WO2014171062A1 - 高強度熱延鋼板およびその製造方法 - Google Patents

高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014171062A1
WO2014171062A1 PCT/JP2014/001508 JP2014001508W WO2014171062A1 WO 2014171062 A1 WO2014171062 A1 WO 2014171062A1 JP 2014001508 W JP2014001508 W JP 2014001508W WO 2014171062 A1 WO2014171062 A1 WO 2014171062A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
rolled steel
less
mass
Prior art date
Application number
PCT/JP2014/001508
Other languages
English (en)
French (fr)
Inventor
中島 勝己
山崎 和彦
力 上
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013084447A external-priority patent/JP5641087B2/ja
Priority claimed from JP2013084446A external-priority patent/JP5641086B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18158632.2A priority Critical patent/EP3358033B1/en
Priority to MX2015014436A priority patent/MX2015014436A/es
Priority to KR1020157031659A priority patent/KR101749948B1/ko
Priority to US14/784,450 priority patent/US20160068937A1/en
Priority to EP14784648.9A priority patent/EP2987883B1/en
Priority to CN201480020728.9A priority patent/CN105143485B/zh
Publication of WO2014171062A1 publication Critical patent/WO2014171062A1/ja
Priority to US15/143,965 priority patent/US10301693B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention is, for example, a structural member such as a member of an automobile body or a frame, an underbody member such as a suspension, or a vehicle such as a truck frame part.
  • the present invention relates to a high-strength hot-rolled steel sheet suitable for a member, and particularly relates to an improvement in punchability during mass production (hereinafter also referred to as mass production punchability).
  • Patent Document 1 in mass%, C: 0.05 to 0.15%, Si: 1.50% or less, Mn: 0.5 to 2.5%, P: 0.035% or less, S: 0.01%
  • a high-strength hot-rolled steel sheet excellent in expansion (formability) is described.
  • Patent Document 1 After hot rolling, it is cooled to a temperature range of 400 to 550 ° C. at an average cooling rate of 30 ° C./s or more, wound on a coil, and then heated to 300 ° C. or less.
  • a cooling rate of 400 ° C./h diffusion of P to the grain boundary can be prevented, the fracture surface transition temperature becomes 0 ° C. or less, toughness is improved, and hole expansion workability is improved.
  • truck frame parts and undercarriage parts are used for connecting parts and reducing weight, and for subsequent burring (borring process) and hole expanding (bore expanding process) A lot of drilling is required.
  • this type of drilling is performed by punching from the viewpoint of productivity, there is often a strong demand for improvement of punchability.
  • Patent Document 1 merely prevents the P grain boundary segregation and improves the hole expansion processability.
  • Patent Document 1 describes the punching processability. There is no mention, and prevention of segregation of P to the grain boundary does not necessarily immediately improve the properties of the punched end face and contribute to the improvement of the punching workability.
  • Patent Document 2 in mass%, C: 0.01 to 0.07%, N: 0.005% or less, S: 0.005% or less, Ti: 0.03 to 0.2%, B: 0.0002 Punching workability with a composition containing up to 0.002% and a structure in which the main phase is ferrite or bainitic ferrite and the hard second phase and cementite are 3% or less in area ratio
  • a high-strength hot-rolled steel sheet excellent in the above has been proposed.
  • defects in the punched surface can be prevented by maintaining B in a solid solution state.
  • ferrite or bainitic ferrite is used as the phase of the maximum area, and the hard second phase that adversely affects hole expansibility is limited to 3% or less.
  • Patent Document 3 in mass%, C: 0.05 to 0.15%, Si: 0.1 to 1.5%, Mn: 1 to 2%, P: 0.03% or less, S: 0.003% or less, Al: 0.01 to 0.08 %, Ti: 0.05 to 0.15%, N: 0.005% or less, the bainite phase is more than 95% in area ratio, and the average grain size of the bainite structure at 1/4 position of the sheet thickness is the rolling direction ( Aspect ratio in the region that is 5 ⁇ m or less in the thickness section parallel to the rolling direction and 4 ⁇ m or less in the thickness section perpendicular to the rolling direction and is 1/10 of the thickness centering on the center position of the thickness.
  • a high strength hot-rolled steel sheet having a structure in which the number of crystal grains expanded in the rolling direction of 5 or more is 7 or less and excellent in punchability having a tensile strength of 780 MPa or more has been proposed.
  • the punchability is improved by reducing the average grain size of bainite and reducing the number of spreading grains in the central region of the plate thickness.
  • Japanese Patent No. 3889766 Japanese Unexamined Patent Publication No. 2004-315857 Japanese Unexamined Patent Publication No. 2012-62562
  • JFS T1001 Japan Iron Steel Federation Standards
  • JFS T1001 Japan Iron Steel Federation Standards
  • a blank sheet of about 100 mm ⁇ 100 mm is collected from a steel plate, and a clearance condition of 12% ⁇ 1% of the plate thickness (plate thickness of 2 mm or more) with respect to the blank plate.
  • the punchability of the steel sheet is often evaluated.
  • a clearance of 17 to 23% of the plate thickness, or 10 to 20% of the plate thickness, which is different from the clearance at the time of punching specified in JFS T1001, is 10 mm ⁇ . Holes are punched to evaluate the punchability of steel sheets.
  • high-strength steel sheets manufactured as a steel sheet excellent in punchability by the techniques described in Patent Documents 2 and 3 often have poor punching due to punching during mass production, and are excellent in punchability during mass production. There was a problem that it was difficult to say that it was a steel plate, and further improvement of the material was necessary.
  • the present invention aims to solve the problems of the prior art, and to provide a high-strength hot-rolled steel sheet that has high strength and has excellent punchability during mass production of parts and a method for producing the same.
  • the present inventors have examined various factors affecting the mass production punchability of a high-strength hot-rolled steel sheet.
  • the punching direction is not a vertical direction but an oblique direction, centering of the hole is difficult, and sheet pressing conditions (sheet ⁇ clamping conditions) are likely to be poor.
  • sheet pressing conditions sheet ⁇ clamping conditions
  • the punching process in mass production unlike the punching process in the laboratory, in addition to punching under extremely severe conditions, it will be subject to various process variations (process variability) described above. Even in steel sheets that have been evaluated as having excellent punchability in the punching evaluation performed in the laboratory as described above, there are many cases where punching by punching during mass production of parts is defective. I found out that
  • the present inventors have further investigated a method for evaluating mass production punchability.
  • the punched hole diameter and the plate pressing conditions are also improved in the punching end surface properties (appearances of punched surface). It was found for the first time that it had a significant effect.
  • the punch diameter was set to 50 mm ⁇ flat-bottomed type, and the die diameter was determined so that the punching clearance would be 30%. It has been found that the method of placing a spacer on top of the substrate, placing a blank plate thereon and fixing it with a plate press from above and punching it is the best method for evaluating mass production punchability.
  • the present inventors diligently examined the influence of the steel sheet structure on the mass production punchability using the above-described evaluation method.
  • size control of the bainite phase which reduces the size of the bainite phase, is not sufficient to achieve the desired mass production punchability, and another type of further microstructure control (microstructure)
  • microstructure another type of further microstructure control
  • the steel structure is mainly composed of the bainite phase, the lower structure, the lath interval, is reduced, and iron based carbide is precipitated in the grains of the bainite lath. It was found that such adjustment is effective for remarkable improvement of mass production punchability of high-strength hot-rolled steel sheets.
  • the present invention has been completed based on such knowledge and further investigation. That is, the gist of the present invention is as follows.
  • High-strength heat excellent in mass-production punching characterized in that it has a structure that is less than ⁇ m and has a structure in which the number ratio of Fe-based carbides precipitated in the grains of bainite lath among all Fe-based carbides is 10% or more Rolled steel sheet.
  • the composition further comprises one or two selected from Nb: 0.005 to 0.2% and B: 0.0002 to 0.0030% by mass%. High strength hot rolled steel sheet.
  • a high-strength hot-rolled steel sheet comprising:
  • a high-strength hot-rolled steel sheet comprising:
  • a hot dip galvanizing layer or an alloyed hot dip galvanizing layer is formed on the surface of the high-strength hot-rolled steel sheet according to any one of (1) to (5). Hot dip galvanized steel sheet formed.
  • the steel slab is, in mass%, C: more than 0.07% and 0.2% or less, Si: 2.0% or less, Mn: 1.0 to 3.0%, P: 0.05% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.01% or less, Ti: 0.05 to 0.3%, V: 0.05 to 0.3%
  • the finishing temperature of the finish rolling is in the temperature range of (A r3 transformation point) to (A r3 transformation point + 120 ° C.). After finishing the finish rolling, cooling is started within 2 s, and the average cooling rate is 40 ° C./s or more.
  • High-strength hot-rolled steel sheet with excellent mass production punching characteristics characterized by rolling at a coiling temperature of 300 to 500 ° C after cooling to the coiling temperature Manufacturing method.
  • the composition further contains one or two selected from Nb: 0.005 to 0.2% and B: 0.0002 to 0.0030% by mass%.
  • Nb 0.005 to 0.2%
  • B 0.0002 to 0.0030% by mass%.
  • annealing and plating are performed to obtain a plated steel sheet.
  • the annealing is performed at a soaking temperature of 730 ° C. or less, and after the annealing, a hot dip galvanizing bath is passed as the plating treatment to form a hot dip galvanized layer on the surface of the high strength hot rolled steel sheet.
  • an alloying treatment for alloying the hot-dip galvanized layer is performed.
  • the composition in addition to the above composition, the composition further contains one or two selected from Nb: 0.005 to 0.2% and B: 0.0002 to 0.0030% by mass%. High strength hot rolled steel sheet.
  • the mass is further selected from Cu: 0.005 to 0.3%, Ni: 0.005 to 0.3%, Sn: 0.005 to 0.3%.
  • a high-strength hot-rolled steel sheet characterized by containing seeds or two or more kinds.
  • a high-strength hot-rolled steel sheet comprising:
  • a high-strength hot-rolled steel sheet comprising:
  • the steel slab is in mass%, C: 0.05 to 0.15%, Si: 1.5% Below, Mn: 1.0-2.0%, P: 0.05% or less, S: 0.005% or less, Al: 0.1% or less, N: 0.01% or less, Ti: 0.05-0.2%, remaining Fe and unavoidable impurities
  • the hot rolling heats the steel slab to 1100 ° C. or more, sets the total rolling reduction of the final two passes of the finish rolling to 30% or more, and sets the finish rolling temperature of the finish rolling to 30% or more.
  • the composition in addition to the above composition, the composition further contains one or two selected from Nb: 0.005 to 0.2% and B: 0.0002 to 0.0030% by mass%.
  • Nb 0.005 to 0.2%
  • B 0.0002 to 0.0030% by mass%.
  • the surface is plated by annealing and plating.
  • the annealing is performed at a soaking temperature of 730 ° C. or less, and after the annealing, a hot dip galvanizing bath is passed as the plating treatment, and the hot-rolled steel sheet surface is hot-dip galvanized.
  • a method for producing a hot-dip galvanized steel sheet, comprising forming a plating layer or further subjecting the hot-dip galvanized layer to an alloying treatment.
  • the high-strength hot-rolled steel sheet according to the present invention is suitable for structural members such as truck frame parts and automobile body members and frames, and suspension members such as suspensions, and contributes effectively to reducing the weight of the members. There is also an effect of doing.
  • Embodiment 1 The reason for limiting the composition of the high-strength hot-rolled steel sheet according to Embodiment 1 will be described. “%” Means “% by mass” unless otherwise specified.
  • the “high strength” in the embodiment refers to a case where the tensile strength TS is 900 MPa or more.
  • C more than 0.07% and 0.2% or less C is an element that contributes effectively to increasing the strength of the steel sheet, and is a useful element that promotes bainite transformation and contributes to bainite phase formation.
  • an appropriate amount of C has the effect of increasing the amount of carbides in the grains of bainite lath and improving the mass production punchability. In order to exhibit such an effect, the content needs to exceed 0.07%. On the other hand, an excessive content exceeding 0.2% impairs workability and weldability.
  • C is limited to the range of more than 0.07% and less than 0.2%.
  • it is 0.079% or more, More preferably, it is 0.10% or more. Moreover, 0.19% or less is preferable.
  • Si 2.0% or less
  • Si is an element that increases the steel sheet strength by solute strengthening and contributes to the improvement of the ductility of the steel sheet. In order to exhibit such an effect, it is desirable to contain 0.05% or more.
  • excessive Si content increases the transformation point and inhibits bainite phase formation.
  • Si type complex oxide penetration into the grain boundary of the surface layer becomes significant during the heating stage of the steel slab, and descaling during hot rolling ( Even if a large amount of descaling) is used, it becomes difficult to remove, and the quality of the punching end face is lowered during mass production of steel sheets, and the mass production punchability is lowered. For this reason, Si was limited to 2.0% or less. In addition, Preferably it is 1.5% or less. More preferably, it is 1.0% or less.
  • Mn 1.0-3.0%
  • Mn is an effective element that contributes to increasing the strength of a steel sheet by solid solution strengthening and transformation strengthening. Further, Mn has an effect of reducing the transformation point and miniaturizing the bainite lath. In order to obtain such an effect, a content of 1.0% or more is required. On the other hand, if it exceeds 3.0% and excessively contained, center segregation becomes prominent, and workability is remarkably reduced. For this reason, Mn was limited to the range of 1.0 to 3.0%. It is preferably 1.4 to 2.6%.
  • P 0.05% or less
  • P is an element that has the effect of increasing the strength of the steel sheet by solid solution. Although it is desirable to reduce as much as possible, the content up to 0.05% is acceptable. In addition, Preferably, it is 0.03% or less.
  • S 0.005% or less S forms sulfides, and particularly when coarse sulfides are formed, the ductility and workability of the steel sheet decrease. Therefore, it is desirable to reduce as much as possible, but 0.005% is acceptable. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.003% or less, More preferably, it is 0.0015% or less.
  • Al 0.1% or less
  • Al is an important element that acts as a deoxidizing agent for steel. In order to exhibit such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.1%, castability deteriorates, and a large amount of inclusions (oxides) remain in the steel, leading to deterioration of surface quality and workability. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.06% or less.
  • N 0.01% or less N is combined with a nitride-forming element and precipitates as a nitride, contributing to refinement of crystal grains.
  • the N content exceeds 0.01%, a large amount of nitride is formed, which causes a decrease in hot ductility and a significant decrease in burring formability. Is preferably reduced as much as possible, but is acceptable up to 0.01%. For this reason, N was limited to 0.01% or less.
  • Ti 0.05-0.3%
  • Ti is one of the most important elements in the present invention, which easily forms carbonitrides and contributes to refinement of bainite lath spacing after transformation by refining austenite ( ⁇ ) grains before transformation. is there. Furthermore, Ti increases the carbide (carbonitride) in the grains of fine bainite lath and contributes to the increase in strength through precipitation strengthening, and also increases the void generation site (site) during punching. This contributes to improvement of mass production punchability. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if it exceeds 0.3% and excessively contained, the rolling force becomes very large, making the rolling operation difficult, and the size of the precipitates is too coarse to reduce the workability. Therefore, Ti is limited to the range of 0.05 to 0.3%. Note that. Preferably it is 0.07 to 0.25%, more preferably 0.07 to 0.23%.
  • V has the effect of improving the strength-elongation balance and the strength-hole expansibility balance, and is one of the most important elements in the present invention.
  • V also has an effect of reducing the bainite lath interval, which reduces the occurrence interval of micro voids at the time of punching and facilitates linking between voids, Improve mass production punchability.
  • V also has the effect of suppressing the precipitation of coarse Fe-based carbides, thereby improving the edge face properties during punching. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, even if it contains excessively exceeding 0.3%, an effect will be saturated, manufacturing cost will rise, and it will become economically disadvantageous.
  • V is limited to the range of 0.05 to 0.3%.
  • it is 0.07% or more, More preferably, it is 0.22% or more.
  • it is 0.28% or less, More preferably, it is 0.26% or less.
  • the above-mentioned components are basic components.
  • one or more elements selected from Nb: 0.005 to 0.2% and B: 0.0002 to 0.0030% are selected as the selective elements.
  • Cr One or two selected from 0.002 to 0.3% and / or Ca: 0.0002 to 0.004%
  • REM One or two selected from 0.0002 to 0.004% are required Can be selected according to the content.
  • Nb One or two selected from 0.005 to 0.2%, B: 0.0002 to 0.0030% Nb and B are both elements that contribute to the improvement of mass production punchability. 1 type or 2 types can be contained.
  • Nb contributes to the improvement of mass production punching by reducing the microvoid generation interval during punching by refining the structure through the formation of precipitates (carbonitrides) and further by finely dispersing the carbides. In order to acquire such an effect, it is preferable to contain 0.005% or more. On the other hand, if the content exceeds 0.2%, precipitates are coarsened and workability is lowered, and the production cost is increased. For this reason, when contained, Nb is preferably limited to a range of 0.005 to 0.2%. More preferably, it is 0.005 to 0.15%.
  • B contributes to the improvement of mass production punching through refinement of the bainite lath interval. In order to acquire such an effect, it is preferable to contain 0.0002% or more. On the other hand, if it exceeds 0.0030% and contains excessively, workability will be reduced. Therefore, when contained, B is preferably limited to a range of 0.0002 to 0.0030%. More preferably, it is 0.0003 to 0.0020%.
  • One or more selected from Cu: 0.005 to 0.3%, Ni: 0.005 to 0.3%, Sn: 0.005 to 0.3% Cu, Ni, and Sn all increase in strength through solid solution strengthening It is an element which contributes to, and can be selected as necessary and can contain one or more. In order to acquire such an effect, it is desirable to contain Cu: 0.005% or more, Ni: 0.005% or more, Sn: 0.005% or more. On the other hand, if it contains more than Cu: 0.3%, Ni: 0.3% and Sn: 0.3%, hot workability is lowered, and there is a risk of causing surface layer cracking during hot rolling.
  • Cu 0.005 to 0.3%
  • Ni 0.005 to 0.3%
  • Sn 0.005 to 0.3%. More preferably, Cu is 0.005 to 0.2%, Ni is 0.005 to 0.2%, and Sn is 0.005 to 0.2%.
  • Mo and Cr are elements that contribute to the improvement of hardenability, and the fineness of bainite lath through the reduction of the bainite transformation point. It is also an element that contributes to chemical conversion, and it can be selected as necessary and can contain one or two kinds. In order to obtain such an effect, it is desirable to contain Mo: 0.002% or more and Cr: 0.002% or more. On the other hand, an excessive content exceeding Mo: 0.3% and Cr: 0.3% causes an increase in manufacturing cost, which is economically disadvantageous. Therefore, when it is contained, it is preferable to limit it to the range of Mo: 0.002 to 0.3% and Cr: 0.002 to 0.3%. More preferably, Mo is 0.002 to 0.2% and Cr is 0.002 to 0.2%.
  • Ca 0.0002 to 0.004% and REM: 0.0002 to 0.004%.
  • Both Ca and REM are effective in improving processability through the morphology control of inclusions. It is an element which contributes to, and can be selected as necessary and can contain one or two kinds. In order to acquire such an effect, it is desirable to contain Ca: 0.0002% or more and REM: 0.0002% or more. On the other hand, if the content exceeds Ca: 0.004% and REM: 0.004%, the inclusions in the steel increase and the workability decreases. Therefore, when it is contained, it is preferable to limit the range to Ca: 0.0002 to 0.004% and REM: 0.0002 to 0.004%. More preferably, Ca is 0.0002 to 0.003% and REM is 0.0002 to 0.003%.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the high-strength hot-rolled steel sheet of the present invention is a Fe-based steel in which the bainite phase is more than 90% by volume, the average interval of bainite lath is 0.45 ⁇ m or less, and precipitated in the grains of bainite lath among all Fe-based carbides. It has a structure with a carbide ratio of 10% or more.
  • the steel sheet structure In order to ensure the desired mass production punchability, it is important to first make the steel sheet structure into a substantially bainite single-phase structure with a volume ratio exceeding 90% as described above. Note that it is preferably more than 92%, more preferably more than 94%.
  • the bainite phase is a mixed structure of ferrite and Fe-based carbide. By making it a structure of a single bainite phase, the interface between the ferrite and Fe-based carbide becomes the starting point for microvoid generation at the time of punching. This is advantageous in terms of both sides of the void connection.
  • the bainite phase is a bainite phase having a bainite lath interval of 0.45 ⁇ m or less, which is the substructure.
  • the bainite lath interval was limited to 0.45 ⁇ m or less.
  • it is 0.40 micrometer or less, More preferably, it is 0.35 micrometer or less.
  • the second phase (remainder) other than the bainite phase is one or more of martensite, retained austenite, ferrite, and pearlite.
  • the bainite phase is a bainite phase in which carbides are generated in the phase, and among all the precipitated Fe-based carbides, Fe-based carbides precipitated in ferrite grains are included.
  • An organization with a number ratio of 10% or more If the number of Fe carbides precipitated in the ferrite grains is less than 10% of the total number of Fe carbides precipitated, the desired mass production punchability cannot be ensured. For this reason, the number of Fe-based carbides precipitated in the grains is limited to 10% or more of the total number of Fe-based carbides. In addition, Preferably it is 15% or more, More preferably, it is 20% or more.
  • a steel slab having the above composition is heated and subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel sheet.
  • the method for producing the steel slab is not particularly limited, and the molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace or an induction furnace, or further by a vacuum degassing apparatus or the like. Secondary refining is performed, and a steel slab having a predetermined size is formed by a conventional casting method such as continuous casting. It should be noted that there is no problem even if the ingot-bundling method is used.
  • the steel slab may be a thin slab having a thickness of about 30 mm. If it is a thin slab, rough rolling can be omitted.
  • electromagnetic-stirring EMS
  • IBSR intentional-bulging-soft-reduction-casting
  • Can do By applying an electromagnetic stirring treatment, equiaxed crystals can be formed at the center of the plate thickness, and segregation can be reduced.
  • segregation at the central portion of the plate thickness can be reduced by preventing the flow of molten steel in the unsolidified portion of the continuous cast slab.
  • the steel slab is heated to a heating temperature of 1100 ° C. or higher and subjected to hot rolling.
  • Heating temperature of steel slab 1100 ° C. or higher
  • the steel slab is heated to a heating temperature of 1100 ° C. or higher. If the heating temperature is less than 1100 ° C., the precipitate is not sufficiently re-dissolved, and the desired precipitate distribution cannot be secured in the subsequent steps.
  • the heating temperature is 1150 degreeC or more.
  • heating temperature becomes high too much, a crystal grain will coarsen and a bainite lath will coarsen finally. For this reason, it is desirable to limit the heating temperature of the steel slab to 1300 ° C. or less.
  • the heated steel slab is subjected to hot rolling consisting of rough rolling and finish rolling to form a hot rolled steel sheet.
  • Rough rolling is not particularly limited as long as a desired sheet bar size (sheet bar size) can be ensured.
  • finish rolling followed by finish rolling.
  • the finish rolling conditions are extremely important for obtaining a desired bainite structure.
  • Total rolling reduction in the final two passes of finish rolling 30% or more
  • austenite ( ⁇ ) in which sufficient strain is accumulated into bainite. Therefore, in the present invention, first, the total rolling reduction of the final two passes of finish rolling is limited. If the total rolling reduction in the final two passes of finish rolling is less than 30%, the accumulation of strain in ⁇ is insufficient, and a desired bainite structure cannot be secured after transformation. For this reason, the total rolling reduction in the final two passes of finish rolling is limited to 30% or more.
  • it is 40% or more, More preferably, it is 50% or more.
  • Finishing rolling end temperature (A r3 transformation point) to (A r3 transformation point + 120 ° C)
  • the finishing temperature of finish rolling is less than the Ar3 transformation point, it becomes difficult to secure a desired bainite single-phase structure, which is a desired structure.
  • the finishing temperature of finish rolling exceeds ( Ar 3 transformation point + 120 ° C.) and becomes high, it becomes difficult to obtain a fine bainite phase. For this reason, the finishing temperature of finish rolling is limited to a temperature in the range of (A r3 transformation point) to (A r3 transformation point + 120 ° C.).
  • (A r3 transformation point) it is preferably (A r3 transformation point) to (A r3 transformation point + 80 ° C.).
  • the finishing temperature of finish rolling is represented by the surface temperature.
  • the thermal expansion curve obtained by cooling at a cooling rate 1 ° C. / s after the processing applied thermal expansion curve
  • the transformation temperature obtained from the changing point is used.
  • Cooling conditions are also extremely important to obtain the desired tissue.
  • Cooling start within 2 s after finish rolling finish
  • the cooling start time is within 2 s after finish rolling is finished. It is necessary to start cooling. If the start of cooling exceeds 2 s after finishing rolling, recovery of ⁇ and recrystallization proceed, the nuclei of bainite transformation decrease, and the desired bainite lath structure cannot be obtained. For this reason, cooling was started within 2 s after finishing rolling.
  • it is less than 1.5 s, More preferably, it is less than 1 s.
  • Average cooling rate 40 ° C / s or more If the average cooling rate from the finish rolling finish temperature to the cooling stop temperature is less than 40 ° C / s, pro-eutectoid ferrite precipitates and the volume ratio exceeds 90%. It is difficult to ensure a structure having a bainite phase and having a desired bainite lath interval. For this reason, the average cooling rate of cooling after finishing rolling was limited to 40 ° C./s or more. In addition, Preferably it is 50 degrees C / s or more, More preferably, it is 60 degrees C / s or more. The upper limit of the cooling rate is determined depending on the capacity of the cooling facilities, but is preferably about 150 ° C./s or less from the viewpoint of the steel plate shape. In the present invention, on the premise that the cooling after finish rolling is controlled to the above-described cooling rate, and to cool down to the cooling stop temperature, which will be described later, in order to obtain a microstructure characterized in the present invention This is a necessary requirement.
  • Cooling stop temperature 300 ⁇ 500 °C
  • the coil is wound immediately after the cooling is stopped. For this reason, the cooling stop temperature is taken up as the winding temperature.
  • the cooling stop temperature (winding temperature) is less than 300 ° C. or more than 500 ° C.
  • the cooling stop temperature was limited to a temperature in the range of 300 to 500 ° C.
  • the temperature is preferably 350 to 500 ° C.
  • pickling may be performed to remove the scale formed on the surface.
  • the hot rolled steel sheet may be subjected to temper rolling.
  • the steel sheet is further annealed at a soaking temperature of 730 ° C or less and passed through a hot dip galvanizing bath to form a galvanized layer on the surface. And it is good also as a hot-dip galvanized steel plate.
  • the soaking temperature of the annealing process exceeds 730 ° C., the bainite is tempered, so that it becomes difficult to secure a structure having a bainite phase exceeding 90% by volume and having a desired bainite lath interval. .
  • the soaking temperature in the annealing process is set to 730 ° C. or less.
  • the lower limit of the annealing temperature is not particularly limited, but from the viewpoint of adhesion between the hot dip galvanized layer and the underlying steel plate, the soaking temperature of the annealing treatment is preferably 600 ° C or higher.
  • it is good also as an alloying hot dip galvanized steel plate by giving the alloying process of this galvanized layer further.
  • hot-dip galvanized steel sheets but also hot-rolled steel sheets obtained can be used as plated steel sheets such as electrogalvanized steel sheets.
  • Example 1 The steel slab having the composition shown in Table 1 was subjected to heating, finish rolling, and cooling after rolling as shown in Table 2 to obtain a hot-rolled steel sheet. During the continuous casting, electromagnetic stirring (EMS) was performed for the segregation reduction treatment of the components other than the hot rolled steel plate No. 1 ′ of steel A1 in Tables 1 to 3 described later. Table 1 also shows the Ar3 transformation point of each steel slab obtained from the thermal expansion curve.
  • EMS electromagnetic stirring
  • hot-rolled steel sheets are pickled, passed through a continuous hot dip galvanizing line, annealed under the conditions shown in Table 2, then hot dip galvanized, and hot dip galvanized steel sheets (GI ).
  • hot dip galvanizing treatment the hot-rolled steel sheet after annealing is immersed in a 480 ° C zinc plating bath (0.1 mass% Al-Zn), and a hot dip galvanized layer with an adhesion amount of 45 g / m 2 per side is applied to the steel sheet. It was set as the process formed in both surfaces.
  • some hot-rolled steel sheets were subjected to galvanizing treatment and further subjected to alloying treatment to obtain alloyed galvanized steel sheets (GA).
  • the alloying temperature was 520 ° C.
  • Specimens were collected from the obtained hot-rolled steel sheets (partially including plated steel sheets) and subjected to structure observation, tensile tests, and mass production punchability tests.
  • the test method was as follows.
  • (1) Microstructure observation A specimen for microstructural observation was collected from the obtained hot-rolled steel sheet (plated steel sheet), and after polishing a plate thickness section (L section) parallel to the rolling direction, 3% nital solution Corroded and exposed the structure. Then, at the 1/4 thickness position of the L cross-section, the tissue is observed with a scanning electron microscope (magnification: 3000 times), the tissue is imaged with 10 fields of view, and image analysis processing (image analysis) is performed. Then, phases other than the bainite phase were separated, the structure fraction of the phase other than bainite was determined, and the area ratio of the bainite phase was calculated. The area ratio thus obtained was defined as the volume ratio of the bainite phase.
  • a thin film sample was taken from the 1/4 position of the thickness of the obtained hot-rolled steel sheet (plated steel sheet), made into a thin film specimen by mechanical polishing and electrolytic polishing, and transmission electron microscope (transmission electron microscope) (magnification : About 30000 times), the structure was observed, the structure was photographed in 10 fields of view, the bainite lath interval was measured, the average value thereof was obtained, and the bainite lath interval of each hot-rolled steel sheet was obtained.
  • a specimen for structure observation was collected from the obtained hot-rolled steel sheet (plated steel sheet), and after polishing a plate thickness section (L section) parallel to the rolling direction, the structure was corroded with 3% nital solution.
  • a replica sample (replica-sample) was prepared at a thickness of 1/4 position.
  • the tissue was observed with a transmission electron microscope (magnification: about 30000 times), and the tissue was photographed in 10 fields of view.
  • the number of Fe-based precipitates was measured for each precipitation location (grain boundaries and within the grains), and the total Fe-based precipitation of Fe-based precipitates precipitated within the grains of bainite lath. The ratio to the number of objects was calculated.
  • the Fe-based precipitates were identified by the form of the precipitates and EDX analysis (energy-dispersive-X-ray-analysis).
  • Mass production stamping with cracks, chips, brittle fracture surfaces, secondary shear surfaces, and those with no rough cross-section as ⁇ (passed), those with only rough cross-section as ⁇ (passed), and others with x (failed) Sex was evaluated.
  • All of the examples of the present invention are hot-rolled steel sheets (plated steel sheets) having high tensile strength TS: 900 MPa or more and excellent mass production punchability. On the other hand, in the comparative example that is out of the scope of the present invention, the mass production punchability is lowered.
  • Embodiment 2 The reason for limiting the composition of the high-strength hot-rolled steel sheet according to Embodiment 2 will be described. “%” Means “% by mass” unless otherwise specified. In the second embodiment, “high strength” refers to the case where the tensile strength TS is 700 to 900 MPa.
  • C 0.05-0.15%
  • C is an element that contributes effectively to increasing the strength of the steel sheet, and is a useful element that promotes bainite transformation and contributes to bainite phase formation.
  • an appropriate amount of C has the effect of increasing the amount of carbides in the grains of bainite lath and improving the mass production punchability. In order to exhibit such an effect, the content of 0.05% or more is required. On the other hand, an excessive content exceeding 0.15% impairs workability and weldability. Therefore, C is limited to the range of 0.05 to 0.15%. In addition, Preferably it is 0.071% or more, More preferably, it is 0.080% or more and 0.14% or less.
  • Si 1.5% or less
  • Si is an element that increases the strength of the steel sheet by solid solution strengthening and contributes to the improvement of the ductility of the steel sheet. In order to exhibit such an effect, it is desirable to contain 0.05% or more. On the other hand, excessive Si content exceeding 1.5% raises the transformation point and inhibits bainite phase formation. For this reason, Si was limited to 1.5% or less. In addition, Preferably it is 1.0% or less.
  • Mn 1.0-2.0%
  • Mn is an effective element that contributes to increasing the strength of the steel sheet by solid solution strengthening and transformation strengthening. Further, Mn has the effect of reducing the transformation point and miniaturizing the bainite lath. In order to obtain such an effect, a content of 1.0% or more is required. On the other hand, when the content exceeds 2.0%, the center segregation becomes remarkable and the workability is remarkably lowered. For this reason, Mn was limited to a range of 1.0 to 2.0%. It is preferably 1.2 to 1.9%.
  • P 0.05% or less
  • P is an element that has the effect of increasing the strength of the steel sheet by solid solution, but if contained in a large amount, it is likely to segregate at grain boundaries, etc. Although it is desirable to reduce, inclusion up to 0.05% is acceptable. In addition, Preferably, it is 0.03% or less.
  • S 0.005% or less S forms sulfides, and particularly when coarse sulfides are formed, the ductility and workability of the steel sheet decrease. Therefore, it is desirable to reduce as much as possible, but 0.005% is acceptable. For this reason, S was limited to 0.005% or less. In addition, Preferably it is 0.003% or less, More preferably, it is 0.0015% or less.
  • Al 0.1% or less
  • Al is an important element that acts as a deoxidizer for steel. In order to exhibit such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.1%, castability deteriorates, and a large amount of inclusions (oxides) remain in the steel, leading to deterioration of surface properties and workability. For this reason, Al was limited to 0.1% or less. In addition, Preferably it is 0.06% or less.
  • N 0.01% or less N combines with a nitride-forming element and precipitates as a nitride, contributing to refinement of crystal grains.
  • the N content exceeds 0.01%, a large amount of nitride is generated, which causes a decrease in hot ductility and a significant decrease in burring workability. Therefore, it is desirable to reduce N as much as possible. Up to 0.01% is acceptable. For this reason, N was limited to 0.01% or less. In addition, Preferably it is 0.006% or less, More preferably, it is 0.004% or less.
  • Ti 0.05-0.2%
  • Ti is one of the most important elements in the present invention, which easily forms carbonitrides and contributes to refinement of bainite lath spacing after transformation through refinement of austenite ( ⁇ ) grains before transformation. It is.
  • Ti increases the fine grained bainite lath carbide (carbonitride) and contributes to increased strength through precipitation strengthening, and becomes a void generation site during punching, increasing voids, and mass production punchability Contributes to improvement.
  • 0.05% or more of content is required.
  • the content exceeds 0.2%, the rolling load becomes very large and the rolling operation becomes difficult, or the precipitate size becomes too coarse and the workability is lowered. Therefore, Ti is limited to the range of 0.05 to 0.2%. Note that. Preferably it is 0.065 to 0.125%, more preferably 0.065 to 0.10%.
  • the above-mentioned components are basic components.
  • one or more elements selected from Nb: 0.005 to 0.2% and B: 0.0002 to 0.0030% are selected as the selective elements.
  • Cr One or two selected from 0.002 to 0.3% and / or Ca: 0.0002 to 0.004%
  • REM One or two selected from 0.0002 to 0.004% are required Can be selected according to the content.
  • Nb One or two selected from 0.005 to 0.2%, B: 0.0002 to 0.0030% Nb and B are both elements that contribute to the improvement of mass production punchability. 1 type or 2 types can be contained.
  • Nb contributes to the improvement of mass production punching by reducing the microvoid generation interval at the time of punching by refining the structure and finely dispersing the carbide through the formation of precipitates (carbonitrides). In order to acquire such an effect, it is preferable to contain 0.005% or more. On the other hand, if the content exceeds 0.2%, precipitates are coarsened and workability is lowered, and the production cost is increased. For this reason, when contained, Nb is preferably limited to a range of 0.005 to 0.2%. More preferably, it is 0.005 to 0.15%.
  • B contributes to the improvement of mass production punching through refinement of the bainite lath interval. In order to acquire such an effect, it is preferable to contain 0.0002% or more. On the other hand, if it exceeds 0.0030% and contains excessively, workability will be reduced. Therefore, when contained, B is preferably limited to a range of 0.0002 to 0.0030%. More preferably, it is 0.0003 to 0.0020%.
  • One or more selected from Cu: 0.005-0.3%, Ni: 0.005-0.3%, Sn: 0.005-0.3% Cu, Ni, and Sn all increase in strength through solid solution strengthening It is an element that contributes, and it can be selected as necessary and can contain one or more. In order to acquire such an effect, it is desirable to contain Cu: 0.005% or more, Ni: 0.005% or more, Sn: 0.005% or more. On the other hand, if it contains more than Cu: 0.3%, Ni: 0.3% and Sn: 0.3%, hot workability is lowered, and there is a risk of causing surface layer cracking during hot rolling.
  • Cu 0.005 to 0.3%
  • Ni 0.005 to 0.3%
  • Sn 0.005 to 0.3%
  • Cu is 0.005 to 0.2%
  • Ni is 0.005 to 0.2%
  • Sn is 0.005 to 0.2%
  • Mo and Cr are easy to form carbides (precipitates), and mass production punching through the formation of precipitates Mo and Cr are both elements that contribute to improving hardenability and elements that contribute to refinement of bainite lath through lowering of bainite transformation point.
  • Mo and Cr are both elements that contribute to improving hardenability and elements that contribute to refinement of bainite lath through lowering of bainite transformation point.
  • it can contain one or two.
  • an excessive content exceeding Mo: 0.3% and Cr: 0.3% causes an increase in manufacturing cost, which is economically disadvantageous. Therefore, when it is contained, it is preferable to limit it to the range of Mo: 0.002 to 0.3% and Cr: 0.002 to 0.3%. More preferably, Mo is 0.002 to 0.2% and Cr is 0.002 to 0.2%.
  • Ca 0.0002 to 0.004% and REM: 0.0002 to 0.004%.
  • Both Ca and REM are elements that contribute to improving workability effectively through the form control of inclusions. Yes, it can be selected as necessary and can contain one or two. In order to acquire such an effect, it is desirable to contain Ca: 0.0002% or more and REM: 0.0002% or more. On the other hand, if the content exceeds Ca: 0.004% and REM: 0.004%, the inclusions in the steel increase and the workability decreases. Therefore, when it is contained, it is preferable to limit the range to Ca: 0.0002 to 0.004% and REM: 0.0002 to 0.004%. More preferably, Ca is 0.0002 to 0.003% and REM is 0.0002 to 0.003%.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the high-strength hot-rolled steel sheet according to Embodiment 2 has an Fe-based bainite phase with a volume fraction of more than 92%, an average interval between bainite laths of 0.60 ⁇ m or less, and precipitated in the grains of bainite lath among all Fe-based carbides. It has a structure in which the number ratio of carbides is 10% or more.
  • the steel sheet structure In order to ensure the desired mass production punchability, it is important to first make the steel sheet structure into a substantially bainite single-phase structure with a volume ratio exceeding 92% as described above. Note that it is preferably more than 94%.
  • the balance other than the bainite phase is one or more of a ferrite phase, a martensite phase, a retained austenite phase, and pearlite. Since the martensite phase and the retained austenite phase are harder and more brittle than the main phase bainite and lower the mass production punchability, it is preferable that these phases are combined to be less than 1% by volume. Residual austenite itself is not hard, but strain-induced transformation occurs during punching to become martensite, which has an adverse effect on punchability like martensite.
  • the bainite phase is a mixed structure of ferrite and Fe-based carbides.
  • the bainite phase is a bainite phase having a bainite lath interval of 0.60 ⁇ m or less, which is the substructure.
  • the structure factor that governs mass production punchability is not the size of the bainite phase itself, but its substructure, bainite lath, and making the bainite lath interval fine is important for improving mass production punchability. Based on finding something. If the bainite lath interval exceeds 0.60 ⁇ m, the desired mass production punchability cannot be ensured. For this reason, the bainite lath interval was limited to 0.60 ⁇ m or less. In addition, Preferably it is 0.50 micrometer or less, More preferably, it is 0.45 micrometer or less.
  • the hot-rolled steel sheet of the present invention is a bainite phase single phase, a bainite phase in which carbides (Fe-based carbides) are precipitated in the phase, and, among all the precipitated Fe-based carbides, Fe-based precipitates in the grains of bainite lath.
  • Carbide has a structure whose number ratio is 10% or more. In order to improve mass production punchability, it is important to control the precipitation site of carbide (Fe-based carbide). If the number of Fe-based carbides precipitated in the grains of bainite lath is less than 10% of the total number of Fe-based carbides precipitated, the desired excellent mass production punchability cannot be ensured.
  • the number of Fe-based carbides precipitated in the grains of bainite lath was limited to 10% or more of the total number of Fe-based carbides precipitated. In addition, Preferably it is 15% or more, More preferably, it is 20% or more.
  • a steel slab having the above composition is heated and subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel sheet.
  • the method for producing the steel slab is not particularly limited, and the molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace or an induction furnace, or further by a vacuum degassing apparatus or the like. Secondary refining is performed, and a steel slab having a predetermined size is formed by a conventional casting method such as continuous casting. It should be noted that there is no problem even if the ingot-bundling method is used.
  • the steel slab may be a thin slab having a thickness of about 30 mm. If it is a thin slab, rough rolling can be omitted.
  • electromagnetic-stirring EMS
  • IBSR intentional-bulging-soft-reduction-casting
  • EMS electromagnetic-stirring
  • IBSR intentional-bulging-soft-reduction-casting
  • Can do By applying an electromagnetic stirring treatment, equiaxed crystals can be formed at the center of the plate thickness, and segregation can be reduced.
  • segregation at the central portion of the plate thickness can be reduced by preventing the flow of molten steel in the unsolidified portion of the continuous cast slab.
  • the steel slab having the above composition is heated to a heating temperature of 1100 ° C. or higher and subjected to hot rolling.
  • Heating temperature of steel slab 1100 ° C. or higher
  • the steel slab is heated to a heating temperature of 1100 ° C. or higher. If the heating temperature is less than 1100 ° C., the precipitate is not sufficiently re-dissolved, and the desired precipitate distribution cannot be secured in the subsequent steps. It is preferably 1150 ° C. or higher.
  • the heating temperature exceeds 1300 ° C. and becomes excessively high, the crystal grains become coarse and eventually the bainite lath becomes coarse. For this reason, it is desirable to limit the heating temperature of the steel slab to 1300 ° C. or less.
  • the heated steel slab is subjected to hot rolling consisting of rough rolling and finish rolling to form a hot rolled steel sheet.
  • Rough rolling is not particularly limited as long as a desired sheet bar dimension can be ensured.
  • finish rolling followed by finish rolling.
  • the finish rolling conditions are extremely important for obtaining a desired bainite structure.
  • Total rolling reduction in the final two passes of finish rolling 30% or more
  • austenite ( ⁇ ) in which sufficient strain is accumulated into bainite. Therefore, in the present invention, first, the total rolling reduction of the final two passes of finish rolling is limited to 30% or more. If the total rolling reduction in the final two passes of finish rolling is less than 30%, the accumulation of strain in ⁇ is insufficient, and a desired bainite structure cannot be secured after transformation. For this reason, the total rolling reduction in the final two passes of finish rolling is limited to 30% or more. In addition, Preferably it is 40% or more, More preferably, it is 50% or more.
  • Finishing rolling end temperature (A r3 transformation point) to (A r3 transformation point + 120 ° C)
  • the finishing temperature of finish rolling is less than the Ar3 transformation point, it becomes difficult to secure a desired bainite single-phase structure, which is a desired structure.
  • the finishing temperature of finish rolling exceeds ( Ar 3 transformation point + 120 ° C.) and becomes high, it becomes difficult to obtain a fine bainite phase. For this reason, the finishing temperature of finish rolling is limited to a temperature in the range of (A r3 transformation point) to (A r3 transformation point + 120 ° C.).
  • the “ Ar3 transformation point” referred to here is the transformation temperature obtained from the thermal expansion curve obtained by cooling at a cooling rate of 1 ° C./s after machining by the machining for master test machine. To do.
  • Cooling conditions are also extremely important to obtain the desired tissue.
  • Cooling start within 2 s after finishing rolling
  • Average cooling rate 50 ° C / s or more
  • the average cooling rate from the finish rolling finish temperature to the cooling stop temperature is less than 50 ° C / s
  • pro-eutectoid ferrite precipitates and has a bainite phase of more than 92% by volume.
  • the average cooling rate of cooling after finishing rolling was limited to 50 ° C./s or more.
  • it is 60 degrees C / s or more, More preferably, it is 70 degrees C / s or more.
  • the upper limit of the cooling rate is limited depending on the capacity of the cooling facility, but is preferably limited to about 150 ° C./s from the viewpoint of the steel plate shape.
  • the microstructure characterized in the present invention is obtained by cooling in one stage to the cooling stop temperature described later. This is a necessary requirement.
  • Cooling stop temperature 300 ⁇ 500 °C
  • the coil is wound immediately after the cooling is stopped. For this reason, the cooling stop temperature is taken up as the winding temperature.
  • the cooling stop temperature (winding temperature) is less than 300 ° C. or more than 500 ° C.
  • the cooling stop temperature was limited to a temperature in the range of 300 to 500 ° C.
  • the temperature is preferably 350 to 500 ° C, more preferably 400 to 500 ° C.
  • electromagnetic stirring EMS
  • IBSR light pressure casting
  • EMS electromagnetic stirring
  • IBSR light pressure casting
  • the like can be applied to reduce segregation of steel components during continuous casting.
  • EMS electromagnetic stirring
  • IBSR light pressure casting
  • equiaxed crystals can be formed in the center portion of the plate thickness, and segregation can be reduced.
  • segregation at the central portion of the plate thickness can be reduced by preventing the flow of molten steel in the unsolidified portion of the continuous cast slab.
  • the scale formed on the surface may be removed by pickling according to a conventional method. Further, after the pickling treatment, temper rolling may be performed. Further, after the pickling treatment or temper rolling, the steel sheet may be further annealed at a soaking temperature of 730 ° C. or lower using a conventional hot dip galvanizing line, and further subjected to a plating treatment.
  • the plating process may be a process of passing a hot dip galvanizing bath to form a galvanized layer on the surface. Furthermore, it is good also as an alloying hot-dip galvanized steel plate by performing the alloying process which performs the alloying process of this galvanized layer.
  • the soaking temperature in the annealing process is set to 730 ° C. or less.
  • the lower limit of the soaking temperature of the annealing treatment is not particularly limited, but the soaking temperature of the annealing treatment is preferably 590 ° C. or higher from the viewpoint of adhesion between the hot dip galvanized layer and the base steel plate.
  • hot-dip galvanized steel sheets but also hot-rolled steel sheets obtained can be used as plated steel sheets such as electrogalvanized steel sheets.
  • Example 2 The steel slab having the composition shown in Table 4 was subjected to heating, finish rolling, and cooling after rolling as shown in Table 5 to obtain a hot-rolled steel sheet.
  • Table 4 also shows the Ar3 transformation point of each steel slab obtained from the thermal expansion curve.
  • electromagnetic stirring (EMS) was performed for the segregation reduction treatment of the components other than the hot-rolled steel plate No. 1 ′ of steel A2 in Tables 4 to 6 described later.
  • hot-rolled steel sheets are pickled, passed through a continuous hot dip galvanizing line, annealed under the conditions shown in Table 5, then hot dip galvanized, and hot dip galvanized steel sheets (GI ).
  • the hot-rolled steel sheet after the annealing treatment is immersed in a 480 ° C galvanizing bath (0.1% Al-Zn), and a hot dip galvanized layer with an adhesion amount of 45 g / m 2 per side is applied to the steel sheet. It was set as the process formed in both surfaces.
  • some hot-rolled steel sheets were further subjected to alloying treatment after the hot dip galvanizing treatment to obtain alloyed hot dip galvanized steel plates (GA).
  • the alloying treatment temperature was 520 ° C.
  • Test pieces were sampled from the obtained hot-rolled steel sheets (partially including plated steel sheets) and subjected to structure observation, tensile tests, and mass production punchability tests.
  • the test method was as follows.
  • (1) Microstructure observation A specimen for microstructural observation is collected from the obtained hot-rolled steel sheet (plated steel sheet), and after polishing a plate thickness section (L section) parallel to the rolling direction, it is corroded with 3% nital liquid. Appeared the organization. Then, at the 1/4 thickness position of the L cross section, the structure is observed with a scanning electron microscope (magnification: 3000 times), the structure is photographed with 10 fields of view, and phases other than the bainite phase are separated by image analysis processing. After determining the structural fraction of the phase other than bainite, the area ratio of the bainite phase was calculated. The area ratio thus obtained was defined as the volume ratio of the bainite phase.
  • a thin film sample was taken from the position of 1/4 thickness of the obtained hot-rolled steel sheet (plated steel sheet), made into a thin film specimen by mechanical polishing and electrolytic polishing, and a transmission electron microscope (magnification: about 30000 times) The tissue was observed using, and the tissue was photographed in 10 fields of view. From the obtained structure photograph, the bainite lath interval was measured, the average value thereof was obtained, and the bainite lath interval of each hot-rolled steel sheet was obtained.
  • a specimen for structure observation was collected from the obtained hot-rolled steel sheet (plated steel sheet), and after polishing a plate thickness section (L section) parallel to the rolling direction, the structure was corroded with 3% nital solution.
  • a replica sample was prepared at a 1/4 thickness position.
  • the tissue was observed with a transmission electron microscope (magnification: about 30000 times), and the tissue was photographed in 10 fields of view.
  • the number of Fe-based carbides was measured at each precipitation location (grain boundary, within the grain), and the number of Fe-based precipitates deposited on the bainite lath relative to the number of all Fe-based precipitates. The ratio was calculated.
  • the discrimination of the Fe-based carbide (precipitate) was performed by the form of the precipitate and EDX analysis.
  • Mass production stamping with cracks, chips, brittle fracture surfaces, secondary shear surfaces, and those with no rough cross-section as ⁇ (passed), those with only rough cross-section as ⁇ (passed), and others with x (failed) Sex was evaluated.
  • Each of the inventive examples is a hot-rolled steel sheet (plated steel sheet) having a high tensile strength TS: 700 MPa or more and excellent mass production punchability.
  • TS tensile strength
  • the mass production punchability is lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 量産打抜き性に優れた引張強さTS:900MPa以上の高強度熱延鋼板およびその製造方法を提供する。質量%で、C:0.07%超0.2%以下、Si:2.0%以下、Mn:1.0~3.0%、Al:0.1%以下、Ti:0.05~0.3%、V:0.05~0.3%を含有する組成を有する鋼スラブを、1100℃以上に加熱し、粗圧延と、最終2パスの合計圧下率が30%以上、圧延終了温度が(Ar3変態点)~(Ar3変態点+120℃)の範囲とする仕上圧延とを施し、仕上圧延終了後、2s以内に冷却を開始し、平均冷却速度40℃/s以上で300~500℃の巻取り温度で巻き取る。これにより、ベイナイト相が体積率で90%超で、かつベイナイトラスの平均間隔が0.45μm以下で、かつ全Fe系炭化物のうちベイナイトラスに析出したFe系炭化物の比率が10%以上である組織を有し、引張強さ:900MPa以上の高強度で、量産打抜き性が顕著に向上した高強度熱延鋼板となる。

Description

高強度熱延鋼板およびその製造方法
 本発明は、例えば車体のメンバー(member of automobile body)やフレーム(frame)などの構造部材やサスペンション(suspension)などの足回り部材(underbody parts)、さらにはトラックフレーム(truck frame)部品等の自動車部材用として好適な、高強度熱延鋼板に係り、とくに量産時の打抜き性(punchability)(以下、量産打抜き性(punchability in mass production)ともいう)の向上に関する。
 近年、地球環境の保全という観点から、自動車の燃費向上(improvement of fuel efficiency)が強く要望され、自動車車体の軽量化を図るために、自動車部材用として高強度鋼板の利用が積極的に行われている。この高強度鋼板の利用は、自動車の骨格部材だけでなく、足回り部材やトラックフレーム部品等に対しても行われている。一般に、鋼板の高強度化に伴い、鋼板の加工性(workability)は低下する。特に、自動車部品等は、厳しい加工により成形されるため、自動車部材用素材である鋼板には、高強度と優れた加工性とを両立させることが強く要望されている。
 このような要望に対して、例えば、特許文献1には、質量%で、C:0.05~0.15%、Si:1.50%以下、Mn:0.5~2.5%、P:0.035%以下、S:0.01%以下、さらにAl:0.020~0.15%、Ti:0.05~0.2%を含む組成と、60~95体積%のベイナイト(bainite)と、さらに固溶強化(solute strengthening)あるいは析出強化(precipitation strengthening)されたフェライト(ferrite)またはフェライトとマルテンサイト(martensite)を含む組織とを有し、シャルピー衝撃試験(Charpy impact test)の破面遷移温度(fracture transition temperature)が0℃以下となる穴拡げ加工性(hole expansion formability)に優れた高強度熱延鋼板が記載されている。特許文献1に記載された技術では、熱間圧延後、400~550℃の温度域まで平均冷却速度30℃/s以上で冷却しコイル(coil)に巻き取った後、300℃以下まで50~400℃/hの冷却速度で冷却することにより、粒界へのPの拡散を防止でき、破面遷移温度が0℃以下となり靭性が向上し、穴拡げ加工性が向上するとしている。
 一方、自動車部材の中で、とりわけ、トラックフレーム部品や足回り部品は、部品接続や軽量化のため、さらにはその後のバーリング加工(burring process)や穴拡げ加工(bore expanding process)のために、多数の穴あけが必要となる。通常、この種の穴あけは、生産性の観点から打抜きで実施されるため、打抜き性の改善が強く要望されることが多い。
 しかし、特許文献1に記載された技術では、Pの粒界偏析(intergranular segregation)を防止して、穴拡げ加工性を向上させるとしているだけであり、特許文献1には、打抜き加工性についての言及はなく、また、Pの粒界への偏析防止が、直ちに打抜き端面の性状を改善し、打抜き加工性の向上に寄与するとは必ずしも言えない。
 また、打抜き加工性の向上については、例えば、特許文献2に、質量%で、C:0.01~0.07%、N:0.005%以下、S:0.005%以下、Ti:0.03~0.2%、B:0.0002~0.002%を含む組成と、フェライト又はベイニティックフェライト(bainitic ferrite)を主相とし、硬質第二相及びセメンタイト(cementite)が面積率で3%以下である組織とを有し、打抜き加工性に優れた高強度熱延鋼板が提案されている。特許文献2に記載された技術では、Bを固溶状態に保持することにより、打抜き端面(punched surface)の欠陥が防止できるとしている。なお、特許文献2に記載された技術では、フェライト又はベイニティックフェライトを最大面積の相とし、穴拡げ性に悪影響を及ぼす硬質第二相を3%以下と制限している。
 また、特許文献3には、質量%で、C:0.05~0.15%、Si:0.1~1.5%、Mn:1~2%、P:0.03%以下、S:0.003%以下、Al:0.01~0.08%, Ti:0.05~0.15%、N:0.005%以下を含む組成を有し、ベイナイト相が面積率で95%超で、板厚の1/4位置におけるベイナイト組織の平均粒径が圧延方向(rolling direction)に平行な板厚断面で5μm以下、圧延方向に直角方向の板厚断面で4μm以下で、板厚中央位置を中心に板厚の1/10である領域におけるアスペクト比(aspect ratio)が5以上の圧延方向に伸展した結晶粒が7個以下である組織を有し、引張強さ780MPa以上を有する打抜き性に優れた高強度熱延鋼板が提案されている。特許文献3に記載された技術では、ベイナイトの平均粒径を小さくし、かつ板厚中央部領域の伸展粒(spreading grain)の数を低減することで、打抜き性が向上するとしている。
日本特許第3889766号公報(特開2006-274318号公報) 日本特開2004-315857号公報 日本特開2012-62562号公報
 鋼板の打抜き性そのものを評価するための規定はとくになく、従来から、鋼板の打抜き性は、日本鉄鋼連盟規格(The Japan Iron and Steel Federation Standards)(JFS T1001)に規定された穴拡げ試験方法(hole-enlarging test method)で行っている、穴拡げ試験前の穴あけと同様の手法、条件で評価してきた。すなわち、実験室で、例えば鋼板から、100mm×100mm程度のブランク板(blank sheet)を採取し、該ブランク板に対し板厚の12%±1%(板厚2mm以上)のクリアランス(clearance)条件を厳守し、損耗のない円筒ポンチ(cylindrical punch)(10mmφ)を用いて、ブランク板を均等に十分に押さえた状態で、10mmφの穴を打抜き、打抜かれた穴端面の破面状況を観察して、当該鋼板の打抜き性を評価することが多い。
 しかしながら、このような方法で優れた打抜き性を有すると評価された鋼板でも、特に高強度鋼板では部品の量産時の打抜き加工(stamping)による穴あけ不良が発生することも多く、問題となっていた。
 また、特許文献2および3に記載された技術では、JFS T1001に規定された打抜き時のクリアランスとは異なる、板厚の17~23%、あるいは板厚の10~20%のクリアランスで、10mmφの穴を打抜き、鋼板の打抜き性を評価している。しかし、特許文献2および3に記載された技術で打抜き性に優れた鋼板として製造された高強度鋼板でも、量産時の打抜き加工による穴あけ不良が発生することも多く、量産時の打抜き性に優れる鋼板であるとは言い難いという問題があり、更なる材質の改善が必要であった。
 そこで、本発明は、かかる従来技術の問題を解決し、高強度を有し、かつ格段に部品の量産製造時の打抜き性に優れた高強度熱延鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記した目的を達成するために、高強度熱延鋼板の量産打抜き性に及ぼす各種要因について、検討した。
 その結果、従来の規格に準拠した方法で評価した打抜き性と、実際の部品の量産製造時の打抜き性には大きな乖離があることを初めて知見した。実際に部品を量産製造する際にも、金型交換(die change)のタイミング(timing)で打抜きクリアランス(punching clearance)を調整している。しかし、打抜きクリアランスを適正条件の範囲内に完全に調整し管理することは非常に難しく、打抜き穴の円周方向の位置によりクリアランス変動(clearance change)が生じることが普通となっている。さらに、量産製造中には、ポンチの欠けおよび損耗などが起こり、それを完全に保守し管理することはほぼ不可能に近く、打抜き条件の変動に繋がる。さらに、実際の部品の量産製造時には、上記した打抜き時のクリアランスの変動に加えて、部品形状(part shape)や製造プロセス(manufacturing process)によっては、量産製造工程の途中で、打抜き加工による穴あけを必要とする場合がある。このような場合には、打抜き方向が、垂直方向でなく斜め方向となったり、穴のセンターリング(centering)が難しくなることに加え、板押さえ条件(sheet clamping conditions)が不良になりやすい場合があることに思い至った。すなわち、量産製造時の打抜き加工では、実験室での打抜き加工と異なり、極めて厳しい条件下での打抜きとなるのに加え、上述した様々なプロセス変動(process variability)を受けることになり、したがって、上記したような規格に準拠した実験室で行う打抜き性評価で、優れた打抜き性を有すると評価された鋼板でも、部品の量産製造時の打抜き加工による穴あけが不良である場合が多々発生することになることを知見した。
 このような量産製造時の打抜き加工状況に鑑み、量産打抜き性の評価方法について、本発明者らは、更なる検討を行った。その結果、量産製造時の打抜き加工においては、上記した打抜き時のクリアランスの変動に加えて、さらに、打抜き穴径(punched hole diameter)や板押さえ条件が、打抜き端面性状(appearances of punched surface)に著しい影響を及ぼすことを初めて見出した。そして更なる検討の結果、打抜きポンチ(punch)を50mmφの平底型(flat-bottomed type)として、打抜きクリアランスが30%となるように、ダイ(die)側の穴径を決定し、さらに打抜きダイの上にスペーサー(spacer)を置き、その上にブランク板を置いて上から板押さえで固定して打抜く方法が、量産打抜き性を評価できる最もよい方法であることを見出した。
 本発明者らは、上記した評価方法を用いて、量産打抜き性に及ぼす鋼板組織の影響について鋭意検討した。その結果、ベイナイト相の大きさ(サイズ)を微細化するベイナイト相のサイズ制御(size-controlling)のみでは、所望の量産打抜き性を達成するには十分でなく、別種の更なる組織制御(microstructure controlling)を行う(組織制御の精緻化、進化(elaboration or evolution of microstructure controlling))必要があることを知見し、さらなる検討により、量産打抜き性を支配している組織単位は、マクロなベイナイト組織のみならず、その下部組織(lower microstructure)であるベイナイトラスの間隔(lath interval of bainite)、および炭化物の析出挙動(precipitation behavior of carbide)であることを突きとめた。
 そこで、本発明者らは更なる検討を行い、スラブ加熱温度の調整に加えてさらに、仕上圧延の圧下率と仕上圧延終了温度、および仕上圧延終了後の冷却タイミングと冷却速度制御等を適正範囲に調整して、鋼板組織をベイナイト相を主体としたうえで、下部組織であるベイナイトラス間隔(lath interval)を小さくし、かつ鉄系炭化物(iron based carbide)をベイナイトラスの粒内に析出させるように調整することが、高強度熱延鋼板の量産打抜き性の顕著な向上に有効であることを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎの通りである。
 (1)質量%で、C:0.07%超0.2%以下、Si:2.0%以下、Mn:1.0~3.0%、P:0.05%以下、S:0.005%以下、Al:0.1%以下、N:0.01%以下、Ti:0.05~0.3%、V:0.05~0.3%を含有し、残部Feおよび不可避的不純物からなる組成と、ベイナイト相が体積率で90%超で、かつベイナイトラスの平均間隔が0.45μm以下であり、かつ全Fe系炭化物のうちベイナイトラスの粒内に析出したFe系炭化物の個数比率が10%以上である組織を有することを特徴とする、量産打抜き性に優れた高強度熱延鋼板。
 (2)(1)において、前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
 (3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板。
 (4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
 (5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
 (6)(1)ないし(5)のいずれかに記載の高強度熱延鋼板の表面に溶融亜鉛めっき層(hot-dip galvanizing layer)または合金化溶融亜鉛めっき層(alloyed hot dip galvanizing layer)を形成してなる溶融亜鉛めっき鋼板。
 (7)鋼スラブを、加熱し粗圧延と仕上圧延とからなる熱間圧延を施して熱延鋼板とするに当たり、前記鋼スラブを、質量%で、C:0.07%超0.2%以下、Si:2.0%以下、Mn:1.0~3.0%、P:0.05%以下、S:0.005%以下、Al:0.1%以下、N:0.01%以下、Ti:0.05~0.3%、V:0.05~0.3%を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼スラブとし、前記熱間圧延を、前記鋼スラブを1100℃以上に加熱し、前記仕上圧延の最終2パスの合計圧下率を30%以上、該仕上圧延の圧延終了温度を(Ar3変態点)~(Ar3変態点+120℃)の温度範囲とし、前記仕上圧延終了後、2s以内に冷却を開始し、平均冷却速度40℃/s以上で巻取り温度まで冷却した後、巻取り温度:300~500℃で巻き取る圧延とすることを特徴とする量産打抜き性に優れた高強度熱延鋼板の製造方法。
 (8)(7)において、前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
 (9)(7)または(8)において、前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板の製造方法。
 (10)(7)ないし(9)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
 (11)(8)ないし(10)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
 (12)(7)ないし(11)のいずれかに記載の高強度熱延鋼板の製造方法により製造された高強度熱延鋼板を酸洗したのち、焼鈍とめっき処理を施してめっき鋼板とするに当たり、前記焼鈍を均熱温度:730℃以下とする焼鈍とし、該焼鈍終了後に、前記めっき処理として溶融亜鉛めっき浴を通過させて、前記高強度熱延鋼板の表面に溶融亜鉛めっき層を形成し、あるいはさらに該溶融亜鉛めっき層を合金化する合金化処理を施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。
 (13)質量%で、C:0.05~0.15%、Si:1.5%以下、Mn:1.0~2.0%、P:0.05%以下、S:0.005%以下、Al:0.1%以下、N:0.01%以下、Ti:0.05~0.2%を含有し、残部Feおよび不可避的不純物からなる組成を有し、ベイナイト相が体積率で92%超、ベイナイトラスの平均間隔が0.6μm以下、かつ全Fe系炭化物のうちベイナイトラスの粒内に析出したFe系炭化物の個数比率が10%以上である組織を有することを特徴とする、量産打抜き性に優れた高強度熱延鋼板。
 (14)(13)において、前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
 (15)(13)または(14)において、前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板。
 (16)(13)ないし(15)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
 (17)(13)ないし(16)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
 (18)(13)ないし(17)のいずれかに記載の高強度熱延鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を形成してなる溶融亜鉛めっき鋼板。
 (19)鋼スラブを、加熱し粗圧延と仕上圧延とからなる熱間圧延を施し、熱延鋼板とするに当たり、前記鋼スラブが、質量%で、C:0.05~0.15%、Si:1.5%以下、Mn:1.0~2.0%、P:0.05%以下、S:0.005%以下、Al:0.1%以下、N:0.01%以下、Ti:0.05~0.2%を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼スラブとし、前記熱間圧延が、前記鋼スラブを1100℃以上に加熱し、前記仕上圧延の最終2パスの合計圧下率を30%以上とし、該仕上圧延の圧延終了温度を(Ar3変態点)~(Ar3変態点+120℃)の温度範囲とし、前記仕上圧延終了後、2s以内に冷却を開始し、平均冷却速度50℃/s以上で巻取り温度まで冷却した後、巻取り温度:300~500℃で巻き取る圧延であることを特徴とする量産打抜き性に優れた高強度熱延鋼板の製造方法。
 (20)(19)において、前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
 (21)(19)または(20)において、前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、 Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板の製造方法。
 (22)(19)ないし(21)のいずれかにおいて、前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
 (23)(19)ないし(22)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
 (24)(19)ないし(23)のいずれかに記載の高強度熱延鋼板の製造方法で製造された高強度熱延鋼板を酸洗したのち、焼鈍とめっき処理を施して、表面にめっき層を有するめっき鋼板とするに当たり、前記焼鈍を均熱温度:730℃以下とする焼鈍とし、該焼鈍終了後、前記めっき処理として溶融亜鉛めっき浴を通過させて、前記熱延鋼板表面に溶融亜鉛めっき層を形成し、あるいはさらに該溶融亜鉛めっき層を合金化する合金化処理を施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。
 (1)~(12)は、後述する実施の形態1に対応し、(13)~(24)は、実施の形態2に対応している。
 本発明によれば、自動車部品等の素材として、部品の量産製造時の厳しい打抜き加工にも耐えうる、優れた量産打抜き性を有する高強度熱延鋼板を容易に製造でき、産業上格段の効果を奏する。また、本発明になる高強度熱延鋼板は、トラックフレーム部品や自動車における車体のメンバーやフレームなどの構造部材やサスペンションなどの足まわり部材用として好適であり、部材等の軽量化に有効に寄与するという効果もある。
[実施の形態1]
 実施の形態1の高強度熱延鋼板の組成限定理由について説明する。なお、「%」はとくに断わらないかぎり「質量%」を意味する。実施の形態でいう「高強度」とは、引張強さTS:900MPa以上である場合をいうものとする。
  C:0.07%超0.2%以下
 Cは、鋼板の高強度化に有効に寄与する元素であり、また、ベイナイト変態を促進し、ベイナイト相形成に寄与する有用な元素である。また、適正量のC含有は、ベイナイトラスの粒内の炭化物を増加させ、量産打抜き性を向上させる作用を有する。このような効果を発現させるためには0.07%超の含有を必要とする。一方、0.2%を超える過剰な含有は、加工性、溶接性を損なう。このようなことから、Cは0.07%超0.2%以下の範囲に限定した。なお、好ましくは0.079%以上、さらに好ましくは、0.10%以上である。
また、0.19%以下が好ましい。
 Si:2.0%以下
 Siは、固溶強化(solute strengthening)により鋼板強度を増加させるとともに、鋼板の延性向上にも寄与する元素である。このような効果を発現させるためには、0.05%以上含有することが望ましい。一方、過剰なSi含有は変態点を上昇させ、ベイナイト相形成を阻害する。また、2.0%を超えてSiを含有すると、鋼スラブの加熱段階で、表層の結晶粒界へのSi系複合酸化物(Si type complex oxide)の侵入が顕著となり、熱間圧延時にデスケーリング(descaling)を多用しても除去することが困難となり、鋼板の量産打抜き加工時に打抜き端面性状を低下させ、量産打抜き性が低下する。このため、Siは2.0%以下に限定した。なお、好ましくは1.5%以下である。さらに好ましくは1.0%以下である。
 Mn:1.0~3.0%
 Mnは、固溶強化および変態強化(transformation strengthening)により、鋼板の高強度化に寄与する有効な元素である。さらに、Mnは、変態点を低下させて、ベイナイトラスを微細化する作用を有する。このような効果を得るためには1.0%以上の含有を必要とする。一方、3.0%を超えて過剰に含有すると、中心偏析(center segregation)が顕著になり、加工性が著しく低下する。このため、Mnは1.0~3.0%の範囲に限定した。なお、好ましくは1.4~2.6%である。
 P:0.05%以下
 Pは、固溶して鋼板の強度を増加させる作用を有する元素であるが、多量に含有すると粒界等に偏析しやすく、加工性等の低下を招く悪影響が懸念され、できるだけ低減することが望ましいが、0.05%までの含有は許容できる。なお、好ましくは、0.03%以下である。
 S:0.005%以下
 Sは、硫化物を形成し、とくに粗大な硫化物を形成すると、鋼板の延性および加工性が低下するため、できるだけ低減することが望ましいが、0.005%までは許容できる。このため、Sは0.005%以下に限定した。なお、好ましくは0.003%以下、より好ましくは0.0015%以下である。
 Al:0.1%以下
 Alは、鋼の脱酸剤(deoxidizing agent)として作用する重要な元素である。このような効果を発現させるためには、0.01%以上含有することが望ましい。一方、0.1%を超えて含有すると、鋳造性が低下したり、鋼中に多量の介在物(酸化物)が残存して、表面性状(surface quality)や加工性の低下を招く。このため、Alは0.1%以下に限定した。なお、好ましくは0.06%以下である。
 N:0.01%以下
 Nは、窒化物形成元素(nitride-forming element)と結合し窒化物として析出して、結晶粒の微細化に寄与する。しかし、0.01%を超えてN含有量が多くなると、多量の窒化物を生成し、熱間延性(hot ductility)の低下や、バーリング加工性(burring formability)の著しい低下の原因となるため、Nはできるだけ低減することが望ましいが0.01%までは許容できる。このため、Nは0.01%以下に限定した。なお、好ましくは0.006%以下、より好ましくは0.004%以下である。
 Ti:0.05~0.3%
 Tiは、炭窒化物を形成しやすく、変態前のオーステナイト(γ)粒を微細化することにより、変態後のベイナイトラス間隔の微細化に寄与する、本発明で最も重要な元素の一つである。さらに、Tiは、微細なベイナイトラスの粒内の炭化物(炭窒化物)を増加させ、析出強化を介して強度増加に寄与するとともに、打抜き加工に際しボイド(void)生成サイト(site)を増加させて、量産打抜き性向上に寄与する。このような効果を得るためには、0.05%以上の含有を必要とする。一方、0.3%を超えて過剰に含有すると、圧延荷重(rolling force)が非常に大きくなり圧延操業(rolling operation)を難しくしたり、また析出物のサイズを粗大にしすぎて加工性を低下させる。このため、Tiは0.05~0.3%の範囲に限定した。なお。好ましくは0.07~0.25%、より好ましくは0.07~0.23%である。
 V:0.05~0.3%
 Vは、強度-伸びバランス、強度-穴拡げ性バランスを向上させる作用を有し、本発明で最も重要な元素の一つである。また、Vは、ベイナイトラス間隔を小さくする作用も有し、これにより、打抜き時のマイクロボイド(micro void)の発生間隔(occurrence interval)が小さくなり、ボイド間の連結(linking)が起こりやすく、量産打抜き性を向上させる。また、Vは、粗大なFe系炭化物の析出を抑制する作用も有し、これにより、打抜き時の端面性状(edge face properties)を向上させる。このような効果を得るためには、0.05%以上の含有を必要とする。一方、0.3%を超えて過剰に含有しても、効果が飽和し、製造コストの高騰を招き、経済的に不利となる。このため、Vは0.05~0.3%の範囲に限定した。なお、好ましくは0.07%以上、さらに好ましくは、0.22%以上である。また、0.28%以下、より好ましくは0.26%以下である。
 上記した成分が基本の成分であるが、本発明では、この基本の組成に加えてさらに、選択元素として、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種、および/または、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上、および/または、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種、および/または、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種、を必要に応じて選択して含有できる。
 Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種
 Nb、Bはいずれも、量産打抜き性の向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。
 Nbは、析出物(炭窒化物)の形成を介して、組織の微細化、さらに炭化物の微細分散化により、打抜き時のマイクロボイドの発生間隔を小さくし量産打抜き性の向上に寄与する。このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.2%を超えて過剰に含有すると、析出物の粗大化を招き加工性を低下させるとともに、製造コストの高騰を招く。このため、含有する場合には、Nbは0.005~0.2%の範囲に限定することが好ましい。なお、より好ましくは0.005~0.15%である。
 Bは、ベイナイトラス間隔の微細化を介して、量産打抜き性の向上に寄与する。このような効果を得るためには、0.0002%以上含有することが好ましい。一方、0.0030%を超えて過剰に含有すると、加工性の低下を招く。このため、含有する場合には、Bは0.0002~0.0030%の範囲に限定することが好ましい。より好ましくは0.0003~0.0020%である。
 Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上
 Cu、Ni、Snはいずれも、固溶強化を介して、強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、Cu:0.005%以上、Ni:0.005%以上、Sn:0.005%以上、含有することが望ましい。一方、Cu:0.3%、Ni:0.3%、Sn:0.3%をそれぞれ超えて含有すると、熱間加工性が低下し、熱間圧延中に表層割れを起こす恐れがある。このため、含有する場合には、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%の範囲に限定することが好ましい。なお、より好ましくはCu:0.005~0.2%、Ni:0.005~0.2%、Sn:0.005~0.2%である。
 Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種
 Mo、Crはいずれも、炭化物(析出物)を形成しやすく、析出物の形成を介して量産打抜き性の向上に寄与する元素であり、また、Mo、Crはいずれも、焼入れ性(hardenability)の向上に寄与する元素であり、ベイナイト変態点(bainite transformation point)の低下を介してベイナイトラスの微細化に寄与する元素でもあり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Mo:0.002%以上、Cr:0.002%以上、含有することが望ましい。一方、Mo:0.3%、Cr:0.3%を超える過剰の含有は、製造コストの高騰を招き、経済的に不利となる。このため、含有する場合には、Mo:0.002~0.3%、Cr:0.002~0.3%の範囲に限定することが好ましい。なお、より好ましくはMo:0.002~0.2%、Cr:0.002~0.2%である。
 Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種
 Ca、REMは、いずれも、介在物の形態制御(morphology control)を介して加工性の向上に有効に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Ca:0.0002%以上、REM:0.0002%以上含有することが望ましい。一方、Ca:0.004%、REM:0.004%を超えて含有すると、鋼中介在物の増加を招き、加工性が低下する。このため、含有する場合には、Ca:0.0002~0.004%、REM:0.0002~0.004%の範囲に限定することが好ましい。なお、より好ましくはCa:0.0002~0.003%、REM:0.0002~0.003%である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明高強度熱延鋼板の組織限定理由について説明する。
 本発明高強度熱延鋼板は、ベイナイト相が体積率で90%超で、かつベイナイトラスの平均間隔が0.45μm以下であり、かつ全Fe系炭化物のうちベイナイトラスの粒内に析出したFe系炭化物の比率が10%以上である組織を有する。
 所望の量産打抜き性の確保のためには、まず鋼板組織を、上記したように体積率で90%超の、ほぼベイナイト単相の組織にすることが肝要である。なお、好ましくは92%超、より好ましくは94%超である。
 ベイナイト相は、フェライトとFe系炭化物の混合組織であり、ほぼベイナイト単相の組織とすることにより、打抜き時に、フェライトとFe系炭化物の界面がミクロボイド生成の起点となり、適正なミクロボイド生成と、その後のボイド連結の両面において有利になる。
 そして、本発明では、ベイナイト相を、その下部組織であるベイナイトラス間隔が0.45μm以下であるベイナイト相とする。これは、所望の量産打抜き性を確保するためには、ベイナイト相の大きさ(サイズ)を微細にし、その下部組織(ベイナイトラス間隔)を微細にすることが重要となることを見出したことに基づく。ベイナイトラス間隔が0.45μmを超えて大きくなると、所望の量産打抜き性を確保できなくなる。このため、ベイナイトラス間隔を0.45μm以下に限定した。なお、好ましくは0.40μm以下、さらに好ましくは0.35μm以下である。なお、ベイナイト相以外の第二相(残部)は、マルテンサイト、残留オーステナイト、フェライト、パーライトのうちの1種以上である。
 さらに本発明では、所望の量産打抜き性を確保するために、ベイナイト相を相中に炭化物が生成したベイナイト相とし、さらに析出した全Fe系炭化物のうち、フェライト粒内に析出したFe系炭化物が個数比率で、10%以上である組織とする。フェライト粒内に析出したFe系炭化物の個数が析出した全Fe系炭化物の個数の10%未満では、所望の量産打抜き性を確保できない。このため、粒内に析出したFe系炭化物の個数は、全Fe系炭化物個数のうちの10%以上に限定した。なお、好ましくは15%以上、より好ましくは20%以上である。
 つぎに、本発明高強度熱延鋼板の好ましい製造方法について説明する。
 本発明では、上記した組成を有する鋼スラブを、加熱し粗圧延と仕上圧延とからなる熱間圧延を施し、熱延鋼板とする。
 鋼スラブの製造方法は、とくに限定する必要はなく、上記した組成を有する溶鋼を、転炉や電気炉や誘導炉等の常用の溶製方法で溶製し、あるいはさらに真空脱ガス装置等で二次精錬を行い、連続鋳造等の常用の鋳造方法で所定寸法の鋼スラブとする。なお、造塊-分塊圧延法を用いてもなんら問題はない。また、鋼スラブは厚さ30mm程度の薄スラブとしてもよい。薄スラブであれば、粗圧延を省略することができる。
 なお、本発明においては、連続鋳造時の鋼の成分偏析低減のために、電磁撹拌(electro-magnetic stirrer)(EMS)、軽圧下鋳造(intentional bulging soft reduction casting)(IBSR)等を適用することができる。電磁撹拌処理を施すことにより、板厚中心部に等軸晶(equiaxed crystal)を形成させ、偏析を低減させることができる。また、軽圧下鋳造を施した場合は、連続鋳造スラブの未凝固部の溶鋼の流動を防止することにより、板厚中心部の偏析を低減させることができる。これらの偏析低減処理の少なくても1つの適用により、本発明で特徴とする打抜き性をより良好なレベルとすることができ、更には、後述する引張り性質における伸びをより優れたレベルにすることができる。
 鋼スラブは、加熱温度:1100℃以上に加熱され、熱間圧延を施される。
 鋼スラブの加熱温度:1100℃以上
 本発明では、スラブ段階で析出している析出物を再固溶される必要がある。そのために、鋼スラブを1100℃以上の加熱温度に加熱する。加熱温度が1100℃未満では、析出物の再固溶が十分でなく、その後の工程で所望の析出物分布を確保できなくなる。なお、好ましくは1150℃以上である。また、加熱温度が過剰に高くなると、結晶粒が粗大化し、最終的にベイナイトラスが粗大化する。このため、鋼スラブの加熱温度は1300℃以下に限定することが望ましい。
 加熱された鋼スラブは、粗圧延と仕上圧延からなる熱間圧延を施され、熱延鋼板とされる。粗圧延は、所望のシートバー寸法(sheet bar size)が確保できればよく、その条件はとくに限定する必要はない。
 粗圧延に引続き、仕上圧延を施す。仕上圧延の条件は、所望のベイナイトラス組織を得るためには極めて重要である。
 仕上圧延の最終2パスの合計圧下率:30%以上
 所望のベイナイトラス組織を得るには、十分に歪が蓄積されたオーステナイト(γ)をベイナイト変態させることが必要である。そのために、本発明では、まず、仕上圧延の最終2パスの合計圧下率を限定する。仕上圧延の最終2パスの合計圧下率が30%未満では、γへの歪蓄積が不十分で、変態後に所望のベイナイトラス組織を確保できなくなる。このため、仕上圧延の最終2パスの合計圧下率を30%以上に限定した。なお、好ましくは40%以上、さらに好ましくは50%以上である。
 仕上圧延の圧延終了温度:(Ar3変態点)~(Ar3変態点+120℃)
 十分に歪が蓄積されたオーステナイト(γ)からベイナイト変態させるために、仕上圧延の圧延終了温度の調整も重要となる。仕上圧延の圧延終了温度がAr3変態点未満では、所望の組織である、ほぼベイナイト単相の組織を確保することが難しくなる。一方、仕上圧延の圧延終了温度が(Ar3変態点+120℃)を超えて高温となると、微細なベイナイト相を得ることが難しくなる。このため、仕上圧延の圧延終了温度は(Ar3変態点)~(Ar3変態点+120℃)の範囲の温度に限定した。なお、好ましくは(Ar3変態点)~(Ar3変態点+80℃)である。ここで、仕上圧延の圧延終了温度は表面温度で表すものとする。また、ここでいう「Ar3変態点」は、加工フォーマスタ試験機(Thermecmastor-Z)で、加工付与後に冷却速度1℃/sで冷却して得られた熱膨張曲線(thermal expansion curve)から、その変化点(changing point)により求めた変態温度とする。
 仕上圧延終了後、冷却を施す。冷却の条件も、所望の組織を得るために極めて重要である。
 冷却開始:仕上圧延終了後、2s以内
 十分に歪が蓄積されたγ(austenite)からベイナイト変態させて、所望のベイナイトラス組織を得るためには、冷却開始時間を、仕上圧延終了後、2s以内に冷却を開始する必要がある。冷却開始が、仕上圧延終了後、2sを超えると、γの回復および、再結晶が進行し、ベイナイト変態の核が減少し、所望のベイナイトラス組織を得ることができなくなる。このようなことから、冷却は、仕上圧延終了後、2s以内に開始することにした。なお、好ましくは1.5s以内、より好ましくは1s以内である。
 平均冷却速度:40℃/s以上
 仕上圧延終了温度から冷却停止温度までの平均冷却速度が40℃/s未満では、初析フェライト(pro-eutectoid ferrite)が析出して、体積率で90%超のベイナイト相を有し、かつ所望のベイナイトラス間隔を有する組織を確保することが困難となる。このため、仕上圧延終了後の冷却の平均冷却速度は40℃/s以上に限定した。なお、好ましくは50℃/s以上、より好ましくは60℃/s以上である。冷却速度の上限は、冷却設備(cooling facilities)の能力に依存して決定されるが、鋼板形状の観点から150℃/s以下程度にすることが好ましい。本発明においては、仕上げ圧延後の冷却は前記した冷却速度に制御することを前提として、かつ後述する、冷却停止温度まで1段で冷却することが、本発明で特徴とするミクロ組織を得るために必要な要件である。
 冷却停止温度:300~500℃
 本発明では冷却停止後、直ちに巻き取る。このため、冷却停止温度を巻取り温度として巻き取る。冷却停止温度(巻取り温度)が、300℃未満、あるいは500℃超となると、ベイナイトラス間隔とFe系炭化物の分布状態をともに所望の最適範囲に調整することができなくなる。このようなことから、冷却停止温度(巻取り温度)を300~500℃の範囲の温度に限定した。なお、好ましくは350~500℃である。
 巻取り後に、常法にしたがい、酸洗(pickling)を施して表面に形成されたスケール(scale)を除去してもよい。また、酸洗処理後に、熱延鋼板に調質圧延(temper rolling)を施してもよい。また、酸洗処理後、あるいは調質圧延後に、さらに、均熱温度:730℃以下で焼鈍処理を施し、溶融亜鉛めっき浴(hot dip galvanizing bath)を通過させて、表面に亜鉛めっき層を形成し、溶融亜鉛めっき鋼板としてもよい。焼鈍処理の均熱温度が730℃を超えると、ベイナイトが焼き戻されるため、体積率で90%超のベイナイト相を有し、かつ所望のベイナイトラス間隔を有する組織を確保することが困難となる。したがって、焼鈍処理の均熱温度は730℃以下とする。なお、焼鈍温度の下限はとくに限定しないが、溶融亜鉛めっき層と下地鋼板との密着性の観点からは、焼鈍処理の均熱温度は600℃以上が好ましい。また、溶融亜鉛めっき槽に浸漬した後、さらに、該亜鉛めっき層の合金化処理を施し、合金化溶融亜鉛めっき鋼板としてもよい。
 また、溶融亜鉛めっき鋼板のみならず、得られた熱延鋼板を用いて、電気亜鉛めっき鋼板等のめっき鋼板とすることもできる。
 以下、実施例に基づき、さらに本発明高強度熱延鋼板について説明する。
[実施例1]
 表1に示す組成を有する鋼スラブに、表2に示す、加熱、仕上圧延、圧延後冷却を施し、熱延鋼板とした。連続鋳造の際には、後述する表1~3中の鋼A1の熱延鋼板No.1’以外のものについては、成分の偏析低減処理のため、電磁撹拌(EMS)を行った。なお、熱膨張曲線から求めた、各鋼スラブのAr3変態点を表1に併記した。なお、一部の熱延鋼板では、酸洗後、連続溶融亜鉛めっきラインに通板し、表2に示す条件で焼鈍処理を施したのち、溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)とした。なお、溶融亜鉛めっき処理は、焼鈍処理後の熱延鋼板を480℃の亜鉛めっき浴(0.1質量%Al-Zn)中に浸漬し、片面当たり付着量45g/m2の溶融亜鉛めっき層を鋼板両面に形成する処理とした。また、一部の熱延鋼板については溶融亜鉛めっき処理ののち、さらに合金化処理を施し、合金化溶融亜鉛めっき鋼板(GA)とした。なお、合金化処理温度は520℃とした。
 得られた熱延鋼板(一部、めっき鋼板を含む)から、試験片を採取し、組織観察、引張試験および、量産打抜き性試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
 得られた熱延鋼板(めっき鋼板)から組織観察用試験片を採取し、圧延方向に平行な板厚断面(L断面)を研磨した後、3%ナイタール液(nital solution)で腐食して組織を現出した。そして、L断面の板厚1/4位置において、走査型電子顕微鏡(scanning electron microscope)(倍率:3000倍)で組織を観察し、10視野で組織を撮影し、画像解析処理(image analysis)で、ベイナイト相以外の相を分離して、ベイナイト以外の相の組織分率を決定し、ベイナイト相の面積率を算出した。このようにして得られた面積率をベイナイト相の体積率とした。
 また、得られた熱延鋼板(めっき鋼板)の板厚1/4位置から、薄膜用試料を採取し、機械研磨、電解研磨により薄膜試片とし、透過型電子顕微鏡(transmission electron microscope)(倍率:約30000倍)を用いて組織を観察し、10視野で組織を撮影し、ベイナイトラス間隔を測定し、それらの平均値を求め、各熱延鋼板のベイナイトラス間隔とした。
 また、得られた熱延鋼板(めっき鋼板)から組織観察用試験片を採取し、圧延方向に平行な板厚断面(L断面)を研磨した後、3%ナイタール液で腐食して組織を現出し、板厚1/4位置についてレプリカ試料(replica sample)を作製した。得られたレプリカ試料を用いて、透過型電子顕微鏡(倍率:約30000倍)で組織を観察し、10視野で組織を撮影した。得られた組織写真を用いて、Fe系析出物を、その析出箇所(粒界および粒内)ごとに個数を測定し、ベイナイトラスの粒内に析出したFe系析出物の、全Fe系析出物の個数に対する比率を算出した。なお、Fe系析出物の判別は析出物の形態とEDX分析(energy dispersive X-ray analysis)により行った。
 なお、板厚方向の中心部についても同様の組織観察を行ったが、ほぼ同様の組織を有していることを確認している。
(2)引張試験
 得られた熱延鋼板(めっき鋼板)から、引張方向が圧延方向に直角方向となるように、JIS 5号引張試験片を各3本採取し、JIS Z 2241の規定に準拠して引張試験を実施した。なお、引張速度は10mm/minとした。なお、得られた引張特性(引張強さTS、伸びEl)の平均値を、その鋼板の引張特性とした。
(3)量産打抜き性試験
 得られた熱延鋼板(めっき鋼板)から、ブランク板(大きさ:150×150mm)を採取した。そして、打抜きポンチを50mmφの平底型として、打抜きクリアランスが30%となるように、ダイ側の穴径を決定し、さらに打抜きダイの上にスペーサーを置き、その上にブランク板を置いて上から板押さえで固定してポンチ穴を打ち抜いた。打ち抜き後、ポンチ穴の全周に亘り、打抜き端面の破面状況を走査型電子顕微鏡(倍率:100倍)で、割れ、欠け、脆性破面、2次せん断面(secondary shear surface)、および断面の荒れの有無を観察した。割れ、欠け、脆性破面、2次せん断面、および断面の荒れのないものを○(合格)、断面の荒れのみあるものを△(合格)、それ以外を×(不合格)として、量産打抜き性を評価した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、引張強さTS:900MPa以上の高強度を有し、さらに優れた量産打抜き性を有する熱延鋼板(めっき鋼板)となっている。一方、本発明の範囲を外れる比較例は、量産打抜き性が低下している。
[実施の形態2]
 実施の形態2に係る高強度熱延鋼板の組成限定理由について説明する。「%」はとくに断わらないかぎり「質量%」を意味する。実施の形態2において、「高強度」とは、引張強さTS:700~900MPaである場合をいうものとする。
 C:0.05~0.15%
 Cは、鋼板の高強度化に有効に寄与する元素であり、また、ベイナイト変態を促進し、ベイナイト相形成に寄与する有用な元素である。また、適正量のC含有は、ベイナイトラスの粒内の炭化物を増加させ、量産打抜き性を向上させる作用を有する。このような効果を発現させるためには0.05%以上の含有を必要とする。一方、0.15%を超える過剰な含有は、加工性、溶接性を損なう。このようなことから、Cは0.05~0.15%の範囲に限定した。なお、好ましくは0.071%以上、さらに好ましくは、0.080%以上で、0.14%以下である。
 Si:1.5%以下
 Siは、固溶強化により鋼板強度を増加させるとともに、鋼板の延性向上にも寄与する元素である。このような効果を発現させるためには、0.05%以上含有することが望ましい。一方、1.5%を超える過剰なSi含有は変態点を上昇させ、ベイナイト相形成を阻害する。このため、Siは1.5%以下に限定した。なお、好ましくは1.0%以下である。
 Mn:1.0~2.0%
 Mnは、固溶強化および変態強化により、鋼板の高強度化に寄与する有効な元素である。さらに、Mnは、変態点を低下させて、ベイナイトラスを微細化する効果を有する。このような効果を得るためには1.0%以上の含有を必要とする。一方、2.0%を超えて含有すると、中心偏析が顕著になり、加工性が著しく低下する。このため、Mnは1.0~2.0%の範囲に限定した。なお、好ましくは1.2~1.9%である。
 P:0.05%以下
 Pは、固溶して鋼板の強度を増加させる作用を有する元素であるが、多量に含有すると粒界等に偏析しやすく、加工性の低下を招く悪影響が懸念され、できるだけ低減することが望ましいが、0.05%までの含有は許容できる。なお、好ましくは、0.03%以下である。
 S:0.005%以下
 Sは、硫化物を形成し、とくに粗大な硫化物を形成すると、鋼板の延性、加工性が低下するため、できるだけ低減することが望ましいが、0.005%までは許容できる。このため、Sは0.005%以下に限定した。なお、好ましくは0.003%以下、より好ましくは0.0015%以下である。
 Al:0.1%以下
 Alは、鋼の脱酸剤として作用する重要な元素である。このような効果を発現させるためには、0.01%以上含有することが望ましい。一方、0.1%を超えて含有すると、鋳造性が低下したり、鋼中に多量の介在物(酸化物)が残存して、表面性状や加工性の低下を招く。このため、Alは0.1%以下に限定した。なお、好ましくは0.06%以下である。
 N:0.01%以下
 Nは、窒化物形成元素と結合し窒化物として析出して、結晶粒の微細化に寄与する。しかし、0.01%を超えてN含有量が多くなると、多量の窒化物を生成し、熱間延性の低下や、バーリング加工性の著しい低下の原因となるため、Nはできるだけ低減することが望ましいが0.01%までは許容できる。このため、Nは0.01%以下に限定した。なお、好ましくは0.006%以下、より好ましくは0.004%以下である。
 Ti:0.05~0.2%
 Tiは、炭窒化物を形成しやすく、変態前のオーステナイト(γ)粒を微細化することを介し、変態後のベイナイトラス間隔の微細化に寄与する、本発明で最も重要な元素の一つである。さらに、Tiは、微細なベイナイトラスの粒内炭化物(炭窒化物)を増加させ、析出強化を介して強度増加に寄与するとともに、打抜き加工に際しボイド生成サイトとなりボイドを増加させて、量産打抜き性向上に寄与する。このような効果を得るためには、0.05%以上の含有を必要とする。一方、0.2%を超えて過剰に含有すると、圧延荷重が非常に大きくなり圧延操業を難しくしたり、また析出物サイズを粗大にしすぎて加工性を低下させる。このため、Tiは0.05~0.2%の範囲に限定した。なお。好ましくは0.065~0.125%、より好ましくは0.065~0.10%である。
 上記した成分が基本の成分であるが、本発明では、この基本の組成に加えてさらに、選択元素として、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種、および/または、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上、および/または、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種、および/または、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種、を必要に応じて選択して含有できる。
 Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種
 Nb、Bはいずれも、量産打抜き性の向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。
 Nbは、析出物(炭窒化物)の形成を介して、組織の微細化、炭化物の微細分散化により、打抜き加工時のマイクロボイド発生間隔を小さくし量産打抜き性の向上に寄与する。このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.2%を超えて過剰に含有すると、析出物の粗大化を招き加工性を低下させるとともに、製造コストの高騰を招く。このため、含有する場合には、Nbは0.005~0.2%の範囲に限定することが好ましい。なお、より好ましくは0.005~0.15%である。
 Bは、ベイナイトラス間隔の微細化を介して、量産打抜き性の向上に寄与する。このような効果を得るためには、0.0002%以上含有することが好ましい。一方、0.0030%を超えて過剰に含有すると、加工性の低下を招く。このため、含有する場合には、Bは0.0002~0.0030%の範囲に限定することが好ましい。より好ましくは0.0003~0.0020%である。
 Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上
 Cu、Ni、Snはいずれも、固溶強化を介して強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためには、Cu:0.005%以上、Ni:0.005%以上、Sn:0.005%以上、含有することが望ましい。一方、Cu:0.3%、Ni:0.3%、Sn:0.3%をそれぞれ超えて含有すると、熱間加工性が低下し、熱間圧延中に表層割れを起こす恐れがある。このため、含有する場合には、それぞれ、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%の範囲に限定することが好ましい。なお、より好ましくはCu:0.005~0.2%、Ni:0.005~0.2%、Sn:0.005~0.2%である。
 Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種
 Mo、Crはいずれも、炭化物(析出物)を形成しやすく、析出物形成を介して量産打抜き性の向上に寄与する元素であり、また、Mo、Crはいずれも、焼入れ性向上に寄与する元素であり、ベイナイト変態点の低下を介してベイナイトラスの微細化に寄与する元素でもあり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Mo:0.002%以上、Cr:0.002%以上、含有することが望ましい。一方、Mo:0.3%、Cr:0.3%を超える過剰の含有は、製造コストの高騰を招き、経済的に不利となる。このため、含有する場合には、Mo:0.002~0.3%、Cr:0.002~0.3%の範囲に限定することが好ましい。なお、より好ましくはMo:0.002~0.2%、Cr:0.002~0.2%である。
 Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種
 Ca、REMは、いずれも、介在物の形態制御を介して加工性向上に有効に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Ca:0.0002%以上、REM:0.0002%以上含有することが望ましい。一方、Ca:0.004%、REM:0.004%を超えて含有すると、鋼中介在物の増加を招き、加工性が低下する。このため、含有する場合には、Ca:0.0002~0.004%、REM:0.0002~0.004%の範囲に限定することが好ましい。なお、より好ましくはCa:0.0002~0.003%、REM:0.0002~0.003%である。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明高強度熱延鋼板の組織限定理由について説明する。
 実施の形態2に係る高強度熱延鋼板は、ベイナイト相が体積率で92%超、ベイナイトラスの平均間隔が0.60μm以下、かつ全Fe系炭化物のうちベイナイトラスの粒内に析出したFe系炭化物の個数比率が10%以上である組織を有する。
 所望の量産打抜き性の確保のためには、まず鋼板組織を、上記したように体積率で92%超の、ほぼベイナイト単相の組織にすることが肝要である。なお、好ましくは94%超である。なお、ベイナイト相以外の残部は、フェライト相、マルテンサイト相、残留オーステナイト相、パーライトのうちの1種以上である。マルテンサイト相、残留オーステナイト相は主相のベイナイトと比べ硬く脆く、量産打抜き性を低下させるため、これらの相は合計で、体積率で1%未満とすることが好ましい。残留オーステナイト自体は硬くはないが、打抜きの際に歪誘起変態してマルテンサイトとなるため、マルテンサイトと同様に打抜き性に悪影響を及ぼす。ベイナイト相は、フェライトとFe系炭化物の混合組織であり、ほぼベイナイト相単相の組織とすることにより、打抜き加工時に、フェライトとFe系炭化物の界面がミクロボイド生成の起点となり、適正なミクロボイド生成と、その後のボイド連結の両面において有利になる。
 本発明では、ベイナイト相を、その下部組織であるベイナイトラス間隔が0.60μm以下であるベイナイト相とする。これは、量産打抜き性を支配している組織因子は、ベイナイト相自体のサイズではなくその下部組織であるベイナイトラスであり、ベイナイトラス間隔を微細にすることが量産打抜き性向上のために重要であることを見出したことに基づく。ベイナイトラス間隔が0.60μmを超えて大きくなると、所望の量産打抜き性を確保できなくなる。このため、ベイナイトラス間隔を0.60μm以下に限定した。なお、好ましくは0.50μm以下、さらに好ましくは0.45μm以下である。
 本発明熱延鋼板は、ほぼベイナイト相単相で、相中に炭化物(Fe系炭化物)が析出したベイナイト相とし、かつ析出した全Fe系炭化物のうち、ベイナイトラスの粒内に析出したFe系炭化物が個数比率で、10%以上である組織を有する。量産打抜き性の向上には、炭化物(Fe系炭化物)の析出サイトの制御が重要となる。ベイナイトラスの粒内に析出したFe系炭化物の個数が析出した全Fe系炭化物の個数の10%未満では、所望の優れた量産打抜き性を確保することができない。このため、ベイナイトラスの粒内のFe系炭化物の析出個数は、析出した全Fe系炭化物個数のうちの10%以上に限定した。なお、好ましくは15%以上、より好ましくは20%以上である。
 つぎに、本発明高強度熱延鋼板の好ましい製造方法について説明する。
 本発明では、上記した組成を有する鋼スラブを、加熱し粗圧延と仕上圧延とからなる熱間圧延を施し、熱延鋼板とする。
 鋼スラブの製造方法は、とくに限定する必要はなく、上記した組成を有する溶鋼を、転炉や電気炉や誘導炉等の常用の溶製方法で溶製し、あるいはさらに真空脱ガス装置等で二次精錬を行い、連続鋳造等の常用の鋳造方法で所定寸法の鋼スラブとする。なお、造塊-分塊圧延法を用いてもなんら問題はない。鋼スラブは厚さ30mm程度の薄スラブとしてもよい。薄スラブであれば、粗圧延を省略することができる。
 なお、本発明においては、連続鋳造時の鋼の成分偏析低減のために、電磁撹拌(electro-magnetic stirrer)(EMS)、軽圧下鋳造(intentional bulging soft reduction casting)(IBSR)等を適用することができる。電磁撹拌処理を施すことにより、板厚中心部に等軸晶(equiaxed crystal)を形成させ、偏析を低減させることができる。また、軽圧下鋳造を施した場合は、連続鋳造スラブの未凝固部の溶鋼の流動を防止することにより、板厚中心部の偏析を低減させることができる。これらの偏析低減処理の少なくても1つの適用により、本発明で特徴とする打抜き性を良好なレベルとしつつ、後述する引張り性質における伸びをより優れたレベルにすることができる。
 上記した組成を有する鋼スラブは、加熱温度:1100℃以上に加熱され、熱間圧延を施される。
 鋼スラブの加熱温度:1100℃以上
 本発明では、スラブ段階で析出している析出物を再固溶される必要がある。そのために、鋼スラブを1100℃以上の加熱温度に加熱する。加熱温度が1100℃未満では、析出物の再固溶が十分でなく、その後の工程で所望の析出物分布を確保できなくなる。なお好ましくは1150℃以上である。また、加熱温度が1300℃を超えて過剰に高くなると、結晶粒が粗大化し、最終的にベイナイトラスが粗大化する。このため鋼スラブの加熱温度は1300℃以下に限定することが望ましい。
 加熱された鋼スラブは、粗圧延と仕上圧延からなる熱間圧延を施され、熱延鋼板とされる。粗圧延は、所望のシートバー寸法が確保できればよく、その条件はとくに限定する必要はない。
 粗圧延に引続き、仕上圧延を施す。仕上圧延の条件は、所望のベイナイトラス組織を得るためには極めて重要である。
 仕上圧延の最終2パスの合計圧下率:30%以上
 所望のベイナイトラス組織を得るには、十分に歪が蓄積されたオーステナイト(γ)をベイナイト変態させることが必要である。そのために、本発明では、まず、仕上圧延の最終2パスの合計圧下率を30%以上に限定する。仕上圧延の最終2パスの合計圧下率が30%未満では、γへの歪蓄積が不十分で、変態後に所望のベイナイトラス組織を確保できなくなる。このため、仕上圧延の最終2パスの合計圧下率を30%以上に限定した。なお、好ましくは40%以上、さらに好ましくは50%以上である。
 仕上圧延の圧延終了温度:(Ar3変態点)~(Ar3変態点+120℃)
 十分に歪が蓄積されたオーステナイト(γ)からベイナイト変態させるために、仕上圧延の圧延終了温度の調整も重要となる。仕上圧延の圧延終了温度がAr3変態点未満では、所望の組織である、ほぼベイナイト単相の組織を確保することが難しくなる。一方、仕上圧延の圧延終了温度が(Ar3変態点+120℃)を超えて高温となると、微細なベイナイト相を得ることが難しくなる。このため、仕上圧延の圧延終了温度は(Ar3変態点)~(Ar3変態点+120℃)の範囲の温度に限定した。なお、好ましくは(Ar3変態点)~(Ar3変態点+80℃)である。ここで、仕上圧延の圧延終了温度は表面温度で表すものとする。また、ここでいう「Ar3変態点」は、加工フォーマスタ試験機で、加工付与後に冷却速度1℃/sで冷却して得られた熱膨張曲線から、その変化点により求めた変態温度とする。
 仕上圧延終了後、冷却を施す。冷却の条件も、所望の組織を得るために極めて重要である。
 冷却開始:仕上圧延終了後、2s以内
 十分に歪が蓄積されたγからベイナイト変態させて、所望のベイナイトラス組織を得るためには、仕上圧延終了後、2s以内に冷却を開始する必要がある。冷却開始が、仕上圧延終了後、2sを超えると、γの回復、再結晶が進行し、ベイナイト変態の核が減少し、所望のベイナイトラス間隔を得ることができなくなる。このようなことから、冷却は、仕上圧延終了後、2s以内に開始することにした。なお、好ましくは1.5s以内、より好ましくは1s以内である。
 平均冷却速度:50℃/s以上
 仕上圧延終了温度から冷却停止温度までの平均冷却速度が50℃/s未満では、初析フェライトが析出して、体積率で92%超のベイナイト相を有し、かつ所望のベイナイトラス間隔を有する組織を確保することが困難となる。このため、仕上圧延終了後の冷却の平均冷却速度は50℃/s以上に限定した。なお、好ましくは60℃/s以上、より好ましくは70℃/s以上である。冷却速度の上限は、冷却設備の能力に依存して限定されるが、鋼板形状の観点から150℃/s程度に限定することが好ましい。本発明においては、仕上げ圧延後の冷却は前記した冷却速度に制御することを前提として、かつ、後述する、冷却停止温度まで1段で冷却することが、本発明で特徴とするミクロ組織を得るために必要な要件である。
 冷却停止温度:300~500℃
 本発明では冷却停止後、直ちに巻き取る。このため、冷却停止温度を巻取り温度として巻き取る。冷却停止温度(巻取り温度)が、300℃未満、あるいは500℃超となると、ベイナイトラス間隔とFe系炭化物の分布状態をともに所望の最適範囲に調整することができなくなる。このようなことから、冷却停止温度(巻取り温度)を300~500℃の範囲の温度に限定した。なお、好ましくは350~500℃、さらに好ましくは400~500℃である。
 なお、本発明においては、連続鋳造時の鋼の成分偏析低減のために、電磁撹拌(EMS)、軽圧下鋳造(IBSR)等を適用することができる。電磁撹拌処理を施すことにより、板厚中心部に等軸晶を形成させ、偏析を低減させることができる。また、軽圧下鋳造を施した場合は、連続鋳造スラブの未凝固部の溶鋼の流動を防止することにより、板厚中心部の偏析を低減させることができる。これらの偏析低減処理の少なくても1つの適用により、本発明で特徴とする打抜き性を良好なレベルとしつつ、後述する引張り性質における伸びをより優れたレベルにすることができる。
 巻取り後に、常法にしたがい、酸洗を施して表面に形成されたスケールを除去してもよい。また、酸洗処理後に、調質圧延をほどこしてもよい。また、酸洗処理後、あるいは調質圧延後に、さらに、常用の溶融亜鉛めっきラインを利用して、均熱温度:730℃以下で焼鈍を施し、さらにめっき処理を施してもよい。めっき処理は、溶融亜鉛めっき浴を通過させて、表面に亜鉛めっき層を形成する処理としてもよい。さらに、該亜鉛めっき層の合金化処理を施す合金化処理を施し、合金化溶融亜鉛めっき鋼板としてもよい。焼鈍処理の均熱温度が730℃を超えると、ベイナイトが焼き戻されるため、体積率で92%超のベイナイト相を有し、かつ所望のベイナイトラス間隔を有する組織を確保することが困難となる。したがって、焼鈍処理の均熱温度は730℃以下とする。焼鈍処理の均熱温度の下限はとくに限定しないが、溶融亜鉛めっき層と下地鋼板の密着性の観点から、焼鈍処理の均熱温度は590℃以上が好ましい。また、溶融亜鉛めっき槽に浸漬した後、さらに、該亜鉛めっき層の合金化処理を施し、合金化溶融亜鉛めっき鋼板としてもよい。
 また、溶融亜鉛めっき鋼板のみならず、得られた熱延鋼板を用いて、電気亜鉛めっき鋼板等のめっき鋼板とすることもできる。
 以下、実施例に基づき、さらに本発明高強度熱延鋼板について説明する。
[実施例2]
 表4に示す組成を有する鋼スラブに、表5に示す、加熱、仕上圧延、圧延後冷却を施し、熱延鋼板とした。なお、熱膨張曲線から求めた、各鋼スラブのAr3変態点を表4に併記した。連続鋳造の際には、後述する表4~6中の鋼A2の熱延鋼板No.1’以外のものについては、成分の偏析低減処理のため、電磁撹拌(EMS)を行った。なお、一部の熱延鋼板では、酸洗後、連続溶融亜鉛めっきラインに通板し、表5に示す条件で焼鈍処理を施したのち、溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)とした。なお、溶融亜鉛めっき処理は、焼鈍処理後の熱延鋼板を480℃の亜鉛めっき浴(0.1%Al-Zn)中に浸漬し、片面当たり付着量45g/m2の溶融亜鉛めっき層を鋼板の両面に形成する処理とした。また、一部の熱延鋼板については溶融亜鉛めっき処理の後、さらに合金化処理を施し、合金化溶融亜鉛めっき鋼板(GA)とした。合金化処理温度は520℃とした。
 得られた熱延鋼板(一部、めっき鋼板を含む)から、試験片を採取し、組織観察、引張試験、量産打抜き性試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
 得られた熱延鋼板(めっき鋼板)から組織観察用試験片を採取し、圧延方向に平行な板厚断面(L断面)を研磨した後、3%ナイタール液で腐食して組織を現出した。そして、L断面の板厚1/4位置において、走査型電子顕微鏡(倍率:3000倍)で組織を観察し、10視野で組織を撮影し、画像解析処理で、ベイナイト相以外の相を分離して、ベイナイト以外の相の組織分率を決定したのち、ベイナイト相の面積率を算出した。このようにして得られた面積率をベイナイト相の体積率とした。
 また、得られた熱延鋼板(めっき鋼板)の板厚1/4位置から、薄膜用試料を採取し、機械研磨、電解研磨により薄膜試片とし、透過型電子顕微鏡(倍率:約30000倍)を用いて組織を観察し、10視野で組織を撮影した。得られた組織写真から、ベイナイトラス間隔を測定し、それらの平均値を求め、各熱延鋼板のベイナイトラス間隔とした。
 また、得られた熱延鋼板(めっき鋼板)から組織観察用試験片を採取し、圧延方向に平行な板厚断面(L断面)を研磨した後、3%ナイタール液で腐食して組織を現出し、板厚1/4位置についてレプリカ試料を作製した。得られたレプリカ試料を用いて、透過型電子顕微鏡(倍率:約30000倍)で組織を観察し、10視野で組織を撮影した。得られた組織写真を用いて、Fe系炭化物を、その析出箇所(粒界、粒内)ごとに個数を測定し、ベイナイトラスに析出したFe系析出物の、全Fe系析出物の個数に対する比率を算出した。なお、Fe系炭化物(析出物)の判別は析出物の形態、EDX分析により行った。
 また、同様の観察を板厚方向の板厚中心部についても行い、同様の組織であることを確認している。
(2)引張試験
 得られた熱延鋼板(めっき鋼板)から、引張方向が圧延方向に直角方向となるように、JIS 5号引張試験片を各3本採取し、JIS Z 2241の規定に準拠して引張試験を実施した。なお、引張速度は10mm/minとした。なお、得られた引張特性(引張強さTS、伸びEl)の平均値を、その鋼板の引張特性とした。
(3)量産打抜き性試験
 得られた熱延鋼板(めっき鋼板)から、ブランク板(大きさ:150×150mm)を採取した。そして、打抜きポンチを50mmφの平底型として、打抜きクリアランスが30%となるように、ダイ側の穴径を決定し、さらに打抜きダイの上にスペーサーを置き、その上にブランク板を置いて上から板押さえで固定してポンチ穴を打ち抜いた。打ち抜き後、ポンチ穴の全周に亘り、打抜き端面の破面状況を走査型電子顕微鏡(倍率:100倍)で、割れ、欠け、脆性破面、2次せん断面、および断面の荒れの有無を観察した。割れ、欠け、脆性破面、2次せん断面、および断面の荒れのないものを○(合格)、断面の荒れのみあるものを△(合格)、それ以外を×(不合格)として、量産打抜き性を評価した。
 得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明例はいずれも、引張強さTS:700MPa以上の高強度を有し、さらに優れた量産打抜き性を有する熱延鋼板(めっき鋼板)となっている。一方、本発明の範囲を外れる比較例は、量産打抜き性が低下している。
 

Claims (24)

  1.  質量%で、
     C :0.07%超0.2%以下、    Si:2.0%以下、
     Mn:1.0~3.0%、        P :0.05%以下、
     S :0.005%以下、        Al:0.1%以下、
     N :0.01%以下、        Ti:0.05~0.3%、
     V :0.05~0.3%
    を含有し、残部Feおよび不可避的不純物からなる組成と、ベイナイト相が体積率で90%超で、かつベイナイトラスの平均間隔が0.45μm以下であり、かつ全Fe系炭化物のうちベイナイトラスの粒内に析出したFe系炭化物の個数比率が10%以上である組織を有する高強度熱延鋼板。
  2.  前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有する請求項1に記載の高強度熱延鋼板。
  3.  前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、 Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有する請求項1または2に記載の高強度熱延鋼板。
  4.  前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有する請求項1ないし3のいずれかに記載の高強度熱延鋼板。
  5.  前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有する請求項1ないし4のいずれかに記載の高強度熱延鋼板。
  6.  請求項1ないし5のいずれかに記載の高強度熱延鋼板の表面に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を形成してなる溶融亜鉛めっき鋼板。
  7.  鋼スラブを、加熱し粗圧延と仕上圧延とからなる熱間圧延を施して、熱延鋼板とするに当たり、
    前記鋼スラブを、質量%で、
     C :0.07%超0.2%以下、    Si:2.0%以下、
     Mn:1.0~3.0%、        P :0.05%以下、
     S :0.005%以下、        Al:0.1%以下、
     N :0.01%以下、        Ti:0.05~0.3%、
     V :0.05~0.3%
    を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼スラブとし、
    前記熱間圧延を、前記鋼スラブを1100℃以上に加熱し、前記仕上圧延の最終2パスの合計圧下率を30%以上とし、該仕上圧延の圧延終了温度を(Ar3変態点)~(Ar3変態点+120℃)の温度範囲とし、前記仕上圧延終了後、2s以内に冷却を開始し、平均冷却速度40℃/s以上で巻取り温度まで冷却した後、巻取り温度:300~500℃で巻き取る圧延とする高強度熱延鋼板の製造方法。
  8.  前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有する請求項7に記載の高強度熱延鋼板の製造方法。
  9.  前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有する請求項7または8に記載の高強度熱延鋼板の製造方法。
  10.  前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有する請求項7ないし9のいずれかに記載の高強度熱延鋼板の製造方法。
  11.  前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有する請求項7ないし10のいずれかに記載の高強度熱延鋼板の製造方法。
  12.  請求項7ないし11のいずれかに記載の高強度熱延鋼板の製造方法により製造された高強度熱延鋼板を酸洗したのち、焼鈍とめっき処理を施してめっき鋼板とするに当たり、
    前記焼鈍を均熱温度:730℃以下とする焼鈍とし、該焼鈍終了後に、前記めっき処理として溶融亜鉛めっき浴を通過させて、前記高強度熱延鋼板の表面に溶融亜鉛めっき層を形成し、あるいはさらに該溶融亜鉛めっき層を合金化する合金化処理を施す溶融亜鉛めっき鋼板の製造方法。
  13.  質量%で、
     C :0.05~0.15%、        Si:1.5%以下、
     Mn:1.0~2.0%、         P :0.05%以下、
     S :0.005%以下、         Al:0.1%以下、
     N :0.01%以下、         Ti:0.05~0.2%
    を含有し、残部Feおよび不可避的不純物からなる組成を有し、ベイナイト相が体積率で92%超、ベイナイトラスの平均間隔が0.60μm以下、かつ全Fe系炭化物のうちベイナイトラスの粒内に析出したFe系炭化物の個数比率が10%以上である組織を有する高強度熱延鋼板。
  14.  前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有する請求項13に記載の高強度熱延鋼板。
  15.  前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有する請求項13または14に記載の高強度熱延鋼板。
  16.  前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有する請求項13ないし15のいずれかに記載の高強度熱延鋼板。
  17.  前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有する請求項13ないし16のいずれかに記載の高強度熱延鋼板。
  18.  請求項13ないし17のいずれかに記載の高強度熱延鋼板の表面に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を形成してなる溶融亜鉛めっき鋼板。
  19.  鋼スラブを、加熱し粗圧延と仕上圧延とからなる熱間圧延を施し、熱延鋼板とするに当たり、
    前記鋼スラブが、質量%で、
     C :0.05~0.15%、        Si:1.5%以下、
     Mn:1.0~2.0%、         P :0.05%以下、
     S :0.005%以下、         Al:0.1%以下、
     N :0.01%以下、         Ti:0.05~0.2%
    を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼スラブとし、
    前記熱間圧延が、前記鋼スラブを1100℃以上に加熱し、前記仕上圧延の最終2パスの合計圧下率を30%以上とし、該仕上圧延の圧延終了温度を(Ar3変態点)~( Ar3変態点+120℃)の温度範囲とし、前記仕上圧延終了後、2s以内に冷却を開始し、平均冷却速度50℃/s以上で巻取り温度まで冷却した後、巻取り温度:300~500℃で巻き取る圧延である高強度熱延鋼板の製造方法。
  20.  前記組成に加えてさらに、質量%で、Nb:0.005~0.2%、B:0.0002~0.0030%のうちから選ばれた1種または2種を含有する請求項19に記載の高強度熱延鋼板の製造方法。
  21.  前記組成に加えてさらに、質量%で、Cu:0.005~0.3%、Ni:0.005~0.3%、Sn:0.005~0.3%のうちから選ばれた1種または2種以上を含有する請求項19または20に記載の高強度熱延鋼板の製造方法。
  22.  前記組成に加えてさらに、質量%で、Mo:0.002~0.3%、Cr:0.002~0.3%のうちから選ばれた1種または2種を含有する請求項19ないし21のいずれかに記載の高強度熱延鋼板の製造方法。
  23.  前記組成に加えてさらに、質量%で、Ca:0.0002~0.004%、REM:0.0002~0.004%のうちから選ばれた1種または2種を含有する請求項19ないし22のいずれかに記載の高強度熱延鋼板の製造方法。
  24.  請求項19ないし23のいずれかに記載の高強度熱延鋼板の製造方法で製造された高強度熱延鋼板を酸洗したのち、焼鈍とめっき処理を施して、表面にめっき層を有するめっき鋼板とするに当たり、
    前記焼鈍を、均熱温度:730℃以下とする焼鈍とし、該焼鈍終了後、前記めっき処理として溶融亜鉛めっき浴を通過させて、前記熱延鋼板表面に溶融亜鉛めっき層を形成し、あるいはさらに該溶融亜鉛めっき層を合金化する合金化処理を施す溶融亜鉛めっき鋼板の製造方法。
     
     
PCT/JP2014/001508 2013-04-15 2014-03-17 高強度熱延鋼板およびその製造方法 WO2014171062A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18158632.2A EP3358033B1 (en) 2013-04-15 2014-03-17 High-strength hot-rolled steel sheet and method for manufacturing same
MX2015014436A MX2015014436A (es) 2013-04-15 2014-03-17 Lamina de acero laminada en caliente de alta resistencia y metodo para la produccion de la misma.
KR1020157031659A KR101749948B1 (ko) 2013-04-15 2014-03-17 고강도 열연 강판 및 그의 제조 방법
US14/784,450 US20160068937A1 (en) 2013-04-15 2014-03-17 High-strength hot-rolled steel sheet and method for producing the same (as amended)
EP14784648.9A EP2987883B1 (en) 2013-04-15 2014-03-17 High-strength hot-rolled steel sheet and method for manufacturing same
CN201480020728.9A CN105143485B (zh) 2013-04-15 2014-03-17 高强度热轧钢板及其制造方法
US15/143,965 US10301693B2 (en) 2013-04-15 2016-05-02 High-strength hot-rolled steel sheet and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-084447 2013-04-15
JP2013084447A JP5641087B2 (ja) 2013-04-15 2013-04-15 量産打抜き性に優れた高強度熱延鋼板およびその製造方法
JP2013-084446 2013-04-15
JP2013084446A JP5641086B2 (ja) 2013-04-15 2013-04-15 量産打抜き性に優れた高強度熱延鋼板およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/784,450 A-371-Of-International US20160068937A1 (en) 2013-04-15 2014-03-17 High-strength hot-rolled steel sheet and method for producing the same (as amended)
US15/143,965 Division US10301693B2 (en) 2013-04-15 2016-05-02 High-strength hot-rolled steel sheet and method for producing the same

Publications (1)

Publication Number Publication Date
WO2014171062A1 true WO2014171062A1 (ja) 2014-10-23

Family

ID=51731027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001508 WO2014171062A1 (ja) 2013-04-15 2014-03-17 高強度熱延鋼板およびその製造方法

Country Status (6)

Country Link
US (2) US20160068937A1 (ja)
EP (2) EP3358033B1 (ja)
KR (1) KR101749948B1 (ja)
CN (1) CN105143485B (ja)
MX (2) MX2015014436A (ja)
WO (1) WO2014171062A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129199A1 (ja) * 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2017017933A1 (ja) * 2015-07-27 2017-02-02 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
KR20170128555A (ko) * 2015-04-01 2017-11-22 제이에프이 스틸 가부시키가이샤 열연 강판 및 그 제조 방법
EP3395997A4 (en) * 2015-12-24 2018-11-07 Posco Low-yield-ratio type high-strength steel, and manufacturing method therefor
JP2020042004A (ja) * 2018-09-10 2020-03-19 日本製鉄株式会社 析出物識別方法、析出物情報取得方法およびプログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102988A1 (ja) * 2012-01-06 2013-07-11 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN110331335A (zh) 2013-03-19 2019-10-15 杰富意钢铁株式会社 具有780MPa以上的拉伸强度的高强度热轧钢板
MX2015014436A (es) 2013-04-15 2016-02-03 Jfe Steel Corp Lamina de acero laminada en caliente de alta resistencia y metodo para la produccion de la misma.
JP5821929B2 (ja) * 2013-10-29 2015-11-24 Jfeスチール株式会社 材質安定性および溶接性に優れた高強度熱延鋼板およびその製造方法
JP6179584B2 (ja) 2015-12-22 2017-08-16 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
EP3495527A4 (en) * 2016-08-05 2019-12-25 Nippon Steel Corporation STEEL SHEET, AND PLATED STEEL SHEET
EP3516085B1 (en) * 2016-09-22 2020-07-08 Tata Steel IJmuiden B.V. A method of producing a hot-rolled high-strength steel with excellent stretch-flange formability and edge fatigue performance
WO2018098485A1 (en) * 2016-11-28 2018-05-31 Ak Steel Properties, Inc. Method for production for press hardened steel with increased toughness
CN106756539B (zh) * 2016-12-05 2018-05-18 北京科技大学 一种具有纳米析出相的耐疲劳高强钢及其制备方法
JP7217274B2 (ja) * 2018-06-29 2023-02-02 東洋鋼鈑株式会社 熱延鋼板、高強度冷延鋼板およびそれらの製造方法
DE102019208040A1 (de) * 2019-06-03 2020-12-03 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
CN115038801A (zh) * 2019-12-20 2022-09-09 塔塔钢铁艾默伊登有限责任公司 具有高扩孔比的热轧高强度钢带
DE102020203564A1 (de) * 2020-03-19 2021-09-23 Sms Group Gmbh Verfahren zum Herstellen eines gewalzten Mehrphasenstahlbandes mit Sondereigenschaften
CN115244201B (zh) * 2020-05-08 2023-05-12 日本制铁株式会社 热轧钢板及其制造方法
DE102021104584A1 (de) 2021-02-25 2022-08-25 Salzgitter Flachstahl Gmbh Hochfestes, warmgewalztes Stahlflachprodukt mit hoher lokaler Kaltumformbarkeit sowie ein Verfahren zur Herstellung eines solchen Stahlflachprodukts

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315857A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2005298924A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2006161139A (ja) * 2004-12-10 2006-06-22 Jfe Steel Kk 温間成形に適した熱延鋼板およびその製造方法
JP2006274318A (ja) 2005-03-28 2006-10-12 Kobe Steel Ltd 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP2008069425A (ja) * 2006-09-15 2008-03-27 Kobe Steel Ltd 伸びフランジ性に優れた熱延鋼板
JP2012062558A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 曲げ加工性に優れた高強度熱延鋼板およびその製造方法
JP2012062557A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 靭性に優れた高強度熱延鋼板およびその製造方法
JP2012062561A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2012062562A (ja) 2010-09-17 2012-03-29 Jfe Steel Corp 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
JP2012251201A (ja) * 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264183A (ja) * 1993-03-11 1994-09-20 Sumitomo Metal Ind Ltd 高加工性熱延高張力鋼板とその製造方法
EP1017862B1 (en) * 1997-07-28 2006-11-29 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
ATE490349T1 (de) 1999-09-29 2010-12-15 Jfe Steel Corp Stahlblech und verfahren zu dessen herstellung
JP4028719B2 (ja) * 2001-11-26 2007-12-26 新日本製鐵株式会社 形状凍結性に優れる絞り可能なバーリング性高強度薄鋼板およびその製造方法
JP4528137B2 (ja) * 2004-03-19 2010-08-18 新日本製鐵株式会社 穴拡げ性に優れた高強度高延性薄鋼板の製造方法
JP4161935B2 (ja) 2004-04-16 2008-10-08 住友金属工業株式会社 熱延鋼板およびその製造方法
KR100851189B1 (ko) * 2006-11-02 2008-08-08 주식회사 포스코 저온인성이 우수한 초고강도 라인파이프용 강판 및 그제조방법
BRPI0809301B1 (pt) 2007-03-27 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Chapa de aço laminada a quente de alta resistência livre de descascamento e método de produção da mesma
JP5068688B2 (ja) * 2008-04-24 2012-11-07 新日本製鐵株式会社 穴広げ性に優れた熱延鋼板
BRPI1010678A2 (pt) * 2009-05-27 2016-03-15 Nippon Steel Corp chapade aço de alta resistência, chapa de aço banhada a quente e chapa de aço banhada a quente de liga que têm excelentes características de fadiga, alongamento e colisão, e método de fabricação para as ditas chapas de aço
US9273370B2 (en) 2010-07-28 2016-03-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and methods of manufacturing the same
WO2012127125A1 (fr) * 2011-03-24 2012-09-27 Arcelormittal Investigatión Y Desarrollo Sl Tôle d'acier laminée à chaud et procédé de fabrication associé
JP5605310B2 (ja) * 2011-06-07 2014-10-15 新日鐵住金株式会社 鋼材および衝撃吸収部材
US8810566B2 (en) * 2011-07-15 2014-08-19 Disney Enterprises, Inc. Providing a navigation mesh by which objects of varying sizes can traverse a virtual space
MX2015014436A (es) 2013-04-15 2016-02-03 Jfe Steel Corp Lamina de acero laminada en caliente de alta resistencia y metodo para la produccion de la misma.

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315857A (ja) 2003-04-14 2004-11-11 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2005298924A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2006161139A (ja) * 2004-12-10 2006-06-22 Jfe Steel Kk 温間成形に適した熱延鋼板およびその製造方法
JP2006274318A (ja) 2005-03-28 2006-10-12 Kobe Steel Ltd 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP3889766B2 (ja) 2005-03-28 2007-03-07 株式会社神戸製鋼所 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
JP2008069425A (ja) * 2006-09-15 2008-03-27 Kobe Steel Ltd 伸びフランジ性に優れた熱延鋼板
JP2012062558A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 曲げ加工性に優れた高強度熱延鋼板およびその製造方法
JP2012062557A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 靭性に優れた高強度熱延鋼板およびその製造方法
JP2012062561A (ja) * 2010-09-17 2012-03-29 Jfe Steel Corp 耐疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2012062562A (ja) 2010-09-17 2012-03-29 Jfe Steel Corp 打抜き加工性に優れた高強度熱延鋼板およびその製造方法
JP2012251201A (ja) * 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板
WO2013051238A1 (ja) * 2011-10-04 2013-04-11 Jfeスチール株式会社 高強度鋼板およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345972B2 (en) 2014-02-27 2022-05-31 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
WO2015129199A1 (ja) * 2014-02-27 2015-09-03 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
KR101989262B1 (ko) 2015-04-01 2019-06-13 제이에프이 스틸 가부시키가이샤 열연 강판 및 그 제조 방법
KR20170128555A (ko) * 2015-04-01 2017-11-22 제이에프이 스틸 가부시키가이샤 열연 강판 및 그 제조 방법
CN107429362A (zh) * 2015-04-01 2017-12-01 杰富意钢铁株式会社 热轧钢板及其制造方法
EP3279353A4 (en) * 2015-04-01 2018-02-07 JFE Steel Corporation Hot-rolled steel sheet and method for producing same
CN107429362B (zh) * 2015-04-01 2020-06-23 杰富意钢铁株式会社 热轧钢板及其制造方法
CN107849663A (zh) * 2015-07-27 2018-03-27 杰富意钢铁株式会社 高强度热轧钢板及其制造方法
EP3296415A4 (en) * 2015-07-27 2018-03-21 JFE Steel Corporation High strength hot rolled steel sheet and manufacturing method for same
WO2017017933A1 (ja) * 2015-07-27 2017-02-02 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
US11578375B2 (en) 2015-07-27 2023-02-14 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing the same
EP3395997A4 (en) * 2015-12-24 2018-11-07 Posco Low-yield-ratio type high-strength steel, and manufacturing method therefor
JP2020042004A (ja) * 2018-09-10 2020-03-19 日本製鉄株式会社 析出物識別方法、析出物情報取得方法およびプログラム
JP7277729B2 (ja) 2018-09-10 2023-05-19 日本製鉄株式会社 析出物識別方法、析出物情報取得方法およびプログラム

Also Published As

Publication number Publication date
MX2015014436A (es) 2016-02-03
EP3358033A1 (en) 2018-08-08
EP2987883A1 (en) 2016-02-24
EP2987883B1 (en) 2019-05-08
MX2020003880A (es) 2020-08-17
KR101749948B1 (ko) 2017-06-22
US20160068937A1 (en) 2016-03-10
EP2987883A4 (en) 2016-06-01
KR20160012126A (ko) 2016-02-02
EP3358033B1 (en) 2020-07-15
US20160258032A1 (en) 2016-09-08
CN105143485B (zh) 2017-08-15
US10301693B2 (en) 2019-05-28
CN105143485A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
KR101749948B1 (ko) 고강도 열연 강판 및 그의 제조 방법
JP6354921B1 (ja) 鋼板およびその製造方法
JP6409917B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
KR102173601B1 (ko) 고강도 박강판 및 그 제조 방법
JP5754279B2 (ja) 温間成形用高強度鋼板およびその製造方法
CN112534077B (zh) 高强度热轧钢板及其制造方法
KR102084867B1 (ko) 고강도 강판 및 그 제조 방법
JP5641086B2 (ja) 量産打抜き性に優れた高強度熱延鋼板およびその製造方法
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
US20220056549A1 (en) Steel sheet, member, and methods for producing them
KR20200018808A (ko) 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법
JP6421903B1 (ja) 溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板
JP2013133519A (ja) 温間成形用高強度熱延鋼板およびその製造方法
KR101931047B1 (ko) 고강도 도금 강판 및 그 제조 방법
WO2019003445A1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
JPWO2019151017A1 (ja) 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法
JP5978614B2 (ja) 打ち抜き性に優れた高強度熱延鋼板およびその製造方法
WO2017168961A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
KR102083746B1 (ko) 고강도 강판 및 그 제조 방법
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
JP5641087B2 (ja) 量産打抜き性に優れた高強度熱延鋼板およびその製造方法
KR101968434B1 (ko) 고강도 도금 강판 및 그 제조 방법
JP5861434B2 (ja) 打ち抜き性に優れた高強度熱延鋼板およびその製造方法
JP6326837B2 (ja) 冷延鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020728.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14784450

Country of ref document: US

Ref document number: MX/A/2015/014436

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157031659

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201507179

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 2014784648

Country of ref document: EP