WO2007114082A1 - 内燃機関排気ガスの浄化方法 - Google Patents

内燃機関排気ガスの浄化方法 Download PDF

Info

Publication number
WO2007114082A1
WO2007114082A1 PCT/JP2007/056073 JP2007056073W WO2007114082A1 WO 2007114082 A1 WO2007114082 A1 WO 2007114082A1 JP 2007056073 W JP2007056073 W JP 2007056073W WO 2007114082 A1 WO2007114082 A1 WO 2007114082A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
temperature
magnesium
internal combustion
Prior art date
Application number
PCT/JP2007/056073
Other languages
English (en)
French (fr)
Inventor
Masanori Ikeda
Naohiro Kato
Original Assignee
Ict Co., Ltd.
International Catalyst Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38563351&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007114082(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ict Co., Ltd., International Catalyst Technology, Inc. filed Critical Ict Co., Ltd.
Priority to EP07739514.3A priority Critical patent/EP2000639B2/en
Priority to CN2007800110279A priority patent/CN101410597B/zh
Priority to KR1020087018576A priority patent/KR101172020B1/ko
Priority to JP2008508521A priority patent/JP5639337B2/ja
Priority to US12/294,296 priority patent/US8418444B2/en
Publication of WO2007114082A1 publication Critical patent/WO2007114082A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9472Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine exhaust gas purification method. More specifically, the exhaust gas power of an internal combustion engine such as a diesel engine relates to a purification method excellent in removing particulates and the like.
  • Diesel particulate filters are used to collect PM (particulate matter) such as black smoke and SOF emitted from internal combustion engines such as diesel engines.
  • PM particle matter
  • SOF SOF
  • a heating device such as an electric heater is arranged in the filter, and the filter is regenerated by burning and removing the PM by heating (Japanese Patent No. 2953409). .
  • a diesel exhaust particle filter in which a catalyst component is coated on a filter is also disclosed.
  • this method does not require fuel addition to regenerate the filter, but the exhaust pressure continues to rise to around 370 ° C, so there is a problem if the reproducible temperature range is limited. (US Patent Publication No. 5100632).
  • Sarakuko is equipped with a continuously regenerating diesel particulate filter in the exhaust passage of an internal combustion engine, and the amount of particulate matter collected by the filter for collecting particulate matter is a predetermined value.
  • an exhaust gas purification system for an internal combustion engine that removes the collected particulate matter by performing a regeneration mode operation when the value exceeds a certain value, the amount of particulate matter collected by the filter is reduced.
  • An internal combustion engine comprising: an estimated collection amount estimating means; and a maximum injection amount control means for limiting the maximum injection amount of the internal combustion engine when the particulate matter estimated by the collected amount estimation means is equal to or greater than a predetermined determination value.
  • Engine exhaust gas purification systems have also been proposed (Japanese Patent Publication No. 2004-108207).
  • the NOx occlusion catalyst used for removing NOx and the like occludes sulfur oxides such as SOx, so that the catalyst performance deteriorates.
  • a method of regenerating by introducing a large amount of hydrocarbons and raising the temperature has been proposed.
  • this method has a limited temperature range suitable for regeneration (Japanese Patent No. 3747693).
  • the method described in the above document has advantages in that the production cost is low and the restriction on the installation location is eased compared to the method using an electric heater, etc., but a large amount of hydrocarbons must be supplied. There is also a problem of poisoning due to hydrocarbons adhering to the catalyst by supplying a large amount of hydrocarbons. This hydrocarbon poisoning occurs when the hydrocarbon is supplied at a temperature equal to or lower than the boiling point of the supplied hydrocarbon when the temperature of the temperature raising catalyst section is low, and is more likely to occur as the concentration of the hydrocarbon increases.
  • an object of the present invention is to provide a novel method for raising the temperature of exhaust gas from an internal combustion engine.
  • Another object of the present invention is to provide a purification method that is excellent in removing particulates of exhaust gas power from an internal combustion engine, particularly a diesel engine.
  • Still another object of the present invention is to provide an internal combustion engine exhaust gas purification method that enables stable regeneration of a filter for a long period of time in a system that supplies a high-concentration hydrocarbon fuel. is there.
  • the temperature increasing catalyst is flown along the flow of the exhaust gas in the exhaust passage of the internal combustion engine. 1.
  • a method for purifying exhaust gas from an internal combustion engine characterized by introducing a hydrocarbon in an amount of 1,000 to 40,000 volume ppm in terms of methane to the exhaust gas upstream.
  • the temperature raising catalyst is (a) platinum, (b) group power consisting of magnesium, alkaline earth metal and alkali metal, and an oxide of at least one selected metal and (c ) At least one catalytically active component (A) selected from the group power consisting of palladium and rhodium is supported on the refractory inorganic oxide powder (B), and the catalytically active component-supported inorganic oxide powder is refractory tertiary.
  • Group power consisting of magnesium, alkaline earth metal and alkali metal At least one selected metal is a group power consisting of magnesium, calcium, barium, strontium and potassium. The method according to (2) above.
  • the introduction amount of the hydrocarbon is 5,000-30, 000 in terms of methane with respect to the exhaust gas.
  • the above-mentioned exhaust gas temperature raising catalyst has an exhaust gas purification capability.
  • an exhaust gas purification catalyst is installed downstream of the exhaust gas temperature raising catalyst with respect to the exhaust gas flow. The method described.
  • a hydrocarbon supply device that introduces 1,000-40,000 volume ppm of hydrocarbons into the exhaust gas in terms of methane, and (a) platinum, (b) magnesium, alkaline earth metal Group power consisting of at least one kind of alkali metal and (c) group power consisting of palladium and rhodium catalyst active ingredient consisting of at least one kind of noble metal (A) And a catalyst for temperature increase in which the catalytically active component-supported inorganic oxide powder is supported on a refractory three-dimensional structure.
  • the present invention has the configuration as described above, and the force is also selected as a temperature raising catalyst, and a group force consisting of (a) platinum, (b) magnesium, alkaline earth metal and alkali metal is also selected.
  • a catalyst containing at least one metal oxide and (c) a catalytically active component (A) comprising at least one noble metal selected from the group consisting of palladium and rhodium is used, This system can stably raise the exhaust gas temperature even when the exhaust gas temperature is low.
  • the effect is particularly remarkable when platinum, magnesium and Z or alkaline earth metal, and Z or alkali metal oxide are present at a suitable ratio.
  • the exhaust gas temperature is low, high-concentration hydrocarbons can be introduced and the exhaust gas temperature can be raised quickly. Therefore, the effect is remarkable.
  • magnesium and Z or alkaline earth metal and Z or alkali metal have an electron donating property, and activate the platinum particle surface when coexisting with platinum. It is conceivable to improve the combustibility against high-concentration hydrocarbons. Another possible cause is that the presence of magnesium and Z or alkaline earth metal and Z or alkali metal facilitates the contact of platinum particles in the coating layer with high-concentration hydrocarbons. Such a specific effect is obtained when the hydrocarbon concentration is low or the temperature at the time of introduction of the hydrocarbon is sufficiently high, that is, when the introduced hydrocarbon is introduced in a gas state, It is thought that the platinum particles present are not seen because they are likely to react with hydrocarbons.
  • hydrocarbons introduced in liquid form exist and diffusion is not sufficient.
  • magnesium and Z or alkaline earth metal and Z or alkali metal platinum particles in the coat layer are also in contact with hydrocarbons. Combustion reaction is likely to occur.
  • the hydrocarbon combustion reaction in which the hydrocarbon-containing carbon-containing component generated when the exhaust gas temperature is low is difficult to adhere to the catalyst surface is stably performed, and stable for a long period of time.
  • the exhaust gas temperature can be raised.
  • a diesel particulate filter is installed in the subsequent stage of the temperature raising catalyst, the filter can be stably regenerated for a long period of time.
  • a NOx storage catalyst is installed at the subsequent stage of the temperature raising catalyst, combustion removal of the accumulated sulfur oxide is stably performed.
  • FIG. 1 is a schematic view showing an outline of an exhaust gas purifier according to the present invention.
  • FIG. 1 shows a schematic diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention.
  • the exhaust pipe 2 communicating with an internal combustion engine such as a diesel engine is further connected to the exhaust pipe 2.
  • a temperature raising zone 5 filled with a temperature raising catalyst and a filtration zone 6 communicating with the downstream side and installing a diesel particulate filter as necessary are provided.
  • the exhaust pipe 2 on the exhaust gas inflow side of the temperature raising region 5 is provided with a fuel supply nozzle provided with a reverse valve or the like (not shown) as necessary as means for supplying the hydrocarbon liquid fuel for temperature raising. 4 and a fuel supply pump 3 communicating with the nozzle 4 are attached. That is, in FIG. 1, the hydrocarbon supply device is the fuel supply pump 3 and the fuel supply nozzle 4.
  • the temperature sensor 7 and the pressure sensor are respectively provided at the inlet of the catalyst so that the temperature and pressure of the inlet and outlet of the catalyst can be measured if necessary.
  • 10 is provided, and a temperature sensor 8 and a pressure sensor 11 are provided at the outlet, and a temperature sensor 13 and a pressure sensor 12 are provided at the outlet of the filtration zone 6 equipped with a filter, if necessary. Yes.
  • Each temperature sensor and pressure sensor signal is connected to the controller 9 and the controller 9 signal is connected to the pump.
  • a hydrocarbon-based liquid for example, fuel
  • the internal combustion engine 1 for example, a cylinder of a diesel engine by a signal from a controller 9 that is provided with the pump 3 and the fuel supply nozzle 4.
  • a controller 9 that is provided with the pump 3 and the fuel supply nozzle 4.
  • supply hydrocarbon-based liquid for example, fuel
  • hydrocarbon-based liquid for example, fuel
  • the exhaust gas of an internal combustion engine passes through the exhaust pipe 2 and in the temperature rising region 5 filled with the temperature raising catalyst, the high concentration contained in the exhaust gas.
  • the unburned hydrocarbon (HC) is combusted to form water and carbon dioxide, and is discharged out of the system through a filter area 6 filled with a filter and a muffler (not shown).
  • the particulates contained in the exhaust gas gradually accumulate in the filtration zone 6 due to the force collected by the particulate filter, so that the pressure applied to the filter rises and the pressure value is constant.
  • the filter temperature reaches a certain temperature
  • the hydrocarbon liquid fuel is injected from the nozzle 4 and supplied onto the temperature raising catalyst 5 in the temperature raising zone 5.
  • the pressure sensor 11 provided between the temperature raising zone 5 and the filtration zone 6 is connected to the filtration zone 6 Therefore, if the measured value exceeds the predetermined pressure, the fuel supply pump 3 is operated according to the command of the controller 9 according to the received value, and if the measured value is lower than the predetermined pressure, The operation of pump 3 is stopped by the command of controller 9.
  • the operation of the fuel supply pump 3 is performed according to a command from the controller 9.
  • a predetermined value for example, exceeds 700 ° C
  • the high-boiling fraction in diesel oil is liquid and the temperature rises.
  • the pump 3 is supplied little by little as soon as it adheres to the catalyst surface.
  • the operation of the fuel supply pump 3 is stopped by the command of the controller 9.
  • the temperature is 330 ° C or higher and lower than 500 ° C, the supply amount of hydrocarbon fuel is adjusted to reach the target temperature.
  • the pressure sensor 10 at the inlet 5 of the temperature rising zone 5 is normally installed when the pressure sensor 11 provided between the temperature rising zone 5 and the filtration zone 6 is not installed, and the pressure applied to the temperature rising zone 5 and the filtration zone.
  • the differential force between the pressure sensor 10 and the pressure sensor 12 also measures the pressure applied to the temperature rising catalyst and the filtration zone.
  • control unit 9 measures the pressure applied to the filter, and then sends the temperature and pressure information about one filter before and after (or inside the filter) to the control unit.
  • a fuel supply signal is sent to and filter regeneration control (fuel supply) is started.
  • filter regeneration control fuel supply
  • Even during fuel supply, the pressure value of the filter is sent to the control unit by the pressure sensor, and regeneration control is stopped when the pressure value drops to a certain value.
  • the hydrocarbon may be any hydrocarbon that generates heat from the fuel, such as methane, ethane, propane, gasoline, methanol, ethanol, dimethyl ether, and light oil.
  • the amount used is 1,000 to 40,000 ppm by volume in terms of methane with respect to the exhaust gas, preferably ⁇ 5,000 to 30,000 volume ppm, and more preferably ⁇ 5,000 to 20,000 volumes. ppm, most preferably 5,000 to 15,000 volume ppm.
  • the introduction site of the hydrocarbon may be upstream of the temperature raising catalyst, but is preferably upstream of the temperature raising catalyst after combustion of the engine.
  • engine fuel “After calcination” may be a wake of the engine exhaust gas or may be in the engine.
  • the introduction temperature of the hydrocarbon is preferably 200 ° C to 600 ° C, preferably 200 ° C to 350 ° C, more preferably 200 ° C to 300 ° C.
  • the temperature raising catalyst used in the present invention is an acid of at least one metal selected from the group consisting of (a) platinum, (b) magnesium, alkali earth metal, and alkali metal.
  • C At least one kind of noble metal catalyst active component (A) selected from the group power consisting of palladium and rhodium is supported on the refractory inorganic oxide powder (B), and the catalyst activity is supported. It is preferable that the component-supported refractory inorganic oxide powder is coated on a refractory three-dimensional structure.
  • the essential catalytically active components used in the present invention are platinum, magnesium and Z or alkaline earth metal and Z or alkali metal oxide, and palladium and Z or rhodium.
  • rhodium is preferred to be in the form of metal rather than in the form of acid, and as the form of palladium, the form of acid is preferred over the metal.
  • the amount (total) of platinum and palladium and Z or rhodium used is usually 0.1 per liter of refractory 3D structure.
  • ⁇ 20g preferably 0.5 ⁇ 10g. If it is less than 0.1 lg, the catalyst activity after the initial stage and after durability is not sufficient, while if it exceeds 20 g, the catalyst activity cannot be obtained in proportion to the amount used, such being undesirable.
  • the mass ratio of platinum (a) to palladium and Z or rhodium (c) (total) in the catalyst for raising temperature that is, (a) Z (c) is 20Zl to lZl, Preferably, it is 5 ⁇ l to 2Zl.
  • Platinum starting materials include inorganic compounds such as platinum nitrate, dinitroammineplatinum and chloroplatinic acid, and organic compounds such as bisplatinum, and rhodium starting materials include rhodium nitrate, rhodium chloride and acetic acid. There is rhodium.
  • Magnesium and soot or alkaline earth metal and soot or alkali metal include magnesium, calcium, norlium, strontium, sodium, potassium, etc., preferably magnesium, calcium, barium, strontium, potassium, etc. Normal In the form of acid salt.
  • Mass ratio of magnesium, alkaline earth metal or alkali metal (b ') (sum of magnesium, alkaline earth metal, or alkali metal) to platinum (a) in these oxides (b) (b') Z (a) is from 0.2 Zl to 20 Zl, more preferably from 0.3 1 to 17/1, even more preferably from 0.6 Zl to 5.4 / 1, particularly preferably from 0.6 Zl to 2.2 / 1. Most preferably, from 0.6Z1 to: LZ1.
  • magnesium and soot or alkaline earth metal and soot or alkali metal oxides there are nitrates, halides, acetates, etc., and by firing in an oxidizing atmosphere Any material that is in the form of an acid salt can be used.
  • the reason for blending magnesium and soot or alkali metal and soot or alkaline earth metal oxide in the temperature rising catalyst is as shown in Table 1.
  • Table 1 At 0 ° C and 250 ° C, there is no significant difference in hydrocarbon conversion rate and temperature rise depending on whether or not the acid (b) is added, but at around 225 ° C, there is no addition. Compared with, the difference is very large. In other words, even when the component (b) is not added, it can be burned by adding the component (b) even in a low temperature range where hydrocarbons cannot be combusted. It becomes.
  • the effect of the coexistence of platinum, magnesium, and Z or alkaline earth metal and Z or alkali metal in this way is the concentration of the supplied hydrocarbon, the amount of noble metal contained in the catalyst, the space velocity, etc.
  • the supply temperature of hydrocarbons is set to a temperature suitable for engine control by the blending ratio of platinum, magnesium, and Z or alkaline earth metal and Z or alkali metal. The effect is remarkable because it becomes possible.
  • These noble metals platinum, palladium and Z or rhodium
  • magnesium and Z or and alkaline earth metal and Z or alkali metal oxides are simultaneously refractory inorganic oxide powder.
  • the slurry may be mixed to form a slurry, but the slurry may be separately formed and supported on a refractory inorganic oxide.
  • the refractory inorganic oxide component used in the present invention is not particularly limited as long as it is usually used as a catalyst carrier.
  • alumina such as ⁇ , ⁇ , ⁇ , 7? , Titanium, zirconium, silica, or complex oxides thereof, such as alumina titanium
  • alumina zircoa, titanium zircoa, alumina monosilica, etc. can be used.
  • These refractory inorganic oxide components may be used alone or in combination of two or more.
  • it is at least one selected from the group force consisting of alumina, alumina silica, zircoure, titania, and zeolite, and more preferably alumina.
  • Alumina is usually a powder.
  • the amount of the refractory inorganic oxide used is usually 10 to 300 g, preferably 50 to 150 g, per liter of the three-dimensional structure. If it is less than 10 g, the precious metal cannot be sufficiently dispersed and the durability is not sufficient.On the other hand, if it exceeds 300 g, the contact state between the noble metal and the hydrocarbon introduced for temperature rise is poor, and the temperature rises. Therefore, it is preferable!
  • the BET specific surface area of the refractory inorganic oxide is preferably 50 to 750 m 2 / g, more preferably 150 to 750 m 2 / g.
  • the average particle size of the refractory inorganic oxide powder is preferably 0.5 to 150 ⁇ m, more preferably 1 to LOO ⁇ m.
  • Examples of the fire-resistant three-dimensional structure used in the present invention include a heat-resistant carrier such as a her cam carrier, but an integrally molded her cam structure is preferred.
  • a monolithic her cam carrier examples thereof include a metal nonicum carrier, a plug nonicum carrier, and a pellet carrier.
  • the monolithic cam carrier what is usually referred to as a ceramic hard cam carrier is sufficient, particularly cordierite, mullite, a-alumina, zircoure, titania, titanium phosphate, aluminum titanate.
  • cordierite-based ones are particularly preferred, although a hard-cam carrier made of betalite, sponge, aluminosilicate, or magnesium silicate is preferred.
  • an integrated structure using oxidation-resistant heat-resistant metal such as stainless steel or Fe Cr A1 alloy is used.
  • These monolith honeycomb carriers are manufactured by an extrusion molding method or a method of winding and hardening a sheet-like element.
  • the shape of the gas passage port may be any of a hexagonal shape, a square shape, a triangular shape, or a corrugated shape.
  • a cell density (number of cells Z unit cross-sectional area) of 100 to 600 cells Z square inch is sufficient, preferably 200 to 500 cells. Le Z square inches.
  • the rib thickness is preferably 3 to 6 mm.
  • plug honeycombs There are various types of plug honeycombs.
  • cordierite filters and high-heat-resistant carbon carbide filters can be used.
  • the aperture has 300 to 400 cells per square inch of the cross-sectional area and the pore diameter of the rib is 10 to 30 ⁇ m.
  • the exhaust gas temperature raising catalyst further has an exhaust gas purification capacity.
  • the exhaust gas purification capacity is, for example, the ability to convert a part of hydrocarbons in the exhaust gas to carbon dioxide and water, and a part of carbon monoxide. It refers to the ability to convert to oxycarbon, and the ability to convert part of the nitrogen oxides to nitrogen.
  • the method for preparing the catalyst for raising the temperature is specifically described. After the platinum salt solution, the magnesium salt, and the Z or alkaline earth metal salt and the aqueous solution of Z or alkali metal salt are mixed and sufficiently stirred, The mixed solution is impregnated into a refractory inorganic oxide powder, dried, and then dried at 300 to 800 ° C, preferably 400 to 600 ° C for 15 minutes to 2 hours, preferably 30 minutes to 1 Bake for hours. Next, the refractory inorganic oxide powder is impregnated with an aqueous palladium and Z or rhodium salt solution, which is similarly dried and fired.
  • the noble metal-containing powder thus obtained, the refractory inorganic oxide, the zeolite powder as necessary, and the additional noble metal salt solution as necessary are wet-ground to prepare an aqueous slurry.
  • This slurry is coated on a three-dimensional integrated structure, 300-800. C, preferably 400-600.
  • C preferably 400-600.
  • aqueous slurry is prepared by wet grinding the inorganic oxide powder and, if necessary, the zeolite powder. This slurry is coated on a three-dimensional integrated structure, 300-800. C, preferably 400-600. By calcination with C for 15 minutes to 2 hours, preferably 30 minutes to 1 hour, a temperature raising catalyst is obtained. From the viewpoint of durability, the obtained temperature raising catalyst may be further calcined.
  • Zeolite powder used as necessary includes BEA type, MFI type, FER type, FAU type, MOR type, etc., and the preferred crystal structure differs depending on the purpose, so that it is particularly limited. Not.
  • a particulate material is used with a three-dimensional structure such as cordierite, carbide, stainless steel, for example, a no-cam carrier.
  • a catalyst component such as a diesel particulate filter, a plug filter, etc., or a filter coated with the same catalyst component as the catalyst for raising the temperature, etc.
  • other exhaust gas purification catalysts include oxidation catalysts and N 2 O storage catalysts. These exhaust gas purification catalysts can be used alone or in combination of two or more.
  • a diesel particulate filter which preferably uses at least a diesel particulate filter, an oxidation catalyst, and a NOx storage catalyst.
  • the diesel particulate filter, the oxidation catalyst, and the NOx storage catalyst generally known ones can be used.
  • Example 3 In the method of Example 1, the same method except that an amount of magnesium acetate tetrahydrate corresponding to 1.2 g of magnesium was used instead of an amount of magnesium acetate tetrahydrate corresponding to 0.6 g of magnesium. Catalyst B was obtained. [0068] Example 3
  • Example 2 In the method of Example 1, a catalyst was prepared in the same manner except that an amount of magnesium acetate tetrahydrate corresponding to 6 g of magnesium was used instead of an amount of magnesium acetate tetrahydrate corresponding to 0.6 g of magnesium. C was obtained.
  • Example 2 In the method of Example 1, the same method except that calcium acetate monohydrate equivalent to calcium 1. Og was used instead of magnesium acetate tetrahydrate equivalent to 0.6 g magnesium. Catalyst D was obtained.
  • Example 4 In the method of Example 4, the same procedure except that calcium acetate monohydrate equivalent to calcium 2. Og was used instead of calcium acetate monohydrate equivalent to calcium 1. Og. Catalyst E was obtained by the method.
  • Example 10 In the method of Example 8, except that strontium acetate 0.5 hydrate in an amount corresponding to 21.6 g of strontium was used instead of strontium acetate 0.5 hydrate in an amount corresponding to 2.2 g of strontium. Catalyst I was obtained in the same manner. [0075] Example 10
  • Example 1 In the method of Example 1, the same method was used except that barium acetate corresponding to 3.4 g of sodium was used instead of magnesium acetate tetrahydrate corresponding to 0.6 g of magnesium. I got ⁇ [.
  • catalyst K was obtained in the same manner except that barium acetate corresponding to 6.8 g of barium was used instead of barium acetate corresponding to 3.4 g of norlium. .
  • catalyst L was obtained in the same manner except that barium acetate corresponding to 33.9 g of barium was used instead of barium acetate corresponding to 3.4 g of norlium. .
  • catalyst M was prepared in the same manner except that potassium acetate equivalent to potassium 1.Og was used instead of magnesium acetate tetrahydrate equivalent to 0.6 g magnesium. Obtained.
  • catalyst N was obtained in the same manner except that an amount of potassium acetate corresponding to potassium 1.9 g was used instead of an amount of potassium acetate corresponding to potassium 1.Og.
  • catalyst O was obtained in the same manner except that an amount of potassium acetate corresponding to 9.7 g of potassium was used instead of an amount of potassium acetate corresponding to potassium 1.Og.
  • Catalyst Z was obtained in the same manner as in Example 1 except that magnesium acetate tetrahydrate was not used in the method of Example 1.
  • Evaluation Example 1 Evaluation of catalyst
  • the catalysts prepared in the above examples and comparative examples were calcined in air at 800 ° C. for 16 hours.
  • the temperature raising catalyst prepared in Examples 1 to 15 or Comparative Example 1 as the temperature raising catalyst in the temperature raising region 5 ( A) to (O) or comparative catalyst (Z) was charged, respectively.
  • the temperature was set sensor 7 in front of the temperature increase catalyst 5 to 200 ° C, 225 ° C and 250 ° C at a space velocity 500001T 1 in a two-liter direct injection diesel engine shown in FIG.
  • diesel oil was supplied from the fuel supply nozzle in an amount corresponding to a hydrocarbon concentration of 10,000 ppm by volume (methane equivalent) flowing into the temperature rising catalyst.
  • catalyst Z2 was obtained in the same manner as in Example 16, except that magnesium acetate tetrahydrate was not used.
  • Example 16 The catalyst prepared in Example 16 and Comparative Example 2 was calcined in air at 800 ° C. for 16 hours.
  • the temperature increasing catalyst (P) prepared in Example 16 as the temperature increasing catalyst in the temperature rising region 5 or the temperature increasing The catalyst (Z2) was charged, and a diesel particulate filter was installed behind it. 3.
  • the engine was operated at 2000 rpm until the pressure applied to the front of the filter reached 8 kPa, and particulates were accumulated on the filter.
  • the oxidation catalyst inlet temperature was set to 300 ° C, and light oil was added at a flow rate of 45 ml per minute so that the oxidation catalyst inlet temperature was 600 ° C.
  • the temperature at the outlet of the acid catalyst after 25 minutes from the addition of light oil and the pressure applied in front of the filter were examined. The results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 高濃度炭化水素の燃焼が可能な温度範囲を拡大するまたは迅速に後段触媒に高温ガスを供給する。内燃機関排気ガス温度上昇用触媒を用いて該排気ガスを浄化する方法において、該内燃機関の排気通路内に該排気ガスの流れに沿って該温度上昇用触媒の上流側に該排気ガスに対してメタン換算で1,000~40,000体積ppmの炭化水素を導入することを特徴とする内燃機関排気ガスの浄化方法。

Description

明 細 書
内燃機関排気ガスの浄化方法
技術分野
[0001] 本発明は、内燃機関排気ガスの浄ィ匕方法に関するものである。詳しく述べると、特 にディーゼルエンジン等の内燃機関力もの排気ガス力もパティキュレート等の除去に 優れた浄化方法に関するものである。
背景技術
[0002] ディーゼルエンジン等の内燃機関から排出される黒煙や SOF等の PM (粒子状物 質)を捕集するため、ディーゼルパティキュレートフィルターが用いられており、その使 用に伴 、フィルター内に PMが堆積して、圧力損失が大きくなると!/、う問題点がある。
[0003] そこで、従来、 PMの堆積に対しては、フィルターに電熱ヒーター等の加熱装置を 配置し、加熱により PMを燃焼'除去させてフィルターの再生を行なっていた (特許第 2953409号公報)。
[0004] し力しながら、このような再生方法では、消費電力が大きぐランニングコストが高く なるという問題があった。また、フィルター以外に、ヒーター設備の占める体積が必要 であり、車両に設置する際に設置場所が制限されるという問題があった。これらの問 題点を解決するために、ディーゼルエンジンパティキュレート捕集用フィルターと、該 フィルターの排気管上流側に設けられた炭化水素 (HC)に対して活性のよい触媒コ ンバータと、該触媒コンバータに多量の HCを供給可能な HC制御手段とを備えたデ イーゼル排出ガス浄ィ匕装置が提案され、該触媒として、白金、ノ ラジウム等が開示さ れて ヽる(特開昭 60— 043113号公報)。
[0005] また、触媒成分をフィルター上にコートしたディーゼル排気粒子用フィルターも開示 されている。しかし、この方法では、フィルター再生のための燃料添カ卩を必要としない 反面、 370°C程度まで排圧が上昇し続けることから、再生可能な温度範囲が限られ て 、ると 、う問題がある(米国特許公開 5100632号公報)。
[0006] さら〖こ、内燃機関の排気通路に連続再生型ディーゼルパティキュレートフィルター を備え、粒子状物質を捕集するフィルターにおける粒子状物質の捕集量が所定の判 定値以上になった時に、再生モード運転を行なって捕集された粒子状物質を除去す る内燃機関の排気ガス浄ィ匕システムにおいて、前記フィルターに捕集される粒子状 物質の捕集量を推定する捕集量推定手段と、該捕集量推定手段によって推定され た粒子状物質が所定の判定値以上の時に、内燃機関の最大噴射量を制限する最 大噴射量制御手段を備えた内燃機関の排気ガス浄ィ匕システムも提案されて ヽる (特 開 2004— 108207号公報)。
[0007] また、窒素酸化物除去法において、 NOx等の除去に用いられる NOx吸蔵触媒に SOx等の硫黄酸ィ匕物が吸蔵することによって触媒性能が低下することが知られてい るが、その性能を回復させる際にも多量の炭化水素を導入し、昇温させることで再生 する方法が提案されている。しかし、この方法では再生させるのに適した温度範囲が 限られて 、る (特許第 3747693号公報)。
発明の開示
[0008] 上記文献記載の方法は電気加熱ヒーターによる方法等と比較して製造コストが安 価でかつ設置場所の制限が緩和されるという利点がある反面、多量の炭化水素の供 給が必要であり、多量の炭化水素を供給したことによって触媒上に炭化水素が付着 する被毒が問題である。この炭化水素被毒は炭化水素供給時の昇温用触媒部の温 度が供給炭化水素の沸点以下で炭化水素が供給された場合に起こりやすぐまた、 炭化水素の濃度が高いほど起りやすい。それは、昇温用触媒部の温度が低い場合 には炭化水素の燃焼反応速度が遅いためであり、炭化水素濃度が高い場合には、 昇温用触媒の燃焼処理速度よりも炭化水素供給速度の方が速 、ためである。このた め、従来の方法ではエンジン側の制御によって炭化水素の燃焼速度が速 、温度ま で昇温した後、炭化水素を供給するか、炭化水素が充分燃焼可能な少量を供給す るなどの制御が必要であった。し力しながら、このような制御を行った場合には、再生 までの時間が長くなり、走行性や環境に悪影響を及ぼす。このようなことから、より迅 速な昇温性が求められるが、そのためには低温での高濃度炭化水素に対する燃焼 性、昇温性の向上が課題である。
[0009] したがって、本発明の目的は、内燃機関排気ガスの新規な昇温方法を提供するこ とにある。 [0010] 本発明の他の目的は、内燃機関、特にディーゼルエンジンからの排気ガス力 の パティキュレート等の除去にも優れた浄ィ匕方法を提供することにある。
[0011] 本発明のさらに別の目的は、高濃度の炭化水素系燃料を供給するシステムで長期 間安定してフィルターの再生を可能にする内燃機関排気ガスの浄ィ匕方法を提供する ことにある。
[0012] 上記諸目的は、下記(1)〜(14)により特に達成されうる。
[0013] (1) 内燃機関排気ガス温度上昇用触媒を用いて該排気ガスを浄化する方法にお いて、該内燃機関の排気通路内に該排気ガスの流れに沿って該温度上昇用触媒の 上流側に該排気ガスに対してメタン換算で 1, 000-40, 000体積 ppmの炭化水素 を導入することを特徴とする内燃機関排気ガスの浄ィ匕方法。
[0014] (2) 該温度上昇用触媒が (a)白金、(b)マグネシウム、アルカリ土類金属およびァ ルカリ金属よりなる群力 選ばれた少なくとも 1種の金属の酸ィ匕物および (c)パラジゥ ムおよびロジウムよりなる群力も選ばれた少なくとも 1種よりなる触媒活性成分 (A)を、 耐火性無機酸化物粉末 (B)に担持させ、触媒活性成分担持無機酸化物粉末を耐火 性三次元構造体に担持させたものである前記(1)に記載の方法。
[0015] (3) マグネシウム、アルカリ土類金属およびアルカリ金属よりなる群力 選ばれた 少なくとも 1種の金属がマグネシウム、カルシウム、バリウム、ストロンチウムおよびカリ ゥムよりなる群力 選ばれた少なくとも 1種である前記(2)に記載の方法。
[0016] (4) 該耐火性無機酸ィ匕物力 アルミナ、アルミナ シリカ、ジルコユア、チタユアお よびゼォライトよりなる群力 選ばれた少なくとも 1種である前記(2)または(3)に記載 の方法。
[0017] (5) 該温度上昇用触媒における(b')Z(a)の質量比が 0. 2Zl〜20Zlである 前記(2)〜 (4)の 、ずれか一つに記載の方法。
[0018] (6) 該温度上昇用触媒におけるパラジウムおよび Ζまたはロジウムの合計に対す る白金の質量比が 20Zl〜lZlである前記(5)に記載の方法。
[0019] (7) 該炭化水素の導入温度が 200〜350°Cである前記(1)〜(6)のいずれか一 つに記載の方法。
[0020] (8) 該炭化水素の導入量が該排気ガスに対してメタン換算で 5, 000-30, 000 体積 ppmである前記(1)〜(7)のいずれか一つに記載の方法。
[0021] (9) 該排気ガス温度上昇用触媒が排気ガス浄化能力を併せ持つものである前記
(1)〜(8)のいずれか一つに記載の方法。
[0022] (10) 該排気ガスの流れに対して排気ガス温度上昇用触媒の下流側に排気ガス 浄ィ匕用触媒を設置してなる前記(1)〜(9)のいずれか一つに記載の方法。
[0023] (11) 該排気ガス浄ィ匕用触媒がディーゼルパティキュレートフィルター、酸ィ匕触媒 および NO吸蔵触媒よりなる群力 選ばれた少なくとも 1種である前記(10)に記載の 方法。
[0024] (12) 該排気ガス温度上昇用触媒の三次元構造体がハニカムおよび Zまたはプ ラグノヽ-カムまたはペレットである前記(2)に記載の方法。
[0025] (13) 排気ガスに対してメタン換算で 1, 000-40, 000体積 ppmの炭化水素を導 入する炭化水素供給装置と、(a)白金、(b)マグネシウム、アルカリ土類金属およびァ ルカリ金属よりなる群力 選ばれた少なくとも 1種の金属の酸ィ匕物および (c)パラジゥ ムおよびロジウムよりなる群力 選ばれた少なくとも 1種の貴金属よりなる触媒活性成 分 (A)を、耐火性無機酸化物粉末 (B)に担持させ、該触媒活性成分担持無機酸ィ匕 物粉末を耐火性三次元構造体に担持させた温度上昇用触媒と、を有することを特徴 とする、内燃機関の排気ガス浄ィ匕システム。
[0026] (14) さらに、ディーゼルパティキュレートフィルター、酸化触媒および NOx吸蔵触 媒よりなる群力も選ばれた少なくとも 1種を有する、 (13)に記載の浄ィ匕システム。
[0027] 本発明は、以上のごとき構成を有するものであり、し力も特に温度上昇用触媒として 、 (a)白金、(b)マグネシウム、アルカリ土類金属およびアルカリ金属よりなる群力も選 ばれた少なくとも 1種の金属の酸ィ匕物ならびに(c)パラジウムおよびロジウムよりなる 群から選ばれた少なくとも 1種の貴金属よりなる触媒活性成分 (A)を含有する触媒を 使用すると、高濃度の炭化水素を供給するシステムで、排気ガス温度が低い場合に も安定して排気ガス温度を上昇させることが可能である。特に白金と、マグネシウムお よび Zまたはアルカリ土類金属および Zまたはアルカリ金属の酸ィ匕物とを好適な比 率で存在させることにより、その効果が著しいのである。また、排気ガス温度が低い場 合にも高濃度の炭化水素を導入することができ迅速に排気ガス温度を上昇できるた め、その効果が著しいのである。
[0028] この原因の一つとして、マグネシウムおよび Zまたはアルカリ土類金属および Zま たはアルカリ金属は電子供与性を有しており、白金と共存させた場合に白金粒子表 面を活性化させ、高濃度炭化水素に対する燃焼性を向上させることが考えられる。ま た、他の原因として、マグネシウムおよび Zまたはアルカリ土類金属および Zまたは アルカリ金属の存在によって、コート層内部に存在する白金粒子が高濃度炭化水素 と接触しやすくなることが考えられる。このような特異的な効果は、炭化水素濃度が低 い場合や炭化水素導入時の温度が十分高い場合、すなわち、導入される炭化水素 がガス状態で導入される場合には、コート層内に存在する白金粒子も炭化水素との 反応が起こりやすいため見られないと考えられる。一方、炭化水素濃度が高い場合 や、炭化水素導入時の温度が低い場合には、液状で導入される炭化水素が存在し、 拡散が十分でないため、コート層内の白金粒子は炭化水素との反応に有効に利用さ れにくいと考えられ、マグネシウムおよび Zまたはアルカリ土類金属および Zまたは アルカリ金属が共存した場合には、コート層内の白金粒子も炭化水素との接触状態 力 ぐ炭化水素の燃焼反応が起こりやすくなると考えられる。
[0029] さらに、このため、排気ガス温度が低い場合に発生する炭化水素由来の炭素含有 成分の触媒表面上への付着が起こりにくぐ炭化水素の燃焼反応が安定して行われ 、長期間安定して排気ガス温度を上昇させることができるのである。また、このために 前記温度上昇用触媒の後段にディーゼルパティキュレートフィルターが設置された 場合には、長期間安定してフィルターの再生が可能となる。同様に前記温度上昇用 触媒の後段に NOx吸蔵触媒が設置された場合には、蓄積した硫黄酸化物の燃焼除 去が安定して行われるのである。
図面の簡単な説明
[0030] [図 1]本発明により排気ガス浄ィ匕装置の概略を示す概略図である。
発明を実施するための最良の形態
[0031] つぎに、図面を参照しつつ、本発明をさらに詳細に説明する。すなわち、図 1は、本 発明による内燃機関の排気ガス浄ィ匕装置の概略図を示すものである。
[0032] すなわち、内燃機関 例えばディーゼルエンジンに連通する排気管 2に、さらに連 通して、温度上昇用触媒を充填した昇温域 5と、その下流側に連通して必要によりデ イーゼルパティキュレートフィルターを設置した濾過域 6とが設けられて ヽる。そして、 前記昇温域 5の排気ガス流入側の排気管 2には、昇温用炭化水素系液体燃料を供 給する手段として、必要により逆弁等(図示せず)を設けた燃料供給ノズル 4および該 ノズル 4に連通している燃料供給ポンプ 3が取付けられている。つまり、図 1では、炭 化水素供給装置が燃料供給ポンプ 3および燃料供給ノズル 4である。
[0033] このように構成される排気ガス浄ィ匕装置には、必要により触媒の入口部および出口 部の温度および圧力を測定できるように、触媒の入口部にそれぞれ温度センサ 7お よび圧力センサ 10が設けられ、また出口部にはそれぞれ温度センサ 8および圧力セ ンサ 11が設けられ、さらに必要によりフィルターを備えた濾過域 6の出口には、温度 センサ 13および圧力センサ 12がそれぞれ設けられている。また、各温度センサおよ び圧力センサの信号は、コントローラ 9に入るよう接続されており、またコントローラ 9 信号は、ポンプに入るように接続されている。
[0034] また、本発明の他の実施態様としては、ポンプ 3および燃料供給ノズル 4を設けるこ となぐコントローラ 9の信号により内燃機関 1、例えばディーゼルエンジンのシリンダ に炭化水素系液体 (例えば燃料)を直接供給することもできる。例えば、内燃機関の シリンダ内の燃料の燃焼終了後排気工程終了前に炭化水素系液体 (例えば燃料)を 供給してちょい。
[0035] つぎに、このように構成される排気ガス浄化装置の作用につ ヽて述べる。すなわち 、図 1に示すように、内燃機関 例えばディーゼルエンジンの排気ガスは、排気管 2 を通過して、温度上昇用触媒を充填した昇温域 5においては、該排気ガス中に含ま れる高濃度の未燃焼の炭化水素 (HC)が燃焼されて水や二酸ィ匕炭素になり、フィル ターを充填した濾過域 6を経てマフラー(図示せず)等を経て系外に排出される。
[0036] 一方、排気ガス中に含まれるパティキュレートは、該濾過域 6においてパティキユレ ートフィルターに捕集される力 次第に蓄積してくるので、フィルターに力かる圧力が 上昇し、その圧力値が一定値に達し、そのフィルター温度が一定温度に達した時点 で、ノズル 4より炭化水素系液体燃料を噴射させ、昇温域 5の温度上昇用触媒 5上に 供給する。昇温域 5と濾過域 6のとの間に設けられている圧力センサ 11は、濾過域 6 の圧力を測定することになるので、その測定値が所定の圧力以上になれば、受信し た値によりコントローラー 9の指令により燃料供給ポンプ 3を作動させ、また所定の圧 力以下になれば、コントローラ 9の指令によりポンプ 3の作動は中止される。
[0037] また、昇温域 5と濾過域 6の間に設けられている温度センサ 8が所定の値を超えれ ば、例えば 700°Cを越えれば、コントローラ 9の指令により燃料供給ポンプ 3の作動が 中止され、また例えば軽油の場合、その 90%以上の成分が沸点以上となるのは 330 °C程度であるが、 330°C未満では軽油中の高沸点留分は液体状で昇温域 5に導入 されるため、触媒表面上への付着が起こりやすぐコントローラ 9の指令によりポンプ 3 からは少量ずつ供給される。さらに、例えば 200°C未満ではコントローラ 9の指令によ り燃料供給ポンプ 3の作動が中止される。一方、例えば 330°C以上 500°C未満であ れば、炭化水素系燃料の供給量を目的温度に到達するよう調節させる。
[0038] 昇温域 5入口の圧力センサ 10は、通常昇温域 5と濾過域 6との間に設けられる圧力 センサ 11が設置されない場合に設置され、昇温域 5および濾過域にかかる圧力を検 出するものであり、圧力センサ 10と圧力センサ 12との差力も昇温触媒および濾過域 にかかる圧力を測定するものである。
[0039] コントロールユニット 9は、一般的には、フィルターに力かる圧力を計測後、フィルタ 一前後(あるいはフィルター内部)の温度、圧力情報がコントロールユニットに送られ 、ある値を超えると燃料噴射装置に燃料供給信号が送られ、フィルター再生制御 (燃 料供給)が開始される。燃料供給中にも圧力センサによりフィルターの圧力値がコント ロールユニットに送られ、圧力値がある値まで下がった時点で再生制御を停止する。
[0040] この場合、炭化水素としては、燃料により発熱する炭化水素であればよぐメタン、 ェタン、プロパン、ガソリン、メタノール、エタノール、ジメチルエーテル、軽油等があり
、好ましくは軽油である。その使用量は、排気ガスに対してメタン換算で 1, 000-40 , 000体積 ppm、好まし <は 5, 000〜30, 000体積 ppm、さらに好まし <は 5, 000〜 20, 000体積 ppm、最も好ましくは 5, 000〜15, 000体積 ppmであること力 子まし!/ヽ
[0041] なお、炭化水素の導入箇所は、当該温度上昇用触媒の上流であればよいが、好ま しくはエンジンの燃焼後から当該温度上昇用触媒の上流である。また、エンジンの燃 焼後とは、エンジン排ガスの後流であってもよいし、エンジン内であってもよい。
[0042] しかして、炭化水素の導入温度は、 200°C〜600°C、好ましくは 200°C〜350°C、 さらに好ましくは 200°C〜300°Cであることが好ましい。
[0043] また、炭化水素系液体 (燃料)を内燃機関に直接供給する場合も同様である。
[0044] 本発明において使用される温度上昇用触媒は、(a)白金、(b)マグネシウム、アル カリ土類金属およびアルカリ金属よりなる群カゝら選ばれた少なくとも 1種の金属の酸ィ匕 物ならびに (c)パラジウムおよびロジウムよりなる群力も選ばれた少なくとも 1種の貴金 属よりなる触媒活性成分 (A)を、耐火性無機酸化物粉末 (B)に担持させ、該触媒活 性成分担持耐火性無機酸化物粉末を耐火性三次元構造体にコートしてなるもので あることが好ましい。
[0045] 本発明で使用される必須の触媒活性成分は、白金と、マグネシウムおよび Zまたは アルカリ土類金属および Zまたはアルカリ金属の酸ィ匕物と、パラジウムおよび Zまた はロジウムと、である。
[0046] 白金およびロジウムの形態としては酸ィ匕物よりも金属の形態が好ましぐパラジウム の形態としては、金属よりも酸ィ匕物の形態が好ましい。白金と、パラジウムおよび Zま たはロジウムとの使用量 (合計)は、耐火性三次元構造体 1リットル当たり、通常、 0. 1
〜20g、好ましくは 0. 5〜10gである。 0. lg未満であると初期および耐久後の触媒 活性が充分でなぐ一方、 20gを超えると使用量に比例して触媒活性が得られないた めに好ましくない。
[0047] また、前記温度上昇用触媒中のパラジウムおよび Zまたはロジウム (c) (合計)に対 する白金 (a)の質量比、すなわち(a) Z (c)は、 20Zl〜lZlであり、好ましくは 5Ζ l〜2Zlである。
[0048] 白金の出発原料としては、硝酸白金、ジニトロアンミン白金、塩化白金酸等の無機 化合物、ビス白金等の有機化合物等があり、またロジウムの出発原料としては、硝酸 ロジウム、塩化ロジウム、酢酸ロジウム等がある。
[0049] マグネシウムおよび Ζまたはアルカリ土類金属および Ζまたはアルカリ金属として は、マグネシウム、カルシウム、ノ リウム、ストロンチウム、ナトリウム、カリウム等があり、 好ましくはマグネシウム、カルシウム、バリウム、ストロンチウム、カリウム等であり、通常 、酸ィ匕物の形態である。これらの酸ィ匕物(b)中のマグネシウム、アルカリ土類金属また はアルカリ金属(b' ) (マグネシウム、アルカリ土類金属またはアルカリ金属の合計)の 白金 (a)に対する質量比 (b')Z(a)は 0. 2Zl〜20Zl、より好ましくは 0. 3 1〜1 7/1,さらに好ましくは 0. 6Zl〜5. 4/1,特に好ましくは 0. 6Zl〜2. 2/1,最も 好ましくは 0. 6Z1〜: LZ1である。
[0050] また、マグネシウムおよび Ζまたはアルカリ土類金属および Ζまたはアルカリ金属 の酸ィ匕物の出発原料としては、硝酸塩、ハロゲンィ匕物、酢酸塩、等々があり、酸化性 雰囲気下での焼成によって酸ィ匕物の形態となるものであればよい。
[0051] 本発明にお 、て、マグネシウムおよび Ζまたはアルカリ金属および Ζまたはアル力 リ土類金属の酸ィ匕物を温度上昇用触媒中に配合する理由は、表 1に示すように、 20 0°Cおよび 250°Cでは、成分 (b)の酸ィヒ物の添加の有無による炭化水素転ィヒ率およ び温度上昇には大差ないが、 225°C付近では、無添加のものに比して、差が極めて 大きいのである。すなわち、成分 (b)を無添加の場合には炭化水素が燃焼できない ような低い温度帯においても、成分 (b)を添加することで燃焼可能となり、ひいては後 段に高温を供給することが可能となるのである。し力も、このように白金とマグネシウム および Zまたはアルカリ土類金属および Zまたはアルカリ金属とを共存させたことに よる効果は、供給された炭化水素濃度、触媒中に含まれる貴金属量、空間速度等に より変化するため特定の温度に限定されるものではなぐ白金とマグネシウムおよび Zまたはアルカリ土類金属および Zまたはアルカリ金属との配合比により炭化水素の 供給温度をエンジン制御に好適な温度に設定することが可能となることから効果が著 しいのである。
[0052] これらの貴金属(白金、パラジウムおよび Zまたはロジウム)と、マグネシウムおよび Zまたはおよびアルカリ土類金属および Zまたはアルカリ金属の酸ィ匕物とは、その溶 液を同時に耐火性無機酸化物粉末に配合してスラリーを形成させてもよいが、別々 にスラリーを形成させて耐火性無機酸ィ匕物に担持してもよい。
[0053] 本発明に用いられる耐火性無機酸化物成分としては、通常、触媒担体として用いら れるものであれば何れでもよぐ例えば、 α、 γ、 δ、 7?、 0などのアルミナ、ゼォライ ト、チタ-ァ、ジルコ-ァ、シリカまたはこれらの複合酸ィ匕物、例えば、アルミナ チタ 二了、アルミナ一ジルコ -ァ、チタ-ァ一ジルコ-ァ、アルミナ一シリカなどを用いるこ とができる。これらの耐火性無機酸化物成分は 1種単独でも、 2種以上組み合わせて 用いてもよい。好ましくは、アルミナ、アルミナ シリカ、ジルコユア、チタ二了、および ゼォライトよりなる群力 選ばれた少なくとも 1種であり、より好ましくは、アルミナである 。通常、アルミナは粉体である。
[0054] 耐火性無機酸化物の使用量は、三次元構造体 1リットル当たり、通常、 10〜300g 、好ましくは 50〜150gである。 10g未満であると貴金属が十分に分散できず、耐久 性が十分でなぐ一方、 300gを越えると、貴金属と温度上昇用に導入される炭化水 素との接触状態が悪く、温度上昇が起こりにく 、ため好ましくな!/、。
[0055] 該耐火性無機酸ィ匕物の BET比表面積は好ましくは 50〜750m2/g、より好ましく は 150〜750m2/gである。また、該耐火性無機酸化物粉末の平均粒径は好ましく は 0. 5〜150 μ m、より好ましくは 1〜: LOO μ mである。
[0056] 本発明に用いられる耐火性三次元構造体としては、ハ-カム担体などの耐熱性担 体が挙げられるが一体成型のハ-カム構造体が好ましぐ例えば、モノリスハ-カム 担体、メタルノヽニカム担体、プラグノヽニカム担体、ペレット担体等を挙げることができ る。これらの中でも、モノリスハ-カム担体、プラグハ-カム担体、ペレット担体を用い ることが好ましぐモノリスハ-カム担体、プラグノヽ-カム担体を用いることがより好まし い。
[0057] モノリスハ-カム担体としては、通常、セラミックハ-カム担体と称されるものであれ ばよぐ特に、コージエライト、ムライト、 a—アルミナ、ジルコユア、チタ二了、リン酸チ タン、アルミニウムチタネート、ベタライト、スポンジュメン、アルミノシリケート、マグネシ ムシリケートなどを材料とするハ-カム担体が好ましぐなかでもコージエライト質のも のが特に好ましい。その他、ステンレス鋼、 Fe Cr A1合金などの酸化抵抗性の耐 熱性金属を用いて一体構造体としたものが用いられる。
[0058] これらのモノリスハニカム担体は、押出成型法やシート状素子を巻き固める方法な どで製造される。そのガス通過口(セル形状)の形は、六角形、四角形、三角形また はコルゲーシヨン形のいずれであってもよい。セル密度(セル数 Z単位断面積)は 10 0〜600セル Z平方インチであれば十分に使用可能であり、好ましくは 200〜500セ ル Z平方インチである。また、リブ厚は 3〜6mmが好ましい。
[0059] また、プラグハニカムとしては、種々のものがあり、公知のものが使用できる力 例え ばコージエライト製フィルター、耐熱性の高い炭化ケィ素製フィルタ一等がある。ブラ グハ-カムの場合は目開きが断面積 1インチ平方当り 300〜400個のセルを有し、リ ブの細孔径が 10〜30 μ mであることが好ましい。
[0060] 排気ガス温度上昇用触媒は、さらに排気ガス浄ィ匕能力を併せ持つものであることが 好ましい。排気ガス浄ィ匕能力とは、具体的には、例えば、排気ガス中の炭化水素の 一部を二酸ィヒ炭素と水に転ィヒする能力、一酸ィヒ炭素の一部を二酸ィヒ炭素に転ィ匕す る能力、窒素酸ィ匕物の一部を窒素に転ィ匕する能力のことを指す。
[0061] 温度上昇用触媒の調製法について、具体的に述べると、白金塩溶液およびマグネ シゥム塩および Zまたはアルカリ土類金属塩および Zまたはアルカリ金属塩の水溶 液を混合して充分撹拌したのち、該混合溶液を耐火性無機酸ィ匕物粉末に含浸させ、 これを乾燥したのち、 300〜800°C、好ましくは 400〜600°Cで 15分〜 2時間、好ま しくは 30分〜 1時間焼成する。つぎに、耐火性無機酸化物粉末にパラジウムおよび Zまたはロジウム塩水溶液を含浸させ、これを同様に乾燥、焼成する。このようにして 得られた貴金属含有粉末と、耐火性無機酸化物と、必要によりゼォライト粉末と、必 要により追加の貴金属塩溶液とを湿式粉砕して水性スラリーを調製する。このスラリ 一を三次元一体構造体にコートし、 300〜800。C、好ましくは 400〜600。Cで 15分 〜2時間、好ましくは 30分〜 1時間焼成することにより温度上昇用触媒が得られる。
[0062] 温度上昇用触媒の別の製造方法としては、白金塩溶液、マグネシウム塩および Z またはアルカリ土類金属塩および Zまたはアルカリ金属塩の水溶液、パラジウムおよ び Zまたはロジウム塩水溶液、耐火性無機酸化物粉末、ならびに必要によりゼォライ ト粉末を湿式粉砕することにより水性スラリーを調整する。このスラリーを三次元一体 構造体にコートし、 300〜800。C、好ましくは 400〜600。Cで 15分〜 2時間、好ましく は 30分〜 1時間焼成することにより温度上昇用触媒が得られる。耐久性の観点から、 得られた温度上昇用触媒をさらに焼成してもよい。
[0063] 必要により用いられるゼォライト粉末としては、 BEA型、 MFI型、 FER型、 FAU型 、 MOR型等があり、目的に応じて好ましい結晶構造は異なるため、特に限定されるも のではない。
[0064] また、温度上昇用触媒の下流側に設置される排気ガス浄化用触媒としては、コージ エライト、炭化ケィ素、ステンレス鋼等の三次元構造体、例えばノヽ-カム担体で粒子 状物質を捕集することができるもので、触媒成分をコートしていないもの、例えばディ ーゼルパティキュレートフィルター、プラグフィルタ等や前記フィルターに前記温度上 昇用触媒と同様の触媒成分をコートしたもの、その他触媒を使用する過程で高温を 必要とするものなどがある。さらに、他の排気ガス浄ィ匕用触媒としては、酸化触媒、 N O吸蔵触媒等がある。これらの排気ガス浄ィ匕用触媒は、単独でも、 2種以上組み合
X
わせて用いてもよい。少なくともディーゼルパティキュレートフィルター、酸化触媒およ び NOx吸蔵触媒を用いることが好ましぐ少なくともディーゼルパティキュレートフィル ターを用いることがより好ましい。ディーゼルパティキュレートフィルター、酸化触媒お よび NOx吸蔵触媒は、通常公知のものを用いることができる。
[0065] (実施例)
つぎに、実施例を挙げて本発明方法を、さらに詳細に説明する。
[0066] 実施例 1
白金 2gに相当する量のジニトロアンミン白金水溶液、マグネシウム 0. 6gに相当す る量の酢酸マグネシウム四水和物、パラジウム 0. 5gに相当する量の硝酸パラジウム 水溶液、アルミナ( γ -A1 O 、 BET比表面積 200m2Zg、平均一次粒径 6 m) 12
2 3
Ogに水をカ卩え、ボールミルにて湿式粉砕した。同様の操作を数回行い、合計 1500g の水性スラリーを調製した。このスラリーを、断面積 1平方インチ当り 400個のセルを 有するコージエライト製モノリスハ-カム担体 1リットルにゥォッシュコートし、 120°Cで 8時間乾燥したのち、 500°Cで 1時間焼成を行ない、触媒 Aを得た。得られた触媒 A の各成分の担持量は、モノリス担体 1リットル当たり、白金 2g、パラジウム 0. 5g、マグ ネシゥム 0. 6gであった。
[0067] 実施例 2
実施例 1の方法において、マグネシウム 0. 6gに相当する量の酢酸マグネシウム四 水和物の代わりに、マグネシウム 1. 2gに相当する量の酢酸マグネシウム四水和物を 用いた以外は、同様の方法で触媒 Bを得た。 [0068] 実施例 3
実施例 1の方法において、マグネシウム 0. 6gに相当する量の酢酸マグネシウム四 水和物の代わりに、マグネシウム 6gに相当する量の酢酸マグネシウム四水和物を用 いた以外は、同様の方法で触媒 Cを得た。
[0069] 実施例 4
実施例 1の方法において、マグネシウム 0. 6gに相当する量の酢酸マグネシウム四 水和物の代わりに、カルシウム 1. Ogに相当する量の酢酸カルシウム一水和物を用 いた以外は、同様の方法で触媒 Dを得た。
[0070] 実施例 5
実施例 4の方法において、カルシウム 1. Ogに相当する量の酢酸カルシウム一水和 物の代わりに、カルシウム 2. Ogに相当する量の酢酸カルシウム一水和物を用いた以 外は、同様の方法で触媒 Eを得た。
[0071] 実施例 6
実施例 4の方法において、カルシウム 1. Ogに相当する量の酢酸カルシウム一水和 物の代わりに、カルシウム 9. 9gに相当する量の酢酸カルシウム一水和物を用いた以 外は、同様の方法で触媒 Fを得た。
[0072] 実施例 7
実施例 1の方法において、マグネシウム 0. 6gに相当する量の酢酸マグネシウム四 水和物の代わりに、ストロンチウム 2. 2gに相当する量の酢酸ストロンチウム 0. 5水和 物を用いた以外は、同様の方法で触媒 Gを得た。
[0073] 実施例 8
実施例 7の方法において、ストロンチウム 2. 2gに相当する量の酢酸ストロンチウム 0 . 5水和物の代わりに、ストロンチウム 4. 3gに相当する量の酢酸ストロンチウム 0. 5水 和物を用いた以外は、同様の方法で触媒 Hを得た。
[0074] 実施例 9
実施例 8の方法において、ストロンチウム 2. 2gに相当する量の酢酸ストロンチウム 0 . 5水和物の代わりに、ストロンチウム 21. 6gに相当する量の酢酸ストロンチウム 0. 5 水和物を用いた以外は、同様の方法で触媒 Iを得た。 [0075] 実施例 10
実施例 1の方法において、マグネシウム 0. 6gに相当する量の酢酸マグネシウム四 水和物の代わりに、ノ リウム 3. 4gに相当する量の酢酸バリウムを用いた以外は、同 様の方法で触 ^[を得た。
[0076] 実施例 11
実施例 10の方法において、ノ リウム 3. 4gに相当する量の酢酸バリウムの代わりに 、 ノ リウム 6. 8gに相当する量の酢酸バリウムを用いた以外は、同様の方法で触媒 K を得た。
[0077] 実施例 12
実施例 10の方法において、ノ リウム 3. 4gに相当する量の酢酸バリウムの代わりに 、 ノ リウム 33. 9gに相当する量の酢酸バリウムを用いた以外は、同様の方法で触媒 L を得た。
[0078] 実施例 13
実施例 1の方法において、マグネシウム 0. 6gに相当する量の酢酸マグネシウム四 水和物の代わりに、カリウム 1. Ogに相当する量の酢酸カリウムを用いた以外は、同様 の方法で触媒 Mを得た。
[0079] 実施例 14
実施例 13の方法において、カリウム 1. Ogに相当する量の酢酸カリウムの代わりに、 カリウム 1. 9gに相当する量の酢酸カリウムを用いた以外は、同様の方法で触媒 Nを 得た。
[0080] 実施例 15
実施例 13の方法において、カリウム 1. Ogに相当する量の酢酸カリウムの代わりに、 カリウム 9. 7gに相当する量の酢酸カリウムを用いた以外は、同様の方法で触媒 Oを 得た。
[0081] 比較例 1
実施例 1の方法において、酢酸マグネシウム四水和物を用いない以外は、実施例 1 と同様の方法で触媒 Zを得た。
[0082] 評価例 1 (触媒の評価) 上記実施例および比較例で調製した触媒を、 800°Cで 16時間空気中での焼成を 行なった。
[0083] シャーシダイナモメータ上に設置した図 1に示す排気ガス浄ィ匕装置において、昇温 域 5に温度上昇用触媒として実施例 1〜 15または比較例 1で調製された温度上昇用 触媒 (A)〜 (O)または比較触媒 (Z)をそれぞれ充填した。図 1に示す 2リットルの直 噴ディーゼルエンジンにて空間速度 500001T1で温度上昇用触媒 5の前方の温度 センサ 7を 200°C、 225°Cおよび 250°Cに設定した。つぎに、温度上昇用触媒に流 入する炭化水素濃度が 10, 000体積 ppm (メタン換算)に相当する量の軽油を燃料 供給ノズルから供給した。供給開始後 10分後の炭化水素 (HC)転化率および温度 上昇用触媒の入り口の温度センサ 7および出口の温度センサ 8との差力 炭化水素 供給後の温度上昇 (昇温幅)を調べたところ、表 1の結果が得られた。
[0084] [表 1]
Figure imgf000017_0001
[0085] 実施例 16
白金 4. Ogに相当する量のジニトロアンミン白金水溶液、マグネシウム 1. 3gに相当 する量の酢酸マグネシウム四水和物、パラジウム 1. Ogに相当する量の硝酸パラジゥ ム水溶液、アルミナ( γ -A1 O、 BET比表面積 200m2Zg、平均一次粒径 6 m) 1
2 3
40g〖こ水を加え、ボールミルにて湿式粉砕した。同様の操作を数回行い、合計 3500 gの水性スラリーを調製した。このスラリーを、断面積 1平方インチ当り 400個のセルを 有するコージエライト製モノリスハ-カム担体 2. 47リットルにゥォッシュコートし、 120 °Cで 8時間乾燥したのち、 500°Cで 1時間焼成を行ない、触媒 Pを得た。得られた触 媒 Pの各成分の担持量は、モノリス担体 1リットル当たり、白金 4. Og、パラジウム 1. Og 、マグネシウム 1. 3gであった。
[0086] 比較例 2
実施例 16の方法において、酢酸マグネシウム四水和物を用いない以外は、実施例 16と同様の方法で触媒 Z2を得た。
[0087] 評価例 2
実施例 16および比較例 2で調製した触媒を、 800°Cで 16時間空気中での焼成を 行った。
[0088] シャーシダイナモメータ上に設置した図 1に示す排気ガス浄ィ匕装置において、昇温 域 5に温度上昇用触媒として実施例 16で調製された温度上昇用触媒 (P)または温 度上昇用触媒 (Z2)を充填し、その後方にディーゼルパティキュレートフィルターを設 置した。 3. 2リットルの直噴ディーゼルエンジンにてフィルター前方に力かる圧力が 8 kPaとなるまで 2000回転にてエンジンを運転して、フィルター上にパティキュレートを 蓄積させた。次に酸化触媒入口温度を 300°Cに設定し、酸化触媒入口温度が 600 °Cとなるように 1分間あたりに 45mlの流量で軽油を添カ卩した。軽油添加 25分後にお ける酸ィ匕触媒出口温度およびフィルター前方に力かる圧力を調べた。結果を表 2に 示す。
[0089] [表 2] 触媒 酸化触媒出口温度 フィルター入口圧力
P 589°C 3. 3
Z 2 4. 1

Claims

請求の範囲
[1] 内燃機関排気ガス温度上昇用触媒を用いて該排気ガスを浄化する方法にぉ ヽて
、該内燃機関の排気通路内に該排気ガスの流れに沿って該温度上昇用触媒の上流 側に該排気ガスに対してメタン換算で 1, 000-40, 000体積 ppmの炭化水素を導 入することを特徴とする内燃機関排気ガスの浄ィ匕方法。
[2] 該温度上昇用触媒が (a)白金、(b)マグネシウム、アルカリ土類金属およびアルカリ 金属よりなる群力も選ばれた少なくとも 1種の金属の酸ィ匕物、および (c)パラジウムお よびロジウムよりなる群カゝら選ばれた少なくとも 1種よりなる触媒活性成分 (A)を、耐火 性無機酸化物粉末 (B)に担持させ、触媒活性成分担持無機酸化物粉末を耐火性三 次元構造体に担持させたものである請求項 1に記載の方法。
[3] マグネシウム、アルカリ土類金属およびアルカリ金属よりなる群力も選ばれた少なく とも 1種の金属がマグネシウム、カルシウム、ノ リウム、ストロンチウムおよびカリウムよ りなる群力 選ばれた少なくとも 1種である請求項 2に記載の方法。
[4] 該耐火性無機酸化物が、アルミナ、アルミナ—シリカ、ジルコユア、チタ-ァおよび ゼォライトよりなる群力 選ばれた少なくとも 1種である請求項 2または 3に記載の方法
[5] 該温度上昇用触媒における (b)中のマグネシウム、アルカリ土類金属またはアル力 リ金属 (b' )の白金 (a)に対する質量比 (b' ) Z (a)が 0. 2Zl〜20Zlである請求項 2〜4の!、ずれか一つに記載の方法。
[6] 該温度上昇用触媒における(a) Z (c)の質量比が 20Zl〜lZlである請求項 5に 記載の方法。
[7] 該炭化水素の導入温度が 200〜350である請求項 1〜6のいずれか一つに記載の 方法。
[8] 該炭化水素の導入量が該排気ガスに対してメタン換算で 5, 000〜30, 000体積 ρ pmである請求項 1〜7のいずれか一つに記載の方法。
[9] 該排気ガス温度上昇用触媒が排気ガス浄ィ匕能力を併せ持つものである請求項 1〜
8の!、ずれか一つに記載の方法。
[10] 該排気ガスの流れに対して排気ガス温度上昇用触媒の下流側に排気ガス浄化用 触媒を設置してなる請求項 1〜9のいずれか一つに記載の方法。
[11] 該排気ガス浄化用触媒がディーゼルパティキュレートフィルター、酸化触媒および NOx吸蔵触媒よりなる群力も選ばれた少なくとも 1種である請求項 10に記載の方法
[12] 該排気ガス温度上昇用触媒の三次元構造体がモノリスハ-カム、プラグノ、二カムま たはペレットである請求項 2に記載の方法。
[13] 排気ガスに対してメタン換算で 1, 000-40, 000体積 ppmの炭化水素を導入する 炭化水素供給装置と、(a)白金、(b)マグネシウム、アルカリ土類金属およびアルカリ 金属よりなる群力も選ばれた少なくとも 1種の金属の酸ィ匕物および (c)パラジウムおよ びロジウムよりなる群力も選ばれた少なくとも 1種よりなる触媒活性成分 (A)を、耐火 性無機酸化物粉末 (B)に担持させ、触媒活性成分担持無機酸化物粉末を耐火性三 次元構造体に担持させた温度上昇用触媒と、を有することを特徴とする、内燃機関 排気ガスの净ィ匕システム。
[14] さらに、ディーゼルパティキュレートフィルター、酸化触媒および NOx吸蔵触媒より なる群力も選ばれた少なくとも 1種を有する、請求項 13に記載の浄ィ匕システム。
PCT/JP2007/056073 2006-03-30 2007-03-23 内燃機関排気ガスの浄化方法 WO2007114082A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07739514.3A EP2000639B2 (en) 2006-03-30 2007-03-23 Method of purifying exhaust gas from internal combustion engine
CN2007800110279A CN101410597B (zh) 2006-03-30 2007-03-23 内燃机废气净化方法
KR1020087018576A KR101172020B1 (ko) 2006-03-30 2007-03-23 내연기관 배기가스의 정화 방법
JP2008508521A JP5639337B2 (ja) 2006-03-30 2007-03-23 内燃機関排気ガスの浄化方法
US12/294,296 US8418444B2 (en) 2006-03-30 2007-03-23 Method for purification of exhaust gas from internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006095334 2006-03-30
JP2006-095334 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007114082A1 true WO2007114082A1 (ja) 2007-10-11

Family

ID=38563351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056073 WO2007114082A1 (ja) 2006-03-30 2007-03-23 内燃機関排気ガスの浄化方法

Country Status (7)

Country Link
US (1) US8418444B2 (ja)
EP (1) EP2000639B2 (ja)
JP (2) JP5639337B2 (ja)
KR (1) KR101172020B1 (ja)
CN (1) CN101410597B (ja)
TW (1) TW200736494A (ja)
WO (1) WO2007114082A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128297A1 (ja) * 2011-03-24 2012-09-27 株式会社アイシーティー 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法
JP2014168764A (ja) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc ディーゼル排ガス用酸化触媒及びそれを用いたディーゼル排ガスの浄化方法
WO2014171443A1 (ja) * 2013-04-19 2014-10-23 株式会社キャタラー 排気ガス浄化用触媒
CN104971625A (zh) * 2008-03-19 2015-10-14 优美科触媒日本有限公司 内燃机废气净化用催化剂和使用该催化剂的废气净化方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101158816B1 (ko) 2009-08-21 2012-06-26 기아자동차주식회사 디젤 차량의 배기 장치
GB2484911B (en) * 2010-10-22 2013-04-03 Johnson Matthey Plc NOx absorber catalyst comprising caesium silicate and at least one platinum group metal
WO2012077189A1 (ja) * 2010-12-07 2012-06-14 トヨタ自動車株式会社 内燃機関の排気浄化システム
GB201206066D0 (en) * 2012-04-04 2012-05-16 Johnson Matthey Plc High temperature combustion catalyst
EP2851528B1 (en) 2012-05-14 2018-06-20 N.E. Chemcat Corporation Exhaust gas purifier
US20140041370A1 (en) * 2012-08-08 2014-02-13 GM Global Technology Operations LLC Exhaust Treatment System for Internal Combustion Engine
GB201220912D0 (en) 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
WO2014125620A1 (ja) * 2013-02-15 2014-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9333490B2 (en) 2013-03-14 2016-05-10 Basf Corporation Zoned catalyst for diesel applications
US11255244B2 (en) 2016-03-02 2022-02-22 Watlow Electric Manufacturing Company Virtual sensing system
JP7091249B2 (ja) 2016-03-02 2022-06-27 ワットロー・エレクトリック・マニュファクチャリング・カンパニー ヒータ作動フローバイパス
DE102016207484A1 (de) 2016-05-02 2017-11-02 Umicore Ag & Co. Kg Dieseloxidationskatalysator
JP6993355B2 (ja) 2016-07-19 2022-01-13 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト ディーゼル酸化触媒コンバータ
WO2018162434A1 (de) 2017-03-06 2018-09-13 Umicore Ag & Co. Kg Mangan-haltiger dieseloxidationskatalysator
WO2020159991A1 (en) * 2019-01-29 2020-08-06 Watlow Electric Manufacturing Company Virtual sensing system
EP3698865A1 (de) 2019-02-20 2020-08-26 Umicore Ag & Co. Kg Platin- und manganhaltiger zeolith
JP7139536B2 (ja) 2019-06-26 2022-09-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 圧縮点火内燃機関用の複合ゾーン化酸化触媒
GB201914958D0 (en) 2019-06-26 2019-11-27 Johnson Matthey Plc Composite, zoned oxidation catalyst for a compression ignition internal combustion engine
BR112022005095A2 (pt) 2019-10-16 2022-06-21 Johnson Matthey Plc Motor de combustão interna de ignição
GB202004769D0 (en) 2019-10-16 2020-05-13 Johnson Matthey Plc Composite, zoned oxidation catalyst for a compression ignition internal combustion engine
EP3815780B1 (en) 2019-10-30 2024-06-19 Umicore AG & Co. KG Diesel oxidation catalyst
EP3865209A1 (en) 2020-02-17 2021-08-18 UMICORE AG & Co. KG Diesel oxidation catalyst
TWI809590B (zh) * 2021-12-08 2023-07-21 漢科系統科技股份有限公司 可程式控制節能系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852358A (ja) * 1994-08-11 1996-02-27 I C T:Kk 内燃機関排気ガス浄化用触媒の活性化方法
JP2002295244A (ja) * 2001-03-28 2002-10-09 Hino Motors Ltd 排ガス浄化装置
JP2003175318A (ja) * 2002-10-24 2003-06-24 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
JP2004290827A (ja) * 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503715A (en) 1968-04-05 1970-03-31 Universal Oil Prod Co Apparatus for treating an exhaust gas stream with different catalyst beds
GB1401002A (en) * 1971-06-16 1975-07-16 Johnson Matthey Co Ltd Platinumrhodium supported catalysts
DE2359451C3 (de) 1972-12-15 1976-01-08 Universal Oil Products Co., Des Plaines, Ill. (V.St.A.) Katalysatorträger und dessen Verwendung
JPS56102940A (en) 1980-01-18 1981-08-17 Toyota Motor Corp Catalyst for cleaning exhaust gas
US4497783A (en) 1981-08-17 1985-02-05 American Cyanamid Company Exhaust emission catalyst
JPS6043113A (ja) 1983-08-18 1985-03-07 Mitsubishi Motors Corp デイ−ゼル排出ガス浄化装置
US5100632A (en) * 1984-04-23 1992-03-31 Engelhard Corporation Catalyzed diesel exhaust particulate filter
US5131224A (en) * 1990-07-23 1992-07-21 General Motors Corporation Method for reducing methane exhaust emissions from natural gas fueled engines
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
US5524432A (en) * 1991-08-01 1996-06-11 Air Products And Chemicals, Inc. Catalytic reduction of nitrogen oxides in methane-fueled engine exhaust by controlled methane injections
JPH08103656A (ja) * 1994-10-06 1996-04-23 N E Chemcat Corp 排気ガスの浄化用触媒及びその方法
FR2730175B1 (fr) * 1995-02-03 1997-04-04 Inst Francais Du Petrole Catalyseurs de reduction des oxydes d'azote en azote moleculaire dans un milieu surstoechiometrique en composes oxydants, procede de preparation et utilisations
JP3375790B2 (ja) * 1995-06-23 2003-02-10 日本碍子株式会社 排ガス浄化システム及び排ガス浄化方法
US20040086441A1 (en) * 1995-12-06 2004-05-06 Masao Hori Process for purifying exhaust gas from gasoline engines
CA2223458C (en) * 1996-04-11 2002-06-18 Ict Co., Ltd. Catalyst for purifying exhaust gas and a process for purifying exhaust gas
CA2219542A1 (en) * 1996-10-22 1998-04-22 Sumitomo Electric Industries, Ltd. Regenerative heater of diesel engine particulate trap and diesel engine particulate trap using the same heater
JP2953409B2 (ja) 1996-10-29 1999-09-27 住友電気工業株式会社 ディーゼルエンジン用パティキュレートトラップ
US5768888A (en) * 1996-11-08 1998-06-23 Matros Technologies, Inc. Emission control system
JPH10169434A (ja) * 1996-12-09 1998-06-23 Ngk Insulators Ltd 排ガス浄化方法及びそれに用いる排ガス浄化システム
JP3770998B2 (ja) * 1997-03-31 2006-04-26 新東工業株式会社 ガス処理装置
JPH11267504A (ja) * 1998-03-24 1999-10-05 Ngk Insulators Ltd 排ガス浄化用触媒体とそれを用いた排ガス浄化システム
US6576203B2 (en) * 1998-06-29 2003-06-10 Ngk Insulators, Ltd. Reformer
JP4012320B2 (ja) 1998-10-15 2007-11-21 株式会社アイシーティー 希薄燃焼エンジン用排気ガス浄化用触媒
GB0212321D0 (en) * 2002-05-29 2002-07-10 Johnson Matthey Plc Catalyst composition
US20020048542A1 (en) * 1999-04-02 2002-04-25 Michel Deeba Catalytic trap and methods of making and using the same
DE60008639T2 (de) * 1999-07-02 2005-03-10 Mitsubishi Jidosha Kogyo K.K. Abgasreinigungsvorrichtung einer Brennkraftmaschine
JP3747693B2 (ja) 1999-07-02 2006-02-22 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP3649073B2 (ja) 2000-03-01 2005-05-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
CA2421013A1 (en) * 2000-09-05 2002-03-14 Conoco Inc. Lanthanide-promoted rhodium catalysts and process for producing synthesis gas
CZ2005147A3 (cs) 2002-09-13 2005-06-15 Johnson Matthey Public Limited Company Způsob zpracovávání výfukových plynů z vznětového motoru, vznětový motor a vozidlo jej obsahující
JP4505176B2 (ja) 2002-09-17 2010-07-21 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム
KR100469066B1 (ko) * 2003-04-14 2005-02-02 에스케이 주식회사 디젤차량 입자상 물질 제거용 필터 및 이의 제조방법
JP3843102B2 (ja) 2003-08-06 2006-11-08 本田技研工業株式会社 排ガス浄化触媒及びその製造方法、並びに排ガス浄化触媒装置
JP2005248787A (ja) * 2004-03-03 2005-09-15 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
GB2406803A (en) 2004-11-23 2005-04-13 Johnson Matthey Plc Exhaust system comprising exotherm-generating catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852358A (ja) * 1994-08-11 1996-02-27 I C T:Kk 内燃機関排気ガス浄化用触媒の活性化方法
JP2002295244A (ja) * 2001-03-28 2002-10-09 Hino Motors Ltd 排ガス浄化装置
JP2003175318A (ja) * 2002-10-24 2003-06-24 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
JP2004290827A (ja) * 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2000639A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104971625A (zh) * 2008-03-19 2015-10-14 优美科触媒日本有限公司 内燃机废气净化用催化剂和使用该催化剂的废气净化方法
US9254480B2 (en) 2011-03-24 2016-02-09 Umicore Shokubai Japan Co., Ltd. Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
EP3175917A1 (en) * 2011-03-24 2017-06-07 Umicore Shokubai Japan Co., Ltd. Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
EP3187263A1 (en) * 2011-03-24 2017-07-05 Umicore Shokubai Japan Co., Ltd. Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
EP3178552A1 (en) * 2011-03-24 2017-06-14 Umicore Shokubai Japan Co., Ltd. Oxidation catalyst for exhaust gas purification, method for producing the same, and exhaust gas purification method using the same
JP2015142914A (ja) * 2011-03-24 2015-08-06 ユミコア日本触媒株式会社 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法
JP2015145005A (ja) * 2011-03-24 2015-08-13 ユミコア日本触媒株式会社 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法
JPWO2012128297A1 (ja) * 2011-03-24 2014-07-24 ユミコア日本触媒株式会社 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法
WO2012128297A1 (ja) * 2011-03-24 2012-09-27 株式会社アイシーティー 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法
JP6045490B2 (ja) * 2011-03-24 2016-12-14 ユミコア日本触媒株式会社 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法
JP2014168764A (ja) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc ディーゼル排ガス用酸化触媒及びそれを用いたディーゼル排ガスの浄化方法
CN105121006A (zh) * 2013-04-19 2015-12-02 株式会社科特拉 排气净化用催化剂
US9522385B2 (en) 2013-04-19 2016-12-20 Cataler Corporation Exhaust gas purifying catalyst
JP2014210238A (ja) * 2013-04-19 2014-11-13 株式会社キャタラー 排気ガス浄化用触媒
WO2014171443A1 (ja) * 2013-04-19 2014-10-23 株式会社キャタラー 排気ガス浄化用触媒

Also Published As

Publication number Publication date
KR101172020B1 (ko) 2012-08-07
JP6312210B2 (ja) 2018-04-18
TWI366625B (ja) 2012-06-21
US20090107122A1 (en) 2009-04-30
JP5639337B2 (ja) 2014-12-10
EP2000639A1 (en) 2008-12-10
EP2000639A4 (en) 2011-03-02
JPWO2007114082A1 (ja) 2009-08-13
EP2000639B1 (en) 2012-07-25
KR20080114684A (ko) 2008-12-31
CN101410597B (zh) 2011-07-27
EP2000639B2 (en) 2019-08-21
TW200736494A (en) 2007-10-01
JP2015045334A (ja) 2015-03-12
CN101410597A (zh) 2009-04-15
US8418444B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
JP6312210B2 (ja) 内燃機関排気ガスの浄化方法
US7704473B2 (en) Method and device for controlling exhaust emission from internal combustion engine
CA2796830C (en) Gasoline engine emissions treatment systems having particulate filters
JP4681922B2 (ja) 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム
JP2736099B2 (ja) ディーゼルエンジン排ガス浄化用触媒
JP6132324B2 (ja) リーンバーンエンジン用排ガス浄化触媒
TWI423848B (zh) 內燃引擎的排氣之淨化方法
KR20160058133A (ko) 압축 점화 엔진을 위한 전기적으로 가열된 촉매
WO2006080816A1 (en) Catalyst and system for reducing exhaust of diesel engines
JP4210552B2 (ja) ディーゼルエンジン排ガス浄化用触媒およびその製造方法
CN111148571A (zh) 排气净化用催化剂
WO2007052817A1 (ja) 排ガス浄化装置
JP2008151100A (ja) 排ガス浄化装置
JP2004290827A (ja) 軽油燃焼用酸化触媒
JP4567968B2 (ja) 排ガス浄化装置及び排ガス浄化方法
JP4889585B2 (ja) 内燃機関排気ガスの浄化方法
KR100318888B1 (ko) 디젤엔진배출가스정화장치
JPH02107340A (ja) ディーゼル排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008508521

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087018576

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3625/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007739514

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12294296

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780011027.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE