WO2017168961A1 - 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 - Google Patents

薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2017168961A1
WO2017168961A1 PCT/JP2017/001292 JP2017001292W WO2017168961A1 WO 2017168961 A1 WO2017168961 A1 WO 2017168961A1 JP 2017001292 W JP2017001292 W JP 2017001292W WO 2017168961 A1 WO2017168961 A1 WO 2017168961A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
producing
hot
rolled
Prior art date
Application number
PCT/JP2017/001292
Other languages
English (en)
French (fr)
Inventor
長谷川 寛
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2018011878A priority Critical patent/MX2018011878A/es
Priority to KR1020187027892A priority patent/KR102162785B1/ko
Priority to CN201780021045.9A priority patent/CN109072375B/zh
Priority to EP17773511.5A priority patent/EP3421632B1/en
Priority to US16/089,928 priority patent/US11136642B2/en
Priority to JP2017526983A priority patent/JP6264506B1/ja
Publication of WO2017168961A1 publication Critical patent/WO2017168961A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a thin steel plate and a plated steel plate, a hot rolled steel plate manufacturing method, a cold rolled full hard steel plate manufacturing method, a thin steel plate manufacturing method, and a plated steel plate manufacturing method.
  • Steel sheets used for automotive parts are required to have high strength from the viewpoint of improving automobile collision safety and fuel efficiency.
  • strengthening the material generally results in a decrease in workability. Therefore, it is necessary to develop a steel sheet excellent in both strength and workability.
  • high-strength steel sheets with tensile strength (hereinafter sometimes referred to as TS) exceeding 980 MPa have a high degree of forming difficulty, so they are often subjected to bending-oriented processing in a straight shape such as members and rocker parts.
  • TS tensile strength
  • high rust prevention is required.
  • the hard structure near the surface layer promotes the generation of voids during bending and becomes the starting point of cracks, so TS suppresses the generation of voids related to the hard structure in 980 MPa super steel. It is extremely important from the viewpoint of improvement.
  • Patent Document 1 discloses a technique for obtaining a hot-dip galvanized steel sheet having excellent bendability by controlling the hardness of tempered martensite and ferrite.
  • Patent Document 2 discloses a technique for obtaining a hot-rolled steel sheet having excellent bendability by reducing martensite while hardening ferrite.
  • Patent Document 3 discloses a technique for obtaining a hot-dip galvanized steel sheet having excellent bendability by reducing the strength near the surface layer.
  • Patent Document 1 does not discuss the microcracks that occur on the steel sheet surface, and there is room for improvement.
  • Patent Document 2 is a hot-rolled steel sheet, there has been room for improvement because it has not been examined for plating properties, bending workability in a state where plating is applied, and microcracks on the bending work surface.
  • Patent Document 3 does not discuss the microcracks that occur on the surface of the steel sheet, and there is room for improvement.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a plated steel sheet having a tensile strength of 980 MPa or more and excellent in bendability and plating properties, and a method for producing the same.
  • Voids related to martensite existing in the vicinity of the steel sheet surface layer are strongly influenced by the hardness difference between martensite and other phases, the martensite fraction, and the amount of Mn in martensite.
  • minute non-plating occurs from that point.
  • the amount of Mn in martensite [Mn] SM and the amount of Mn in the bulk [Mn] in the range of 20 ⁇ m from the surface of the steel plate to the thickness direction It has been found that by setting B to [Mn] SM / [Mn] B ⁇ 1.5, TS: 980 MPa super-grade steel sheet does not cause minute unplating and exhibits excellent bendability.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • Mn content in martensite [Mn] SM and Mn content at [1/4] thickness (in bulk) from the steel sheet surface to the center of the thickness (in the bulk): [Mn] B is [Mn] SM / [ Mn] A thin steel sheet characterized by B ⁇ 1.5 and having an area ratio of martensite of 20 to 50% at a position of 300 ⁇ m in the thickness direction from the steel sheet surface.
  • a method for producing a hot-rolled steel sheet comprising: [6] A method for producing a cold-rolled full hard steel sheet, wherein the hot-rolled steel sheet obtained by the production method according to [5] is subjected to cold rolling at a reduction rate of 20% or more. [7] Heat the hot-rolled steel sheet obtained by the production method described in [5] above or the cold-rolled full hard steel sheet obtained by the production method described in [6] above to 730 to 900 ° C.
  • a method for producing a thin steel sheet characterized by performing annealing at a temperature range of 400 to 590 ° C. for 1000 seconds or less.
  • a method for producing a plated steel sheet wherein the thin steel sheet obtained in [7] or [8] is plated.
  • “high strength” means that TS is 980 MPa or more
  • “excellent bendability” means that R / t described below is 2.5 or less
  • “excellent plating property” means zinc plating.
  • TS is preferably less than 1180 MPa, more preferably 1175 MPa or less.
  • a plated steel sheet having a tensile strength of 980 MPa or more and excellent in bendability and plating properties can be obtained. Since it has the said characteristic, the plated steel plate of this invention is suitable as a raw material for motor vehicle parts.
  • the thin steel plate of the present invention and the method for producing the hot rolled steel plate of the present invention, the method for producing the cold rolled full hard steel plate and the method for producing the thin steel plate, As a manufacturing method, it contributes to improving collision safety and fuel efficiency of automobiles.
  • the present invention is a thin steel plate and a plated steel plate, a method for producing a hot-rolled steel plate, a method for producing a cold-rolled full hard steel plate, a method for producing a thin steel plate, and a method for producing a plated steel plate.
  • the thin steel plate of the present invention is an intermediate product for obtaining the plated steel plate of the present invention. Starting from a steel material such as a slab, it becomes a plated steel sheet through a manufacturing process of hot rolled steel sheet, cold rolled full hard steel sheet, and thin steel sheet.
  • the thin steel plate of the present invention is a thin steel plate in the above process.
  • the manufacturing method of the hot-rolled steel sheet of the present invention is a manufacturing method until obtaining the hot-rolled steel sheet in the above process.
  • the method for producing a cold-rolled full hard steel plate according to the present invention is a method for obtaining a cold-rolled full hard steel plate from a hot-rolled steel plate in the above process.
  • the method for producing a thin steel plate according to the present invention is a method for obtaining a thin steel plate from a cold-rolled full hard steel plate in the above process.
  • the method for producing a plated steel sheet according to the present invention is a method for obtaining a plated steel sheet from a thin steel sheet in the above process.
  • the component compositions of hot-rolled steel sheet, cold-rolled full hard steel sheet, thin steel sheet, and plated steel sheet are common, and the steel structures of thin steel sheet and plated steel sheet are common.
  • a thin steel plate, a plated steel plate, and a manufacturing method are common.
  • the component composition of hot-rolled steel sheet, cold-rolled full hard steel sheet, thin steel sheet, plated steel sheet is mass%, C: 0.05 to 0.25%, Si: 1.0% or less, Mn: 1.5 to 4.0%, P: 0.100% or less, Contains at least one selected from S: 0.02% or less, Al: 1.0% or less, N: 0.001 to 0.015%, Ti: 0.003 to 0.100%, Nb: 0.003 to 0.100%, Mo: 0.005 to 0.500%, The balance consists of Fe and inevitable impurities.
  • the above component composition is in mass%, Cr: 0.005 to 2.000%, V: 0.005 to 2.000%, Cu: 0.005 to 2.000%, Ni: 0.005 to 2.000%, B: 0.0001 to 0.0050%, Ca: 0.0001 to One or more selected from 0.0050%, REM: 0.0001 to 0.0050%, Sb: 0.0010 to 0.1000%, Sn: 0.0010 to 0.5000% may be contained.
  • C 0.05-0.25% C is an element that is effective in generating martensite and bainite and increasing TS. If it is less than 0.05%, such an effect cannot be sufficiently obtained, and a TS of 980 MPa or more cannot be obtained. On the other hand, when the C content exceeds 0.25%, the martensite is cured and the deterioration of bendability becomes remarkable. Therefore, the C content is 0.05 to 0.25%. Preferably it is over 0.06%, more preferably 0.07% or more. Preferably it is 0.22% or less, More preferably, it is 0.20% or less.
  • Si 1.0% or less Si is an element effective for increasing the TS by solid solution strengthening of steel, but it is also an element that significantly impairs the plateability and causes non-plating. In the present invention, up to 1.0% is acceptable. Therefore, the Si content is 1.0% or less, preferably 0.8% or less, more preferably 0.6% or less. The lower limit is not particularly specified, but 0.005% or more is preferable from the viewpoint of operability.
  • Mn 1.5-4.0%
  • Mn is an element effective for increasing TS by generating martensite and bainite. If it is less than 1.5%, such an effect cannot be obtained sufficiently, and polygonal ferrite is excessively formed, resulting in a decrease in TS and a deterioration in bendability. On the other hand, if it exceeds 4.0%, the steel becomes brittle and the bendability of the present invention cannot be obtained. Therefore, the Mn content is 1.5 to 4.0%. Preferably it is 2.0% or more. Preferably it is 3.5% or less.
  • P 0.100% or less P causes the grain boundary to become brittle and deteriorates the bendability, so it is desirable to reduce its amount as much as possible.
  • the present invention allows up to 0.100%. Therefore, the P content is 0.100% or less.
  • the lower limit is not specified, P of about 0.001% is inevitably mixed into steel. Therefore, if it is less than 0.001%, the production efficiency is lowered, so 0.001% or more is preferable.
  • the content is preferably reduced as much as possible.
  • the present invention allows up to 0.02%. Therefore, the S content is S: 0.02% or less.
  • the lower limit is not particularly defined, but if it is less than 0.0005%, the production efficiency is lowered, so 0.0005% or more is preferable.
  • Al acts as a deoxidizing agent and is preferably contained in the deoxidation step. However, if it is contained in a large amount, a large amount of polygonal ferrite is generated, resulting in a decrease in TS and bendability. However, up to 1.0% is allowed in the present invention. Therefore, the Al content is 1.0% or less. Preferably it is 0.010% or more. Preferably it is 0.50% or less.
  • the total of Si and Al is preferably less than 0.8% from the viewpoint of plating properties. Even if it is less than 0.8%, the effect of the present invention can be sufficiently obtained.
  • N 0.001 to 0.015%
  • N is an element that is effective in reducing the grain size by generating nitrides such as AlN. In order to acquire such an effect, it is necessary to make it 0.001% or more. On the other hand, if it exceeds 0.015%, the nitride becomes coarse and the effect of refining is reduced, and the bendability deteriorates due to the coarse nitride. Therefore, the N content is 0.001 to 0.015%. Preferably it is 0.002% or more, more preferably 0.003% or more. Preferably it is 0.012% or less, More preferably, it is 0.010% or less.
  • Ti, Nb, and Mo refine the microstructure by forming carbides during annealing, and suppress the cracking during bending by precipitation strengthening to improve bendability.
  • the content exceeds the specified value, the carbides are coarsened and the bendability is deteriorated.
  • Ti, Nb, and Mo are Ti: 0.003 to 0.100%, Nb: 0.003 to 0.100%, and Mo: 0.005 to 0.500%.
  • Ti is 0.010% or more, Nb is 0.010% or more, and Mo is 0.010% or more.
  • Ti is 0.060% or less, Nb is 0.080% or less, and Mo is 0.300% or less.
  • the balance is Fe and inevitable impurities.
  • Cr 0.005 to 2.000%
  • V 0.005 to 2.000%
  • Cu 0.005 to 2.000%
  • Ni 0.005 to 2.000%
  • B 0.0001 to 0.0050%
  • Ca 0.0001 to 0.0050%
  • REM 0.0001 to 0.0050%
  • Sb One or more selected from 0.0010 to 0.1000%
  • Sn 0.0010 to 0.5000%
  • Cr 0.005% or more
  • V 0.005% or more
  • Cu 0.005% or more are preferable.
  • Ni is an element that generates martensite and bainite and is effective in increasing the strength. In order to obtain such an effect, the content is preferably 0.005% or more.
  • it exceeds 2.000%, the properties of martensite are changed and the bendability is deteriorated. Therefore, when it contains, it is 0.005 to 2.000%.
  • B is an element that enhances the hardenability of the steel sheet, generates martensite and bainite, and is effective in increasing the strength.
  • the content is preferably 0.0001% or more.
  • Ca and REM are effective elements for improving bendability by controlling the form of inclusions. In order to obtain such effects, it is preferable to set Ca: 0.0001% or more and REM: 0.0001% or more.
  • the content of Ca and REM exceeds 0.0050%, the amount of inclusions increases and the bendability deteriorates.
  • Sb and Sn are elements that are effective in suppressing the reduction in strength of steel by suppressing denitrification and deboration. In order to obtain such effects, it is preferable to set Sb: 0.0010% or more and Sn: 0.0010 or more. On the other hand, if Sb exceeds 0.1000% and Sn exceeds 0.5000%, the bendability deteriorates due to grain boundary embrittlement. Therefore, if contained, Sb: 0.0010 to 0.1000%, Sn: 0.0010 to 0.5000%.
  • other elements may contain up to 0.002% of Zr, Mg, La, and Ce.
  • [Mn] SM / [Mn] B which is the ratio of Mn content in martensite: [Mn] SM and Mn content in bulk: [Mn] B in the range from the steel sheet surface to 20 ⁇ m in the thickness direction 1.5 or less If [Mn] SM / [Mn] B exceeds 1.5, the bendability deteriorates and the plating property also deteriorates. Although the mechanism of bendability deterioration is not clear, when the amount of Mn in hard martensite increases and the difference in Mn amount from other structures increases, void formation is promoted by the steep Mn concentration gradient at the interface during deformation. Therefore, it is presumed that cracks are likely to occur.
  • [Mn] SM / [Mn] B is 1.5 or less, preferably 1.3 or less.
  • the Mn content in the bulk is the Mn content at a position where the plate thickness is 1/4 from the surface of the steel plate toward the center of the plate thickness.
  • [Mn] SM and [Mn] B were measured by the following method. A sample was cut out from the annealed steel sheet, and the microstructure of the plate thickness section parallel to the rolling direction was observed.
  • EDX analysis was performed on the central part of the structure corresponding to the white and light gray parts excluding carbide for each visual field, and the average Mn content (Mn content in martensite) The amount was calculated as [Mn] SM .
  • [Mn] B was determined from the Mn content in martensite, the fraction other than martensite, and the Mn content other than martensite.
  • Polygonal ferrite is 0 to 80% in area ratio within the range of 20 ⁇ m from the steel sheet surface to the thickness direction. If polygonal ferrite is generated in the thickness direction of 20 ⁇ m from the steel sheet surface, the bendability deteriorates due to the hardness difference from martensite, so it is preferable to reduce it as much as possible. In the present invention, it is acceptable up to 80%. Therefore, the area ratio of polygonal ferrite in the range of 20 ⁇ m from the surface of the steel sheet to the thickness direction is set to 0 to 80%. Preferably it is less than 40%, more preferably 38% or less.
  • Martensite, bainite, and retained austenite are 20 to 100% in total in the area ratio within the range of 20 ⁇ m from the steel sheet surface to the sheet thickness direction.
  • excellent bendability can be obtained in the thin steel sheet and the plated steel sheet of the present invention by generating a large amount of a structure composed of martensite, bainite and retained austenite. Therefore, the total area ratio of martensite, bainite, and retained austenite in the range of 20 ⁇ m from the surface of the steel plate to the thickness direction is 20 to 100%.
  • it is 50% or more.
  • it is 98% or less. More preferably, it is 90% or less.
  • the martensite area ratio is preferably 15 to 40% because the bendability can be further improved by setting the martensite area ratio to 15 to 40%.
  • the total area of polygonal ferrite and martensite is 86% or less in terms of area ratio in the range of 20 ⁇ m from the steel sheet surface to the sheet thickness direction. More preferably, it is 75% or less. Flexibility is further improved by making the total amount of polygonal ferrite and martensite 86% or less.
  • the area ratio of martensite is 20 to 50% at a position of 300 ⁇ m from the steel sheet surface in the thickness direction.
  • a TS of 980 MPa or more cannot be obtained if the area ratio of martensite in the vicinity of 300 ⁇ m in the thickness direction from the steel plate surface is less than 20%.
  • the area ratio of martensite in the vicinity of 300 ⁇ m from the surface of the steel sheet is 20 to 50%, preferably 25% or more. Preferably it is 45% or less. More preferably it is less than 40%, and even more preferably it is 38% or less.
  • pearlite is basically not contained, but when it is contained, the area ratio is preferably 3% or less.
  • the area ratio of polygonal ferrite, martensite, bainite, and retained austenite is the ratio of the area of each structure to the observation area, and the method for measuring these area ratios is as follows. A sample was cut out from the annealed steel sheet, and the thickness cross section parallel to the rolling direction was polished, then corroded with 3% nital, near the steel plate surface (20 ⁇ m from the steel plate surface to the plate thickness direction), and 300 ⁇ m from the steel plate surface to the plate thickness direction. Three positions are photographed at a magnification of 1500 times with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the area ratio of each tissue is obtained from the obtained image data using Image-Pro manufactured by Media Cybernetics, and the average area ratio of the visual field is defined as the area ratio of each tissue.
  • polygonal ferrite is black with smooth curved grain boundaries
  • martensite and residual austenite are white or light gray
  • bainite is a straight grain boundary and oriented carbide or island martensite.
  • martensite includes autotempered martensite containing carbide.
  • tempered martensite which is dark gray or black and contains carbides is not generated, but such tempered martensite is preferably not included because it may deteriorate bendability. .
  • the martensite containing carbide is different from bainite because the carbide orientation is not uniform.
  • carbides can be distinguished as white dots or lines.
  • perlite can be distinguished as a black and white layered structure.
  • the component composition and steel structure of the thin steel sheet are as described above.
  • the thickness of the thin steel plate is not particularly limited, but is usually 0.4 mm or more and 6.0 mm or less.
  • the plated steel sheet of the present invention is a plated steel sheet provided with a plating layer on the surface of the thin steel sheet of the present invention.
  • the kind of plating layer is not specifically limited, For example, either a hot dipping layer and an electroplating layer may be sufficient.
  • the plating layer may be an alloyed plating layer.
  • the plated layer is preferably a galvanized layer.
  • the galvanized layer may contain Al or Mg.
  • hot dip zinc-aluminum-magnesium alloy plating Zn—Al—Mg plating layer
  • the Al content is preferably 1% by mass to 22% by mass and the Mg content is preferably 0.1% by mass to 10% by mass.
  • 1 mass% or less of 1 type (s) or 2 or more types selected from Si, Ni, Ce, and La can be contained in total.
  • a plating metal is not specifically limited, Al plating etc. may be sufficient besides the above Zn plating.
  • the composition of the plating layer is not particularly limited as long as it is a general composition.
  • Fe 20.0 mass% or less
  • Al 0.001 mass% or more and 1.0 mass% or less are contained
  • Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr Melting containing one or more selected from Co, Ca, Cu, Li, Ti, Be, Bi, and REM in a total of 0 to 3.5% by mass, the balance being Zn and inevitable impurities
  • a galvanized layer or an alloying hot-dip galvanized layer is mentioned.
  • a hot-dip galvanized layer having a plating adhesion amount of 20 to 80 g / m 2 on one side, and an alloyed hot-dip galvanized layer obtained by alloying it.
  • the Fe content in the plating layer is preferably less than 7% by mass.
  • the Fe content in the plating layer is preferably 7 to 15% by mass.
  • the method for producing a hot-rolled steel sheet according to the present invention includes a hot-rolling to a slab having the component composition described in the above-mentioned “component composition of hot-rolled steel sheet, cold-rolled full hard steel sheet, thin steel sheet, and plated steel sheet”.
  • the temperature from the second pass to the final pass from the final pass is 800 to 950 ° C
  • the cumulative rolling reduction from the second pass to the final pass is from 10 to 40%
  • Set the rolling reduction to 8-25% start cooling in 0.5-3.0 s after finishing rolling, cool in the temperature range of 600-720 ° C with an average cooling rate of 30 ° C / s or more, and wind up at 590 ° C or less Is the method.
  • the temperature is the steel sheet surface temperature unless otherwise specified.
  • the steel sheet surface temperature can be measured using a radiation thermometer or the like.
  • the average cooling rate is ((surface temperature before cooling ⁇ surface temperature after cooling) / cooling time).
  • the production method for production of the slab is not particularly limited, and a known production method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Thereafter, in order to prevent macro segregation, a slab (steel material) is preferably formed by a continuous casting method. Also, the slab may be formed by a known casting method such as ingot-bundling rolling or continuous slab casting. In order to hot-roll the slab, the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied.
  • the heating temperature of the slab is preferably 1300 ° C. or lower.
  • the slab temperature is the temperature of the slab surface.
  • the rough rolling conditions for rough rolling are not particularly limited. Moreover, the rough bar after rough rolling can also be heated. Moreover, what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied.
  • the temperature from the second pass to the final pass counting from the final pass is 800 to 950 ° C
  • finish rolling it is important from the viewpoint of forming a hot rolled structure and an annealed structure that the cumulative rolling reduction and temperature from the second pass to the final pass are counted from the final pass.
  • finish rolling temperature is less than 800 ° C, ferrite is generated, causing Mn concentration unevenness in the surface layer of the hot rolled sheet, and in the annealing, Mn concentration to austenite is caused.
  • the temperature from the second pass to the final pass, counting from the final pass is 800-950 ° C.
  • it is 830 ° C or more.
  • it is 920 degrees C or less.
  • Cumulative reduction ratio from the second pass to the final pass counting from the final pass is 10-40% If the cumulative reduction ratio from the second pass to the final pass, counting from the final pass, is less than 10%, the processed austenite remains and ferrite formation is promoted, resulting in Mn concentration unevenness in the surface layer of the hot-rolled sheet, and annealing. At the same time, Mn concentration of austenite is caused, and [Mn] SM / [Mn] B exceeds 1.5, and the bendability and the plating property deteriorate.
  • the rolling reduction of the final pass is 8-25%.
  • the rolling reduction of the final pass is 8-25%.
  • it is 10% or more.
  • it is 20% or less.
  • Cooling starts 0.5 to 3.0 s after finishing rolling. If the time from finishing rolling to starting cooling is less than 0.5 s, the strain buildup in austenite is too large and the formation of ferrite is promoted. the resulting density unevenness, inviting Mn enrichment of austenite during annealing, [Mn] SM / [Mn ] B is is degraded becomes bent property and plating property to 1.5 greater. On the other hand, if it exceeds 3.0 s, the strain in the austenite is completely released, and a coarse structure remains on the surface layer of the hot-rolled sheet, and during the subsequent annealing, coarse polygonal ferrite is invited and Mn is concentrated in the austenite. As a result, [Mn] SM / [Mn] B exceeds 1.5 and the bendability and plating properties deteriorate. Therefore, the time from finish rolling to the start of cooling is 0.5 to 3.0 s.
  • Cooling in the temperature range of 600-720 ° C with an average cooling rate of 30 ° C / s or more When the average cooling rate in the temperature range of 600 to 720 ° C is less than 30 ° C / s, ferrite is formed, causing Mn concentration unevenness on the surface layer of the hot-rolled sheet, and causing Mn concentration of austenite during annealing. , [Mn] SM / [Mn] B exceeds 1.5 and the bendability and plating properties deteriorate. Therefore, the average cooling rate in the temperature range of 600 to 720 ° C is 30 ° C / s or more.
  • the upper limit is not particularly specified, but if it exceeds 1000 ° C./s, there may be a variation in characteristics due to temperature unevenness, so 1000 ° C./s or less is preferable.
  • the winding temperature is 590 ° C. or less. From the viewpoint of bendability, the temperature is preferably over 300 ° C.
  • the steel sheet After the winding, the steel sheet is cooled by air cooling or the like, and used for manufacturing the following cold-rolled full hard steel sheet.
  • a hot-rolled steel plate becomes a transaction object as an intermediate product, it is normally a transaction object in a cooled state after winding.
  • the manufacturing method of the cold-rolled full hard steel plate of the present invention is a manufacturing method in which the hot-rolled steel plate obtained by the above-described manufacturing method is cold-rolled at a reduction rate of 20% or more.
  • the rolling reduction needs to be 20% or more. In less than 20% occurs coarse ferrite during annealing, Mn is concentrated in the austenite, [Mn] SM / [Mn ] B is 1.5 super next bending resistance and plating deteriorates. Therefore, when cold rolling is performed, the rolling reduction is 20% or more, preferably 30% or more.
  • the upper limit is not particularly defined, but is preferably 95% or less from the viewpoint of shape stability and the like.
  • the method for producing a thin steel plate according to the present invention comprises heating the hot-rolled steel plate or the cold-rolled full hard steel plate obtained by the above-mentioned production method to 730 to 900 ° C., then 5 to a cooling stop temperature of 400 to 590 ° C. Conditions for cooling at an average cooling rate of 50 ° C./s, holding for 10 to 1000 s in the temperature range of 730 to 900 ° C. and holding for 1000 s or less in the temperature range of 400 to 590 ° C. This is a method of annealing. After annealing, temper rolling may be further performed as necessary.
  • the annealing temperature is 730 to 900 ° C.
  • the annealing temperature is 740 degreeC or more.
  • it is 860 degrees C or less.
  • the average cooling rate from the cooling annealing temperature to the cooling stop temperature of 400 to 590 ° C is less than 5 ° C at an average cooling rate of 5 to 50 ° C / s to the cooling stop temperature of 400 to 590 ° C, excessive polygonal ferrite is generated. Thus, the microstructure of the present invention cannot be obtained. On the other hand, if it exceeds 50 ° C./s, the bainite transformation is promoted and the microstructure of the present invention cannot be obtained. Therefore, the average cooling rate from the annealing temperature to the cooling stop temperature of 400 to 590 ° C is set to 5 to 50 ° C / s. Preferably, it is 8 ° C./s or more.
  • the cooling stop temperature is 400 to 590 ° C.
  • it is 440 degreeC or more.
  • it is 560 degrees C or less.
  • the holding time is 10 to 1000 s.
  • it is 30 s or more.
  • it is 500 s or less.
  • the holding time is the residence time (passing time) of the steel sheet in the annealing temperature range and does not necessarily have to be kept constant, and includes heating and cooling conditions in the range of 730 to 900 ° C.
  • the holding time at 400 to 590 ° C. is 1000 s or less, preferably 500 s or less, more preferably 200 s or less.
  • the said holding time is the residence time (passing time) of the steel plate in the said temperature range, and does not necessarily need to be constant holding.
  • Dew point in the temperature range of 730 to 900 ° C is -40 ° C or less (preferred conditions)
  • the concentration of Si and Mn on the steel sheet surface can be reduced, and [Mn] SM / [Mn] B can also be reduced. Further, the plating property can be further improved. Therefore, the dew point in the temperature range of 730 to 900 ° C. is preferably ⁇ 40 ° C. or less. More preferably, it is ⁇ 45 ° C. or lower.
  • the lower limit of the dew point is not particularly defined, but if it is less than ⁇ 80 ° C., the effect is saturated and disadvantageous in terms of cost, it is preferably ⁇ 80 ° C. or higher.
  • the temperature in the above temperature range is based on the steel sheet surface temperature. That is, when the steel sheet surface temperature is in the above temperature range, the dew point is adjusted to the above range.
  • Temper rolling elongation 0.6% or less (preferred conditions) Temper rolling is performed as necessary after the cooling. By temper rolling, dislocations are introduced and aging resistance decreases. Therefore, the elongation of temper rolling is preferably 0.6% or less.
  • the elongation of temper rolling is preferably 0.1% or more.
  • a thin steel plate when a thin steel plate becomes a transaction object, it is cooled to room temperature after cooling or after the above-described temper rolling and becomes a transaction object.
  • a desired thin steel sheet can be obtained only by primary annealing.
  • secondary annealing can be performed under normal conditions after the primary annealing, considering the cost and the like, the secondary annealing is not performed and only the primary annealing is preferable.
  • the method for producing a plated steel sheet according to the present invention is a method for producing a plated steel sheet, in which the thin steel sheet obtained above is plated.
  • the plating process include a hot dip galvanizing process and a process of alloying after hot dip galvanizing.
  • a plating layer may be formed by electroplating such as Zn—Ni electroalloy plating, or hot dip zinc-aluminum-magnesium alloy plating may be performed.
  • Zn plating is preferable, but plating treatment using other metal such as Al plating may be used.
  • the case of hot dipping will be described as an example.
  • the hot dipping is performed by dipping the steel plate in the plating bath.
  • the temperature is preferably adjusted to a temperature range of 450 ° C. or higher and 550 ° C. or higher. More preferably, it is 460 degreeC or more. More preferably, it is 540 degrees C or less.
  • alloying treatment may be performed as necessary.
  • the processing temperature and processing time in the alloying process are not particularly limited, and may be set as appropriate.
  • the steel plate may be immediately manufactured using this thin steel plate.
  • hot dip galvanizing treatment and alloyed hot dip galvanizing treatment as necessary were performed to produce hot dip galvanized steel plate (GI) and galvannealed steel plate (GA).
  • Annealing was performed in the laboratory under the conditions shown in Table 2 using a heat treatment and plating apparatus.
  • the hot dip galvanized steel sheet was immersed in a plating bath at 465 ° C. to form a plating layer having an adhesion amount of 35 to 45 g / m 2 per side.
  • the alloyed galvanized steel sheet was subjected to an alloying treatment that was held at 500 to 600 ° C.
  • the area ratio of each phase was evaluated by the following method. Cut out from the steel plate so that the cross section parallel to the rolling direction becomes the observation surface, and after polishing, corrosion appears with 3% nital, near the surface of the steel plate at a magnification of 2000 times with a scanning electron microscope (SEM) 3 fields of view were taken at a position of 20 ⁇ m in the direction and 300 ⁇ m in the thickness direction from the surface of the steel sheet. From the obtained image data, the area ratio of each tissue was determined using Image-Pro manufactured by Media Cybernetics, and the average area ratio of the visual field was defined as the area ratio of each tissue. 10 fields of view were taken for 1/4 part of the plate thickness.
  • SEM scanning electron microscope
  • polygonal ferrite is black with smooth curved grain boundaries
  • martensite and residual austenite are white or light gray
  • bainite is a straight grain boundary and oriented carbide or island martensite.
  • Gray or dark gray In the present invention, martensite includes autotempered martensite containing carbide.
  • JIS No. 5 tensile specimen (JIS Z2201) taken from a hot-dip galvanized steel sheet (GI) or alloyed hot-dip galvanized steel sheet (GA) in a direction perpendicular to the rolling direction, and a strain rate of 10 -3 / s.
  • a tensile test in accordance with Z 2241 was conducted to obtain TS.
  • TS 980 MPa or more was accepted.
  • a strip-shaped test piece with a width of 30 mm and a length of 100 mm is taken from a hot-dip galvanized steel sheet (GI) or alloyed hot-dip galvanized steel sheet (GA) with the direction parallel to the rolling direction as the test axis direction.
  • a bending test was performed. Stroke speed is 500 mm / s, indentation load is 10 tons, pressing holding time is 5 seconds, 90 ° V bending test is performed, and the ridgeline of the bending apex is observed with a 10x magnifier, and cracks of 0.5 mm or more are not recognized
  • the minimum bending radius (mm) was obtained, and R / t obtained by dividing the minimum bending radius by the plate thickness (mm) was calculated. An R / t of 2.5 or less was accepted.
  • a strip-shaped test piece with a width of 30 mm and a length of 30 mm is taken from a hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet, and the surface of the steel sheet is observed with a 10-fold magnifier. What was not accepted was considered acceptable.
  • TS was 980 MPa or more
  • R / t was 2.5 or less
  • any one or more of TS, R / t, and plating property was inferior.
  • No. 27 is an invention example in which the dew point is outside the preferred range.
  • [Mn] SM / [Mn] B decreased compared to other examples of the invention within the preferred dew point range, and although there was no problem as an effect, the bendability and the plating property were slightly inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

TS:980MPa以上、曲げ性およびめっき性に優れた薄鋼板、めっき鋼板および熱延鋼板、冷延フルハード鋼板および薄鋼板の製造方法を提供する。 所定の成分組成を有し、かつTi:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%から選ばれる1種以上を含有する。表面から板厚方向に20μmの範囲においてポリゴナルフェライトが0~80%、マルテンサイトとベイナイトおよび残留オーステナイトが合計で20~100%、表面から板厚方向に20μmの範囲に存在するマルテンサイト中のMn量:[Mn]SMとバルク中のMn量:[Mn]Bが、[Mn]SM/[Mn]B≦1.5、表面から板厚方向に300μmの位置においてマルテンサイトが20~50%である。

Description

薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法に関するものである。
 自動車の衝突安全性改善と燃費向上の観点から自動車用部品に用いられる鋼板においては高強度化が求められている。しかしながら、材料の強化は一般に加工性の低下を招く。そのため、強度と加工性の両方に優れた鋼板の開発が必要とされている。特に、引張強度(以下、TSと称することもある)が980MPaを超える高強度鋼板は成形難度が高いため、メンバーやロッカー部品などのようにストレート形状で曲げ主体の加工が施されることが多く、曲げ性に優れた鋼板が求められている。また、このような部品は腐食環境下にあるため、高い防錆性が要求される。
 曲げ加工においては、表層近傍の硬質組織が曲げ加工の際にボイド発生を促し、亀裂の起点となるため、TS が980MPa超級鋼においては硬質組織に関連したボイドの発生を抑制することが曲げ性改善の観点から極めて重要である。
 上記に対して、特許文献1では、焼戻しマルテンサイトとフェライトの硬さを制御することで曲げ性に優れた溶融亜鉛めっき鋼板を得る技術が開示されている。
特許文献2では、フェライトを硬化させつつマルテンサイト低減することで曲げ性に優れた熱延鋼板を得る技術が開示されている。
特許文献3では、表層付近の強度を下げることで曲げ性に優れた溶融亜鉛めっき鋼板を得る技術が開示されている。
特開2010-275627号公報 特開2006-161111号公報 特開2015-34334号公報
 しかしながら、特許文献1では鋼板表面において発生する微小割れについては検討されておらず、改善の余地がみられる。また、めっき性を阻害するSiやMnが多量に含まれているにも関わらず、製造技術において対処策が開示されていないことから不めっきが発生して防錆が不十分になっているものと考えられる。
特許文献2は、熱延鋼板のため、めっき性やめっきを付与した状態での曲げ加工性、さらには曲げ加工表面の微小亀裂について検討されておらず、改善の余地がある。
特許文献3は鋼板表面において発生する微小割れについては検討されておらず、改善の余地がみられる。
 本発明はかかる事情に鑑みてなされたものであって、引張強さ:980MPa以上を有し、曲げ性およびめっき性に優れためっき鋼板およびその製造方法を提供することを目的とするとともに、上記めっき鋼板を得るために必要な薄鋼板を提供すること、上記めっき鋼板を得るために必要な熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法を提供することも目的とする。
 本発明者らは上記課題を解決するために、鋭意研究を重ねた。その結果、以下の知見を得た。
鋼板表層近傍に存在するマルテンサイトに関連したボイドはマルテンサイトと他相との硬度差や、マルテンサイトの分率、マルテンサイト中のMn量に強く影響される。また、鋼板表面にMn濃化部が生じるとそこを起点とした微小の不めっきを生じる。
これに対して、鋼成分組成およびミクロ組織を適正化した上で、鋼板表面から板厚方向に20μmの範囲に存在するマルテンサイト中のMn量[Mn]SMとバルク中のMn量[Mn]Bを[Mn]SM/[Mn]B≦1.5とすることで、TS:980MPa超級鋼板において、微小の不めっきを生じずかつ優れた曲げ性を発現することを知見した。
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
 [1]質量%で、C:0.05~0.25%、Si:1.0%以下、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al: 1.0%以下、N:0.001~0.015%、かつTi:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%から選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板表面から板厚方向に20μmの範囲において、面積率で、ポリゴナルフェライトが0~80%、マルテンサイトとベイナイトおよび残留オーステナイトが合計で20~100%であり、鋼板表面から板厚方向に20μmの範囲に存在するマルテンサイト中のMn量:[Mn]SMと鋼板表面から板厚中心方向に板厚1/4の位置(バルク中)のMn量:[Mn]Bが、[Mn]SM/[Mn]B≦1.5であり、鋼板表面から板厚方向に300μmの位置において、マルテンサイトの面積率が20~50%であることを特徴とする薄鋼板。
[2]さらに、質量%で、Cr:0.005~2.000%、V:0.005~2.000%、Cu:0.005~2.000%、Ni:0.005~2.000%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sb:0.0010~0.1000%、Sn:0.0010~0.5000%から選ばれる1種以上を含有することを特徴とする上記[1]に記載の薄鋼板。
[3]上記[1]または[2]に記載の薄鋼板の表面にめっき層を備えることを特徴とするめっき鋼板。
[4]前記めっき層が、溶融亜鉛めっき層または合金化溶融亜鉛めっき層であることを特徴とする上記[3]に記載のめっき鋼板。
[5]上記[1]または[2]に記載の成分を有するスラブに熱間圧延を施すにあたり、
仕上げ圧延では、最終パスから数えて2番目のパスから最終パスまでの温度を800~950℃、最終パスから数えて2番目のパスから最終パスまでの累計圧下率を10~40%、最終パスの圧下率を8~25%とし、仕上げ圧延終了後0.5~3.0sで冷却を開始し、600~720℃の温度域を30℃/s以上の平均冷却速度で冷却し、590℃以下で巻取ることを特徴とする熱延鋼板の製造方法。
[6]上記[5]に記載の製造方法で得られた熱延鋼板に対して、20%以上の圧下率で冷間圧延を施すことを特徴とする冷延フルハード鋼板の製造方法。
[7]上記[5]に記載の製造方法で得られた熱延鋼板、または、上記[6]に記載の製造方法で得られた冷延フルハード鋼板に対して、730~900℃に加熱し、次いで400~590℃の冷却停止温度まで5~50℃/sの平均冷却速度で冷却し、かつ、前記加熱から前記冷却を行う際の730~900℃の温度域で10~1000s保持し、400~590℃の温度域で1000s以下保持する、焼鈍を施すことを特徴とする薄鋼板の製造方法。
[8]730~900℃の温度域における露点を-40℃以下とすることを特徴とする上記[7]に記載の薄鋼板の製造方法。
[9]上記[7]または[8]で得られた薄鋼板にめっきを施すことを特徴とするめっき鋼板の製造方法。
 なお、本発明において、「高強度」とはTSが980MPa以上であり、「曲げ性に優れた」とは後述するR/tが2.5以下であり、「めっき性に優れた」とは亜鉛めっき鋼板表面を10倍のルーペで観察した際に直径が0.5mm以上の不めっきが認められないことである。また、本発明で意図する優れた曲げ性を得る観点から、TSは好ましくは1180MPa未満、より好ましくは1175MPa以下である。
 本発明によれば、引張強さ:980MPa以上を有し、曲げ性およびめっき性に優れためっき鋼板が得られる。上記特性を有するため、本発明のめっき鋼板は自動車部品用素材として好適である。
 本発明の薄鋼板、並びに、本発明の熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および薄鋼板の製造方法は、上記の優れためっき鋼板を得るための中間製品または中間製品の製造方法として、自動車の衝突安全性改善と燃費向上に寄与する。
 以下、本発明を詳細に説明する。
 本発明は、薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法である。先ず、これらの関係について説明する。
 本発明の薄鋼板は、本発明のめっき鋼板を得るための中間製品である。スラブ等の鋼素材から出発して、熱延鋼板、冷延フルハード鋼板、薄鋼板となる製造過程を経てめっき鋼板になる。本発明の薄鋼板は上記過程の薄鋼板である。
 また、本発明の熱延鋼板の製造方法は、上記過程の熱延鋼板を得るまでの製造方法である。
 本発明の冷延フルハード鋼板の製造方法は、上記過程において熱延鋼板から冷延フルハード鋼板を得るまでの製造方法である。
 本発明の薄鋼板の製造方法は、上記過程において冷延フルハード鋼板から薄鋼板を得るまでの製造方法である。
 本発明のめっき鋼板の製造方法は、上記過程において薄鋼板からめっき鋼板を得るまでの製造方法である。
 上記関係があることから、熱延鋼板、冷延フルハード鋼板、薄鋼板、めっき鋼板の成分組成は共通し、薄鋼板、めっき鋼板の鋼組織が共通する。以下、共通事項、薄鋼板、めっき鋼板、製造方法の順で説明する。
 <熱延鋼板、冷延フルハード鋼板、薄鋼板、めっき鋼板の成分組成>
 熱延鋼板、冷延フルハード鋼板、薄鋼板、めっき鋼板の成分組成は、質量%で、C:0.05~0.25%、Si:1.0%以下、Mn:1.5~4.0%、P:0.100%以下、S:0.02%以下、Al:1.0%以下、N:0.001~0.015%、かつTi:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%から選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる。
 また、上記成分組成は、質量%で、Cr:0.005~2.000%、V:0.005~2.000%、Cu:0.005~2.000%、Ni:0.005~2.000%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sb:0.0010~0.1000%、Sn:0.0010~0.5000%から選ばれる1種以上を含有してもよい。
 以下、各成分について説明する。下記の説明において成分の含有量を表す「%」は「質量%」を意味する。また、「量」は「含有量」を意味する。
C:0.05~0.25%
Cは、マルテンサイトやベイナイトを生成させてTSを上昇させるのに有効な元素である。0.05%未満ではこのような効果が十分得られず、980MPa以上のTSが得られない。一方、C含有量が0.25%を超えるとマルテンサイトが硬化して曲げ性の劣化が顕著になる。したがって、C含有量は0.05~0.25%とする。好ましくは0.06%超え、より好ましくは0.07%以上である。好ましくは0.22%以下、より好ましくは0.20%以下である。
 Si:1.0%以下
Siは、鋼を固溶強化してTSを上昇させるのに有効な元素であるが、めっき性を著しく阻害して不めっきを招く元素でもある。本発明では1.0%まで許容できる。したがって、Si含有量は1.0%以下、好ましくは0.8%以下、より好ましくは0.6%以下とする。下限は特に規定しないが、操業性の観点からは0.005%以上が好ましい。
 Mn:1.5~4.0%
Mnは、マルテンサイトやベイナイトを生成させてTSを上昇させるのに有効な元素である。1.5%未満ではこうした効果が十分得られず、また過剰にポリゴナルフェライトが生成してTSの低下や曲げ性の劣化を招く。一方、4.0%を超えると鋼が脆化して本発明の曲げ性が得られなくなる。したがって、Mn含有量は1.5~4.0%とする。好ましくは2.0%以上とする。好ましくは3.5%以下とする。
 P:0.100%以下
Pは、粒界を脆化させて曲げ性を劣化させるため、その量は極力低減することが望ましい。しかし、本発明では0.100%まで許容できる。したがって、P含有量は0.100%以下とする。下限は特に規定しないが、0.001%程度のPは不可避的に鋼中に混入する場合がある。よって0.001%未満では生産能率の低下を招くため、0.001%以上が好ましい。
 S:0.02%以下
Sは、介在物を増加させて曲げ性を劣化させるため、その含有は極力低減することが好ましい。しかし、本発明では0.02%まで許容できる。したがって、S含有量はS:0.02%以下とする。下限は特に規定しないが、0.0005%未満では生産能率の低下を招くため、0.0005%以上が好ましい。
 Al:1.0%以下
Alは、脱酸剤として作用し、脱酸工程で含有することが好ましいが、多量に含有するとポリゴナルフェライトが多量に生成してTSの低下や曲げ性の劣化を招く。しかし、本発明では1.0%まで許容される。したがって、Al含有量は1.0%以下とする。好ましくは0.010%以上である。好ましくは0.50%以下である。
 SiとAlの合計はめっき性の点から0.8%未満が好ましい。0.8%未満でも、十分に本発明の効果を得ることができる。
 N:0.001~0.015%
NはAlN等の窒化物を生成させて、粒径の微細化に有効な元素である。このような効果を得るには0.001%以上とする必要がある。一方、0.015%を超えると窒化物が粗大化して細粒化効果が減退するばかりか粗大な窒化物によって曲げ性が劣化する。したがって、N含有量は0.001~0.015%とする。好ましくは0.002%以上、より好ましくは0.003%以上である。好ましくは0.012%以下、より好ましくは0.010%以下である。
 Ti:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%から選ばれる1種以上
Ti、Nb、Moは焼鈍時に炭化物を形成することで組織を微細化するとともに析出強化により曲げ加工の際の亀裂を抑制して曲げ性を向上させる。このような効果を得るにはTi:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%から選ばれる1種以上を含有する必要がある。一方、含有量がそれぞれ規定値を超えると炭化物が粗大化して逆に曲げ性を劣化させる。したがって、含有する場合、Ti、Nb、Moは、Ti:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%とする。好ましくは、Tiは0.010%以上、Nbは0.010%以上、Moは0.010%以上である。好ましくは、Tiは0.060%以下、Nbは0.080%以下、Moは0.300%以下である。
 残部はFeおよび不可避的不純物である。
 以上が本発明の基本成分組成である。必要に応じて、以下の元素の1種以上を適宜含有させることができる。
Cr:0.005~2.000%、V:0.005~2.000%、Cu:0.005~2.000%、Ni:0.005~2.000%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sb:0.0010~0.1000%、Sn:0.0010~0.5000%から選ばれる1種以上
Cr、V、Cuはマルテンサイトやベイナイトを生成させ、高強度化に有効な元素である。このような効果を得るにはCr:0.005%以上、V:0.005%以上、Cu:0.005%以上とすることが好ましい。一方、Crが2.000%、Vが2.000%、Cuが2.000%を超えると、曲げ性の劣化やめっき性を阻害による不めっきを招く。よって、含有する場合は、Cr:0.005~2.000%、V:0.005~2.000%、Cu:0.005~2.000%とする。
Niはマルテンサイトやベイナイトを生成させ、高強度化に有効な元素である。このような効果を得るには0.005%以上とすることが好ましい。一方、2.000%を超えるとマルテンサイトの性質が変化して曲げ性の劣化を招く。よって、含有する場合は、0.005~2.000%とする。
Bは鋼板の焼入れ性を高め、マルテンサイトやベイナイトを生成させ、高強度化に有効な元素である。こうした効果を得るには0.0001%以上とすることが好ましい。一方、Bの含有量が0.0050%を超えると介在物が増加して、曲げ性が劣化する。よって、含有する場合は、0.0001~0.0050%とする。
Ca、REMは介在物の形態制御により曲げ性の向上に有効な元素である。こうした効果を得るにはCa:0.0001%以上、REM:0.0001%以上とすることが好ましい。一方、Ca、REMの含有量がそれぞれ0.0050%を超えると、介在物量が増加して曲げ性が劣化する。よって、含有する場合は、Ca:0.0001~0.0050%、REM:0.0001~0.0050%とする。
Sb、Snは脱窒、脱硼等を抑制して、鋼の強度低下抑制に有効な元素である。こうした効果を得るにはSb:0.0010%以上、Sn:0.0010以上とすることが好ましい。一方、Sbが0.1000%、Snが0.5000%を超えると粒界脆化により曲げ性が劣化する。よって、含有する場合は、Sb:0.0010~0.1000%、Sn:0.0010~0.5000%とする。
 また、本発明では、その他の元素としてZr、Mg、La、Ceを合計で0.002%まで含んでも構わない。
 鋼板表面から板厚方向に20μmまでの範囲に存在するマルテンサイト中のMn量:[Mn]SMとバルク中のMn量:[Mn]Bの比である[Mn]SM/[Mn]Bが1.5以下
[Mn]SM/[Mn]Bが1.5を超えると曲げ性が劣化し、まためっき性も劣化する。曲げ性劣化のメカニズムは明らかではないが硬質なマルテンサイト中のMn量が高まり、他組織とのMn量の差が大きくなると、変形の際にその界面の急峻なMn濃度勾配によりボイド生成が助長されて、亀裂が生じやすくなるものと推測される。このような理由から、[Mn]SM/[Mn]Bは1.5以下、好ましくは1.3以下とする。
なお、バルク中のMn量とは、鋼板表面から板厚中心方向に板厚1/4の位置におけるMn含有量である。
また、[Mn]SM、[Mn]Bは、以下の方法にて測定した。焼鈍後の鋼板よりサンプルを切り出し、圧延方向に平行な板厚断面をミクロ組織観察した。鋼板表面から板厚方向に20μmまでの範囲について、炭化物を除く白色および明灰色部に該当する組織の中央部を各視野10点ずつEDX分析し、その平均Mn含有量(マルテンサイト中のMn含有量)を算出し、これを[Mn]SMとした。鋼板表面から板厚中心方向に板厚1/4の位置について、炭化物を除く白色および明灰色部に該当する組織の中央部を各視野10点ずつEDX分析し、その平均Mn含有量(マルテンサイト中のMn含有量)を算出するとともに、白色および明灰色部以外を各視野10点ずつEDX分析し、その平均Mn含有量(マルテンサイト以外のMn含有量)を算出し、マルテンサイトの分率とマルテンサイト中のMn含有量およびマルテンサイト以外の分率とマルテンサイト以外のMn含有量から[Mn]Bを求めた。
 <薄鋼板、めっき鋼板の鋼組織>
 鋼板表面から板厚方向に20μmの範囲において、面積率で、ポリゴナルフェライトが0~80%
鋼板表面から板厚方向に20μmの範囲においてポリゴナルフェライトが生じるとマルテンサイトとの硬度差により曲げ性が劣化するため、極力低減することが好ましい。本発明では80%まで許容できる。したがって、鋼板の表面から板厚方向に20μmの範囲におけるポリゴナルフェライトの面積率は0~80%とする。好ましくは40%未満、より好ましくは38%以下とする。
 鋼板表面から板厚方向に20μmの範囲において、面積率で、マルテンサイトとベイナイトおよび残留オーステナイトが、合計で20~100%
鋼板の表面から板厚方向に20μmの範囲において、マルテンサイト、ベイナイトおよび残留オーステナイトからなる組織を多く生成させることで、本発明の薄鋼板およびめっき鋼板において優れた曲げ性が得られる。したがって、鋼板の表面から板厚方向に20μmの範囲におけるマルテンサイトとベイナイトおよび残留オーステナイトの面積率の合計は20~100%とする。好ましくは50%以上である。好ましくは98%以下である。より好ましくは90%以下である。なお、上記組織のうち、マルテンサイトの面積率を15~40%とすることで曲げ性をさらに改善できるため、マルテンサイトの面積率は15~40%とすることが好ましい。
 鋼板表面から板厚方向に20μmの範囲において、面積率で、ポリゴナルフェライトとマルテンサイトが、合計で86%以下が好ましい。より好ましくは75%以下である。ポリゴナルフェライトとマルテンサイトを合計で86%以下とすることにより曲げ性がさらに向上する。
 鋼板表面から板厚方向に300μmの位置において、マルテンサイトの面積率が20~50%
鋼鈑表面から板厚方向に300μm付近におけるマルテンサイトの面積率が20%未満では980MPa以上のTSが得られない。一方、50%を超えると曲げ性が劣化する。したがって、鋼板の表面から300μm付近におけるマルテンサイトの面積率は20~50%、好ましくは25%以上とする。好ましくは45%以下とする。より好ましくは40%未満、さらにより好ましくは38%以下である。
 なお、本発明では基本的にはパーライトは含有しないが、含有する場合は面積率で3%以下とすることが好ましい。
 本発明においてポリゴナルフェライト、マルテンサイト、ベイナイト、および残留オーステナイトの面積率とは、観察面積に占める各組織の面積の割合のことであり、これらの面積率の測定方法は以下の通りである。焼鈍後の鋼板よりサンプルを切り出し、圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、鋼板表面近傍(鋼板表面から板厚方向に20μm)および鋼板表面から板厚方向に300μm位置をSEM(走査型電子顕微鏡)で1500倍の倍率でそれぞれ3視野撮影する。得られた画像データからMedia Cybernetics社製のImage-Proを用いて各組織の面積率を求め、視野の平均面積率を各組織の面積率とする。前記画像データにおいて、ポリゴナルフェライトは滑らかな曲線状の粒界を持つ黒、マルテンサイトおよび残留オーステナイトは白または明灰色、ベイナイトは直線的な粒界を持ち方位の揃った炭化物または島状マルテンサイトを含む灰色または暗灰色として区別される。なお、本発明において、マルテンサイトは炭化物を含むオートテンパードマルテンサイトを含む。また、本発明の方法によれば暗灰色または黒色で炭化物を含むという特徴がある焼戻しマルテンサイトは生成しないが、このような焼戻しマルテンサイトは曲げ性を劣化させる場合があるため含まないことが好ましい。なお、炭化物を含むマルテンサイトは、炭化物方位は揃っておらずベイナイトとは異なる。また、本発明において炭化物は、白色の点または線状として区別できる。また、本発明では含有しないが、パーライトは黒色と白色の層状組織として区別できる。
 <薄鋼板>
 薄鋼板の成分組成および鋼組織は上記の通りである。また、薄鋼板の厚みは特に限定されないが、通常、0.4mm以上6.0mm以下である。
 <めっき鋼板>
 本発明のめっき鋼板は、本発明の薄鋼板の表面にめっき層を備えるめっき鋼板である。めっき層の種類は特に限定されず、例えば、溶融めっき層、電気めっき層のいずれでもよい。また、めっき層は合金化されためっき層でもよい。めっき層は亜鉛めっき層が好ましい。亜鉛めっき層はAlやMgを含有してもよい。また、溶融亜鉛-アルミニウム-マグネシウム合金めっき(Zn-Al-Mgめっき層)も好ましい。この場合、Al含有量を1質量%以上22質量%以下、Mg含有量を0.1質量%以上10質量%以下とすることが好ましい。さらに、Si、Ni、Ce、Laから選択する1種または2種以上を合計で1質量%以下含有することができる。なお、めっき金属は特に限定されないため、上記のようなZnめっき以外に、Alめっき等でもよい。
 また、めっき層の組成も特に限定されず、一般的な組成であればよい。めっき層としては、Fe:20.0質量%以下、Al:0.001質量%以上1.0質量%以下を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0質量%以上3.5質量%以下含有し、残部がZn及び不可避的不純物からなる溶融亜鉛めっき層または合金化溶融亜鉛めっき層が挙げられる。例えば、片面あたりのめっき付着量が20~80g/mの溶融亜鉛めっき層、これがさらに合金化された合金化溶融亜鉛めっき層を有することが好ましい。また、めっき層が溶融亜鉛めっき層の場合にはめっき層中のFe含有量は7質量%未満が好ましい。めっき層が合金化溶融亜鉛めっき層の場合にはめっき層中のFe含有量は7~15質量%が好ましい。
 次に本発明の製造方法について、説明する。
 <熱延鋼板の製造方法>
 本発明の熱延鋼板の製造方法は、上記の「熱延鋼板、冷延フルハード鋼板、薄鋼板、めっき鋼板の成分組成」で説明した成分組成を有するスラブに熱間圧延を施すにあたり、仕上げ圧延では、最終パスから数えて2番目のパスから最終パスまでの温度を800~950℃、最終パスから数えて2番目のパスから最終パスまでの累計圧下率を10~40%、最終パスの圧下率を8~25%とし、仕上げ圧延終了後0.5~3.0sで冷却を開始し、600~720℃の温度域を30℃/s以上の平均冷却速度で冷却し、590℃以下で巻取る方法である。以下、各条件について説明する。なお、以下の説明において、温度は特に断らない限り鋼板表面温度とする。鋼板表面温度は放射温度計等を用いて測定し得る。また、平均冷却速度は((冷却前の表面温度-冷却後の表面温度)/冷却時間)とする。
 スラブの製造
スラブ製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、マクロ偏析を防止するため連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊-分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。
スラブを熱間圧延するには、スラブを一旦室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。
スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止するため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。なお、スラブ温度はスラブ表面の温度である。
 次いで、熱間圧延を施す。粗圧延の粗圧延条件については特に限定されない。また、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上げ圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。
 最終パスから数えて2番目のパスから最終パスまでの温度を800~950℃
本発明では、仕上げ圧延において、最終パスから数えて2番目のパスから最終パスまでの累計圧下率、温度を規定することが熱延組織および焼鈍組織形成の点から重要である。
仕上げ圧延温度が800℃未満ではフェライトが生成して、熱延板の表層においてMnの濃度ムラを生じ、焼鈍の際にオーステナイトへのMn濃化を招いて、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。一方、950℃を超えると熱延板の表層に粗大粒が生成し、その後の焼鈍の際に粗大なポリゴナルフェライトを招いてオーステナイト中にMnが濃化し、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。したがって、最終パスから数えて2番目のパスから最終パスまでの温度は800~950℃とする。好ましくは830℃以上である。好ましくは920℃以下である。
 最終パスから数えて2番目のパスから最終パスまでの累計圧下率を10~40%
最終パスから数えて2番目のパスから最終パスまでの累計圧下率が10%未満では、加工オーステナイトが残留してフェライト生成が助長され、熱延板の表層においてMnの濃度ムラを生じ、焼鈍の際にオーステナイトのMn濃化を招いて、[Mn]SM/[Mn]Bが1.5超になって曲げ性およびめっき性が劣化する。一方、最終パスから数えて2番目のパスから最終パスまでの累計圧下率が40%超えでは、再結晶が過度に促進されて熱延板の表層に粗大組織が残留し、その後の焼鈍の際に粗大なポリゴナルフェライトを招いてオーステナイト中にMnが濃化し、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。
 最終パスの圧下率を8~25%
最終パスの圧下率が8%未満では伸展粒が残留して、焼鈍の際に粗大なポリゴナルフェライトを招いてオーステナイト中にMnが濃化し、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。一方、25%を超えるとフェライトの生成が促進されて熱延板の表層においてMnの濃度ムラを生じ、焼鈍の際にオーステナイトへのMn濃化を招いて、[Mn]SM/[Mn]Bが1.5超になって曲げ性およびめっき性が劣化する。したがって、最終パスの圧下率は8~25%とする。好ましくは10%以上である。好ましくは20%以下である。
 仕上げ圧延終了後0.5~3.0sで冷却を開始
仕上げ圧延終了から冷却開始までの時間が0.5s未満ではオーステナイト中のひずみ蓄積が大き過ぎるためにフェライトの生成が促進されて熱延板の表層においてMnの濃度ムラを生じ、焼鈍の際にオーステナイトへのMn濃化を招いて、[Mn]SM/[Mn]Bが1.5超になって曲げ性およびめっき性が劣化する。一方、3.0sを超えるとオーステナイト中のひずみが完全に解放されて、熱延板の表層に粗大組織が残留し、その後の焼鈍の際に粗大なポリゴナルフェライトを招いてオーステナイト中にMnが濃化し、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。したがって、仕上げ圧延後冷却開始までの時間は0.5~3.0sとする。
 600~720℃の温度域を30℃/s以上の平均冷却速度で冷却
600~720℃の温度域での平均冷却速度が30℃/s未満ではフェライトが生成して、熱延板の表層においてMnの濃度ムラを生じ、焼鈍の際にオーステナイトのMn濃化を招いて、[Mn]SM/[Mn]Bが1.5超になって曲げ性およびめっき性が劣化する。したがって、600~720℃の温度域での平均冷却速度は30℃/s以上とする。上限は特に規定しないが、1000℃/sを超えると温度ムラによる特性バラツキを招く場合があるため、1000℃/s以下が好ましい。
 なお、熱間圧延においては圧延荷重の低減や形状・材質の均一化のために、仕上げ圧延の全パスあるいは一部のパスで摩擦係数が0.10~0.25となる潤滑圧延を行うことが好ましい。
 590℃以下で巻取る
巻取り温度が590℃を超えるとフェライトが生成して熱延板の表層においてMnの濃度ムラを生じ、焼鈍の際にオーステナイトへのMn濃化を招いて、[Mn]SM/[Mn]Bが1.5超になって曲げ性およびめっき性が劣化する。したがって、巻取り温度は590℃以下とする。曲げ性の観点から好ましくは300℃超えである。
 上記巻取後、空冷等により鋼板は冷やされ、下記の冷延フルハード鋼板の製造に用いられる。なお、熱延鋼板が中間製品として取引対象となる場合、通常、巻取後に冷やされた状態で取引対象となる。
 <冷延フルハード鋼板の製造方法>
 本発明の冷延フルハード鋼板の製造方法は、上記製造方法で得られた熱延鋼板を20%以上の圧下率で冷間圧延する製造方法である。
本発明では冷間圧延を施す場合は、圧下率を20%以上とする必要がある。20%未満では焼鈍時に粗大フェライトが生じて、オーステナイト中にMnが濃化し、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。したがって、冷間圧延を施す場合は圧下率を20%以上、好ましくは30%以上とする。上限は特に規定しないが、形状安定性等の観点からは95%以下が好ましい。
 なお、上記冷間圧延の前に酸洗を行ってもよい。酸洗条件は適宜設定すればよい。
 <薄鋼板の製造方法>
 本発明の薄鋼板の製造方法は、上記製造方法で得られた熱延鋼板または冷延フルハード鋼板に対して、730~900℃に加熱し、次いで400~590℃の冷却停止温度まで5~50℃/sの平均冷却速度で冷却し、かつ、前記加熱から前記冷却を行う際の730~900℃の温度域で10~1000s保持し、400~590℃の温度域で1000s以下保持する条件で焼鈍を施す方法である。焼鈍後に、さらに、必要に応じて、調質圧延を施してもよい。
 730~900℃に加熱(焼鈍温度)
焼鈍温度が730℃未満ではオーステナイトの生成が不十分となる。焼鈍により生成したオーステナイトはベイナイト変態やマルテンサイト変態により最終組織におけるマルテンサイトあるいはベイナイトとなるため、オーステナイトの生成が不十分になると、本発明のミクロ組織が得られなくなる。一方、900℃を超えるとSiやMnの表面濃化が大きくなり、不めっきが生じる。したがって、焼鈍温度は730~900℃とする。好ましくは740℃以上である。好ましくは860℃以下である。
 400~590℃の冷却停止温度まで5~50℃/sの平均冷却速度で冷却
焼鈍温度から400~590℃の冷却停止温度までの平均冷却速度が5℃未満ではポリゴナルフェライトが過剰に生成して本発明のミクロ組織が得られない。一方、50℃/sを超えるとベイナイト変態が促進されて本発明のミクロ組織が得られない。したがって、焼鈍温度から400~590℃の冷却停止温度までの平均冷却速度は5~50℃/sとする。好ましくは8℃/s以上である。好ましくは30℃/s以下である。
冷却停止温度が400℃未満では焼戻しマルテンサイトを生じて、曲げ性が劣化する。一方、590℃を超えるとポリゴナルフェライトが過剰に生成して、本発明のミクロ組織が得られない。したがって、冷却停止温度は400~590℃とする。好ましくは440℃以上である。好ましくは560℃以下である。
 加熱から冷却を行う際の730~900℃の温度域で10~1000s保持
730~900℃の温度域での保持時間が10s未満では、オーステナイトの生成が不十分となって、本発明のミクロ組織が得られない。一方、1000sを超えるとオーステナイト中にMnが濃化し、[Mn]SM/[Mn]Bが1.5超となり曲げ性およびめっき性が劣化する。したがって、保持時間は10~1000sとする。好ましくは30s以上である。好ましくは500s以下である。なお、上記保持時間とは上記焼鈍温度域での鋼板の滞留時間(通過時間)であり、必ずしも一定保持である必要はなく、730~900℃の範囲での加熱、冷却状態も含む。
 400~590℃の温度域で1000s以下保持
400~590℃での保持時間が1000sを超えると、フェライト変態やベイナイト変態の進行が過剰になり、あるいはパーライトが生成して本発明のミクロ組織が得られない。したがって、400~590℃での保持時間は1000s以下、好ましくは500s以下、より好ましくは200s以下とする。なお、上記保持時間とは上記温度域での鋼板の滞留時間(通過時間)であり、必ずしも一定保持である必要はない。
 730~900℃の温度域における露点を-40℃以下(好適条件)

730~900℃の温度域における露点を-40℃以下とすることで鋼板表面へのSiやMnの濃化が軽減され、[Mn]SM/[Mn]Bも低下させることができ、曲げ性およびめっき性をさらに改善できる。したがって、730~900℃の温度域における露点は-40℃以下が好ましい。より好ましくは-45℃以下である。また、露点の下限は特に規定はしないが、-80℃未満では効果が飽和し、コスト面で不利となるため-80℃以上が好ましい。なお、上記温度域の温度は鋼板表面温度を基準とする。即ち、鋼板表面温度が上記温度域にある場合に、露点を上記範囲に調整する。 調質圧延の伸び率:0.6%以下(好適条件)
 調質圧延は、上記冷却後、必要に応じて施される。調質圧延により、転位が導入され耐時効性が低下する。そのため、調質圧延の伸び率は0.6%以下であることが好ましい。一方、板表面性状や板形状の観点から、調質圧延の伸び率は、0.1%以上とすることが好ましい。
 なお、薄鋼板が取引対象となる場合には、通常、冷却後または上記調質圧延後に、室温まで冷却されて取引対象となる。
 また、上記のように、本発明では、焼鈍に関しては、一次焼鈍のみで、所望の薄鋼板を得ることができる。一次焼鈍後、通常の条件で二次焼鈍を行うことも可能ではあるが、コスト等を考慮すると、二次焼鈍は行わず一次焼鈍のみが好ましい。
 <めっき鋼板の製造方法>
 本発明のめっき鋼板の製造方法は、上記で得られた薄鋼板にめっきを施す、めっき鋼板の製造方法である。例えば、めっき処理としては、溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理を例示できる。また、焼鈍と亜鉛めっきを1ラインで連続して行ってもよい。その他、Zn-Ni電気合金めっき等の電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。また、上述のめっき層の説明で記載の通り、Znめっきが好ましいが、Alめっき等の他の金属を用いためっき処理でもよい。以下は、溶融めっきの場合を例に説明する。
 溶融めっきはめっき浴に鋼板を浸漬させる方法で行う。この方法の場合、めっき浴に浸漬される鋼板(薄鋼板)の温度を450℃以上550℃以下に調整しておくことが好ましい。450℃以上550℃以下から外れる温度では、めっき浴中に異物が生成したり、めっき浴温度が管理することができなくなったりする場合がある。そのため、好ましくは450℃以上550℃以上の温度域になるように調整しておく。さらに好ましくは460℃以上である。さらに好ましくは540℃以下である。
 溶融めっき後には、必要に応じて合金化処理を施してもよい。合金化処理の際の処理温度及び処理時間は特に限定されず、適宜設定すればよい。
 なお、連続溶融めっきラインにより、薄鋼板を製造した後、この薄鋼板を用いて、直ちに、めっき鋼板を製造してもよい。
 以下、本発明を、実施例に基づいて具体的に説明する。本発明の技術的範囲は以下の実施例に限定されない。

表1に示す成分組成の鋼(残部はFeおよび不可避的不純物)を実験室の真空溶解炉により溶製し、圧延して鋼スラブとした。これらの鋼スラブを1200℃に加熱後、粗圧延し、表2に示す条件で熱間圧延を施し熱延鋼板(HR)とした。次いで、一部は1.4mmまで冷間圧延して冷延フルハード鋼板(CR)とした。得られた熱延鋼板および冷延フルハード鋼板を焼鈍に供した。次いで、溶融亜鉛めっき処理、必要に応じて合金化溶融亜鉛めっき処理を行い、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)を作製した。焼鈍は実験室にて熱処理およびめっき処理装置を用いて表2に示す条件で行った。溶融亜鉛めっき鋼板は、465℃のめっき浴中に浸漬し、片面あたりの付着量35~45g/mのめっき層を形成させた。合金化亜鉛めっき鋼板は、めっき層形成後500~600℃で1~60s保持する合金化処理を行い、めっき層中に含有するFe量は6質量%以上15質量%以下の範囲とした。めっき処理後は8℃/sで室温まで冷却した。 得られた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板に伸長率0.3%の調質圧延を施した後、以下の試験方法に従い、引張特性、曲げ性およびめっき性を評価した。また、ミクロ組織を測定した。以上により得られた結果を表3に示す。
 <組織観察>
 各相の面積率は以下の手法により評価した。鋼板から、圧延方向に平行な断面が観察面となるよう切り出し、研磨後、3%ナイタールで腐食現出し、SEM(走査電子顕微鏡)で2000倍の倍率で、鋼板表面近傍(鋼板表面から板厚方向に20μm)および鋼板表面から板厚方向に300μm位置をそれぞれ3視野撮影した。得られた画像データからMedia Cybernetics社製のImage-Proを用いて各組織の面積率を求め、視野の平均面積率を各組織の面積率とした。板厚1/4部を10視野分撮影した。前記画像データにおいて、ポリゴナルフェライトは滑らかな曲線状の粒界を持つ黒、マルテンサイトおよび残留オーステナイトは白または明灰色、ベイナイトは直線的な粒界を持ち方位の揃った炭化物または島状マルテンサイトを含む灰色または暗灰色として区別される。なお、本発明において、マルテンサイトは炭化物を含むオートテンパードマルテンサイトを含む。
 <引張試験>
 溶融亜鉛めっき鋼板(GI)もしくは合金化溶融亜鉛めっき鋼板(GA)より圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度が10-3/sとするJIS Z 2241の規定に準拠した引張試験を行い、TSを求めた。なお、本発明でTS :980MPa以上を合格とした。
 <曲げ性>
 溶融亜鉛めっき鋼板(GI)もしくは合金化溶融亜鉛めっき鋼板(GA)より圧延方向に対して平行方向を曲げ試験軸方向とする、幅が30mm、長さが100mmの短冊形の試験片を採取し、曲げ試験を行った。ストローク速度が500mm/s、押込み荷重が10ton、押付け保持時間5秒、90°V曲げ試験を行い、曲げ頂点の稜線部を10倍の拡大鏡で観察し、0.5mm以上の亀裂が認められなくなる最小曲げ半径(mm)を求め、この最小曲げ半径を板厚(mm)で除したR/tを算出した。R/tが2.5以下を合格とした。
 <めっき性>
 溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板より幅が30mm、長さが30mmの短冊形の試験片を採取し、鋼板表面を10倍のルーペで観察し、直径が0.5mm以上の不めっきが認められないものを合格とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 発明例では、TSが980MPa以上、かつR/tが2.5以下で不めっきのない高強度亜鉛めっき鋼板であった。一方、本発明の範囲を外れる比較例はTS、R/t、めっき性のいずれか1つ以上が劣っていた。
No27は露点が好適範囲を外れる発明例である。露点の好適範囲内である他の発明例に比べ、[Mn]SM/[Mn]Bが低下し、効果として問題はないものの、曲げ性およびめっき性がやや劣っていた。

Claims (9)

  1.  質量%で、C:0.05~0.25%、
    Si:1.0%以下、
    Mn:1.5~4.0%、
    P:0.100%以下、
    S:0.02%以下、
    Al:1.0%以下、
    N:0.001~0.015%、
    かつTi:0.003~0.100%、Nb:0.003~0.100%、Mo:0.005~0.500%から選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
    鋼板表面から板厚方向に20μmの範囲において、面積率で、ポリゴナルフェライトが0~80%、マルテンサイトとベイナイトおよび残留オーステナイトが合計で20~100%であり、
    鋼板表面から板厚方向に20μmの範囲に存在するマルテンサイト中のMn量:[Mn]SMと鋼板表面から板厚中心方向に板厚1/4の位置(バルク中)のMn量:[Mn]Bが、[Mn]SM/[Mn]B≦1.5であり、
    鋼板表面から板厚方向に300μmの位置において、マルテンサイトの面積率が20~50%であることを特徴とする薄鋼板。
  2.  さらに、質量%で、Cr:0.005~2.000%、
    V:0.005~2.000%、
    Cu:0.005~2.000%、
    Ni:0.005~2.000%、
    B:0.0001~0.0050%、
    Ca:0.0001~0.0050%、
    REM:0.0001~0.0050%、
    Sb:0.0010~0.1000%、
    Sn:0.0010~0.5000%から選ばれる1種以上を含有することを特徴とする請求項1に記載の薄鋼板。
  3.  請求項1または2に記載の薄鋼板の表面にめっき層を備えることを特徴とするめっき鋼板。
  4.  前記めっき層が、溶融亜鉛めっき層または合金化溶融亜鉛めっき層であることを特徴とする請求項3に記載のめっき鋼板。
  5.  請求項1または2に記載の成分を有するスラブに熱間圧延を施すにあたり、
    仕上げ圧延では、最終パスから数えて2番目のパスから最終パスまでの温度を800~950℃、最終パスから数えて2番目のパスから最終パスまでの累計圧下率を10~40%、最終パスの圧下率を8~25%とし、
    仕上げ圧延終了後0.5~3.0sで冷却を開始し、600~720℃の温度域を30℃/s以上の平均冷却速度で冷却し、590℃以下で巻取ることを特徴とする熱延鋼板の製造方法。
  6.  請求項5に記載の製造方法で得られた熱延鋼板に対して、20%以上の圧下率で冷間圧延を施すことを特徴とする冷延フルハード鋼板の製造方法。
  7.  請求項5に記載の製造方法で得られた熱延鋼板、または、請求項6に記載の製造方法で得られた冷延フルハード鋼板に対して、
    730~900℃に加熱し、次いで400~590℃の冷却停止温度まで5~50℃/sの平均冷却速度で冷却し、
    かつ、前記加熱から前記冷却を行う際の730~900℃の温度域で10~1000s保持し、400~590℃の温度域で1000s以下保持する、
    焼鈍を施すことを特徴とする薄鋼板の製造方法。
  8.  730~900℃の温度域における露点を-40℃以下とすることを特徴とする請求項7に記載の薄鋼板の製造方法。
  9.  請求項7または8で得られた薄鋼板にめっきを施すことを特徴とするめっき鋼板の製造方法。
PCT/JP2017/001292 2016-03-31 2017-01-17 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 WO2017168961A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2018011878A MX2018011878A (es) 2016-03-31 2017-01-17 Chapa de acero, chapa de acero revestida, metodo de produccion de chapa de acero laminada en caliente, metodo de produccion de chapa de acero dura laminada en frio, metodo de produccion de chapa de acero y metodo de produccion de chapa de acero revestida.
KR1020187027892A KR102162785B1 (ko) 2016-03-31 2017-01-17 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
CN201780021045.9A CN109072375B (zh) 2016-03-31 2017-01-17 薄钢板和镀覆钢板、以及热轧钢板的制造方法、冷轧全硬钢板的制造方法、薄钢板的制造方法和镀覆钢板的制造方法
EP17773511.5A EP3421632B1 (en) 2016-03-31 2017-01-17 Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
US16/089,928 US11136642B2 (en) 2016-03-31 2017-01-17 Steel sheet, plated steel sheet, method of production of hot-rolled steel sheet, method of production of cold-rolled full hard steel sheet, method of production of steel sheet, and method of production of plated steel sheet
JP2017526983A JP6264506B1 (ja) 2016-03-31 2017-01-17 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-070751 2016-03-31
JP2016070751 2016-03-31
JP2016231056 2016-11-29
JP2016-231056 2016-11-29

Publications (1)

Publication Number Publication Date
WO2017168961A1 true WO2017168961A1 (ja) 2017-10-05

Family

ID=59962911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001292 WO2017168961A1 (ja) 2016-03-31 2017-01-17 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US11136642B2 (ja)
EP (1) EP3421632B1 (ja)
JP (2) JP6264506B1 (ja)
KR (1) KR102162785B1 (ja)
CN (1) CN109072375B (ja)
MX (1) MX2018011878A (ja)
WO (1) WO2017168961A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825432A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT
EP3825433A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690793B1 (ja) * 2018-06-29 2020-04-28 日本製鉄株式会社 高強度鋼板およびその製造方法
KR102527545B1 (ko) * 2019-03-28 2023-05-03 닛폰세이테츠 가부시키가이샤 고강도 강판
WO2020245627A1 (en) * 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093490A1 (ja) * 2010-01-29 2011-08-04 新日本製鐵株式会社 鋼板及び鋼板製造方法
KR20130143278A (ko) * 2012-06-21 2013-12-31 현대하이스코 주식회사 도금성 및 굽힘성이 우수한 고강도 강판 제조 방법
JP2014051683A (ja) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal 冷延鋼板およびその製造方法
JP2015117403A (ja) * 2013-12-18 2015-06-25 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法
WO2015185975A1 (en) * 2014-06-06 2015-12-10 Arcelormittal High strength multiphase steel, production method and use
JP5884210B1 (ja) * 2014-07-25 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6682829B2 (en) 2001-05-31 2004-01-27 Jfe Steel Corporation Welded steel pipe having excellent hydroformability and method for making the same
JP4424185B2 (ja) 2004-12-08 2010-03-03 住友金属工業株式会社 熱延鋼板とその製造方法
JP5493986B2 (ja) 2009-04-27 2014-05-14 Jfeスチール株式会社 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP5408314B2 (ja) * 2011-10-13 2014-02-05 Jfeスチール株式会社 深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法
JP5884714B2 (ja) 2012-01-31 2016-03-15 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP2015034334A (ja) 2013-07-12 2015-02-19 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093490A1 (ja) * 2010-01-29 2011-08-04 新日本製鐵株式会社 鋼板及び鋼板製造方法
KR20130143278A (ko) * 2012-06-21 2013-12-31 현대하이스코 주식회사 도금성 및 굽힘성이 우수한 고강도 강판 제조 방법
JP2014051683A (ja) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal 冷延鋼板およびその製造方法
JP2015117403A (ja) * 2013-12-18 2015-06-25 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2015193907A (ja) * 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法
WO2015185975A1 (en) * 2014-06-06 2015-12-10 Arcelormittal High strength multiphase steel, production method and use
JP5884210B1 (ja) * 2014-07-25 2016-03-15 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3825432A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT
EP3825433A4 (en) * 2018-08-22 2021-05-26 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND MANUFACTURING PROCESS FOR IT
US11846002B2 (en) 2018-08-22 2023-12-19 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
US11898230B2 (en) 2018-08-22 2024-02-13 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
EP3421632A4 (en) 2019-01-16
KR20180120715A (ko) 2018-11-06
JPWO2017168961A1 (ja) 2018-04-05
EP3421632B1 (en) 2020-04-22
JP6409916B2 (ja) 2018-10-24
CN109072375A (zh) 2018-12-21
EP3421632A1 (en) 2019-01-02
JP6264506B1 (ja) 2018-01-24
CN109072375B (zh) 2020-11-03
US20190127820A1 (en) 2019-05-02
US11136642B2 (en) 2021-10-05
KR102162785B1 (ko) 2020-10-07
MX2018011878A (es) 2019-01-10
JP2018090893A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6409917B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
KR102407357B1 (ko) 고강도 냉연 강판 및 그의 제조 방법
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6354919B1 (ja) 薄鋼板およびその製造方法
WO2018124157A1 (ja) 高強度亜鉛めっき鋼板及びその製造方法
JP5943157B1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
US10920294B2 (en) Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full-hard cold-rolled steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
WO2018043473A1 (ja) 高強度鋼板およびその製造方法
WO2016021198A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP6409916B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
JP6315160B1 (ja) 高強度鋼板およびその製造方法
US20220056549A1 (en) Steel sheet, member, and methods for producing them
JPWO2019130713A1 (ja) 高強度鋼板およびその製造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
JP5870861B2 (ja) 疲労特性と延性に優れ、且つ延性の面内異方性の小さい高強度溶融亜鉛めっき鋼板およびその製造方法
JP6750771B1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
WO2016157257A1 (ja) 高強度鋼板およびその製造方法
WO2018092735A1 (ja) 高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板
KR20220060552A (ko) 냉연강판 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017526983

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017773511

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187027892

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011878

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017773511

Country of ref document: EP

Effective date: 20180926

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773511

Country of ref document: EP

Kind code of ref document: A1