMLDOC01-appb-T000001
1・・排気ガス浄化用触媒、2・・基材、3・・触媒層、4・・下層触媒層、5・・上層触媒層
 本明細書で引用した全ての刊行物をそのまま参考として本明細書に取り入れるものとする。

Claims (3)

  1.  基材;及び
     前記基材上に配置された、第1の担体と当該第1の担体上に担持された白金及び第1のパラジウムとを含む触媒層;
    を含み、
     前記白金と前記第1のパラジウムとの重量比が3:1~8:1である、排気ガス浄化用触媒。
  2.  第1の担体に対する、当該第1の担体上に担持された白金の重量比が0.04以下である、請求項1に記載の排気ガス浄化用触媒。
  3.  触媒層が、第2の担体と当該第2の担体上に担持された第2のパラジウムとを更に含み、前記第2の担体上に白金が担持されていない、請求項1又は2に記載の排気ガス浄化用触媒。
PCT/JP2014/060691 2013-04-19 2014-04-15 排気ガス浄化用触媒 WO2014171443A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14784916.0A EP2992955B1 (en) 2013-04-19 2014-04-15 Exhaust-gas purification catalyst
CN201480021826.4A CN105121006B (zh) 2013-04-19 2014-04-15 排气净化用催化剂
BR112015025876-0A BR112015025876B1 (pt) 2013-04-19 2014-04-15 catalisador de purificação de gás de escape
US14/785,028 US9522385B2 (en) 2013-04-19 2014-04-15 Exhaust gas purifying catalyst
ZA2015/08158A ZA201508158B (en) 2013-04-19 2015-11-04 Exhaust gas purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013088405A JP5676679B2 (ja) 2013-04-19 2013-04-19 排気ガス浄化用触媒
JP2013-088405 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171443A1 true WO2014171443A1 (ja) 2014-10-23

Family

ID=51731382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060691 WO2014171443A1 (ja) 2013-04-19 2014-04-15 排気ガス浄化用触媒

Country Status (7)

Country Link
US (1) US9522385B2 (ja)
EP (1) EP2992955B1 (ja)
JP (1) JP5676679B2 (ja)
CN (1) CN105121006B (ja)
BR (1) BR112015025876B1 (ja)
WO (1) WO2014171443A1 (ja)
ZA (1) ZA201508158B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061600A (zh) * 2013-10-22 2016-10-26 Sdc材料公司 用于重型柴油机的催化剂设计
JP6540947B2 (ja) * 2015-03-19 2019-07-10 株式会社豊田中央研究所 触媒
GB2554859A (en) * 2016-10-04 2018-04-18 Johnson Matthey Plc NOx adsorber catalyst
GB2577372B (en) * 2018-07-27 2023-03-29 Johnson Matthey Plc Improved TWC catalsts containing high dopant support

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293048A (ja) * 1989-04-19 1990-12-04 Engelhard Corp パラジウム含有セリア担持白金触媒およびこれを含有する触媒集合体
JP2000300962A (ja) * 1999-04-22 2000-10-31 Hitachi Ltd 内燃機関の排ガス浄化方法,浄化装置及び浄化触媒
JP2000314311A (ja) * 1999-05-06 2000-11-14 Hitachi Ltd 内燃機関の排ガス浄化方法,浄化装置及び浄化触媒
JP2003245551A (ja) * 2002-02-21 2003-09-02 Toyota Motor Corp 吸蔵還元型NOx浄化用触媒
JP2005021880A (ja) * 2003-06-13 2005-01-27 Nissan Motor Co Ltd 排ガス浄化用触媒及び排ガス浄化用触媒システム
JP2006281127A (ja) * 2005-04-01 2006-10-19 Ne Chemcat Corp 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム
WO2007114082A1 (ja) * 2006-03-30 2007-10-11 Ict Co., Ltd. 内燃機関排気ガスの浄化方法
JP2007530271A (ja) * 2004-03-27 2007-11-01 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 窒素酸化物蓄積材料および該材料から製造された窒素酸化物蓄積触媒
JP2008155204A (ja) * 2006-11-29 2008-07-10 Ict:Kk 酸化触媒およびそれを用いた排気ガス浄化システム
JP2009285604A (ja) 2008-05-30 2009-12-10 Toyota Motor Corp 排ガス浄化用触媒
JP2010058110A (ja) * 2008-08-08 2010-03-18 Honda Motor Co Ltd 低貴金属担持三元触媒
JP2010201284A (ja) 2009-02-27 2010-09-16 Toyota Motor Corp 排ガス浄化触媒
WO2012029050A1 (en) * 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved no oxidation activity
JP2013510702A (ja) * 2009-11-12 2013-03-28 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 改良型ディーゼル用酸化触媒
JP2013088405A (ja) 2011-10-21 2013-05-13 Toagosei Co Ltd コンクリート構造物及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296848B2 (ja) 1992-07-24 2002-07-02 マツダ株式会社 排気ガス浄化用触媒及びその製造方法
JP3741303B2 (ja) * 1997-12-08 2006-02-01 トヨタ自動車株式会社 排ガス浄化用触媒
US7534738B2 (en) * 2006-11-27 2009-05-19 Nanostellar, Inc. Engine exhaust catalysts containing palladium-gold
JP2011220123A (ja) * 2010-04-05 2011-11-04 Toyota Motor Corp 排気浄化触媒
JP5938819B2 (ja) * 2011-10-06 2016-06-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排気ガス処理用酸化触媒

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293048A (ja) * 1989-04-19 1990-12-04 Engelhard Corp パラジウム含有セリア担持白金触媒およびこれを含有する触媒集合体
JP2000300962A (ja) * 1999-04-22 2000-10-31 Hitachi Ltd 内燃機関の排ガス浄化方法,浄化装置及び浄化触媒
JP2000314311A (ja) * 1999-05-06 2000-11-14 Hitachi Ltd 内燃機関の排ガス浄化方法,浄化装置及び浄化触媒
JP2003245551A (ja) * 2002-02-21 2003-09-02 Toyota Motor Corp 吸蔵還元型NOx浄化用触媒
JP2005021880A (ja) * 2003-06-13 2005-01-27 Nissan Motor Co Ltd 排ガス浄化用触媒及び排ガス浄化用触媒システム
JP2007530271A (ja) * 2004-03-27 2007-11-01 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 窒素酸化物蓄積材料および該材料から製造された窒素酸化物蓄積触媒
JP2006281127A (ja) * 2005-04-01 2006-10-19 Ne Chemcat Corp 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム
WO2007114082A1 (ja) * 2006-03-30 2007-10-11 Ict Co., Ltd. 内燃機関排気ガスの浄化方法
JP2008155204A (ja) * 2006-11-29 2008-07-10 Ict:Kk 酸化触媒およびそれを用いた排気ガス浄化システム
JP2009285604A (ja) 2008-05-30 2009-12-10 Toyota Motor Corp 排ガス浄化用触媒
JP2010058110A (ja) * 2008-08-08 2010-03-18 Honda Motor Co Ltd 低貴金属担持三元触媒
JP2010201284A (ja) 2009-02-27 2010-09-16 Toyota Motor Corp 排ガス浄化触媒
JP2013510702A (ja) * 2009-11-12 2013-03-28 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 改良型ディーゼル用酸化触媒
WO2012029050A1 (en) * 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved no oxidation activity
JP2013088405A (ja) 2011-10-21 2013-05-13 Toagosei Co Ltd コンクリート構造物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2992955A4

Also Published As

Publication number Publication date
BR112015025876A2 (pt) 2017-07-25
EP2992955A4 (en) 2017-01-18
EP2992955A1 (en) 2016-03-09
US9522385B2 (en) 2016-12-20
BR112015025876B1 (pt) 2020-11-10
JP5676679B2 (ja) 2015-02-25
EP2992955B1 (en) 2020-12-23
BR112015025876A8 (pt) 2019-09-10
US20160074836A1 (en) 2016-03-17
JP2014210238A (ja) 2014-11-13
CN105121006A (zh) 2015-12-02
CN105121006B (zh) 2017-05-10
ZA201508158B (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5807782B2 (ja) 排ガス浄化用触媒
JP5910833B2 (ja) 排ガス浄化触媒
JP6907890B2 (ja) 排ガス浄化用触媒
JP2010029752A (ja) 排気ガス浄化触媒装置、並びに排気ガス浄化方法
JP2012187518A (ja) 排ガス浄化用触媒
WO2015076403A1 (ja) 排気ガス浄化用触媒
WO2012147411A1 (ja) リーンNOxトラップ型排気ガス浄化触媒及び排気ガス浄化システム
RU2017134080A (ru) КАТАЛИЗАТОР-ЛОВУШКА NOx В УСЛОВИЯХ ОБЕДНЕННОЙ СМЕСИ С УЛУЧШЕННЫМИ ХАРАКТЕРИСТИКАМИ ПРИ ВЫСОКИХ И НИЗКИХ ТЕМПЕРАТУРАХ
JPWO2015079908A1 (ja) 排ガス浄化用触媒
CN105377421A (zh) 排气净化用催化剂
JP2013091041A (ja) 排ガス浄化用触媒及びその製造方法
JP2010167381A (ja) 排ガス浄化用触媒
WO2014171443A1 (ja) 排気ガス浄化用触媒
JP2021079313A (ja) 排ガス浄化用触媒
KR20100037164A (ko) 배기 가스 정화용 촉매
JP4797838B2 (ja) ガス浄化触媒
JP5328133B2 (ja) 排ガス浄化用触媒
JP2011104485A (ja) 排ガス浄化用触媒
JP2007330879A (ja) 排ガス浄化用触媒
JP2014097459A (ja) 排気ガス浄化用触媒
JP2009061437A (ja) 排ガス浄化用触媒
JP2011092859A (ja) 酸素吸放出材及びそれを含む排ガス浄化用触媒
JP2016043310A (ja) 窒素酸化物吸蔵材及び排ガス浄化用触媒
JP2013027876A (ja) 排ガス浄化用触媒
JP2009255084A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021826.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785028

Country of ref document: US

Ref document number: IDP00201506705

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014784916

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015025876

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015025876

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151009