JP5884210B1 - 高強度溶融亜鉛めっき鋼板の製造方法 - Google Patents

高強度溶融亜鉛めっき鋼板の製造方法 Download PDF

Info

Publication number
JP5884210B1
JP5884210B1 JP2015551290A JP2015551290A JP5884210B1 JP 5884210 B1 JP5884210 B1 JP 5884210B1 JP 2015551290 A JP2015551290 A JP 2015551290A JP 2015551290 A JP2015551290 A JP 2015551290A JP 5884210 B1 JP5884210 B1 JP 5884210B1
Authority
JP
Japan
Prior art keywords
annealing
hot
steel sheet
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015551290A
Other languages
English (en)
Other versions
JPWO2016013144A1 (ja
Inventor
英之 木村
英之 木村
藤田 耕一郎
耕一郎 藤田
長谷川 寛
寛 長谷川
麻衣 青山
麻衣 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015551290A priority Critical patent/JP5884210B1/ja
Application granted granted Critical
Publication of JP5884210B1 publication Critical patent/JP5884210B1/ja
Publication of JPWO2016013144A1 publication Critical patent/JPWO2016013144A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

TS≧1180MPaの高強度化に必要なCやSi、Mn等を含有する鋼を用い、表面外観及び材質の焼鈍温度依存性の小さい溶融亜鉛めっき鋼板の製造方法を提供する。特定組成の鋼スラブを熱間圧延、冷間圧延、1次焼鈍、酸洗、2次焼鈍する高強度溶融亜鉛めっき鋼板の製造方法で、所定条件で前記1次焼鈍を行うことで、フェライトの面積率が10〜60%、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40〜90%である鋼組織とし、前記2次焼鈍では、750〜850℃の焼鈍温度域の焼鈍温度に加熱し、該焼鈍温度域で10〜500秒保持した後、1〜15℃/秒の平均冷却速度で冷却し、溶融亜鉛めっき処理を施した後、5〜100℃/秒の平均冷却速度で150℃以下に冷却して、面積率が10〜60%のフェライトと面積率が40〜90%のマルテンサイトとを含む鋼組織を有する鋼板とする。

Description

本発明は、溶融亜鉛めっき鋼板(galvanized steel sheet)の製造方法に関する。特に自動車部材用途への適用に好適な、めっき表面外観に優れ、かつ材質の焼鈍温度依存性が小さい高強度溶融亜鉛めっき鋼板の製造方法に関する。
近年、地球環境保全の観点から、COの排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性(crashworthiness of the automobiles)を中心とした安全性向上も要求されている。このため、自動車車体の軽量化および自動車車体の強化が積極的に進められている。
自動車車体の軽量化と強化を同時に満たすには、部品素材を高強度化し、剛性(rigidity)が問題とならない範囲で板厚を減ずることによる軽量化が効果的であると言われている。最近では高強度鋼板が自動車部品に積極的に使用されており、自動車の構造部材や補強部材に適用される鋼板は、引張強度(TS:TensileStrength)が980MPa以上に達し、さらにTSが1180MPa以上の鋼板も適用されている。鋼板の高強度化には組織強化の活用が有効である。特に、軟質なフェライトと硬質なマルテンサイトからなる複合組織鋼板(multi phase steel sheet)は、一般に延性が良好で優れた強度−延性バランスを有しており、高強度化した鋼板の中では、プレス成形性は比較的良好である。しかしながら、このような複合組織鋼板は、通常の連続焼鈍ラインでの製造時に生じる焼鈍温度等の条件変化に対して、引張強度(TS)などの材質変動が大きく、コイル長手方向、すなわちコイル形状に巻き取られた鋼板の長手方向で材質が変動しやすい。この材質変動(deviation of mechanical properties)により、自動車の連続プレスラインにおいて、安定的にプレス成形を行うことが困難となり、作業性が大きく低下することが懸念される。また、鋼板の高強度化に伴い、高強度化に有効な固溶元素であるSiの添加量や高強度化に必要なマルテンサイト量を確保するためのCやMn等の添加量が増大するが、SiやMnはFeよりも酸化しやすい易酸化性元素であるため、SiやMnを多量に含有する鋼板に溶融亜鉛めっき処理を施す場合、めっき性(zinc coatability and surface appearance quality)の確保が課題となる。つまり、鋼中に含まれるSiやMnは、一般的な焼鈍炉で用いられる非酸化性雰囲気中あるいは還元雰囲気中においても選択酸化(selective oxidation)されるので、表面に濃化して酸化物を形成し、めっき処理時の鋼板への溶融亜鉛の濡れ性を低下させ、不めっき(coating defect)を生じさせる可能性が懸念される。
これに対して、特許文献1では、あらかじめ酸化性雰囲気中で鋼板を加熱することにより、所定以上の酸化速度にて表面にFe酸化膜を急速に生成させ、もって鋼板表面でのSiやMn等の添加元素の酸化を阻止し、その後Fe酸化膜を所定雰囲気で焼鈍して還元することにより、溶融亜鉛との濡れ性を改善し、もって溶融亜鉛めっきの密着性を改善する方法が提案されている。また、特許文献2では、鋼板を焼鈍後に酸洗(pickling)することで、表面に濃化するSiやMnなどの易酸化性元素の表面濃化物を除去し、その後、再び焼鈍して溶融亜鉛めっきを行う方法が提案されている。
特開平4−202630号公報 特開2000−290730号公報
しかしながら、特許文献1の技術では、鋼板の酸化量が多い場合には、炉内ロールに酸化鉄が付着し鋼板に押し疵(pressing flaw)が発生するという問題が生じる場合がある。また、特許文献2には、590MPa級の強度レベルの鋼板が記載されているものの、TSが780MPa以上である高強度鋼板に関する記載は無く、プレス成形性の指標となる伸び特性や材質変動に関する記載は認められない。
また、高強度鋼板は、高強度化するために各種合金元素を多量に含んでいるため、通常の連続焼鈍ラインで生じる焼鈍条件の変動によって、鋼板中のマルテンサイト量などが変動し、コイル内、すなわちコイル形状に巻き取られた鋼板内で、特にコイル長手方向において、強度や伸びなどの材質のバラツキが大きくなりやすい。材質のバラツキが大きいと、自動車の連続プレスラインにおいて、安定的にプレス成形を行うことが困難となり、作業性が大きく低下する。このため、コイル長手方向の材質均一性を良好とするため、焼鈍条件が変動しても材質変動が小さい、すなわち、材質の焼鈍温度依存性が小さい溶融亜鉛めっき鋼板の製造方法が求められている。
本発明はかかる事情に鑑みなされたものであり、TS≧1180MPaの高強度化に必要なCやSi、Mn等を含有する鋼を用い、めっき表面外観に優れ、かつ、材質の焼鈍温度依存性の小さい溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
本発明者らは、自動車の構造部材に適用する高強度鋼板を開発するに当たり、種々の薄鋼板について、高強度化、材質の焼鈍温度依存性およびめっき表面外観に及ぼす各種要因について鋭意検討した。その結果、質量%で、C:0.120%以上0.180%以下、Si:0.01%以上1.00%以下、Mn:2.20%以上3.50%以下を含有する鋼スラブを熱間圧延して熱延鋼板とし、該熱延鋼板を冷間圧延して冷延鋼板とし、次いで該冷延鋼板を1次焼鈍し、酸洗し、次いで2次焼鈍を施して溶融亜鉛めっき鋼板とする際、所定の熱処理条件で1次焼鈍を行い、1次焼鈍後の鋼板の鋼組織を、フェライト相の面積率が10%以上60%以下、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40%以上90%以下である鋼組織とし、さらに所定の条件で溶融亜鉛めっき処理を含む2次焼鈍を行うことで、面積率で10%以上60%以下のフェライトと面積率で40%以上90%以下のマルテンサイトとを含む鋼組織を有し、表面外観に優れ、かつ材質の焼鈍温度依存性が小さい高強度溶融亜鉛めっき鋼板が得られることを知見した。
本発明は、上記知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.120%以上0.180%以下、Si:0.01%以上1.00%以下、Mn:2.20%以上3.50%以下、P:0.001%以上0.050%以下、S:0.010%以下、sol.Al:0.005%以上0.100%以下、N:0.0001%以上0.0060%以下、Nb:0.010%以上0.100%以下、Ti:0.010%以上0.100%以下を含有し、残部が鉄および不可避的不純物からなる鋼スラブを熱間圧延して熱延鋼板とし、該熱延鋼板を冷間圧延して冷延鋼板とし、次いで該冷延鋼板を1次焼鈍し、酸洗し、次いで2次焼鈍を施して溶融亜鉛めっき鋼板とする高強度溶融亜鉛めっき鋼板の製造方法において、前記1次焼鈍では、700℃から焼鈍温度までの温度範囲の平均加熱速度を1℃/秒以下として780〜850℃の焼鈍温度域の焼鈍温度に加熱し、780〜850℃の焼鈍温度域で10〜500秒保持した後、前記焼鈍温度から500℃以下の冷却停止温度までの平均冷却速度を5℃/秒以上として冷却することで、フェライトの面積率が10%以上60%以下、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40%以上90%以下である鋼組織を有する鋼板とし、前記酸洗は、鋼板の酸洗減量をFe換算で0.05〜5g/mとし、前記2次焼鈍では、750〜850℃の焼鈍温度域の焼鈍温度に加熱し、750〜850℃の焼鈍温度域で10〜500秒保持した後、前記焼鈍温度から1〜15℃/秒の平均冷却速度で冷却し、亜鉛めっき浴に浸漬する溶融亜鉛めっき処理を施し、前記溶融亜鉛めっき処理後、5〜100℃/秒の平均冷却速度で150℃以下に冷却して、面積率で10%以上60%以下のフェライトと面積率で40%以上90%以下のマルテンサイトとを含む鋼組織を有する鋼板とする高強度溶融亜鉛めっき鋼板の製造方法。
[2]前記溶融亜鉛めっき処理後、5〜100℃/秒の平均冷却速度で冷却する前に、さらに亜鉛めっきの合金化処理を施す前記[1]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記鋼スラブが、上記成分組成に加えてさらに、質量%でMo:0.05%以上1.00%以下、V:0.02%以上0.50%以下、Cr:0.05%以上1.00%以下、B:0.0001%以上0.0030%以下から選ばれる1種以上を含有する前記[1]または[2]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記熱間圧延では、熱間圧延の仕上げ圧延終了後、3秒以内に冷却を開始し、熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5〜200℃/秒で冷却し、巻取り温度を450〜650℃として巻き取り、前記冷間圧延では、圧下率40%以上で冷間圧延する前記[1]〜[3]のいずれか1項に記載の高強度溶融亜鉛めっき鋼板の製造方法。
なお、本発明において、溶融亜鉛めっき鋼板には、合金化処理を施していない溶融亜鉛めっき鋼板、および合金化処理を施した溶融亜鉛めっき鋼板である合金化溶融亜鉛めっき鋼板(galvannealed steel sheet)を含む。
本発明によれば、引張強度(TS)が1180MPa以上の高強度で、表面外観に優れ、かつ材質の焼鈍温度依存性が小さい高強度溶融亜鉛めっき鋼板が得られる。よって、本発明の高強度溶融亜鉛めっき鋼板を自動車車体の骨格部材に適用した場合は、衝突安全性の向上や軽量化に大きく貢献でき、さらに材質の焼鈍温度依存性が小さいため、コイル内の材質均一性が高く、プレス成形時における作業性の向上も期待できる。
以下、本発明について詳細に説明する。
引張強度(TS)が1180MPa以上の高強度鋼板を得るためには、フェライトとマルテンサイトからなる複合組織鋼板において、フェライトを強化するためのSiやマルテンサイトの面積率を高めるためのCやMnを多量に添加する必要がある。しかしながら、SiやMnはFeよりも酸化しやすい易酸化性元素であるため、SiやMnを多量に含有する溶融亜鉛めっき鋼板の製造においては、めっき性の低下が懸念される。また、TSが1180MPa以上である高強度複合組織鋼板は、通常の連続焼鈍ラインで生じる焼鈍条件の変動によって、鋼板中のマルテンサイト量などが変動しやすいため、コイル内、特にコイル長手方向において、強度や伸びなどの材質変動が大きくなりやすい。この場合、自動車の連続プレスラインにおいて、安定的にプレス成形を行うことが困難となり、作業性が大きく低下することが懸念される。
そこで、本発明者らが鋭意研究を進めた結果、1次焼鈍後の組織を適正に制御し、酸洗後、2次焼鈍を行うこと、この2次焼鈍において溶融亜鉛めっき処理を行うことで、TSが1180MPa以上で、かつ材質の焼鈍温度依存性が小さい高強度溶融亜鉛めっき鋼板が得られることを新たに見出した。また、再結晶温度を上昇させるNb、Tiを積極的に添加し、かつ1次焼鈍時の加熱速度を適正に制御することで、1次焼鈍中のSi、Mnの拡散が未再結晶組織の歪効果により促進し、表面酸化物を形成しつつ、鋼板表層にはSi、Mnの欠乏層を形成させることができる。このため、1次焼鈍後の酸洗により表面酸化物のみを除去すれば、その後の2次焼鈍中においては鋼板表層のSi、Mn欠乏層によって鋼中のSiやMnの再表面濃化が抑制されるため、表面外観に優れた高強度溶融亜鉛めっき鋼板が得られることを見出した。さらに、Nb、Ti添加による再結晶温度制御と1次焼鈍時の加熱速度制御により、1次焼鈍において再結晶とα−γ変態が同時に進行し、フェライトおよびマルテンサイトを主体とする硬質相の粒径が微細化されるため、酸洗、2次(最終)焼鈍後においても微細組織が維持され、その結果、伸びフランジ性を向上することができることを見出し、本発明を完成させた。
次に、本発明を具体的に説明する。
まず、本発明における鋼の成分組成について、説明する。なお、以下、成分組成に関する「%」表示は、質量%を意味するものとする。
C:0.120%以上0.180%以下
Cは鋼板の高強度化に有効な元素であり、マルテンサイトを形成することで高強度化に寄与する。また、CはNbやTiといった炭化物形成元素と微細な合金化合物、あるいは、合金炭窒化物を形成することで高強度化に寄与する。これらの効果を得るためには、C量は0.120%以上とする必要がある。一方、C量が0.180%を超えると、スポット溶接部の靭性を低下させ、溶接特性を低下させる場合があるだけでなく、マルテンサイトの増加により、鋼板が硬質化し加工性も著しく低下する傾向にある。このため、C量は0.180%以下とする。したがって、C量は0.120%以上0.180%以下とする。好ましくは、C量は0.120%以上0.150%以下である。
Si:0.01%以上1.00%以下
Siは主に固溶強化(solid solution strengthening)により高強度化に寄与する元素であり、かつ、強度上昇に対して延性の低下が比較的少なく、強度のみならず、強度と延性のバランスの向上にも寄与する元素である。また、Siは焼鈍時の2相域を拡大する効果を有しており、材質の焼鈍温度依存性を小さくする効果も有する。これらの効果を得るためには、Siを0.01%以上含有することが必要である。一方、Si量が1.00%を超えると、鋼板表面にSi系酸化物が形成されやすく、不めっきの原因となる場合がある。このため、Si量は1.00%以下とする。したがって、Si量は0.01%以上1.00%以下とする。好ましくは、Si量は0.01%以上0.50%以下である。
Mn:2.20%以上3.50%以下
Mnは固溶強化およびマルテンサイトの形成により高強度化に寄与する元素であり、この効果を得るためには2.20%以上含有することが必要である。一方、Mn量が3.50%を超えると、原料コストの上昇を招くとともに、Mnの偏析などに起因して部分的に変態点が異なる組織となり、結果としてフェライト相とマルテンサイト相がバンド状に存在する不均一な組織となりやすく、加工性が低下する場合がある。また、Mnは、鋼板表面に酸化物として濃化し、不めっきの原因になる場合がある。さらに、スポット溶接部の靭性を低下させ、溶接特性を低下させる場合がある。このため、Mn量は3.50%以下とする。したがって、Mn量は2.20%以上3.50%以下とする。TS≧1180MPaを安定的に確保する観点からは、Mn量は2.50%以上とすることが好ましい。
P:0.001%以上0.050%以下
Pは固溶強化により、鋼板の高強度化に有効な元素である。しかしながら、P量が0.001%未満ではその効果が現れないだけでなく、製鋼工程において脱燐(dephosphorization)コストの上昇を招く場合があるため、P量は0.001%以上とする。一方、P量が0.050%を超えると、溶接性が顕著に劣化する。このため、P量は0.050%以下とする。したがって、P量は0.001%以上0.050%以下とする。好ましくは、P量は0.001%以上0.030%以下とし、より好ましくは、P量は0.001%以上0.020%以下とする。
S:0.010%以下
Sは熱間脆性を起こす原因となるほか、鋼中に硫化物系介在物として存在して、鋼板の加工性を低下させる有害な元素である。したがって、S量は極力低減するのが好ましく、本発明では、S量の上限は0.010%とする。S量は、好ましくは0.008%以下とする。下限は特にないが、極低S化するには製鋼コストが上昇するため、0.0001%以上とすることが好ましい。
sol.Al:0.005%以上0.100%以下
Alは脱酸剤として含有させる元素であり、さらに固溶強化能を有するため、高強度化に有効に作用する。しかしながら、sol.AlとしてのAl量が0.005%未満では上記効果が得られない。このため、sol.AlとしてのAl量は0.005%以上とする。一方、sol.AlとしてのAl量が0.100%を超えると、原料コストの上昇を招くとともに、鋼板の表面欠陥を誘発する原因ともなる。このため、sol.AlとしてのAl量は0.100%以下とする。したがって、sol.AlとしてのAl量は0.005%以上0.100%以下とする。
N:0.0001%以上0.0060%以下
N量が0.0060%を超えると、鋼中に過剰な窒化物が生成することに起因して、延性や靭性の低下のほか、鋼板の表面性状の悪化も招く場合があるため、N量は0.0060%以下とする。一方、フェライトの清浄化による延性向上の観点から、N量は少ないほうが好ましいが、製鋼上のコストが増大するので、下限は0.0001%とする。したがって、N量は0.0001%以上0.0060%以下とする。
Nb:0.010%以上0.100%以下
NbはCやNと炭化物や炭窒化物を形成することで高強度化に寄与する。また、Nbは熱延鋼板組織を微細化する作用を有し、さらに再結晶時に結晶粒の粗大化を抑制し、フェライトおよびマルテンサイトを均一微細化し、伸びフランジ性の向上および材質の焼鈍温度依存性の低減に寄与する。さらに、Nbは再結晶温度を上昇させるため、SiやMnの拡散が容易な高温域まで未再結晶組織を維持することができ、1次焼鈍時の加熱速度を適正に制御することで、未再結晶組織の歪による拡散促進効果により、Si、Mnの表面酸化物を形成しつつ、鋼板表層にはSi、Mnの欠乏層を形成させることが可能となる。続いて、1次焼鈍後の酸洗によってSi、Mnの表面酸化物を除去した後、2次焼鈍を行うことで鋼板表層のSi、Mnの欠乏層による鋼中Si、Mnの再表面濃化の抑制効果によって、めっき性が向上する。さらに、Nb添加による再結晶温度制御と1次焼鈍時の加熱速度制御により、再結晶とα−γ変態が同時に進行し、フェライトおよびマルテンサイトを主体とする硬質相の粒径が微細化されるため、酸洗、2次(最終)焼鈍後においても微細組織が維持され、その結果、伸びフランジ性の向上に寄与する。
このような効果を得るために、Nb量は0.010%以上とする。好ましくは、Nb量は0.030%以上とする。一方、Nb量が0.100%を超えて過剰に含有されると、熱間圧延時の負荷を増大させ、また、冷間圧延時の変形抵抗を高くして、安定した実機製造を困難にする。また、フェライトの延性を低下させ、加工性が顕著に低下する。このため、Nb量は0.100%以下とする。したがって、Nb量は0.010%以上0.100%以下とする。好ましくは、Nb量は0.030%以上0.100%以下とする。
Ti:0.010%以上0.100%以下
TiはNbと同様、CやNと炭化物や炭窒化物を形成することで高強度化に寄与する。また、Tiは熱延鋼板組織を微細化する作用を有し、さらに再結晶時に結晶粒の粗大化を抑制し、フェライトおよびマルテンサイトを均一微細化し、伸びフランジ性の向上および材質の焼鈍温度依存性の低減に寄与する。さらに、TiはNbと同様に再結晶温度を上昇させるため、SiやMnの拡散が容易な高温域まで未再結晶組織を残存させることで、1次焼鈍加熱中にSi、Mnの拡散を促進し、Si、Mnの表面酸化物を形成しつつ、鋼板表層にはSi、Mnの欠乏層を形成させることが可能となる。この鋼板表層のSi、Mn欠乏層の効果により、酸洗および2次焼鈍後の鋼板におけるめっき性の向上に寄与する。さらに、Ti添加による再結晶温度制御と1次焼鈍時の加熱速度制御により、再結晶とα−γ変態が同時に進行し、フェライトおよびマルテンサイトを主体とする硬質相の粒径が微細化されるため、酸洗、2次(最終)焼鈍後においても微細組織が維持され、その結果、伸びフランジ性の向上に寄与する。
このような効果を得るために、Ti量は0.010%以上とする。好ましくは、Ti量は0.030%以上とする。一方、Ti量が0.100%を超えると、この効果が飽和するだけではなく、フェライト中に過剰に析出し、フェライトの延性を低下させる。このため、Ti量は0.100%以下とする。したがって、Ti量は0.010%以上0.100%以下とする。好ましくは、Ti量は0.030%以上0.100%以下とする。
本発明の高強度鋼板は、上記成分組成を満たすことに加えてさらに、C、Nb、Ti、NおよびSが下記(1)式を満たすように含有することが好ましい。
(Nb/93+Ti/48)/(C/12)≦0.12・・・(1)
ただし、Ti=Ti−(48/14)N−(48/32)Sである。また、該Tiを求める式、および上記(1)式中のC、Nb、Ti、N、Sは、それぞれ鋼中の各元素の含有量(質量%)を示す。
ここで、(Nb/93+Ti/48)/(C/12)は、Cに対するTi、Nbの原子比であり、この値が0.12を超えると、NbCやTiCの析出量が増加するため、フェライトの変形能が低下し、鋼板の延性が低下する場合があり、さらに、熱間圧延の圧延負荷を増加して、製造安定性を阻害する場合がある。このため上記(1)式に示すように(Nb/93+Ti/48)/(C/12)は0.12以下とすることが好ましく、0.08以下とすることがより好ましい。
本発明では上記必須添加元素のほかに、さらにMo、V、Cr、Bから選ばれる1種以上の元素を含有させることができる。
Mo:0.05%以上1.00%以下、V:0.02%以上0.50%以下、Cr:0.05%以上1.00%以下、B:0.0001%以上0.0030%以下から選ばれる1種以上
MoおよびCrは焼入れ性を向上させ、マルテンサイトを生成することで高強度化に寄与する元素であり、必要に応じて含有することができる。このような効果を発現させるため、これらの元素はそれぞれ0.05%以上含有させることができる。一方、Mo、Crの含有量がそれぞれ1.00%を超えると上記効果が飽和するだけではなく、原料コストの増加を招くので、これらの含有量はそれぞれ1.00%以下とする。
VはNb、Tiと同様、微細な炭窒化物を形成することで、高強度化に寄与するため、必要に応じて含有することができる。このような効果を発現させるためには0.02%以上含有させることが好ましい。一方、V量が0.50%を超えると、上記効果が飽和するだけでなく、原料コストの増加を招くので、Vの含有量は0.50%以下とする。
Bは、MoやCrと同様、焼入れ性を向上させ、焼鈍冷却過程で起こるフェライトの生成を抑制し、マルテンサイトを生成することで高強度化に寄与する。このような効果を得るため、Bは0.0001%以上含有させることができる。一方、Bの含有量が0.0030%を超えると上記の効果は飽和するため、Bの含有量は0.0030%以下とする。
上記成分以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の効果を害しない範囲であれば、以下の元素を適宜含有させることができる。
Cuは熱間圧延時に割れを引き起こして、表面疵の発生原因となる有害元素である。しかし、本発明ではCuによる鋼板特性への悪影響は小さいので、0.30%以下の含有量であれば許容できる。これにより、スクラップ等を使用し、リサイクル原料の活用が可能となるので原料コストの低減を図ることができる。
NiはCuと同様、鋼板特性に及ぼす影響は小さいが、Cu含有による表面疵の発生を防止する効果がある。上記効果は、NiをCu含有量の1/2以上含有することで発現させることができる。しかし、Niの含有量が過剰になると、スケールの不均一生成に起因した別の表面欠陥の発生を助長するので、Niを含有する場合、その含有量の上限は0.30%とする。
CaはMnSなどの硫化物の形状制御により延性を向上させる効果があるが、多量に含有させてもその効果は飽和する傾向にある。よって、Caを含有させる場合、0.0001%以上0.0020%以下とする。
さらに、硫化物系介在物の形態を制御する作用を有し、これにより加工性の向上に寄与するREM、あるいは鋼板表面の結晶を整粒化する作用を有するSn、Sbは、それぞれ0.0001〜0.020%の範囲で含有させることができる。
その他、析出物を形成するZr、Mgなどの含有量は極力少ないほうが好ましく、積極的に添加する必要はなく、0.020%未満、より好ましくは0.002%未満とする。
上記のCu、Ni、Ca、REM、Sn、Sb、Zr及びMgは不可避的不純物として、本発明の鋼板に含まれる場合がある。
本発明では、上記の成分組成の範囲に調整された鋼を溶製して鋼スラブとし、鋼スラブを熱間圧延して熱延鋼板とする熱間圧延工程、該熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程、該冷延鋼板を1次焼鈍する1次焼鈍工程、1次焼鈍後の冷延鋼板を酸洗する酸洗工程、酸洗後の冷延鋼板に2次焼鈍(最終焼鈍)を施す2次焼鈍工程を順次施してして溶融亜鉛めっき鋼板とする。本発明では、前記1次焼鈍工程における1次焼鈍では、700℃から焼鈍温度までの温度範囲の平均加熱速度を1℃/秒以下として780〜850℃の焼鈍温度域の焼鈍温度に加熱し、780〜850℃の焼鈍温度域で10〜500秒保持した後、前記焼鈍温度から500℃以下の冷却停止温度までの平均冷却速度を5℃/秒以上として冷却することで、フェライトの面積率が10%以上60%以下、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40%以上90%以下である鋼組織を有する鋼板とし、前記2次焼鈍工程における2次焼鈍では、750〜850℃の焼鈍温度域で10〜500秒保持した後、前記焼鈍温度域の焼鈍温度から1〜15℃/秒の平均冷却速度で冷却し、亜鉛めっき浴に浸漬する溶融亜鉛めっき処理を施し、前記溶融亜鉛めっき処理後、5〜100℃/秒の平均冷却速度で150℃以下に冷却して、面積率が10%以上60%以下のフェライトと面積率が40%以上90%以下のマルテンサイトとを含有する鋼組織を有する鋼板とする。
まず、上記した本発明において重要な要件である、1次焼鈍後の鋼板の鋼組織、2次焼鈍後の鋼板の鋼組織について説明する。
(1次焼鈍後の鋼板の鋼組織)
本発明では、2次(最終)焼鈍時の材質の焼鈍温度依存性を低減するため、1次焼鈍後の鋼板の鋼組織を、フェライトの面積率が10%以上60%以下、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40%以上90%以下である鋼組織とすることが必要である。
マルテンサイト、ベイナイト、残留オーステナイトの合計面積率:40%以上90%以下
1次焼鈍後の鋼板の鋼組織におけるマルテンサイト、ベイナイト、残留オーステナイトの合計面積率は、本発明の焼鈍温度依存性の小さい高強度鋼板を得るために、重要な因子のひとつである。すなわち、1次焼鈍後に認められるマルテンサイト、ベイナイト、残留オーステナイトは、1次焼鈍時の均熱中にCやMn等の元素が濃化したオーステナイトが、均熱後の冷却中に変態あるいは未変態のままに残存した組織であり、CやMnの濃度の高い領域である。これらのようなCやMnが濃化した領域は、2次焼鈍時のフェライト−オーステナイト変態点を低下させるため、2相域(フェライトとオーステナイトが共存する温度域)を拡大する。その結果、2次焼鈍において750〜850℃の温度範囲で焼鈍したときのマルテンサイト面積率の変動が小さく、材質の変動も小さくなる。一般に、1次焼鈍後のマルテンサイト、ベイナイト、残留オーステナイトの合計面積率は、2次(最終)焼鈍後のマルテンサイト面積率と相関するため、2次(最終)焼鈍後にTS≧1180MPaを満足する観点から、1次焼鈍後のマルテンサイト、ベイナイト、残留オーステナイトの合計面積率は40%以上とする。一方、1次焼鈍後のマルテンサイト、ベイナイト、残留オーステナイト、すなわち、焼鈍均熱中のオーステナイト相はフェライト相に比べて、SiやMnの拡散速度が遅いため、その合計面積率が90%を超えると、Si、Mnの表面酸化物の形成および鋼板表層のSi、Mn欠乏層の形成が不十分となり、めっき性を低下させる場合がある。このため、1次焼鈍後のマルテンサイト、ベイナイト、残留オーステナイトの合計面積率は90%以下とし、好ましくは70%以下とする。
フェライトの面積率が10%以上60%以下
1次焼鈍時の均熱中あるいはその後の冷却中に生成したフェライト相は、オーステナイト相にCやMnを濃化させ、前記したようなCやMnが濃化した領域(CやMnの濃化部)を形成する。このようなCやMnの濃化部は、2次焼鈍時のフェライト−オーステナイト変態点を低下させ、2次焼鈍において、750〜850℃の温度範囲で焼鈍したときのマルテンサイト面積率の変動を小さくし、材質変動も小さくできる。このような効果を安定的に得るため、1次焼鈍後のフェライトの面積率は10%以上とする。一方、1次焼鈍後のフェライトの面積率が60%を超えると、2次焼鈍後の所望のマルテンサイト量の確保を阻害し、TS≧1180MPaを安定して得ることが困難となる。このため、1次焼鈍後のフェライトの面積率は60%以下とする。
なお、本発明では、前記したように、再結晶温度を上昇させるNb、Tiを積極的に添加し、かつ1次焼鈍時の加熱速度を適正に制御することで、1次焼鈍中のSi、Mnの拡散が未再結晶組織の歪効果により促進し、表面酸化物を形成しつつ、鋼板表層にはSi、Mnの欠乏層を形成することができる。本発明では、所定の条件で1次焼鈍することにより得られる1次焼鈍後の鋼板表層のSi、Mnの欠乏層(Si、Mnの元素濃度が鋼中元素濃度の3/4以下である領域)を、鋼板表層から2μm以上とすることが好ましい。
1次焼鈍後の鋼板表層のSi、Mnの欠乏層は、SiやMnを多量に添加することが必要な高強度鋼板において、良好なめっき外観を得るために、重要な因子のひとつである。すなわち、鋼中に含まれるSiやMnは、一般的な焼鈍炉で用いられる非酸化性雰囲気中あるいは還元雰囲気中においても選択酸化されて、表面に濃化して酸化物を形成し、めっき処理時の溶融亜鉛との濡れ性を低下させ、不めっきを生じさせる。しかし、1次焼鈍後の鋼板表層にSi、Mnの欠乏層を形成させることで、2次焼鈍中においては鋼板表層のSi、Mn欠乏層によって鋼中のSiやMnの再表面濃化が抑制され、良好なめっき外観を得ることができる。この効果は、Si、Mnの元素濃度が鋼中元素濃度の3/4以下である領域(以下、Si、Mnの欠乏層と定義する)が鋼板表層からの深さで2μm以上の場合により顕著となる。したがって、SiおよびMnの欠乏層は表層から2μm以上が好ましい。また、TSの過度な低下防止の観点から、SiおよびMnの欠乏層は表層から50μm以下とすることが好ましい。なお、SiおよびMnの欠乏層は、グロー放電発光分析法(GDS)によって測定した深さ方向の濃度プロファイルから、SiおよびMnの元素濃度がそれぞれ鋼中元素濃度の3/4以下となる領域を読み取り、その深さを指標とした。
(2次焼鈍後の鋼板の鋼組織)
フェライトの面積率:10%以上60%以下
フェライト相は延性を確保する上で重要な因子であり、面積率で10%未満では延性の確保が困難となり、加工性が低下する場合がある。したがって、2次焼鈍後の鋼板の鋼組織におけるフェライトの面積率は、延性確保の観点から、10%以上とし、好ましくは20%以上とする。一方、2次焼鈍後の鋼板の鋼組織におけるフェライトの面積率が60%を超えるとTS≧1180MPaを確保するのが困難となる。したがって、2次焼鈍後の鋼板の鋼組織におけるフェライトの面積率は60%以下とし、好ましくは50%以下とする。
なお、フェライトの平均結晶粒径が微細な場合、フェライト粒界から逆変態して生成するマルテンサイトの微細化に寄与し、伸びフランジ性の向上に寄与する。したがって、2次焼鈍後の鋼板の鋼組織におけるフェライトの平均結晶粒径は10μm以下とすることが好ましく、より好ましくは、5μm以下とする。
マルテンサイトの面積率:40%以上90%以下
マルテンサイトは本発明の鋼板の強度を確保するのに必要な硬質相である。マルテンサイトの面積率が40%未満では、鋼板強度が低下し、TS≧1180MPaを確保することが困難となる場合がある。したがって、2次焼鈍後の鋼板の鋼組織におけるマルテンサイトの面積率は40%以上とし、好ましくは50%以上とする。一方、マルテンサイトの面積率が90%を超えると硬質相が過剰となり、加工性の確保が困難となる場合がある。このため、2次焼鈍後の鋼板の鋼組織におけるマルテンサイトの面積率は90%以下とし、好ましくは70%以下とする。
なお、マルテンサイトの平均結晶粒径が5μm超えでは、軟質なフェライトと硬質なマルテンサイトの界面においてボイドが発生しやすくなり、伸びフランジ性や局部延性が低下する場合がある。これに対して、マルテンサイトの平均結晶粒径を5μm以下とすることで、フェライトとマルテンサイトの界面におけるボイドの生成が抑制され、伸びフランジ性の低下が抑制される。したがって2次焼鈍後の鋼板の鋼組織におけるマルテンサイトの平均結晶粒径は5μm以下とすることが好ましく、より好ましくは2μm以下とする。
また、本発明の2次焼鈍後の鋼板においては、フェライトとマルテンサイト以外の残部組織として、パーライト、ベイナイト、残留オーステナイトおよび炭化物等を含む場合があるが、これらは合計面積率で10%以下であれば許容できる。
なお、上記面積率は鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、ナイタール(nital)で腐食し、SEM(走査型電子顕微鏡)で2000倍の倍率にて5視野観察し、撮影した組織写真を画像解析して求めることができる。詳細は実施例で述べるが、組織写真でフェライトはやや黒いコントラストの領域であり、パーライトは炭化物がラメラー状に生成している領域、ベイナイトは炭化物が点列状に生成している領域とし、マルテンサイトおよび残留オーステナイト(残留γ)は白いコントラストの付いている粒子とする。また、フェライトおよびマルテンサイトの平均粒径はJIS G0522の規定に準拠し、切断法にて測定した。
また、上記の鋼組織を有する2次焼鈍の鋼板である高強度溶融亜鉛めっき鋼板は、以下の1)〜3)の特性を有する。
1)TS≧1180MPa
近年、自動車車体の軽量化および車両衝突時の乗員安全性確保が強く求められており、これらの要求に応えるためには、自動車車体の素材となる鋼板を高強度化することが必要となる。本発明で得られる高強度溶融亜鉛めっき鋼板は、TS≧1180MPaであり、このような高強度化を達成できる。
2)焼鈍温度が40℃変動したときのTS変動量(ΔTS)≦50MPa
通常、連続焼鈍ラインでの製造において、焼鈍温度はコイル内で約40℃(±20℃)変動する。この焼鈍温度変化に対する材質の変動量を評価するに当たり、焼鈍温度の中央値と、±20℃の焼鈍温度変動が生じた位置の計3ヶ所から、圧延方向に対して90°方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行い、TS変動量、すなわちTSの最大値と最小値の差(ΔTS=TSmax−TSmin)を評価した。本発明においては、ΔTS≦50MPaといった、材質の焼鈍温度依存性が小さい鋼板を得ることができる。
3)表面外観
溶融亜鉛めっき後の外観を目視で評価し、不めっきが全くないものを○、不めっきが発生したものを×とし、また、合金化後の外観は、合金化ムラが認められたものを×、合金化ムラがなく均一の外観が得られたものを○として、目視評価した場合、本発明により得られる高強度溶融亜鉛めっき鋼板においては、めっき後および合金化後ともに○の評価が得られる。
次に、本発明の製造条件について、詳細に説明する。
本発明の製造方法で使用する鋼スラブは成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し熱間圧延する方法(直送圧延)、わずかの保熱をおこなった後に直ちに熱間圧延する方法(直送圧延・直接圧延)、あるいは高温状態のまま加熱炉に装入して再加熱の一部を省略する方法(温片装入)などの省エネルギープロセスも問題なく適用することができる。また、熱間圧延に供する鋼スラブは、下記の理由でスラブ加熱温度を1150〜1300℃とすることが好ましい。
スラブ加熱温度:1150℃以上1300℃以下
鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を充分な量、再溶解させる必要がある。また、スラブ表面の気泡、偏析などの欠陥をスケールオフすることにより、鋼板表面の亀裂や凹凸を減少し、平滑な鋼板表面を達成する観点からも1150℃以上に加熱することが有効である。このため、スラブ加熱温度は1150℃以上とすることが好ましい。一方、スラブ加熱温度が1300℃を超えると、オーステナイト粒の粗大化を引き起こし、最終組織が粗大化(coarsening)し、伸びフランジ性を低下させる場合がある。このため、スラブ加熱温度は、1300℃以下とすることが好ましい。
(熱間圧延工程)
上記により得られた鋼スラブに対して粗圧延および仕上げ圧延を含む熱間圧延を施す。まず、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法にしたがって行うことができる。また、表面温度の低下による熱間圧延時のトラブルを防止する観点からは、シートバーを加熱するシートバーヒーターを活用することは有効な方法である。
本発明の製造方法において、特に限定するものではないが、下記の理由で、仕上げ圧延の最終パスの圧下率:10%以上、最終パスの前パスの圧下率:18%以上、仕上げ圧延温度:850〜950℃として熱間圧延することが好ましい。
仕上げ圧延の最終パスの圧下率:10%以上、最終パスの前パスの圧下率:18%以上
本発明のNb、Tiを添加した鋼は熱間圧延時のオーステナイトの再結晶を抑制する。このため、仕上げ圧延の最終パスの圧下率が10%未満では、熱間仕上げ圧延後に未再結晶のオーステナイトからフェライト変態する割合が多くなり、熱延板組織が混粒(duplex grain microstructure)となりやすい。この結果、冷間圧延、焼鈍後の鋼板組織が熱延板組織の影響を受けて不均一な組織となり、材質バラツキの増大や加工性の低下を招く場合がある。また、仕上げ圧延の最終パスの圧下率が10%以上では、熱延板組織を微細化する効果を有し、その後の冷間圧延および焼鈍後においても微細組織を維持するため、2次(最終)焼鈍後のフェライト粒径およびマルテンサイト粒径の微細化に寄与し、伸びフランジ性の向上に有効に作用する。よって、最終パスの圧下率は10%以上とすることが好ましく、13%以上とすることがより好ましい。
さらに、上記最終パスの圧下率制御に加えて、最終パスの前パスの圧下率を適正範囲に制御する。すなわち、この最終パスの前パスの圧下率を18%以上とすることによって、歪蓄積効果が高まり、オーステナイトの再結晶がより促進され、熱延板組織の不均一性が解消され、材質バラツキが低減する。また、仕上げ圧延の最終パスの前パスの圧下率が18%以上では、熱延板組織を微細化する効果を有し、その後の冷間圧延および焼鈍後においても微細組織を維持するため、2次(最終)焼鈍後のフェライト粒径およびマルテンサイト粒径の微細化に寄与し、伸びフランジ性の向上に有効に作用する。一方、最終パスの前パスの圧下率が18%未満では、オーステナイトの再結晶促進効果や微細化効果が得られない場合がある。よって、最終パスの前パスの圧下率は18%以上とすることが好ましく、20%超とすることがより好ましい。
なお、上記最終パスおよび最終パスの前パスの2パスの圧下率が大きくなると圧延負荷が上昇するため、これらの圧下率はいずれも40%未満とするのが好ましい。
仕上げ圧延温度:850〜950℃
仕上げ圧延温度が850℃未満の場合、組織が不均一となり、加工性(延性、伸びフランジ性)の低下が顕著となる。一方、仕上げ圧延温度が950℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向が認められる。また、結晶粒径が過度に粗大となり、加工時にプレス表面の荒れ(orange peel like surface defect)が生じる場合がある。したがって、仕上げ圧延温度は850〜950℃とすることが好ましい。
上記熱間圧延を終了した熱延鋼板(以下、熱延板ともいう)は、組織のさらなる微細化による伸びフランジ性の向上および材質の焼鈍温度依存性を低減する観点から、仕上げ圧延終了後、3秒以内に冷却を開始し、仕上げ圧延温度〜(仕上げ圧延温度−100℃)の温度域を5〜200℃/秒の平均冷却速度で冷却し、450〜650℃の温度でコイル形状に巻き取ることが好ましい。
仕上げ圧延終了後3秒以内に冷却を開始
仕上げ圧延終了後、冷却を開始するまでの時間が3秒を超える場合、フェライトが析出し、熱延板組織がフェライトとパーライトが層状に形成されたバンド組織(banded structure)となりやすい。このような層状組織は、鋼板内に成分の濃度ムラが生じた状態であるため、冷延焼鈍後に不均一な組織となりやすく、組織の均一微細化が困難となる。このため、伸びフランジ性などの加工性の低下や焼鈍温度に対するTS変動量が増大する場合がある。したがって、仕上げ圧延終了後、冷却を開始するまでの時間を3秒以内とすることが好ましい。
仕上げ圧延温度〜(仕上げ圧延温度−100℃)における平均冷却速度:5〜200℃/秒
仕上げ圧延直後の高温域である、仕上げ圧延温度〜(仕上げ圧延温度−100℃)の温度域における冷却速度が5℃/秒に満たない場合、フェライトが粗大に析出し、熱延板組織が粗大化しやすくなるとともに、フェライトとパーライトが層状に形成されたバンド組織となりやすい。このようなバンド状組織は、鋼板内に成分の濃度ムラが生じた状態であるため、冷延焼鈍後に不均一な組織となりやすく、組織の均一微細化が困難となる。このため、伸びフランジ性などの加工性や材質の焼鈍温度依存性が大きくなる場合がある。一方、該平均冷却速度が200℃/秒を超えても効果は飽和するので、仕上げ圧延温度〜(仕上げ圧延温度−100℃)の温度域における平均冷却速度は5〜200℃/秒とすることが好ましい。
巻取り温度:450〜650℃
巻取り温度はNbCの析出に著しく影響を及ぼす。巻取り温度が450℃未満では、NbCの析出が不十分となり、NbCの析出がコイル内で不均一になりやすく、冷間圧延後の焼鈍加熱時の再結晶挙動に起因した組織差により材質の焼鈍温度依存性が大きくなる場合がある。また、巻取り温度が650℃を超えると、NbCが粗大に析出し、NbCによるフェライトの析出強化が不十分となるため、マルテンサイトとの硬度差低減効果による伸びフランジ性の改善効果が得られなくなる場合がある。したがって、巻取り温度は450℃以上650℃以下とすることが好ましい。さらに好ましくは500℃以上600℃以下とする。
(冷間圧延工程)
熱間圧延工程にて、熱間圧延して得られた熱延鋼板は、適宜酸洗を行い、冷間圧延を施し冷延鋼板とする。酸洗は必須ではなく、適宜行うことができる。また、酸洗を行う場合は、通常の条件にて行うことができる。また、冷間圧延では、圧下率:40%以上とすることが好ましい。
冷間圧延の圧下率:40%以上
冷間圧延の圧下率が40%未満では、焼鈍時の加熱過程における再結晶が不均一に生じ、均一微細な焼鈍組織が得られない場合がある。これに加えて、通常起こりうる熱延板組織のコイル内バラツキが冷延焼鈍後にも残存し、材質の焼鈍温度依存性が大きくなる場合がある。そこで、コイル内において、より均一微細な組織を得る観点から、冷間圧延の圧下率は40%以上とすることが好ましい。なお、圧下率が70%を超えると圧延時のロールへの負荷も高まり、通板トラブルが発生する懸念があるため、圧下率の上限を70%程度とすることがより好ましい。
(1次焼鈍工程)
700℃から焼鈍温度までの温度範囲の平均加熱速度:1℃/秒以下
冷間圧延後の冷延鋼板には、1次焼鈍を施す。本発明においては、熱延鋼板の段階でTiCやNbCを析出させているため、冷間圧延工程を経て得られた冷延鋼板の再結晶温度は比較的高温となり、焼鈍後に未再結晶組織が残存しやすくなる。このような未再結晶組織はSiやMnの拡散を促進するため、SiやMnの表面酸化物を形成しつつ、鋼板表層にはSi、Mnの欠乏層を形成させることが容易となり、その結果、酸洗および2次焼鈍後にめっき性の向上が期待できる。このような効果を得るためには、700℃から焼鈍温度までの温度域の平均加熱速度を1℃/s以下として加熱する必要がある。なお、上記平均加熱速度の下限は特に限定しないが、0.1℃/秒未満では、焼鈍炉内の通板時間が増大し、製造性を低下させるため、700℃から焼鈍温度までの温度範囲の平均加熱速度は0.1℃/秒以上とすることが好ましい。
780〜850℃の焼鈍温度域の焼鈍温度に加熱
焼鈍温度が780℃未満では、1次焼鈍の冷却後に所定量のマルテンサイト、ベイナイト、残留オーステナイト(残留γ)量が得られず、焼鈍温度依存性の小さい高強度鋼板を得ることが困難となる場合がある。また、1次焼鈍後においても未再結晶組織が残存しやすくなり、この未再結晶組織が残存した状態では、2次焼鈍中にSiやMnが歪効果によって再表面濃化しやすくなり、不めっきの原因になる場合がある。一方、焼鈍温度が850℃を超えると、1次焼鈍後に所望のフェライト量が得られず、その結果、オーステナイトへのCやMnの濃化が不十分となり、2次焼鈍後のマルテンサイト量の変動に起因した焼鈍温度依存性が大きくなる場合がある。さらに、生産性の低下やエネルギーコストの増加を招くという問題もある。よって、焼鈍温度は780℃以上850℃以下の温度域の温度とする。
780〜850℃の焼鈍温度域で10〜500秒保持
1次焼鈍における780〜850℃の焼鈍温度域での保持時間は、オーステナイトへのC、Mn等の元素の濃化を進行させる観点から、10秒以上とするのが好ましく、20秒以上がより好ましい。一方、保持時間が500秒を超えると、結晶粒径が粗大化し、強度の低下、表面性状の劣化、伸びフランジ性の低下等、鋼板の諸特性に悪影響を及ぼす懸念がある。保持時間は好ましくは200秒以下である。以上より、1次焼鈍の焼鈍温度域である、780〜850℃の焼鈍温度域での保持時間は10秒以上500秒以下とする。
焼鈍温度から500℃以下の冷却停止温度までの平均冷却速度を5℃/秒以上として冷却
この冷却過程は、1次焼鈍後のマルテンサイト、ベイナイト、パーライト、残留γ量を制御するために重要な役割を担っている。すなわち、平均冷却速度が5℃/秒未満では、冷却中に生成するフェライト量が多くなりすぎるため、2次(最終)焼鈍後に所定のマルテンサイト量が得られず、所望のTSが得られない場合がある。また、冷却停止温度が500℃を超えると、2次(最終)焼鈍後に所定のマルテンサイト量が得られず、所望のTSが得られない場合がある。このため、冷却停止温度は500℃以下とする。したがって、焼鈍温度から500℃以下の冷却停止温度までの温度範囲の平均冷却速度は5℃/秒以上とする。好ましくは10℃/秒以上とする。一方、焼鈍温度から500℃以下の冷却停止温度までの温度範囲の平均冷却速度は板形状安定性等の観点から100℃/秒以下が好ましい。
冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却、ロール冷却、水冷、あるいはこれらを組み合わせて行うことも可能である。
上記1次焼鈍は、連続焼鈍法にて行うことが好ましい。
上記の1次焼鈍を施すことで、1次焼鈍後の冷延鋼板の鋼組織を、上記したように、フェライト相の面積率が10%以上60%以下、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40%以上90%以下である鋼組織とする。
(酸洗工程)
1次焼鈍時に生成したSi、Mnなどの易酸化性元素の表面濃化物は、2次焼鈍後のめっき性を顕著に劣化させるため、Si、Mnなどの表面濃化物を除去し、めっき性を改善するために、酸洗を実施する。ここで、酸洗は、通常の条件にて行うことができる。なお、鋼板の酸洗減量をFe換算で0.05〜5g/mで酸洗することによって、表面濃化物を完全に除去でき、たとえば、40〜90℃、濃度1〜10質量%程度の酸(塩酸、硫酸、硝酸等)で1〜20秒の酸洗処理で表面濃化物が完全に除去されるため、1次焼鈍後に施す酸洗の条件としては、このような条件とすることが好ましい。酸洗液の濃度が1質量%未満では酸洗減量がFe換算で0.05g/m未満となる場合があり、酸洗による表面濃化物の除去が不十分となる場合がある。一方、酸洗液の濃度が10質量%を超えると酸洗減量が5g/mを超える場合があるとともに、過酸洗による鋼板表面の荒れが発生する場合がある。また、酸の温度が40℃未満では酸洗減量がFe換算で0.05g/m未満となる場合があり、酸洗による表面濃化物の除去が不十分となる場合がある。一方、酸の温度が90℃を超えると、酸洗減量が5g/mを超える場合があるとともに、過酸洗による鋼板表面の荒れが発生する場合がある。酸洗時間が1秒未満では、酸洗による表面濃化物の除去が不十分となる場合があり、20秒を超えると過酸洗による鋼板表面の荒れが発生する場合がある。したがって、酸洗条件は、酸温度:40℃以上90℃以下、酸濃度:1質量%以上10質量%以下、酸洗時間:1秒以上20秒以下とすることが好ましく、酸温度:50℃以上70℃以下、酸洗時間:5秒以上10秒以下とすることがより好ましい。
上記した酸洗減量のFe換算値は、酸洗前後の鋼板質量から求めることができる。
(2次(最終)焼鈍工程)
750〜850℃の焼鈍温度域の焼鈍温度に加熱
2次焼鈍における焼鈍温度が750℃未満では、焼鈍冷却後に所定のマルテンサイト量が得られず、所望の強度が得られない場合がある。一方、焼鈍温度が850℃を超えると、焼鈍中にSi、Mnが再表面濃化し、めっき性の低下を招く。また、フェライトやオーステナイトが粗大化し、冷却後の組織が粗大化するため、鋼板表面性状の劣化を招き、伸びフランジ性の改善効果が得られない場合もある。さらに、生産性の低下やエネルギーコストの増加を招くという問題もある。したがって、焼鈍温度は750℃以上850℃以下とする。より安定してめっき性を確保する観点からは、750℃以上800℃以下とすることが好ましい。
750〜850℃の焼鈍温度域で10〜500秒保持
2次焼鈍における750〜850℃の焼鈍温度域での保持時間は、オーステナイトへのC、Mn等の元素の濃化をより安定化させる観点から、10秒以上とするのが好ましい。一方、保持時間が500秒を超えると、焼鈍中にSi、Mnが再表面濃化し、めっき性の低下を招く場合がある。また、結晶粒径が粗大化し、鋼板表面性状の劣化を招き、伸びフランジ性の低下等、鋼板の諸特性に悪影響を及ぼす恐れがある。したがって、750〜850℃の焼鈍温度域での保持時間は10秒以上500秒以下とする。
焼鈍温度から亜鉛めっき浴の温度までの平均冷却速度(1次冷却速度):1〜15℃/秒
前記焼鈍温度域の焼鈍温度に加熱し、焼鈍温度で均熱して、750〜850℃の焼鈍温度域で10〜500秒保持した後、通常420〜500℃に保持されている亜鉛めっき浴の温度まで平均冷却速度1〜15℃/秒で冷却する。焼鈍温度から亜鉛めっきの温度までの平均冷却速度(1次冷却速度)が15℃/秒を超えると、冷却中のフェライト生成が抑制され、マルテンサイトやベイナイトなどの硬質相が過度に生成するため、強度が高くなりすぎてしまい、延性や伸びフランジ性等の加工性の劣化を招く。一方、1℃/秒未満では、冷却中に生成するフェライトの量が多くなりすぎ、所望のTSが得られない場合がある。したがって、焼鈍温度からめっき浴までの平均冷却速度は1℃/秒以上15℃/秒以下とする。冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却、ロール冷却、水冷、あるいはこれらを組み合わせて行うことも可能である。上記2次焼鈍は、連続焼鈍法にて行うことが好ましく、とくに後述の溶融亜鉛めっき処理設備まで備えたCGL(continuous galvanizing line)を用いて行うことが好ましい。
溶融亜鉛めっき処理・合金化処理
上記の1次冷却速度で冷却後、亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施す。溶融亜鉛めっき処理は常法で行えばよい。また、亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施した後、後述する5〜100℃/秒の平均冷却速度(2次冷却速度)で冷却する前に、亜鉛めっきの合金化処理を施すこともできる。この場合、亜鉛めっきの合金化処理は、例えば、溶融亜鉛めっき処理後、500〜650℃の温度域に加熱し、常法により数秒〜数十秒保持することで行うことができる。亜鉛めっき条件としては、めっき付着量は片面あたり20〜70g/mであり、合金化する場合、めっき層中のFe濃度(Fe%)は6〜15質量%とすることが好ましい。
溶融亜鉛めっき処理後、あるいはさらに合金化処理を行う場合は合金化処理後の150℃以下に冷却する際の平均冷却速度(2次冷却速度):5〜100℃/秒
溶融亜鉛めっき処理後、あるいは亜鉛めっきの合金化処理を施した後の冷却において、150℃以下の温度までの平均冷却速度(2次冷却速度)が、5℃/秒未満の緩冷却では400〜500℃付近でパーライトあるいはベイナイトが生成し、所定量のマルテンサイトが得られず、所望の強度が得られない場合がある。一方、2次冷却速度が100℃/秒を超えるとマルテンサイトが硬くなりすぎてしまい、延性や伸びフランジ性が低下する場合がある。したがって、2次冷却速度は5℃/秒以上100℃/秒以下とする。
さらに、本発明においては、前記した2次焼鈍後に最終的に得られた高強度溶融亜鉛めっき鋼板に、形状矯正、表面粗度調整の目的で調質圧延またはレベラー加工を施すことも可能である。なお、過度に調質圧延を行うと、過剰に歪が導入され、結晶粒が展伸された圧延加工組織となり、延性が低下するため、調質圧延を行う場合、伸長率で0.1〜1.5%程度とすることが好ましい。
表1に示す成分組成からなる溶鋼を溶製し、鋼スラブとした後、表2に示す種々の条件で、熱間圧延、冷間圧延、1次焼鈍、酸洗および2次焼鈍工程にて、板厚が1.2mmの高強度合金化溶融亜鉛めっき鋼板(製品板)を製造した。1次焼鈍工程の焼鈍温度域での保持時間は、780〜850℃の焼鈍温度域(1次焼鈍の焼鈍温度域)での保持時間であり、2次焼鈍工程の焼鈍温度域での保持時間は、750〜850℃の焼鈍温度域(2次焼鈍の焼鈍温度域)での保持時間である。また、1次焼鈍工程後に行う酸洗工程では、60℃の5質量%塩酸にて、10秒間の酸洗を行った。また、溶融亜鉛めっき処理は付着量が片面あたり50g/m(両面めっき)となるように調整し、さらに合金化処理を施し、めっき層中のFe%が9〜12質量%となるように調整した。
以上により得られた合金化溶融亜鉛めっき鋼板に対して、サンプルを採取し、下記の方法で組織観察、圧延方向に対して90°方向(C方向)を引張方向とする引張試験を行い、鋼板の鋼組織を特定すると共に、フェライト相およびマルテンサイト相の面積率、フェライトおよびマルテンサイトの平均結晶粒径、降伏強度(YP)、引張強度(TS)、全伸び(El)および穴拡げ率(λ)を測定した。また、めっき後外観、合金化後外観を目視で観察し、表面性状を評価した。さらに、2次焼鈍温度が中央値に対して±20℃の範囲で変動した位置から、圧延方向に対して90°方向(C方向)を引張方向とする引張試験片を採取し、引張試験により、2次焼鈍温度が中央値に対して±20℃変動、すなわち、焼鈍温度が40℃変動した場合のTS変動量(ΔTS)を評価した。また、1次焼鈍工程後で酸洗工程前の鋼板からも鋼組織観察用のサンプルを採取した。以下、具体的に説明する。
(i)組織観察
合金化溶融亜鉛めっき鋼板から、組織観察用試験片を採取し、L断面(圧延方向に平行な垂直断面)を機械的に研磨し、ナイタールで腐食した後、走査電子顕微鏡(SEM)で、倍率3000倍で撮影した組織写真(SEM写真)から、鋼板組織の特定とフェライトおよびマルテンサイトの面積率を測定した。なお、上記組織写真からの鋼板の鋼組織の特定は、フェライトはやや黒いコントラストの領域、パーライトは炭化物がラメラー状に生成している領域、ベイナイトは炭化物が点列状に生成している領域とし、マルテンサイトおよび残留オーステナイト(残留γ)は白いコントラストのついている粒子とした。さらに、上記試験片に、250℃で4hrの焼戻し処理を施した後、同様にして組織写真を得て、炭化物がラメラー状に生成している領域を熱処理前にパーライト、炭化物が点列状に生成している領域を熱処理前にベイナイトもしくはマルテンサイトであった領域として再度その面積率を求め、白いコントラストのまま残存している微粒子を残留γとして測定し、焼戻し処理前の白いコントラストがついている粒子(マルテンサイトおよび残留γ)の面積率との差から、マルテンサイトの面積率を求めた。なお、それぞれの相の面積率は、透明のOHPシートに、各相ごとに相別して色付けし、画像を取り込み後、2値化を行い、画像解析ソフト(マイクロソフト社製Digital Image Pro Plus ver 4.0)にて求めた。また、フェライトおよびマルテンサイトの平均粒径はJIS G0522の規定に準拠し、切断法にて測定した。
また、1次焼鈍後の鋼板から採取した組織観察用試験片については、L断面(圧延方向に平行な垂直断面)を機械的に研磨し、ナイタールで腐食した後、走査電子顕微鏡(SEM)で、倍率3000倍で撮影した組織写真(SEM写真)から、鋼板組織の特定とフェライトの面積率を測定した。さらに、Si、Mn欠乏層深さは,グロー放電発光分析法(GDS)によって測定した深さ方向の濃度プロファイルから、SiおよびMnの元素濃度がそれぞれ鋼中元素濃度の3/4以下となる領域を読み取り、その深さを指標とした。
(ii)引張特性
合金化溶融亜鉛めっき鋼板から、圧延方向に対して90°方向(C方向)を引張方向とするJIS5号引張試験片(JIS Z2201)を採取し、JIS Z2241の規定に準拠した引張試験を行い、YP、TS、Elを測定した。なお、引張試験の評価基準はTS≧1180MPa、TS×El≧15000MPa・%とした。
さらに、2次焼鈍温度が中央値に対して+20℃および−20℃となった位置から、圧延方向に対して90°方向(C方向)を引張方向とする引張試験片を採取し、引張試験により、焼鈍温度が40℃変動した場合のTS変動(ΔTS)を評価した。なお、材質均一性の評価基準として、ΔTS≦50MPaを材質均一性に優れるとした。
(iii)穴拡げ率(伸びフランジ性)
伸びフランジ成形性は日本鉄鋼連盟規格JFST1001に準拠した穴拡げ試験により評価した。すなわち、得られた合金化溶融亜鉛めっき鋼板に対して、100mm×100mm角サイズのサンプルを採取し、サンプルにポンチ径10mmのポンチで打ち抜いたポンチ穴を開け、頂角60°の円錐ポンチを用いて、バリが外側になるようにして、板厚を貫通する割れが発生するまで穴拡げ試験を行い、このときのd0:初期穴内径(mm)、d:割れ発生時の穴内径(mm)として、穴拡げ率λ(%)={(d−d0)/d0}×100を求めた。なお、穴拡げ率の評価基準として、TS×λ≧43000MPa・%を、伸びフランジ性に優れるとした。
(iv)表面性状
めっき後の外観を目視で評価し、不めっきが全くないものを○、不めっきが発生したものを×とした。また、合金化後の外観は、合金化ムラが認められたものを×、合金化ムラがなく均一の外観が得られたものを○として、目視評価した。
得られた結果を表3に示す。表3より、鋼板No.2〜9の鋼板は、成分組成および製造方法が本発明に適合した発明例であり、TS≧1180MPa、TS×El≧15000MPa・%、TS×λ≧43000MPa・%を満足し、焼鈍温度が40℃変動した場合のTS変量(ΔTS)が50MPa以下となる焼鈍温度依存性に優れた鋼板となっている。また、不めっきや合金化ムラの発生は認められず、良好な表面性状を有する鋼板となっている。さらに、鋼板No.3、5〜8は熱間圧延時の最終パスおよび最終パスの前パスの圧下率が好適範囲であるため、マルテンサイトの平均粒径が2μm以下となっており、この結果、TS×λ≧45000MPa・%を満足する鋼板となっている。
これに対して、比較例の鋼板No.1はC量が本発明範囲を下回るため、所望のマルテンサイト量が得られず、TS≧1180MPaを未達成となっている。比較例のNo.10はNb量およびTi量が本発明範囲を下回り、フェライトの析出強化が不十分であるため、マルテンサイト相との硬度差の低減効果が小さく、TS×λ≧43000MPa・%を未達成となっている。さらに所望のSi、Mnの欠乏層深さが得られず、不めっきや合金化ムラが発生した比較例である。比較例の鋼板No.11はS量、Nb量およびTi量が本発明範囲を上回るため、フェライトの延性を著しく低下させ、この結果、TS×El≧15000MPa・%を未達成となっている。また、Nb量およびTi量が過剰のため、熱間圧延時の圧延負荷が高めであり、製造性の低下が懸念される。比較例の鋼板No.12はC、Si、Mnが本発明範囲を上回るため、マルテンサイト量が過剰となり、Elやλが低下し、TS×El≧15000MPa・%あるいはTS×λ≧43000MPa・%を未達成となっている。
Figure 0005884210
Figure 0005884210
Figure 0005884210
表1に示す鋼B、C、DおよびIの成分組成からなる溶鋼を溶製し、鋼スラブとした後、表4に示す種々の条件で、熱間圧延、冷間圧延、1次焼鈍、酸洗および2次焼鈍工程にて、板厚が1.2mmの高強度溶融亜鉛めっき鋼板(合金化処理を施していない溶融亜鉛めっき鋼板(表4では単に溶融亜鉛めっき鋼板と記載する)、および合金化処理を施した溶融亜鉛めっき鋼板である合金化溶融亜鉛めっき鋼板)(製品板)を製造した。1次焼鈍工程の焼鈍温度域での保持時間は、780〜850℃の焼鈍温度域(1次焼鈍の焼鈍温度域)での保持時間であり、2次焼鈍工程の焼鈍温度域での保持時間は、750〜850℃の焼鈍温度域(2次焼鈍の焼鈍温度域)での保持時間である。また、1次焼鈍工程後に行う酸洗工程では、60℃の5質量%塩酸にて、10秒間の酸洗を行った。ここで、溶融亜鉛めっき処理は付着量が片面あたり50g/m(両面めっき)となるように調整し、合金化処理を行う場合は、めっき層中のFe%が9〜12質量%となるように調整した。
以上により得られた種々の高強度溶融亜鉛めっき鋼板(製品板)に対して、実施例1と同様に、鋼板組織の特定、フェライト相およびマルテンサイト相の面積率、フェライトおよびマルテンサイトの平均結晶粒径、YP、TS、Elおよびλを測定し、さらに焼鈍温度が40℃変動した場合のTS変動量(ΔTS)を評価した。
上記測定結果を表5に示す。表5から、本発明の製造条件を満たす鋼板No.13〜15、18〜21、23〜25の鋼板は、成分組成および製造方法が本発明に適合した発明例であり、TS≧1180MPa、TS×El≧15000MPa・%、TS×λ≧43000MPa・%を満足し、焼鈍温度が40℃変動した場合のTS変動量(ΔTS)が50MPa以下となる焼鈍温度依存性に優れた鋼板となっている。また、不めっきや合金化ムラの発生は認められず、良好な表面性状を有する鋼板となっている。さらに、鋼板No.14、15、18は熱間圧延時の最終パスおよび最終パスの前パスの圧下率が好適範囲であるため、マルテンサイトの平均粒径が2μm以下となっており、この結果、TS×λ≧45000MPa・%を満足する鋼板となっている。
これに対して、比較例の鋼板No.16は酸洗工程における酸洗減量が本発明範囲を下回るため、1次焼鈍時に生成したSi、Mnなどの易酸化性元素の表面濃化物が残存し、不めっきや合金化ムラが発生した比較例である。比較例の鋼板No.17は酸洗工程における酸洗減量が本発明範囲の上限を超えるため、過酸洗による鋼板表面の荒れ発生に起因する不めっきや合金化ムラが発生した比較例である。比較例の鋼板No.22は2次焼鈍時の2次冷却速度が本発明範囲を下回るため、冷却中にパーライトやベイナイトが多量に析出し所望のマルテンサイト量が確保できず、TS≧1180MPaを未達となっている。また、1次焼鈍時の加熱速度が本発明範囲を上回るため、Si、Mnの拡散が不十分となり、所望のSi、Mnの欠乏層深さが得られず、不めっきや合金化ムラが発生した比較例である。比較例の鋼板No.26は、1次焼鈍時の焼鈍温度が本発明範囲を上回るため、ΔTSが不十分となっている。比較例の鋼板No.27は、1次焼鈍時の焼鈍温度域での保持時間が本発明の範囲を上回るため、伸びフランジ性が不十分である。比較例の鋼板No.28は、2次焼鈍時の1次冷却速度が本発明の範囲を上回るため、鋼組織のフェライト面積率が不十分となり、かつ、伸び及び伸びフランジ性が不十分である。比較例の鋼板No.29は、2次焼鈍時の2次冷却速度が本発明の範囲を上回るため、伸び及び伸びフランジ性が不十分である。
比較例の鋼板No.30は2次焼鈍時の焼鈍温度が本発明を上回るため、2次焼鈍時にSi、Mnが再表面濃化し、不めっきや合金化ムラが発生した比較例である。比較例の鋼板No.31は2次焼鈍時の焼鈍温度が本発明範囲を下回るため、2次焼鈍後の鋼板において所望のフェライト分率、マルテンサイト分率が得られず、TS≧1180MPaを未達となっている。
Figure 0005884210
Figure 0005884210
本発明により得られる高強度溶融亜鉛めっき鋼板は、高い引張強度を有するだけでなく、表面外観に優れ、材質の焼鈍温度依存性が小さいため、自動車の衝突安全性の向上や軽量化に大きく貢献でき、プレス成形時における作業性の向上も期待できる。また、自動車部品に限らず、建築および家電分野の素材としても好適である。

Claims (4)

  1. 質量%で、C:0.120%以上0.180%以下、Si:0.01%以上1.00%以下、Mn:2.20%以上3.50%以下、P:0.001%以上0.050%以下、S:0.010%以下、sol.Al:0.005%以上0.100%以下、N:0.0001%以上0.0060%以下、Nb:0.010%以上0.100%以下、Ti:0.010%以上0.100%以下を含有し、残部が鉄および不可避的不純物からなる鋼スラブを熱間圧延して熱延鋼板とし、該熱延鋼板を冷間圧延して冷延鋼板とし、次いで該冷延鋼板を1次焼鈍し、酸洗し、次いで2次焼鈍を施して溶融亜鉛めっき鋼板とする高強度溶融亜鉛めっき鋼板の製造方法において、前記1次焼鈍では、700℃から焼鈍温度までの温度範囲の平均加熱速度を1℃/秒以下として780〜850℃の焼鈍温度域の焼鈍温度に加熱し、780〜850℃の焼鈍温度域で10〜500秒保持した後、前記焼鈍温度から500℃以下の冷却停止温度までの平均冷却速度を5℃/秒以上として冷却することで、フェライトの面積率が10%以上60%以下、マルテンサイト、ベイナイト、残留オーステナイトの合計面積率が40%以上90%以下である鋼組織を有する鋼板とし、前記酸洗は、鋼板の酸洗減量をFe換算で0.05〜5g/mとし、前記2次焼鈍では、750〜850℃の焼鈍温度域の焼鈍温度に加熱し、750〜850℃の焼鈍温度域で10〜500秒保持した後、前記焼鈍温度から1〜15℃/秒の平均冷却速度で冷却し、亜鉛めっき浴に浸漬する溶融亜鉛めっき処理を施し、前記溶融亜鉛めっき処理後、5〜100℃/秒の平均冷却速度で150℃以下に冷却して、面積率で10%以上60%以下のフェライトと面積率で40%以上90%以下のマルテンサイトとを含む鋼組織を有する鋼板とする高強度溶融亜鉛めっき鋼板の製造方法。
  2. 前記溶融亜鉛めっき処理後、5〜100℃/秒の平均冷却速度で冷却する前に、さらに亜鉛めっきの合金化処理を施す請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。
  3. 前記鋼スラブが、上記成分組成に加えてさらに、質量%でMo:0.05%以上1.00%以下、V:0.02%以上0.50%以下、Cr:0.05%以上1.00%以下、B:0.0001%以上0.0030%以下から選ばれる1種以上を含有する請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。
  4. 前記熱間圧延では、熱間圧延の仕上げ圧延終了後、3秒以内に冷却を開始し、熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5〜200℃/秒で冷却し、巻取り温度を450〜650℃として巻き取り、前記冷間圧延では、圧下率40%以上で冷間圧延する請求項1〜3のいずれか1項に記載の高強度溶融亜鉛めっき鋼板の製造方法。
JP2015551290A 2014-07-25 2015-06-09 高強度溶融亜鉛めっき鋼板の製造方法 Active JP5884210B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551290A JP5884210B1 (ja) 2014-07-25 2015-06-09 高強度溶融亜鉛めっき鋼板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014152096 2014-07-25
JP2014152096 2014-07-25
PCT/JP2015/002876 WO2016013144A1 (ja) 2014-07-25 2015-06-09 高強度溶融亜鉛めっき鋼板の製造方法
JP2015551290A JP5884210B1 (ja) 2014-07-25 2015-06-09 高強度溶融亜鉛めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP5884210B1 true JP5884210B1 (ja) 2016-03-15
JPWO2016013144A1 JPWO2016013144A1 (ja) 2017-04-27

Family

ID=55162694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551290A Active JP5884210B1 (ja) 2014-07-25 2015-06-09 高強度溶融亜鉛めっき鋼板の製造方法

Country Status (6)

Country Link
US (1) US10544477B2 (ja)
EP (1) EP3173494B1 (ja)
JP (1) JP5884210B1 (ja)
CN (1) CN106661658B (ja)
MX (1) MX2017001106A (ja)
WO (1) WO2016013144A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168962A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168961A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017169561A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017169562A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168957A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2018030500A1 (ja) * 2016-08-10 2018-02-15 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
WO2018147400A1 (ja) 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN113227429A (zh) * 2018-12-26 2021-08-06 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11814695B2 (en) * 2015-11-26 2023-11-14 Jfe Steel Corporation Method for manufacturing high-strength galvanized steel sheet and high-strength galvanized steel sheet
CN108884534A (zh) * 2016-03-31 2018-11-23 杰富意钢铁株式会社 薄钢板和镀覆钢板、以及热轧钢板的制造方法、冷轧全硬钢板的制造方法、薄钢板的制造方法和镀覆钢板的制造方法
KR102130233B1 (ko) * 2016-03-31 2020-07-03 제이에프이 스틸 가부시키가이샤 박강판 및 도금 강판, 그리고 열연 강판의 제조 방법, 냉연 풀하드 강판의 제조 방법, 열 처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법
KR101940912B1 (ko) * 2017-06-30 2019-01-22 주식회사 포스코 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
CN111247264A (zh) * 2017-10-20 2020-06-05 杰富意钢铁株式会社 高强度钢板及其制造方法
WO2019092482A1 (en) * 2017-11-10 2019-05-16 Arcelormittal Cold rolled heat treated steel sheet and a method of manufacturing thereof
KR102020411B1 (ko) 2017-12-22 2019-09-10 주식회사 포스코 가공성이 우수한 고강도 강판 및 이의 제조방법
US11680303B2 (en) 2018-03-30 2023-06-20 Nippon Steel Corporation Steel sheet and manufacturing method therefor
CN111936648B (zh) * 2018-03-30 2021-11-02 杰富意钢铁株式会社 高强度镀锌钢板、高强度部件及其制造方法
CN111936649B (zh) 2018-03-30 2022-05-03 杰富意钢铁株式会社 高强度镀锌钢板、高强度部件和它们的制造方法
KR102467656B1 (ko) * 2018-03-30 2022-11-17 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법
KR102460214B1 (ko) * 2018-03-30 2022-11-01 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법
CN113227430B (zh) * 2018-12-26 2022-09-23 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法
CA3152615A1 (en) * 2019-10-31 2021-05-06 Makoto Watanabe Grain-oriented electrical steel sheet and method for producing same
CN111020441A (zh) * 2020-01-02 2020-04-17 鞍钢股份有限公司 一种控制镀锌板表面光泽度的方法及其镀锌钢板
CN111411295B (zh) * 2020-03-24 2021-06-15 首钢集团有限公司 一种多相钢构件及其制备方法、应用
CN112159931B (zh) * 2020-09-28 2022-08-12 首钢集团有限公司 一种具有连续屈服的1000MPa级中锰TRIP钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294397A (ja) * 2001-03-30 2002-10-09 Nippon Steel Corp めっき密着性およびプレス成形性に優れた高強度溶融亜鉛系めっき鋼板およびその製造方法
JP2004263271A (ja) * 2003-03-04 2004-09-24 Jfe Steel Kk 高張力溶融亜鉛めっき鋼板の製造方法
JP2012012703A (ja) * 2010-05-31 2012-01-19 Jfe Steel Corp 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013177673A (ja) * 2012-01-31 2013-09-09 Jfe Steel Corp 溶融亜鉛めっき鋼板およびその製造方法
JP2013221198A (ja) * 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp 冷延鋼板およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587724B2 (ja) 1990-11-30 1997-03-05 新日本製鐵株式会社 めっき密着性の良好な高Si含有高張力溶融亜鉛めっき鋼板の製造方法
CA2310335C (en) 1998-09-29 2009-05-19 Kawasaki Steel Corporation High strength thin steel sheet, high strength galvannealed steel sheet and manufacturing method thereof
JP3956550B2 (ja) * 1999-02-02 2007-08-08 Jfeスチール株式会社 強度延性バランスに優れた高強度溶融亜鉛メッキ鋼板の製造方法
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same
EP1342801B1 (en) * 2000-09-12 2011-02-02 JFE Steel Corporation High tensile strength hot dip plated steel sheet and method for production thereof
WO2002055751A1 (fr) 2000-12-29 2002-07-18 Nippon Steel Corporation Plaque d'acier a placage en zinc moule a haute resistance possedant une excellente adhesion en depot et parfaitement adaptee au formage a la presse et procede de fabrication associe
JP4085583B2 (ja) * 2001-02-27 2008-05-14 Jfeスチール株式会社 高強度冷延溶融亜鉛メッキ鋼板およびその製造方法
JP4964494B2 (ja) 2006-05-09 2012-06-27 新日本製鐵株式会社 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法
JP5223360B2 (ja) 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5257981B2 (ja) * 2007-07-11 2013-08-07 Jfeスチール株式会社 プレス成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP5332355B2 (ja) 2007-07-11 2013-11-06 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP4924730B2 (ja) 2009-04-28 2012-04-25 Jfeスチール株式会社 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5765116B2 (ja) 2010-09-29 2015-08-19 Jfeスチール株式会社 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5699889B2 (ja) 2011-09-30 2015-04-15 新日鐵住金株式会社 引張強度980MPa以上の成形性に優れた溶融亜鉛めっき鋼板とその製造方法
JP5862651B2 (ja) 2013-12-18 2016-02-16 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016002141A1 (ja) 2014-07-02 2016-01-07 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294397A (ja) * 2001-03-30 2002-10-09 Nippon Steel Corp めっき密着性およびプレス成形性に優れた高強度溶融亜鉛系めっき鋼板およびその製造方法
JP2004263271A (ja) * 2003-03-04 2004-09-24 Jfe Steel Kk 高張力溶融亜鉛めっき鋼板の製造方法
JP2012012703A (ja) * 2010-05-31 2012-01-19 Jfe Steel Corp 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013177673A (ja) * 2012-01-31 2013-09-09 Jfe Steel Corp 溶融亜鉛めっき鋼板およびその製造方法
JP2013221198A (ja) * 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp 冷延鋼板およびその製造方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120210A (ko) * 2016-03-31 2018-11-05 제이에프이 스틸 가부시키가이샤 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
CN108884533B (zh) * 2016-03-31 2021-03-30 杰富意钢铁株式会社 薄钢板和镀覆钢板及其制造方法以及热轧钢板、冷轧全硬钢板、热处理板的制造方法
WO2017169561A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017169562A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168957A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6237956B1 (ja) * 2016-03-31 2017-11-29 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6264505B1 (ja) * 2016-03-31 2018-01-24 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6264506B1 (ja) * 2016-03-31 2018-01-24 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017168962A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6304456B2 (ja) * 2016-03-31 2018-04-04 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6304455B2 (ja) * 2016-03-31 2018-04-04 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP2018080378A (ja) * 2016-03-31 2018-05-24 Jfeスチール株式会社 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
JP2018090895A (ja) * 2016-03-31 2018-06-14 Jfeスチール株式会社 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
JP2018090894A (ja) * 2016-03-31 2018-06-14 Jfeスチール株式会社 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
JP2018090896A (ja) * 2016-03-31 2018-06-14 Jfeスチール株式会社 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
JP2018090893A (ja) * 2016-03-31 2018-06-14 Jfeスチール株式会社 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
US11946111B2 (en) 2016-03-31 2024-04-02 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet
KR20180120715A (ko) * 2016-03-31 2018-11-06 제이에프이 스틸 가부시키가이샤 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
US11230744B2 (en) 2016-03-31 2022-01-25 Jfe Steel Corporation Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US11136636B2 (en) 2016-03-31 2021-10-05 Jfe Steel Corporation Steel sheet, plated steel sheet, method of production of hot-rolled steel sheet, method of production of cold-rolled full hard steel sheet, method of production of steel sheet, and method of production of plated steel sheet
KR102162785B1 (ko) 2016-03-31 2020-10-07 제이에프이 스틸 가부시키가이샤 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
CN108884537A (zh) * 2016-03-31 2018-11-23 杰富意钢铁株式会社 薄钢板和镀覆钢板、以及热轧钢板的制造方法、冷轧全硬钢板的制造方法、薄钢板的制造方法和镀覆钢板的制造方法
CN108884533A (zh) * 2016-03-31 2018-11-23 杰富意钢铁株式会社 薄钢板和镀覆钢板、以及热轧钢板的制造方法、冷轧全硬钢板的制造方法、热处理板的制造方法、薄钢板的制造方法和镀覆钢板的制造方法
CN109072374A (zh) * 2016-03-31 2018-12-21 杰富意钢铁株式会社 薄钢板和镀覆钢板、以及热轧钢板的制造方法、冷轧全硬钢板的制造方法、薄钢板的制造方法和镀覆钢板的制造方法
US11136642B2 (en) 2016-03-31 2021-10-05 Jfe Steel Corporation Steel sheet, plated steel sheet, method of production of hot-rolled steel sheet, method of production of cold-rolled full hard steel sheet, method of production of steel sheet, and method of production of plated steel sheet
KR20180120722A (ko) * 2016-03-31 2018-11-06 제이에프이 스틸 가부시키가이샤 박강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 열처리판의 제조 방법, 박강판의 제조 방법 및 도금 강판의 제조 방법
KR102162777B1 (ko) * 2016-03-31 2020-10-07 제이에프이 스틸 가부시키가이샤 박 강판 및 도금 강판, 그리고, 열연 강판의 제조 방법, 냉연 풀 하드 강판의 제조 방법, 박 강판의 제조 방법 및 도금 강판의 제조 방법
KR102165051B1 (ko) * 2016-03-31 2020-10-13 제이에프이 스틸 가부시키가이샤 박강판 및 도금 강판, 그리고, 박강판의 제조 방법 및 도금 강판의 제조 방법
WO2017168961A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11008632B2 (en) 2016-03-31 2021-05-18 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated sheet, method for producing steel sheet, and method for producing coated steel sheet
US11136643B2 (en) 2016-08-10 2021-10-05 Jfe Steel Corporation High-strength steel sheet and method for producing same
WO2018030500A1 (ja) * 2016-08-10 2018-02-15 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP6354075B1 (ja) * 2016-08-10 2018-07-11 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
KR20190107089A (ko) 2017-02-13 2019-09-18 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
US11408044B2 (en) 2017-02-13 2022-08-09 Jfe Steel Corporation High-strength steel sheet and method for producing the same
WO2018147400A1 (ja) 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN113227429A (zh) * 2018-12-26 2021-08-06 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法
CN113227429B (zh) * 2018-12-26 2023-02-07 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法

Also Published As

Publication number Publication date
US20170152580A1 (en) 2017-06-01
EP3173494B1 (en) 2019-03-13
CN106661658B (zh) 2019-03-01
JPWO2016013144A1 (ja) 2017-04-27
MX2017001106A (es) 2017-04-27
CN106661658A (zh) 2017-05-10
WO2016013144A1 (ja) 2016-01-28
EP3173494A4 (en) 2017-07-19
EP3173494A1 (en) 2017-05-31
US10544477B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
JP5884210B1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5983896B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5839152B1 (ja) 高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板の製造方法
JP6315044B2 (ja) 高強度鋼板およびその製造方法
JP5884714B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP5194878B2 (ja) 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5958659B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
CN111433380B (zh) 高强度镀锌钢板及其制造方法
JP6458834B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法及び熱処理板の製造方法
JP2010275627A (ja) 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP4501699B2 (ja) 深絞り性と伸びフランジ性に優れた高強度鋼板およびその製造方法
JP6079726B2 (ja) 高強度鋼板の製造方法
JP2015113504A (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5251207B2 (ja) 深絞り性に優れた高強度鋼板及びその製造方法
JP5853884B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP2010037596A (ja) 外観に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2014009399A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2009144225A (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5987999B1 (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250