WO2014168386A1 - 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치 - Google Patents

신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치 Download PDF

Info

Publication number
WO2014168386A1
WO2014168386A1 PCT/KR2014/002974 KR2014002974W WO2014168386A1 WO 2014168386 A1 WO2014168386 A1 WO 2014168386A1 KR 2014002974 W KR2014002974 W KR 2014002974W WO 2014168386 A1 WO2014168386 A1 WO 2014168386A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
compound
formula
layer
chemical formula
Prior art date
Application number
PCT/KR2014/002974
Other languages
English (en)
French (fr)
Inventor
최정옥
정준호
권오관
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US14/783,001 priority Critical patent/US10141534B2/en
Publication of WO2014168386A1 publication Critical patent/WO2014168386A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes

Definitions

  • the present invention relates to a novel compound, a light emitting device and an electronic device including the same, and more particularly to a compound for an organic light emitting device, a light emitting device and an electronic device comprising the same.
  • a light emitting device includes a light emitting layer including two electrodes facing each other and a light emitting compound interposed between the electrodes. When a current flows between the electrodes, the light emitting compound generates light.
  • the display device using the light emitting device does not need a separate light source device, and thus the weight, size, and thickness of the display device can be reduced.
  • the display device using the light emitting device has an advantage of excellent viewing angle, contrast ratio, color reproducibility, and the like, and lower power consumption than the display device using the backlight and the liquid crystal.
  • materials used as the organic material layer of the organic light emitting device may be classified into light emitting materials, hole injection materials, hole transport materials, electron transport materials, and electron injection materials according to functions.
  • the light emitting material may be classified into a polymer type and a low molecular type according to the molecular weight, and may be classified into a blue, green, red light emitting material, or the like according to the light emission color.
  • a problem may occur in that the maximum light emission wavelength is shifted to a long wavelength due to intermolecular interaction, and color efficiency is reduced or device efficiency is reduced due to light emission attenuation effect.
  • a light emitting layer made of a host / dopant system may be applied to the light emitting device.
  • the exciton formed in the light emitting layer is transferred to the dopant, so that the light emitting device can emit light efficiently.
  • the light emitting device has a short light emitting life and low power efficiency.
  • various compounds have been developed as materials of the light emitting device, but there are limitations in manufacturing a light emitting device that satisfies both the light emission life and power efficiency.
  • Patent Document 1 Japanese Patent No. 4807013
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-067077
  • Patent Document 3 Korean Patent Publication No. 2006-0134979
  • an object of the present invention is to provide a novel compound capable of improving the luminous efficiency and increasing the lifetime in a light emitting device.
  • Another object of the present invention is to provide a light emitting device comprising the compound.
  • Still another object of the present invention is to provide an electronic device including the light emitting device.
  • L a and L b each independently represent * -L 1 -L 2 -L 3- *, and each of L 1 , L 2, and L 3 is independently a single bond or an aryl group having 1 to 12 carbon atoms, or An unsubstituted phenylene group,
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • X 1 , X 2 , Y 1 , Y 2 , Z 1 and Z 2 each independently represent CR a or N,
  • R a , R 3 , R 4 , R 5 and R 6 are each independently represented by hydrogen, a phenyl group, a pyridinyl group or the following formula (2),
  • R 7 represents hydrogen or an alkyl group having 1 to 30 carbon atoms.
  • the light emitting device for realizing another object of the present invention.
  • the light emitting device includes a first electrode, a second electrode, and a light emitting layer, and the light emitting layer is disposed between the first and second electrodes.
  • the light emitting layer comprises a compound represented by the formula (1).
  • the light emitting device further includes an electron transporting layer disposed between the light emitting layer and the second electrode, and the electron transporting layer includes a compound represented by Chemical Formula 1.
  • the novel compound of the present invention can improve the electron transport ability from the light emitting device to the light emitting layer.
  • the compound can improve the luminous efficiency of the light emitting device and increase the lifetime.
  • FIG. 1 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 3 is a cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • the compound according to the present invention is represented by the following formula (1).
  • L a and L b each independently represent * -L 1 -L 2 -L 3- *, and each of L 1 , L 2, and L 3 is independently a single bond or an aryl group having 1 to 12 carbon atoms, or An unsubstituted phenylene group,
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • X 1 , X 2 , Y 1 , Y 2 , Z 1 and Z 2 each independently represent CR a or N,
  • R a , R 3 , R 4 , R 5 and R 6 are each independently represented by hydrogen, a phenyl group, a pyridinyl group or the following formula (2),
  • R 7 represents hydrogen or an alkyl group having 1 to 30 carbon atoms.
  • a phenyl group or a biphenyl group may be mentioned as a specific example of the “aryl group”.
  • an "alkyl group” is defined as a functional group derived from linear or branched saturated hydrocarbons.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, 1,1-dimethylpropyl group, 1 , 2-dimethylpropyl group (1,2-dimethylpropyl group), 2,2-dimethylpropyl group (2,2-dimethylpropyl group), 1-ethylpropyl group (1-ethylpropyl group), 2-ethylpropyl group (2 -ethylpropyl group), n-hexyl group, 1-methyl-2-ethylpropyl group, 1-ethyl-2-methylpropyl group (1-ethyl- 2-methylpropyl group), 1,1,2-trimethylpropyl group (1,1,2-trimethylpropyl group), 1-propylpropyl group (1-propylpropyl group), 1-methylmethyl group
  • the compound represented by Formula 1 may include a compound represented by the following formula (3).
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • X 1 , X 2 , Y 1 , Y 2 , Z 1 and Z 2 each independently represent CR a or N, wherein at least one of X 1 , Y 1 and Z 1 and X 2 , Y 2 and Z 2 At least one of which represents N,
  • p, r and s each independently represent 0 or 1
  • R a , R 3 , R 4 , R 5 and R 6 each independently represent hydrogen or a phenyl group.
  • the compound represented by Chemical Formula 3 according to the present invention may be selected from compounds represented by Structures 1 to 9 of Table 1 below.
  • the compound represented by Chemical Formula 3 may include a compound represented by Chemical Formula 3-1.
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • r and s are the same as each other and represent 0 or 1,
  • R 3 , R 4 , R 5 and R 6 represent a phenyl group.
  • the compound represented by Chemical Formula 3-1 according to the present invention may be represented by Structure 1 or Structure 2 of Table 2 below.
  • the compound represented by Formula 1 may include a compound represented by the following formula (4).
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • r and s each independently represent 0 or 1
  • R 7a and R 7b each independently represent hydrogen or an alkyl group having 1 to 30 carbon atoms.
  • the compound represented by Chemical Formula 4 according to the present invention may be selected from compounds represented by Structures 1 to 10 of Table 3 below.
  • the compound represented by Chemical Formula 1 may include a compound represented by the following Chemical Formula 5.
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • r and s each independently represent an integer of 0 to 2;
  • the compound represented by Chemical Formula 5 according to the present invention may be selected from compounds represented by Structures 1 to 9 of Table 4 below.
  • the compound represented by Formula 5 may include a compound represented by Formula 5-1.
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having 1 to 30 carbon atoms, or an alkoxy group having 1 to 30 carbon atoms,
  • r and s represent the integer of 0-2 similarly to each other.
  • the compound represented by Chemical Formula 5-1 may be represented by Structure 1 and Structure 2 of Table 5 below.
  • FIG. 1 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • the light emitting device 100 includes a first electrode 20, a hole transporting layer 30, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10.
  • the light emitting device 100 may be an organic light emitting diode (OLED).
  • the first electrode 20 may be formed on the base substrate 10 with a conductive material.
  • the first electrode 20 may be a transparent electrode.
  • the first electrode 20 may be formed of indium tin oxide (ITO).
  • the first electrode 20 may be an opaque (reflective) electrode.
  • the first electrode 20 may have an ITO / silver (Ag) / ITO structure.
  • the first electrode 20 may be an anode of the light emitting device 100.
  • the hole transport layer 30 is formed on the first electrode 20 and is interposed between the first electrode 20 and the light emitting layer 40.
  • the hole transport layer 30 may include a hole transport layer and / or a hole injection layer.
  • the emission layer 40 may be disposed between the hole transport layer 30 and the second electrode 50.
  • the wavelength of the light emitted by the light emitting layer 40 may vary depending on the type of the compound forming the light emitting layer 40.
  • the light emitting layer 40 includes at least one of compounds represented by the following Chemical Formulas 4 and 5 as the light emitting material.
  • Compound represented by Formula 4 or 5 is a novel compound according to the present invention, may be substantially the same as described above. Therefore, overlapping detailed description of each of R 1 , R 2 , R 7a , R 7b , p, q, r and s is omitted.
  • the compound represented by Chemical Formula 4 or 5 may be used as a host compound which is a main material constituting the light emitting layer 40.
  • the light emitting layer 40 may further include a light emitting material that emits blue light together with the host compound as a dopant.
  • Ar 1 , Ar 2 , Ar 3, and Ar 4 each independently represent an aryl group having 1 to 18 carbon atoms, and any one of hydrogens of Ar 1 , Ar 2 , Ar 3, and Ar 4 each has carbon atoms. It may be substituted with an alkyl group having 1 to 10.
  • the second electrode 50 may be formed on the light emitting layer 40 with a conductive material.
  • the second electrode 50 may be an opaque (reflective) electrode.
  • the second electrode 50 may be an aluminum electrode.
  • the second electrode 50 may be a transparent or semi-transparent electrode, and in this case, the second electrode 50 may have a thickness of 100 kPa to 150 kPa. have.
  • an alloy containing magnesium and silver can be used as a material for forming the opaque electrode.
  • the second electrode 50 may be a cathode of the light emitting device 100.
  • an electron transporting layer (ETL) and / or an electron injecting layer (EIL) are formed between the light emitting layer 40 and the second electrode 50 as an electron transporting layer.
  • ETL electron transporting layer
  • EIL electron injecting layer
  • Each of the electron transporting layer and the electron injection layer may be used without any particular limitation on various commercially available materials.
  • the light emitting device 100 When a current flows between the first and second electrodes 20 and 50 of the light emitting device 100, holes and holes injected from the first electrode 20 into the light emitting layer 40 are formed. Electrons injected into the emission layer 40 from the second electrode 50 combine to form excitons. In the process of transferring the excitons to the ground state, light having a wavelength in a specific region is generated. In this case, the excitons may be singlet excitons, and may also be triplet excitons. Accordingly, the light emitting device 100 may provide light to the outside.
  • the light emitting device 100 may include a first blocking layer (not shown) disposed between the first electrode 20 and the light emitting layer 40 and / or the light emitting layer 40 and the second electrode 50. It may further include a second blocking layer (not shown) disposed between.
  • the first blocking layer is disposed between the hole transport layer 30 and the light emitting layer 40, and electrons injected from the second electrode 50 pass through the light emitting layer 40. It may be an electron blocking layer (EBL) that prevents the inflow into the transport layer 30. In addition, the first blocking layer may be an exciton blocking layer that prevents excitons formed in the emission layer 40 in the direction of the first electrode 20 to prevent the excitons from extinction.
  • EBL electron blocking layer
  • the first blocking layer may be an exciton blocking layer that prevents excitons formed in the emission layer 40 in the direction of the first electrode 20 to prevent the excitons from extinction.
  • the first blocking layer may be an exciton dissociation blocking layer (EDBL).
  • EDBL exciton dissociation blocking layer
  • the exciton isolation blocking layer prevents the exciton formed in the light emitting layer 40 from undergoing an 'excition dissociation' process at the interface between the light emitting layer 40 and the hole transporting layer 30. can do.
  • the compound forming the first blocking layer may be selected to have a similar level of HOMO value as the compound forming the light emitting layer 40.
  • the second blocking layer is disposed between the light emitting layer 40 and the second electrode 50, specifically, the light emitting layer 40 and the electron transporting layer so that holes are formed from the first electrode 20 to the light emitting layer 40. It may be a hole blocking layer (HBL) to prevent the flow into the electron transport layer via). In addition, the second blocking layer may be an exciton blocking layer which prevents excitons formed in the emission layer 40 from diffusing in the direction of the second electrode 50 to prevent the excitons from extinction.
  • HBL hole blocking layer
  • the thickness of each of the first and second blocking layers is adjusted according to the resonance length of the light emitting device 100, the light emission efficiency may be increased, and an exciton may form an interface between the light emitting layer 40 and another layer. Instead, the light emitting layer 40 may be adjusted to be formed at the center of the light emitting layer 40.
  • FIG. 2 is a cross-sectional view illustrating a light emitting device according to another embodiment of the present invention.
  • the light emitting device 102 includes a first electrode 20, a hole transport layer 32, a light emitting layer 40, and a second electrode 50 formed on the base substrate 10. Except for the hole transport layer 32, the description thereof is substantially the same as that described with reference to FIG.
  • the hole transport layer 32 may further include a P-type dopant together with a hole transport compound as a host material.
  • the P-type dopant may include a P-type organic dopant and / or a P-type inorganic dopant.
  • P-type organic dopant examples include compounds represented by the following Chemical Formulas 6 to 10, hexadecafluorophthalocyanine (F16CuPc), 11,11,12,12-tetracyanonaphtho-2,6-quinodimethane (11,11,12,12-tetracyanonaphtho-2,6-quinodimethane, TNAP), 3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane (3, 6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane, F2-HCNQ) or Tetracyanoquinodimethane (TCNQ) and the like. These may be used alone or in combination of two or more, respectively.
  • Chemical Formulas 6 to 10 hexadecafluorophthalocyanine (F16CuPc)
  • 11,11,12,12-tetracyanonaphtho-2,6-quinodimethane
  • R may represent a cyano group, a sulfone group, a sulfoxide group, a sulfonamide group, a sulfonate group, a nitro group, or a trifluoromethyl group.
  • Y 1 and Y 2 may each independently represent an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.
  • the hydrogen of the aryl group or heteroaryl group represented by Y 1 and Y 2 may be substituted or unsubstituted with an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a hydroxyl group, and substituted or unsubstituted Y.
  • Hydrogens of 1 and Y 2 may be each independently substituted or unsubstituted with a halogen group.
  • the compound represented by Chemical Formula 10 may include a compound represented by the following Chemical Formula 10a or the following Chemical Formula 10b.
  • Examples of the P-type inorganic dopant include metal oxides and metal halides. Specific examples of the P-type inorganic dopant include MoO 3 , V 2 O 5 , WO 3 , SnO 2 , ZnO, MnO 2 , CoO 2 , ReO 3 , TiO 2, FeCl 3 , SbCl 5 , MgF 2 , and the like. . These may be used alone or in combination of two or more, respectively.
  • the light emitting device 102 may further include an interlayer (not shown).
  • the intermediate layer may be disposed between the first electrode 20 and the hole transport layer 32.
  • the intermediate layer may be formed of a compound used as the P-type dopant.
  • the light emitting device 100 illustrated in FIG. 1 may further include an intermediate layer disposed between the first electrode 20 and the hole transport layer 30.
  • the hole transport layer 32 may include a first layer and a second layer.
  • the first layer may be formed on the first electrode, and the second layer may be formed between the first layer and the light emitting layer 40.
  • the hole transport layer 32 may have a multilayer structure of two or more layers including the first and second layers.
  • the first layer may include the first hole transport compound as the host material and the P-type dopant described above as the dopant.
  • the second layer may be made of a second hole transport compound.
  • the first hole transport compound and the second hole transport compound may be the same or different from each other.
  • the first and second hole transport compounds are the same as each other, it is possible to reduce the physicochemical defects that may occur at the interface between the different materials to facilitate hole injection into the light emitting layer.
  • the first layer and the second layer can be continuously formed in one chamber, thereby simplifying the manufacturing process and shortening the manufacturing time. There is an advantage. Furthermore, since physical properties such as glass transition temperature between adjacent layers become similar, there is an advantage of increasing durability of the device.
  • the first layer of the hole transport layer 32 may include a first hole transport compound and a first dopant
  • the second layer may include a second hole transport compound and a second dopant.
  • the first and second hole transport compounds may be the same or different from each other.
  • the first and second dopants may use the same kind of compound or different kinds of compounds.
  • the content of the first dopant may be substantially the same as or greater than that of the second dopant.
  • the content of the first dopant is based on the total weight of the first hole transport compound, and the content of the second dopant is based on the total weight of the second hole transport compound.
  • the light emitting device 102 may further include an electron transport layer, an electron injection layer, a first blocking layer, and / or a second blocking layer. Since each of the layers is substantially the same as that described with reference to FIG.
  • FIG. 3 is a cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • the light emitting device 104 includes a first electrode 20, a hole transporting layer 34, a light emitting layer 40, an electron transporting layer 60, and a second electrode 50 formed on the base substrate 10. ).
  • the light emitting device 104 may further include an electron injection layer (not shown) disposed between the electron transport layer 60 and the second electrode 50.
  • the first electrode 20, the hole transport layer 34, and the second electrode 50 are substantially the same as those described with reference to FIGS. 1 and 2. Therefore, overlapping detailed description is omitted.
  • the emission layer 40 may be formed by combining various commercially available compounds in various compositions.
  • the light emitting layer 40 may include a host compound and a dopant compound which is a light emitting material.
  • the compound represented by Chemical Formula 4 and / or Chemical Formula 5 may be included as a host compound of the emission layer 40.
  • the electron transport layer 60 includes a compound represented by the following formula (3).
  • Compound represented by Formula 3 may be substantially the same as described above as a novel compound according to the present invention. Therefore, overlapping detailed description of each of R 1 to R 6 , X 1 , X 2 , Y 1 , Y 2 , Z 1 , Z 2 , p, r and s is omitted.
  • the light emitting device 104 includes a first blocking layer (not shown) disposed between the first electrode 20 and the light emitting layer 40 and / or the light emitting layer 40 and the second.
  • the display device may further include a second blocking layer (not shown) disposed between the electrodes 50.
  • first and second blocking layers are substantially the same as those described with reference to FIG. 1, and thus redundant descriptions thereof will be omitted.
  • each of the light emitting devices 100, 102, 104 described above includes the novel compound according to the present invention represented by Chemical Formula 1, the light emission efficiency of the light emitting devices 100, 102, 104 is improved, and the lifespan is improved. This can be long.
  • the light emitting devices 100, 102, 104 are directly formed on the base substrate 10, but the first and second light emitting devices 100, 102, and 104 are respectively formed on the base substrate 10.
  • a thin film transistor may be disposed between the first electrode 20 and the base substrate 10 as a driving element for driving a pixel.
  • the first electrode 20 may be a pixel electrode connected to the thin film transistor.
  • the first electrode 20 is a pixel electrode, the first electrode 20 is disposed separately from each other in the plurality of pixels, and the base substrate 10 is disposed along an edge of the first electrode 20.
  • the barrier rib pattern may be formed so that layers stacked on the first electrode 20 disposed in adjacent pixels may be separated from each other. That is, although not shown in the drawings, the light emitting devices 100, 102, and 104 may be used in a display device that displays an image without a backlight.
  • the light emitting devices 100, 102, and 104 may be used as lighting devices.
  • the light emitting devices 100, 102, 104 illustrated in the present invention may be used in various electronic devices such as the display device or the lighting device.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.948 mmol, 1.1 g) was then added to the 500 mL three-neck round bottom flask, after which the light was blocked and reflux for 12 hours. I was.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.03 mmol, 1.2 g) was then added to the 500 mL three-neck round bottom flask, after which the light was blocked and reflux for 12 hours. I was.
  • the compounds represented by the following formulas a and b were prepared based on what is disclosed in Japanese Patent Laid-Open No. 2012-067077 and used as the compounds of Comparative Examples 1 and 2, respectively.
  • a compound (HAT-CN) represented by Chemical Formula 11 was deposited to form a first layer having a thickness of 100 ⁇ s.
  • Compound represented by the following Chemical Formula 12 on the first layer (NPB, (N, N'-bis (1-naphthyl) -N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine)) was deposited to a thickness of 300 GPa to form a second layer.
  • a compound represented by the following Chemical Formula 13 as a light emitting host compound and a compound represented by the following Chemical Formula 14 as a light emitting dopant compound were co-deposited at a weight ratio of 100: 5 to form a light emitting layer having a thickness of about 200 Pa.
  • Example 1 of the present invention was deposited on the emission layer to form an electron transport layer having a thickness of about 360 ⁇ s.
  • an electron injection layer having a thickness of about 10 ⁇ s was formed on the electron transport layer by using Liq represented by the following formula (15).
  • the blue light emitting device A-1 including the compound according to Example 1 of the present invention was prepared by the above method.
  • the light emitting device A-2 and the light emitting device are substantially the same as those of manufacturing the light emitting device A-1.
  • Device A-3 was prepared.
  • Comparative elements 1 and 2 were manufactured through substantially the same process as the process of manufacturing the light emitting device A-1, except that the electron transport layers were formed using the compounds according to Comparative Examples 1 and 2, respectively.
  • the light emitting elements A-1 to A-3 and the comparative elements 1 and 2 were respectively dispensed with a UV curing sealant at the edge of the cover glass with a moisture absorbent (Getter) in a glove box in a nitrogen atmosphere. Each of the and the comparative elements and the cover glass were bonded and cured by irradiation with UV light.
  • power efficiency was measured based on the value when the luminance was 1,000 cd / m 2 .
  • the unit of the result of measuring the power efficiency is lm / W.
  • color coordinates were measured based on CIE 1931. The results are shown in Table 4.
  • T 50 means a time taken for the luminance of the light emitting element to be 50% of the initial luminance when the initial luminance of the light emitting element is 5,000 cd / m 2 .
  • Table 6 The results are shown in Table 6.
  • the value for lifetime can be converted to the expected lifetime when measured under different measurement conditions on the basis of conversion equations known to those skilled in the art.
  • the power efficiency of the light emitting devices A-1 to A-3 including the electron transport layer formed of each of the compounds according to Examples 1 to 3 of the present invention is 7.1 lm / W or more, the average power efficiency is about You can see that it is 7.3 lm / W.
  • Embodiment of the present invention when the power efficiency of Comparative element 1 is 5.3 lm / W, the power efficiency of Comparative Element 2 is 4.9 lm / W, and the average power efficiency of Comparative elements 1 and 2 is about 5.1 lm / W It can be seen that the power efficiency of the light emitting devices A-1 to A-3 including the compounds according to 1 to 3 is significantly increased. For example, it can be seen that the power efficiency of the light emitting device A-3 is improved by about 43% compared to that of the comparative device 1.
  • the lifetimes of the light emitting elements A-1 to A-3 are 221 hours, 243 hours and 261 hours, and the average device life thereof is about 242 hours, whereas the lifetimes of the comparative elements 1 and 2 are 143 hours and 121 hours. It can be seen that the average element life thereof is about 132 hours. Therefore, it can be seen that the lifetimes of the light emitting A-1 to A-3 including the compounds according to Examples 1 to 3 of the present invention are at least 100 hours longer than those of the comparative elements 1 and 2. For example, it can be seen that the lifetime of the light emitting element A-3 is about 83% longer than that of the comparative element 1.
  • the light emitting elements A-1 to A-3 are substantially the same blue as the comparative elements 1 and 2. It turns out that it emits the light which has. That is, when the compounds according to Examples 1 to 3 of the present invention are applied to the electron transporting layer of the blue light emitting device, it can be seen that the power efficiency of the blue light emitting device is improved, the lifespan is long, and there is little variation in the color coordinates.
  • the compound represented by Formula 12 and the compound represented by Formula 11 are co-deposited at a ratio of 100: 3 to form a first layer having a thickness of 100 ⁇ . It was.
  • the compound represented by Formula 12 was deposited on the first layer to a thickness of 300 kPa to form a second layer.
  • a compound represented by Chemical Formula 13 as a light emitting host compound and a compound represented by Chemical Formula 14 as a light emitting dopant compound were co-deposited at a weight ratio of 100: 5 on the second layer to form a light emitting layer having a thickness of about 200 ⁇ s.
  • the blue light emitting device B-1 including the compound according to Example 1 of the present invention was prepared by the above method.
  • Comparative elements 3 and 4 through substantially the same steps as those for preparing Light-emitting Device B-1, except that the electron transport layer is formed using the compounds according to Comparative Examples 1 and 2 as host compounds of the electron transport layer, respectively.
  • the electron transport layer is formed using the compounds according to Comparative Examples 1 and 2 as host compounds of the electron transport layer, respectively.
  • the power efficiency of the light emitting elements B-1 to B-3 is 7.5 lm / W, 7.9 lm / W and 8.6 lm / W, respectively, and their average power efficiency is about 8.0 lm / W Can be.
  • the power efficiency of the comparative elements 3 and 4 are 6.2 lm / W and 5.4 lm / W. Therefore, it can be seen that the power efficiency of the light emitting elements B-1 to B-3 including the compounds according to Examples 1 to 3 of the present invention is significantly increased compared to the comparative elements 3 and 4. For example, it can be seen that the power efficiency of the light emitting device B-3 is improved by about 39% compared to that of the comparative device 3.
  • the lifespans of the light emitting elements B-1 to B-3 are 258 hours, 274 hours, and 289 hours, respectively, and it can be seen that their average device life is about 274 hours.
  • the lifetimes of the comparative elements 3 and 4 are 189 hours and 139 hours. Therefore, it can be seen that the lifespans of the light emitting elements B-1 to B-3 including the compounds according to Examples 1 to 3 of the present invention are significantly increased compared to the comparative elements 3 and 4. For example, it can be seen that the lifespan of the light emitting element B-3 is about 53% longer than that of the comparative element 3.
  • the light emitting elements B-1 to B-3 have substantially the same blue color as those of the comparative elements 3 and 4. It turns out that it emits the light which has. That is, when the compounds according to Examples 1 to 3 of the present invention are applied to the electron transporting layer of the blue light emitting device, it can be seen that the power efficiency of the blue light emitting device is improved, the lifespan is long, and there is little variation in the color coordinates.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.79 mmol, 0.9 g) was then added to the 500 mL three-neck round bottom flask, after which the light was blocked and reflux for 12 hours. I was.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.824 mmol, 0.95 g) was then added to the 500 mL three-necked round bottom flask, after which the light was blocked and reflux for 12 hours. I was.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (0.607 mmol, 0.70 g) was then added to the 500 mL three-necked round bottom flask, after which the light was blocked and refluxed for 18 hours. I was.
  • reaction mixture was cooled and then added to a 1 L vessel containing 300 mL of methanol and stirred for 30 minutes. This was filtered to yield 8.9 g of compound 6 as a light brown solid (yield 70%).
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (2.157 mmol, 2.49 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 24 hours. I was.
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (2.157 mmol, 2.49 g) was then added to the 1 L three necked round bottom flask, after which the light was blocked and refluxed for 24 hours. I was.
  • reaction mixture was cooled and then added to a 1 L vessel containing 500 mL of methanol and stirred for 20 minutes. This was filtered to yield about 15.2 g of compound 9 as a pale green solid (yield 84%).
  • Tetrakis (triphenylphosphine) palladium (Pd (PPh 3 ) 4 ) (1.7 mmol, 1.99 g) was then added to the 500 mL three-neck round bottom flask, then blocked light and reflux for 24 hours. I was.
  • reaction mixture was cooled and then added to a 1 L vessel containing 300 mL of methanol and stirred for 30 minutes. This was filtered to yield about 14.5 g of compound 10 as a light gray solid (yield 82%).
  • the compound represented by Chemical Formula c is represented by PCT Publication No. WO2009-107596
  • the compound represented by Chemical Formula d is represented by PCT Publication No. WO2006-098080
  • the compound represented by Chemical Formula e is disclosed by Korea Patent Publication No. 2010-0001984
  • the compound represented by Japanese Patent No. 4807013, the compound represented by Chemical Formula g is prepared by PCT Publication No. WO2006-104044, and the compound represented by Chemical Formula h based on what is disclosed in Korean Patent Publication No. 2009-133071. It used as the compound of Comparative Examples 3-8, respectively.
  • a compound (HAT-CN) represented by Chemical Formula 11 was deposited to form a first layer having a thickness of 100 kHz.
  • the compound represented by Formula 12 was deposited on the first layer to a thickness of 300 kPa to form a second layer.
  • a compound according to Example 4 as a light emitting host compound and a compound represented by Chemical Formula 14 as a light emitting dopant compound were co-deposited at a weight ratio of 100: 5 to form a light emitting layer having a thickness of about 200 Pa.
  • the blue light emitting device C-1 including the compound according to Example 4 of the present invention was prepared by the above method.
  • the light emitting device C-2 to the same process as the manufacturing process of the light emitting device C-1 to Light-emitting element C-7 was manufactured.
  • Comparative elements 5 to 10 were manufactured through substantially the same process as the process of preparing the light emitting device C-1, except that the compounds according to Comparative Examples 3 to 8 were used as host compounds of the light emitting layer.
  • the power efficiency of the light emitting devices C-1 to C-7 is 7.1 lm / W, 7.7 lm / W, 6.9 lm / W, 7.4 lm / W, 7.5 lm / W, 7.3 lm / W and As 6.8 lm / W, it can be seen that their average power efficiency is 7.2 lm / W. On the other hand, it can be seen that the average power efficiency of the comparative elements 5 to 10 is less than 4.4 lm / W.
  • the power efficiency of the light emitting devices C-1 to C-7 including the compound according to the present invention as a host compound of the light emitting layer is increased by at least about 33% compared to the power efficiency of the comparative devices 5 to 10.
  • the power efficiency of the light emitting device C-2 is improved by about 51% compared to that of the comparative device 5.
  • the lifetimes of the light emitting elements C-1 to C-7 are 224 hours, 278 hours, 220 hours, 255 hours, 263 hours, 247 hours, and 214 hours, respectively, and their average lifetimes are about 243 hours.
  • the lifetimes of the comparative elements 5 to 10 are 159 hours, 147 hours, 87 hours, 131 hours, 98 hours and 113 hours, respectively, and it can be seen that their average lifetime is about 123 hours. Accordingly, it can be seen that the lifetimes of the light emitting elements C-1 to C-7 including the compound according to the present invention as the host compound of the light emitting layer are at least about 34% longer than those of the comparative elements 5 to 10. In particular, it can be seen that the lifespan of the light emitting device C-2 is about 75% longer than that of the comparative device 5.
  • the light emitting elements C-1 to C-7 have substantially the same blue color as those of the comparative elements 5 to 10. It turns out that it emits the light which has. That is, when the compound according to Examples 4 to 10 of the present invention is applied as a host compound to the light emitting layer of the blue light emitting device, it can be seen that the power efficiency of the blue light emitting device is improved, the life span is long, and there is little variation in color coordinates. have.
  • the compound represented by Formula 12 and the compound represented by Formula 11 were co-deposited at a weight ratio of 100: 3 to form a first layer having a thickness of 100 ⁇ .
  • a compound represented by Chemical Formula 12 was deposited on the first layer to a thickness of 300 kPa to form a second layer.
  • a compound according to Example 4 as a light emitting host compound and a compound represented by Chemical Formula 14 as a light emitting dopant compound were co-deposited at a weight ratio of 100: 5 to form a light emitting layer having a thickness of about 200 Pa.
  • the blue light emitting device D-1 including the compound according to Example 4 of the present invention was prepared by the above method.
  • the light emitting device D-2 to the light emitting device through substantially the same process as the manufacturing process of the light emitting device D-1 D-7 was prepared.
  • Comparative elements 11 to 16 were manufactured through substantially the same process as the process of preparing the light emitting device D-1, except that the compounds according to Comparative Examples 3 to 8 were used as host compounds of the light emitting layer.
  • the power efficiency of the light emitting elements D-1 to D-7 is 7.4 lm / W, 8.1 lm / W, 7.2 lm / W, 7.7 lm / W, 7.9 lm / W, 7.6 lm / W and It can be seen that it is 7.1 lm / W and their average power efficiency is about 7.6 lm / W.
  • the power efficiencies of each of the comparative elements 11 to 16 are 5.4 lm / W, 5.2 lm / W, 3.8 lm / W, 5.1 lm / W, 4.2 lm / W and 4.6 lm / W, and their average power efficiency is about.
  • the power efficiency of the light emitting elements D-1 to D-7 including the compound according to the present invention as a host compound of the light emitting layer is significantly better than that of the comparative elements 11 to 16.
  • the power efficiency of the light emitting device D-2 is improved by about 50% compared to that of the comparative device 11.
  • the lifetimes of the light emitting devices D-1 to D-7 are 258 hours, 285 hours, 237 hours, 271 hours, 279 hours, 268 hours and 229 hours, respectively, and the average device life thereof is about 261 hours.
  • the lifespan of the comparative elements 11 to 16 is 163 hours or less, and it can be seen that the comparative element 13 is only 109 hours. Accordingly, it can be seen that the lifetimes of the light emitting elements D-1 to D-7 including the compound according to the present invention as the host compound of the light emitting layer are longer than those of the comparative elements 11 to 16. In particular, it can be seen that the lifetime of the light emitting device D-2 is about 75% longer than that of the comparative device 11.
  • the compound represented by Formula 12 and the compound represented by Formula 11 are co-deposited at a weight ratio of 100: 3, and the first thickness is 100 ⁇ thick. A layer was formed. On the first layer, the compound represented by Formula 12 was deposited to a thickness of 300 kPa to form a second layer.
  • ITO indium tin oxide
  • HAT-CN compound represented by Formula 11
  • a compound represented by the following Chemical Formula 17 was deposited on the second layer to form a barrier layer having a thickness of about 100 ⁇ s.
  • a compound according to Example 4 of the present invention as a light emitting host compound and a compound represented by Formula 14 as a light emitting dopant were co-deposited at a weight ratio of 100: 5 to form a light emitting layer having a thickness of about 200 ⁇ s.
  • the blue light emitting device E-1 including the compound according to Example 4 of the present invention was manufactured by the above method.
  • the host compound of the light emitting layer was formed using each of the compounds according to Examples 5 to 10 of the present invention, the light emitting device E-2 through substantially the same process as the manufacturing process of the light emitting device E-1. To light emitting device E-7 was manufactured.
  • Comparative elements 17 to 22 were manufactured by substantially the same process as that of manufacturing Light Emitting Device E-1, except that the light emitting layer was formed using the compounds according to Comparative Examples 3 to 8 as host materials of the light emitting layers, respectively. It was.
  • the power efficiency of each of the light emitting devices E-1 to E-7 is 7.9 lm / W, 8.5 lm / W, 7.4 lm / W, 8.1 lm / W, 8.3 lm / W, 8.0 lm / W and It can be seen that 7.6 lm / W and their average power efficiency is about 8.0 lm / W.
  • the power efficiency of each of the comparative elements 17 to 22 is 5.8 lm / W, 5.6 lm / W, 4.0 lm / W, 5.4 lm / W, 4.7 lm / W and 5.1 lm / W, and their average power efficiency is about.
  • the power efficiency of the light emitting elements E-1 to E-5 in which the compound according to the present invention is included in the light emitting layer is significantly improved compared to the comparative elements 17 to 22.
  • the power efficiency of the light emitting device E-2 is improved by about 47% compared to that of the comparative device 17.
  • the lifespan of each of the light emitting elements E-1 to E-7 was 287 hours, 310 hours, 265 hours, 302 hours, 305 hours, 299 hours and 272 hours, while the average lifetime thereof was about 291 hours
  • the lifespan of each of 17 to 22 is 178 hours, 172 hours, 121 hours, 167 hours, 143 hours, and 160 hours, and the average lifetime is about 157 hours. Therefore, it can be seen that the lifetimes of the light emitting elements E-1 to E-5 included in the light emitting layer of the compound according to the present invention are longer than those of the comparative elements 17 to 22. In particular, it can be seen that the lifetime of the light emitting device E-2 is about 74% longer than that of the comparative device 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명의 신규한 화합물은 발광 소자에서 발광층으로의 전자(electron) 수송 능력을 향상시킬 수 있으며, 상기 화합물을 이용함으로써 상기 발광 소자의 발광 효율을 향상시키고 수명을 증가시킬 수 있다.

Description

신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치
본 발명은 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치에 관한 것으로, 더욱 상세하게는 유기 발광 소자용 화합물, 이를 포함하는 발광 소자 및 전자 장치에 관한 것이다.
일반적으로, 발광 소자는 서로 마주하는 2개의 전극들 및 상기 전극들 사이에 개재된 발광 화합물을 포함하는 발광층을 포함한다. 상기 전극들 사이에 전류를 흘려주면, 상기 발광 화합물이 광을 생성한다. 상기 발광 소자를 이용하는 표시 장치는 별도의 광원 장치가 필요 없어, 상기 표시 장치의 무게, 사이즈나 두께를 감소시킬 수 있다. 또한, 상기 발광 소자를 이용하는 표시 장치는, 백라이트 및 액정을 이용하는 표시 장치에 비해 시야각, 대비비(contrast ratio), 색재현성 등이 우수하고, 소비전력이 낮은 장점이 있다.
발광 소자 중에서 유기발광 소자의 유기물층으로 사용되는 재료는 기능에 따라 발광 재료, 정공주입 재료, 정공수송 재료, 전자수송 재료, 및 전자주입 재료 등으로 분류할 수 있다. 발광 재료는 분자량에 따라 고분자형과 저분자형으로 구분할 수 있고, 발광색에 따라 청색, 녹색, 적색 발광 재료 등으로 구분할 수 있다.
발광 재료로 단일 물질을 사용하는 경우에는 분자간 상호 작용에 의해 최대 발광 파장이 장파장으로 이동하고 색순도가 저하되거나 발광 감쇄 효과로 인해 소자의 효율이 감소되는 문제가 발생할 수 있다. 이를 보완하기 위해서, 발광 소자에 호스트/도펀트 계로 이루어진 발광층을 적용할 수 있다. 발광층을 형성하는 주요 재료인 호스트 물질 및 호스트 물질에 비해 에너지 대역 간극이 작은 소량의 도펀트를 이용하여, 발광층에서 형성된 엑시톤이 도펀트로 이동(transfer)되어 발광 소자가 효율적으로 발광할 수 있다.
그러나, 아직까지 발광 소자는 발광 수명이 짧고 전력 효율이 낮은 문제점이 있다. 이와 같은 문제점들을 해결하기 위해서, 발광 소자의 재료로서 다양한 화합물들이 개발되고 있지만 발광 수명 및 전력 효율을 모두 만족시키는 발광 소자를 제조하는데 한계가 있다.
[선행기술문헌]
(특허문헌 1) 일본등록특허 제4807013호
(특허문헌 2) 일본공개특허 제2012-067077호
(특허문헌 3) 한국공개특허 제2006-0134979호
이에, 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 발광 소자에서 발광 효율을 향상시키고 수명을 증가시킬 수 있는 신규한 화합물을 제공하는 것이다.
본 발명의 다른 목적은 상기 화합물을 포함하는 발광 소자를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발광 소자를 포함하는 전자 장치를 제공하는 것이다.
상기 본 발명의 목적을 실현하기 위한 일 실시예에 따른 화합물은 하기 화학식 1로 나타낸다.
하기 화학식 1로 나타내는 화합물;
[화학식 1]
Figure PCTKR2014002974-appb-I000001
상기 화학식 1에서,
La 및 Lb는 각각 독립적으로 *-L1-L2-L3-*을 나타내고, L1, L2 및 L3은 각각 독립적으로 단일 결합이나, 탄소수 1 내지 12를 갖는 아릴기로 치환 또는 무치환된 페닐렌기를 나타내고,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
X1, X2, Y1, Y2, Z1 및 Z2는 각각 독립적으로 C-Ra 또는 N을 나타내며,
p 및 q는 각각 독립적으로 0 또는 1을 나타내되, p+q=1 또는 2이고,
Ra, R3, R4, R5 및 R6은 각각 독립적으로 수소, 페닐기, 피리디닐기 또는 하기 화학식 2로 나타내고,
[화학식 2]
Figure PCTKR2014002974-appb-I000002
R3 및 R4 중 적어도 하나가 상기 화학식 2로 나타내는 치환기인 경우, R5 및 R6 중 적어도 어느 하나는 상기 화학식 2로 나타내는 치환기이고,
R7은 수소 또는 탄소수 1 내지 30을 갖는 알킬기를 나타낸다.
상기 본 발명의 또 다른 목적을 실현하기 위한 발광 소자를 제공한다. 상기 발광 소자는 제1 전극, 제2 전극 및 발광층을 포함하고, 상기 발광층은 상기 제1 및 제2 전극들 사이에 배치된다.
일 실시예에서, 상기 발광층은 상기 화학식 1로 나타내는 화합물을 포함한다.
다른 실시예에서, 상기 발광 소자는 상기 발광층과 상기 제2 전극 사이에 배치된 전자 수송층을 더 포함하고, 상기 전자 수송층은 상기 화학식 1로 나타내는 화합물을 포함한다.
이와 같은 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치에 따르면, 본 발명의 신규한 화합물이 발광 소자에서 발광층으로의 전자(electron) 수송 능력을 향상시킬 수 있다.
또한, 상기 화합물을 이용함으로써 상기 발광 소자의 발광 효율을 향상시키고 수명을 증가시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 2는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 3은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
이하에서는, 본 발명에 따른 신규한 화합물에 대해서 먼저 설명하고, 상기 화합물을 포함하는 발광 소자에 대해서 첨부한 도면들을 참조하여 보다 상세하게 설명하기로 한다.
본 발명에 따른 화합물은 하기 화학식 1로 나타낸다.
[화학식 1]
Figure PCTKR2014002974-appb-I000003
상기 화학식 1에서,
La 및 Lb는 각각 독립적으로 *-L1-L2-L3-*을 나타내고, L1, L2 및 L3은 각각 독립적으로 단일 결합이나, 탄소수 1 내지 12를 갖는 아릴기로 치환 또는 무치환된 페닐렌기를 나타내고,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
X1, X2, Y1, Y2, Z1 및 Z2는 각각 독립적으로 C-Ra 또는 N을 나타내며,
p 및 q는 각각 독립적으로 0 또는 1을 나타내되, p+q=1 또는 2이고,
Ra, R3, R4, R5 및 R6은 각각 독립적으로 수소, 페닐기, 피리디닐기 또는 하기 화학식 2로 나타내고,
[화학식 2]
Figure PCTKR2014002974-appb-I000004
R3 및 R4 중 적어도 하나가 상기 화학식 2로 나타내는 치환기인 경우, R5 및 R6 중 적어도 하나는 상기 화학식 2로 나타내는 치환기이고,
R7은 수소 또는 탄소수 1 내지 30의 알킬기를 나타낸다.
상기 화학식 1에서, “아릴기”의 구체적인 예로서는, 페닐기 또는 비페닐기를 들 수 있다.
본 발명에서, “알킬기”는 직쇄(linear) 또는 분지(branched) 상 포화탄화수소로부터 유도된 작용기로 정의된다.
상기 알킬기의 구체적인 예로서는, 메틸기(methyl group), 에틸기(ethyl group), n-프로필기(n-propyl group), 이소프로필기(iso-propyl group), n-부틸기(n-butyl group), sec-부틸기(sec-butyl group), t-부틸기(tert-butyl group), n-펜틸기(n-pentyl group), 1,1-디메틸프로필기(1,1-dimethylpropyl group), 1,2-디메틸프로필기(1,2-dimethylpropyl group), 2,2-디메틸프로필기(2,2-dimethylpropyl group), 1-에틸프로필기(1-ethylpropyl group), 2-에틸프로필기(2-ethylpropyl group), n-헥실기(n-hexyl group), 1-메틸-2-에틸프로필기(1-methyl-2-ethylpropyl group), 1-에틸-2-메틸프로필기(1-ethyl-2-methylpropyl group), 1,1,2-트리메틸프로필기(1,1,2-trimethylpropyl group), 1-프로필프로필기(1-propylpropyl group), 1-메틸부틸기(1-methylbutyl group), 2-메틸부틸기(2-methylbutyl group), 1,1-디메틸부틸기(1,1-dimethylbutyl group), 1,2-디메틸부틸기(1,2-dimethylbutyl group), 2,2-디메틸부틸기(2,2-dimethylbutyl group), 1,3-디메틸부틸기(1,3-dimethylbutyl group), 2,3-디메틸부틸기(2,3-dimethylbutyl group), 2-에틸부틸기(2-ethylbutyl group), 2-메틸펜틸기(2-methylpentyl group), 3-메틸펜틸기(3-methylpentyl group) 등을 들 수 있다.
일 실시예에서, 상기 화학식 1로 나타내는 화합물은, 하기 화학식 3으로 나타내는 화합물을 포함할 수 있다.
[화학식 3]
Figure PCTKR2014002974-appb-I000005
상기 화학식 3에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
X1, X2, Y1, Y2, Z1 및 Z2는 각각 독립적으로 C-Ra 또는 N을 나타내되, X1, Y1 및 Z1 중 적어도 어느 하나와 X2, Y2 및 Z2 중 적어도 어느 하나는 N을 나타내고,
p, r 및 s는 각각 독립적으로 0 또는 1을 나타내고,
Ra, R3, R4, R5 및 R6은 각각 독립적으로 수소 또는 페닐기를 나타낸다.
본 발명에 따른 상기 화학식 3으로 나타내는 화합물은 하기 표 1의 구조 1 내지 구조 9로 나타내는 화합물들로부터 선택될 수 있다.
표 1
No. 구조
1
Figure PCTKR2014002974-appb-I000006
2
Figure PCTKR2014002974-appb-I000007
3
Figure PCTKR2014002974-appb-I000008
4
Figure PCTKR2014002974-appb-I000009
5
Figure PCTKR2014002974-appb-I000010
6
Figure PCTKR2014002974-appb-I000011
7
Figure PCTKR2014002974-appb-I000012
8
Figure PCTKR2014002974-appb-I000013
9
Figure PCTKR2014002974-appb-I000014
일 실시예에서, 상기 화학식 3으로 나타내는 화합물은 하기 화학식 3-1로 나타내는 화합물을 포함할 수 있다.
[화학식 3-1]
Figure PCTKR2014002974-appb-I000015
상기 화학식 3-1에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
r 및 s는 서로 동일하게 0 또는 1을 나타내며,
R3, R4, R5 및 R6은 페닐기를 나타낸다.
본 발명에 따른 상기 화학식 3-1로 나타내는 화합물은 하기 표 2의 구조 1 또는 구조 2로 나타낼 수 있다.
표 2
No. 구조
1
Figure PCTKR2014002974-appb-I000016
2
Figure PCTKR2014002974-appb-I000017
일 실시예에서, 상기 화학식 1로 나타내는 화합물은, 하기 화학식 4로 나타내는 화합물을 포함할 수 있다.
[화학식 4]
Figure PCTKR2014002974-appb-I000018
상기 화학식 4에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
r 및 s는 각각 독립적으로 0 또는 1을 나타내며,
R7a 및 R7b는 각각 독립적으로 수소 또는 탄소수 1 내지 30을 갖는 알킬기를 나타낸다.
본 발명에 따른 상기 화학식 4로 나타내는 화합물은 하기 표 3의 구조 1 내지 구조 10으로 나타낸 화합물들로부터 선택될 수 있다.
표 3
No. 구조
1
Figure PCTKR2014002974-appb-I000019
2
Figure PCTKR2014002974-appb-I000020
3
Figure PCTKR2014002974-appb-I000021
4
Figure PCTKR2014002974-appb-I000022
5
Figure PCTKR2014002974-appb-I000023
6
Figure PCTKR2014002974-appb-I000024
7
Figure PCTKR2014002974-appb-I000025
8
Figure PCTKR2014002974-appb-I000026
9
Figure PCTKR2014002974-appb-I000027
10
Figure PCTKR2014002974-appb-I000028
일 실시예에서, 상기 화학식 1로 나타내는 화합물은, 하기 화학식 5로 나타내는 화합물을 포함할 수 있다.
[화학식 5]
Figure PCTKR2014002974-appb-I000029
상기 화학식 5에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
p 및 q는 각각 독립적으로 0 또는 1을 나타내되 p+q=1 또는 2를 나타내고,
r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타낸다.
본 발명에 따른 상기 화학식 5로 나타내는 화합물은 하기 표 4의 구조 1 내지 구조 9로 나타내는 화합물들로부터 선택될 수 있다.
표 4
No. 구조
1
Figure PCTKR2014002974-appb-I000030
2
Figure PCTKR2014002974-appb-I000031
3
Figure PCTKR2014002974-appb-I000032
4
Figure PCTKR2014002974-appb-I000033
5
Figure PCTKR2014002974-appb-I000034
6
Figure PCTKR2014002974-appb-I000035
7
Figure PCTKR2014002974-appb-I000036
8
Figure PCTKR2014002974-appb-I000037
9
Figure PCTKR2014002974-appb-I000038
일 실시예에서, 상기 화학식 5로 나타내는 화합물은 하기 화학식 5-1로 나타내는 화합물을 포함할 수 있다.
[화학식 5-1]
Figure PCTKR2014002974-appb-I000039
상기 화학식 5-1에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
r 및 s는 서로 동일하게 0 내지 2의 정수를 나타낸다.
상기 화학식 5-1로 나타내는 화합물은 하기 표 5의 구조 1 및 구조 2로 나타낼 수 있다.
표 5
No. 구조
1
Figure PCTKR2014002974-appb-I000040
2
Figure PCTKR2014002974-appb-I000041
이하에서는, 첨부된 도면들을 참조하여 본 발명에 따른 신규한 화합물을 포함하는 유기층을 갖는 발광 소자에 대해서 설명한다. 이하에서는, 본 발명에 따른 신규한 화합물을 포함하는 유기층이 전자 수송층이거나 발광층인 경우에 대해서 설명하지만, 상기 화합물을 포함하는 발광 소자의 구조는 첨부된 도면들 및 하기의 설명에 의해 제한되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 1을 참조하면, 발광 소자(100)는 베이스 기판(10) 상에 형성된 제1 전극(20), 정공 수송성층(30), 발광층(40) 및 제2 전극(50)을 포함한다. 상기 발광 소자(100)는 유기 발광 다이오드(organic light emitting diode, OLED)일 수 있다.
상기 제1 전극(20)은 도전성 물질로 상기 베이스 기판(10) 상에 형성될 수 있다. 일례로, 상기 제1 전극(20)은 투명 전극일 수 있다. 이때, 상기 제1 전극(20)은 인듐 틴 옥사이드(indium tin oxide, ITO)로 형성할 수 있다. 이와 달리, 상기 제1 전극(20)은 불투명(반사) 전극일 수 있다. 이때, 상기 제1 전극(20)은 ITO/은(Ag)/ITO 구조를 가질 수 있다. 상기 제1 전극(20)은 상기 발광 소자(100)의 양극(anode)이 될 수 있다.
상기 정공 수송성층(30)은 상기 제1 전극(20) 상에 형성되어 상기 제1 전극(20)과 상기 발광층(40) 사이에 개재된다. 상기 정공 수송성층(30)은 정공 수송층 및/또는 정공 주입층을 포함할 수 있다. 상기 정공 수송성층(30)을 형성하는 재료로는, 상업적으로 입수 가능한 다양한 물질을 특별한 제한 없이 사용될 수 있다.
상기 발광층(40)은 상기 정공 수송성층(30)과 상기 제2 전극(50) 사이에 배치될 수 있다. 상기 발광층(40)이 방출하는 광의 파장은, 상기 발광층(40)을 형성하는 화합물의 종류에 따라서 달라질 수 있다.
상기 발광층(40)은 발광 재료로서 하기 화학식 4 및 하기 화학식 5로 나타내는 화합물 중 적어도 어느 하나를 포함한다.
[화학식 4]
Figure PCTKR2014002974-appb-I000042
[화학식 5]
Figure PCTKR2014002974-appb-I000043
상기 화학식 4 또는 5로 나타내는 화합물은 본 발명에 따른 신규한 화합물로서, 상기에서 설명한 것과 실질적으로 동일할 수 있다. 따라서, R1, R2, R7a, R7b, p, q, r 및 s 각각에 대한 중복되는 구체적인 설명은 생략한다.
본 발명에서 상기 화학식 4 또는 5로 나타내는 화합물은 발광층(40)을 구성하는 주요 재료인 호스트 화합물로 이용될 수 있다. 이때, 발광층(40)은 상기 호스트 화합물과 함께 청색광을 발광하는 발광 재료를 도펀트로서 더 포함할 수 있다.
상기 발광 재료로서는 하기 화학식 X로 나타내는 화합물을 사용할 수 있다.
[화학식 X]
Figure PCTKR2014002974-appb-I000044
상기 화학식 X에서, Ar1, Ar2, Ar3 및 Ar4는 각각 독립적으로 탄소수 1 내지 18을 갖는 아릴기를 나타내고, Ar1, Ar2, Ar3 및 Ar4 각각의 수소들 중 어느 하나는 탄소수 1 내지 10을 갖는 알킬기로 치환될 수 있다.
상기 화학식 X로 나타내는 화합물의 구체적인 예로서는, 아래의 구조 a, 구조 b 또는 구조 c로 나타내는 화합물들을 들 수 있다. 이들은 각각 단독으로 또는 2 이상을 조합하여 이용할 수 있다.
[구조 a]
Figure PCTKR2014002974-appb-I000045
[구조 b]
Figure PCTKR2014002974-appb-I000046
[구조 c]
Figure PCTKR2014002974-appb-I000047
상기 제2 전극(50)은 도전성 물질로 상기 발광층(40) 상에 형성될 수 있다. 상기 제1 전극(20)이 투명 전극인 경우, 상기 제2 전극(50)은 불투명(반사) 전극일 수 있다. 이때, 상기 제2 전극(50)은 알루미늄 전극일 수 있다. 이와 달리, 상기 제1 전극(20)이 불투명 전극인 경우, 상기 제2 전극(50)은 투명 또는 반투명 전극일 수 있고, 이때, 상기 제2 전극(50)은 100Å 내지 150Å의 두께를 가질 수 있다. 불투명 전극을 형성하는 재료로서는, 마그네슘 및 은을 포함하는 합금을 이용할 수 있다. 상기 제2 전극(50)은 상기 발광 소자(100)의 음극(cathode)이 될 수 있다.
도면으로 도시하지 않았으나, 상기 발광층(40)과 상기 제2 전극(50) 사이에는 전자 수송성층으로서, 전자 수송층(electron transporting layer, ETL) 및/또는 전자 주입층(electron injecting layer, EIL)이 형성될 수 있다. 상기 전자 수송층이나 상기 전자 주입층 각각은 상업적으로 입수 가능한 다양한 물질을 특별한 제한 없이 사용될 수 있다.
상기 발광 소자(100)의 상기 제1 및 제2 전극들(20, 50) 사이에 전류를 흘려주는 경우, 상기 제1 전극(20)으로부터 상기 발광층(40)으로 주입된 정공(hole)과 상기 제2 전극(50)으로부터 상기 발광층(40)으로 주입된 전자(electron)가 결합하여 여기자(exciton)을 형성한다. 상기 여기자가 기저 상태로 전이되는 과정에서, 특정 영역대의 파장을 갖는 광이 생성된다. 이때, 상기 여기자는 일중항(singlet) 여기자일 수 있으며, 또한 삼중항(triplet) 여기자일 수 있다. 이에 따라, 상기 발광 소자(100)가 외부로 광을 제공할 수 있다.
한편, 상기 발광 소자(100)는 상기 제1 전극(20)과 상기 발광층(40) 사이에 배치되는 제1 차단층(미도시) 및/또는 상기 발광층(40)과 상기 제2 전극(50) 사이에 배치되는 제2 차단층(미도시)을 더 포함할 수 있다.
예를 들어, 상기 제1 차단층은 상기 정공 수송성층(30)과 상기 발광층(40) 사이에 배치되어, 상기 제2 전극(50)에서 주입된 전자가 상기 발광층(40)을 경유하여 상기 정공 수송성층(30)으로 유입되는 것을 방지하는 전자 차단층(electron blocking layer, EBL)일 수 있다. 또한, 상기 제1 차단층은, 상기 발광층(40)에서 형성된 여기자가 상기 제1 전극(20)의 방향으로 확산되어 상기 여기자가 비발광 소멸하는 것을 방지하는 여기자 차단층일 수 있다.
뿐만 아니라, 상기 제1 차단층은 여기자 분리 차단층(exciton dissociation blocking layer, EDBL)일 수 있다. 상기 여기자 분리 차단층은, 상기 발광층(40)에서 형성된 여기자가 상기 발광층(40)과 상기 정공 수송성층(30) 사이의 계면에서 ‘여기자 분리(excition dissociation)’ 과정을 거쳐 비발광 소멸하는 것을 방지할 수 있다. 상기 계면에서의 여기자 분리를 방지하기 위해서, 상기 제1 차단층을 형성하는 화합물은 상기 발광층(40)을 형성하는 화합물과 유사한 레벨의 HOMO 값을 갖도록 선택될 수 있다.
상기 제2 차단층은 상기 발광층(40)과 상기 제2 전극(50), 구체적으로는 상기 발광층(40)과 상기 전자 수송층 사이에 배치되어 정공이 상기 제1 전극(20)에서부터 상기 발광층(40)을 경유하여 상기 전자 수송층으로 유입되는 것을 방지하는 정공 차단층(hole blocking layer, HBL)일 수 있다. 또한, 상기 제2 차단층은 상기 발광층(40)에서 형성된 여기자가 상기 제2 전극(50)의 방향으로 확산되어 상기 여기자가 비발광 소멸하는 것을 방지하는 여기자 차단층일 수 있다.
상기 제1 및 제2 차단층들 각각의 두께를, 상기 발광 소자(100)의 공진 길이에 맞게 조절하면 발광 효율을 증가시킬 수 있고, 여기자가, 상기 발광층(40)과 다른 층 사이의 계면이 아닌, 상기 발광층(40)의 중앙부에서 형성될 수 있도록 조절될 수 있다.
도 2는 본 발명의 다른 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 2를 참조하면, 발광 소자(102)는 베이스 기판(10) 상에 형성된 제1 전극(20), 정공 수송성층(32), 발광층(40) 및 제2 전극(50)을 포함한다. 상기 정공 수송성층(32)을 제외하고는 도 1에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다.
일례로, 상기 정공 수송성층(32)은 호스트 물질로서 정공 수송 화합물과 함께 P형 도펀트를 더 포함할 수 있다. 상기 P형 도펀트는 P형 유기물 도펀트 및/또는 P형 무기물 도펀트를 포함할 수 있다.
상기 P형 유기물 도펀트의 구체적인 예로서는, 하기 화학식 6 내지 10으로 나타내는 화합물들, 헥사데카플루오로프탈로시아닌 (Hexadecafluorophthalocyanine, F16CuPc), 11,11,12,12-테트라시아노나프토-2,6-퀴노디메탄 (11,11,12,12-tetracyanonaphtho-2,6-quinodimethane, TNAP), 3,6-디플루오로-2,5,7,7,8,8-헥사시아노-퀴노디메탄 (3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane, F2-HCNQ) 또는 테트라시아노퀴노디메탄(Tetracyanoquinodimethane, TCNQ) 등을 포함할 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다.
[화학식 6]
Figure PCTKR2014002974-appb-I000048
상기 화학식 6에서, R은 시아노기, 설폰기, 설폭사이드기, 설폰아미드기, 설포네이트기, 니트로기 또는 트리플루오로메틸기를 나타낼 수 있다.
[화학식 7]
Figure PCTKR2014002974-appb-I000049
[화학식 8]
Figure PCTKR2014002974-appb-I000050
[화학식 9]
Figure PCTKR2014002974-appb-I000051
[화학식 10]
Figure PCTKR2014002974-appb-I000052
상기 화학식 10에서,
m 및 n은 각각 독립적으로 1 내지 5의 정수를 나타내고, Y1 및 Y2는 각각 독립적으로 탄소수 6 내지 20의 아릴기 또는 탄소수 2 내지 20의 헤테로아릴기를 나타낼 수 있다. 이때, Y1 및 Y2가 나타내는 아릴기 또는 헤테로아릴기의 수소는 탄소수 1 내지 5의 알킬기, 탄소수 1 내지 5의 알콕시기 또는 하이드록시기로 치환 또는 비치환될 수 있고, 치환 또는 비치환된 Y1 및 Y2의 수소들은 각각 독립적으로 할로겐기로 치환 또는 비치환될 수 있다.
예를 들어, 상기 화학식 10으로 나타내는 화합물은 하기 화학식 10a 또는 하기 화학식 10b로 나타내는 화합물을 포함할 수 있다.
[화학식 10a]
Figure PCTKR2014002974-appb-I000053
[화학식 10b]
Figure PCTKR2014002974-appb-I000054
상기 P형 무기물 도펀트의 예로서는, 금속산화물 또는 금속 할라이드 등을 들 수 있다. 상기 P형 무기물 도펀트의 구체적인 예로서는, MoO3, V2O5, WO3, SnO2, ZnO, MnO2, CoO2, ReO3, TiO2, FeCl3, SbCl5 또는 MgF2 등을 들 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다.
한편, 상기 발광 소자(102)는 중간층(interlayer, 미도시)을 더 포함할 수 있다. 상기 중간층은 상기 제1 전극(20)과 상기 정공 수송성층(32) 사이에 배치될 수 있다. 상기 중간층은 상기 P형 도펀트로 이용되는 화합물로 형성될 수 있다. 또한, 도 1에 도시된 발광 소자(100)도 상기 제1 전극(20)과 상기 정공 수송성층(30) 사이에 배치된 중간층을 더 포함할 수 있다.
다른 예로서, 상기 정공 수송성층(32)은 제1 층 및 제2 층을 포함할 수 있다. 상기 제1 층은 상기 제1 전극 상에 형성되고, 상기 제2 층은 상기 제1 층과 상기 발광층(40) 사이에 형성될 수 있다. 또한, 상기 정공 수송성층(32)은 상기 제1 및 제2 층들을 포함하는 2층 이상의 다층 구조를 가질 수 있다.
상기 제1 층은 호스트 물질로서 제1 정공 수송 화합물과 도펀트로서 상기에서 설명한 P형 도펀트를 포함할 수 있다. 상기 제2 층은 제2 정공 수송 화합물로 이루어질 수 있다. 이때, 상기 제1 정공 수송 화합물과 상기 제2 정공 수송 화합물은 서로 동일하거나 상이할 수 있다. 다만, 상기 제1 및 제2 정공 수송 화합물이 서로 동일한 경우, 이종 물질간의 계면에서 발생될 수 있는 물리화학적 결함을 감소시켜 발광층으로의 정공 주입을 용이하게 할 수 있다. 또한, 상기 제1 및 제2 정공 수송 화합물이 서로 동일한 경우, 하나의 챔버 내에서 상기 제1 층과 상기 제2 층을 연속적으로 형성할 수 있게 되므로 제작 공정이 단순해지고 제작 시간을 단축시킬 수 있는 이점이 있다. 나아가, 인접하고 있는 층간의 유리전이온도 등의 물성이 유사하게 되므로 소자의 내구성을 높일 수 있는 이점도 있다.
또 다른 예로서, 상기 정공 수송성층(32)의 제1 층은 제1 정공 수송 화합물 및 제1 도펀트를 포함하고, 제2 층은 제2 정공 수송 화합물 및 제2 도펀트를 포함할 수 있다. 상기 제1 및 제2 정공 수송 화합물들은 서로 동일하거나 상이할 수 있다.
상기 제1 및 제2 도펀트들도 서로 동일한 종류의 화합물이 이용되거나 서로 상이한 종류의 화합물이 이용될 수 있다. 상기 제1 및 제2 도펀트들이 서로 동일한 종류의 화합물을 포함할 때, 상기 제1 도펀트의 함량이 상기 제2 도펀트의 함량과 실질적으로 동일하거나 많을 수 있다. 상기 제1 도펀트의 함량은 상기 제1 정공 수송 화합물 전체 중량을 기준으로 하고, 상기 제2 도펀트의 함량은 상기 제2 정공 수송 화합물 전체 중량을 기준으로 한다.
또한, 도면으로 도시하지 않았으나, 상기 발광 소자(102)는 전자 수송층, 전자 주입층, 제1 차단층 및/또는 제2 차단층을 더 포함할 수 있다. 상기 층들 각각은 도 1에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.
도 3은 본 발명의 또 다른 실시예에 따른 발광 소자를 설명하기 위한 단면도이다.
도 3을 참조하면, 발광 소자(104)는 베이스 기판(10) 상에 형성된 제1 전극(20), 정공 수송성층(34), 발광층(40), 전자 수송층(60) 및 제2 전극(50)을 포함한다. 상기 발광 소자(104)는 상기 전자 수송층(60)과 상기 제2 전극(50) 사이에 배치된 전자 주입층(미도시)을 더 포함할 수 있다.
상기 제1 전극(20), 상기 정공 수송성층(34) 및 제2 전극(50)은 도 1 및 도 2에서 설명한 것과 실질적으로 동일하다. 따라서, 중복되는 구체적인 설명은 생략한다.
상기 발광층(40)은 상업적으로 입수 가능한 다양한 화합물들을 다양한 조성으로 조합하여 형성할 수 있다. 상기 발광층(40)은 호스트 화합물 및 발광 재료인 도펀트 화합물을 포함할 수 있다. 이때, 상기 발광층(40)의 호스트 화합물로서 상기 화학식 4 및/또는 상기 화학식 5로 나타내는 화합물을 포함할 수 있다.
상기 전자 수송층(60)은 하기 화학식 3으로 나타내는 화합물을 포함한다.
[화학식 3]
Figure PCTKR2014002974-appb-I000055
상기 화학식 3으로 나타내는 화합물은 본 발명에 따른 신규한 화합물로서 상기에서 설명한 것과 실질적으로 동일할 수 있다. 따라서, R1 내지 R6, X1, X2, Y1, Y2, Z1, Z2, p, r 및 s 각각에 대한 중복되는 구체적인 설명은 생략한다.
도면으로 도시하지 않았으나, 상기 발광 소자(104)는 상기 제1 전극(20)과 상기 발광층(40) 사이에 배치되는 제1 차단층(미도시) 및/또는 상기 발광층(40)과 상기 제2 전극(50) 사이에 배치되는 제2 차단층(미도시)을 더 포함할 수 있다. 제1 및 제2 차단층에 대한 구체적인 설명은 도 1에서 설명한 것과 실질적으로 동일하므로 중복되는 설명은 생략한다.
상기에서 설명한 상기 발광 소자들(100, 102, 104) 각각이 상기 화학식 1로 나타내는 본 발명에 따른 신규한 화합물을 포함함으로써 상기 발광 소자들(100, 102, 104)의 발광 효율이 향상되고, 수명이 길어질 수 있다.
도 1 내지 도 3에서는, 상기 베이스 기판(10) 상에 상기 발광 소자들(100, 102, 104)이 직접적으로 형성된 것으로 도시하고 있으나, 상기 발광 소자들(100, 102, 104) 각각의 상기 제1 전극(20)과 상기 베이스 기판(10) 사이에 화소를 구동하는 구동 소자로서 박막 트랜지스터가 배치될 수 있다. 이때, 상기 제1 전극(20)이 상기 박막 트랜지스터와 연결된 화소 전극이 될 수 있다. 상기 제1 전극(20)이 화소 전극인 경우, 다수의 화소들 각각에 상기 제1 전극(20)이 서로 분리되어 배치되고 상기 베이스 기판(10)에는 상기 제1 전극(20)의 가장자리를 따라 형성되는 격벽 패턴이 형성되어 서로 인접한 화소들에 배치된 상기 제1 전극(20) 상에 적층되는 층들이 서로 격리될 수 있다. 즉, 도면으로 도시하지 않았으나 상기 발광 소자들(100, 102, 104)이 백라이트 없이 영상을 표시하는 디스플레이 장치에 이용될 수 있다.
또한, 상기 발광 소자들(100, 102, 104)은 조명 장치로 이용될 수 있다.
이와 같이, 본 발명에서 예시한 상기 발광 소자들(100, 102, 104)은 상기 디스플레이 장치 또는 상기 조명 장치와 같은 다양한 전자 장치에 이용될 수 있다.
이하에서는, 본 발명에 따른 구체적인 실시예들을 통해서 본 발명에 따른 신규한 화합물들을 보다 상세히 설명한다. 하기에 예시되는 실시예들은 발명의 상세한 설명을 위한 것일 뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.
실시예 1
Figure PCTKR2014002974-appb-I000056
250mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 A(23.24mmol, 10.0g), 화합물 B(25.56mmol, 7.93g), 톨루엔(Toluene) 100mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(58.09 mmol, 8.03g)을 물(H2O) 50mL에 용해시킨 후, 상기 250mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4, tetrakis(triphenylphosphine)palladium)(0.93mmol, 1.07g)을 상기 250mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 48시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 에틸 아세테이트(ethyl acetate, EA) 및 증류수를 사용하여 추출하고 농축한 다음, 테트라하이드로퓨란(tetrahydrofuran, THF) 50mL에 용해시키고 메탄올(methanol) 500mL가 담긴 1L 용기에 첨가하여 20분간 교반하였다. 이를 여과하여 연회색 고체인 화합물 1을 약 8.68g 수득하였다(수율 70%).
MALDI-TOF: m/z = 533.1586 (C41H27N= 533.20)
실시예 2
Figure PCTKR2014002974-appb-I000057
500mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 C(23.69mmol, 12.0g), 화합물 B(26.06mmol, 8.09g) 및 테트라하이드로퓨란(THF) 200mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(94.78 mmol, 13.10g)을 물(H2O) 100mL에 용해시킨 후, 상기 500mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.948mmol, 1.1g)을 상기 500mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 12시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 500mL가 담긴 1L 용기에 첨가하여 20분간 교반하였다. 이를 여과하여 연노란색 고체인 화합물 2를 약 12.9g 수득하였다(수율 90%).
MALDI-TOF: m/z = 609.0524 (C47H31N= 609.2)
실시예 3
Figure PCTKR2014002974-appb-I000058
500mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 D(25.76mmol, 15.0g), 화합물 B(28.33mmol, 8.79g) 및 테트라하이드로퓨란(THF) 240mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(103.04 mmol, 14.24g)을 물(H2O) 120mL에 용해시킨 후, 상기 500mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(1.03mmol, 1.2g)을 상기 500mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 12시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 500mL가 담긴 1L 용기에 첨가하여 20분간 교반하였다. 이를 여과하여 흰색 고체인 화합물 3을 약 15.0g 수득하였다(수율 85%).
MALDI-TOF: m/z = 685.2596 (C53H35N= 685.3)
비교예 1 내지 2
하기 화학식 a 및 b로 나타내는 화합물은 일본공개특허 제2012-067077호에서 개시하고 있는 바를 토대로 하여 제조하여, 각각 비교예 1 내지 2의 화합물로 사용하였다.
[화학식 a]
Figure PCTKR2014002974-appb-I000059
[화학식 b]
Figure PCTKR2014002974-appb-I000060
발광 소자 A-1 내지 A-3의 제조
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 하기 화학식 11로 나타내는 화합물(HAT-CN)을 증착하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 하기 화학식 12로 나타내는 화합물(NPB, (N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine))을 300Å의 두께로 증착하여 제2 층을 형성하였다.
상기 제2 층 위에, 발광 호스트 화합물로서 하기 화학식 13으로 나타내는 화합물과 발광 도펀트 화합물로서 하기 화학식 14로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.
그런 다음, 상기 발광층 상에 본 발명의 실시예 1에 따른 화합물을 증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 하기 화학식 15로 나타내는 Liq를 이용하여 약 10Å 두께의 전자 주입층을 형성하였다.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.
[화학식 11]
Figure PCTKR2014002974-appb-I000061
[화학식 12]
Figure PCTKR2014002974-appb-I000062
[화학식 13]
Figure PCTKR2014002974-appb-I000063
[화학식 14]
Figure PCTKR2014002974-appb-I000064
[화학식 15]
Figure PCTKR2014002974-appb-I000065
위 방법으로 본 발명의 실시예 1에 따른 화합물을 포함하는 청색 발광 소자 A-1을 제조하였다.
또한, 전자 수송층을 본 발명의 실시예 2 및 3에 따른 화합물들 각각으로 형성하는 것을 제외하고는, 상기 발광 소자 A-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 A-2 및 발광 소자 A-3을 제조하였다.
비교 소자 1 및 2의 제조
전자 수송층을 비교예 1 및 2에 따른 화합물 각각 이용하여 형성하는 것을 제외하고는, 상기 발광 소자 A-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 1 및 2를 제조하였다.
발광 소자의 전력 효율 및 수명 평가
상기 발광 소자 A-1 내지 A-3과, 비교 소자 1 및 2 각각에 대해서, 질소 분위기의 글로브 박스 안에서 흡습제(Getter)가 부착된 커버 글래스 가장자리에 UV 경화용 실런트를 디스펜싱한 후, 발광 소자들 및 비교 소자들 각각과 커버 글래스를 합착하고 UV 광을 조사하여 경화시켰다. 상기와 같이 준비된 발광 소자 A-1 내지 A-3과, 비교 소자 1 및 2 각각에 대해서, 휘도가 1,000cd/m2일 때의 값을 기준으로 하여 전력 효율을 측정하였다. 전력 효율을 측정한 결과의 단위는 lm/W이다. 또한, 색좌표는 CIE 1931을 기준으로 측정하였다. 그 결과를 표 4에 나타낸다.
또한, 25℃의 온도로 일정하게 유지되고 있는 측정용 오븐 내에 설치된 수명 측정기를 이용하여 발광 소자 A-1 내지 A-3과, 비교 소자 1 및 2 각각의 수명을 측정하였다. T50은 발광 소자의 초기 휘도가 5,000cd/m2인 경우, 상기 발광 소자의 휘도가 상기 초기 휘도 대비 50%가 되기까지 걸린 시간을 의미한다. 그 결과를 표 6에 나타낸다.
수명에 대한 값은 당업자에게 공지된 전환식을 기초로 하여 다른 측정 조건에서 측정한 경우에 예상되는 수명으로 전환될 수 있다.
표 6
소자 No. 전력 효율[lm/W] 수명(T50[hr]) 색좌표(X, Y)
발광 소자 A-1 7.1 221 0.150, 0.155
발광 소자 A-2 7.2 243 0.149, 0.157
발광 소자 A-3 7.6 261 0.148, 0.158
비교 소자 1 5.3 143 0.153, 0.163
비교 소자 2 4.9 121 0.152, 0.161
표 6을 참조하면, 본 발명의 실시예 1 내지 3에 따른 화합물 각각으로 형성된 전자 수송층을 포함하는 발광 소자 A-1 내지 A-3의 전력 효율은 7.1 lm/W 이상이며, 평균 전력 효율이 약 7.3 lm/W인 것을 알 수 있다. 비교 소자 1의 전력 효율이 5.3 lm/W이고 비교 소자 2의 전력 효율이 4.9 lm/W이며, 비교 소자 1 및 2의 평균 전력 효율이 약 5.1 lm/W인 것과 비교할 때, 본 발명의 실시예 1 내지 3에 따른 화합물을 포함하는 발광 소자 A-1 내지 A-3의 전력 효율이 현저히 증가됨을 알 수 있다. 예를 들어, 발광 소자 A-3의 전력 효율은 비교 소자 1에 비해 약 43%만큼 향상됨을 알 수 있다.
또한, 발광 소자 A-1 내지 A-3의 수명은 221시간, 243시간 및 261 시간으로서, 이들의 평균 소자수명은 약 242시간인 반면, 비교 소자 1 및 2의 수명은 143시간 및 121 시간이며 이들의 평균 소자수명이 약 132시간인 것을 알 수 있다. 따라서, 본 발명의 실시예 1 내지 3에 따른 화합물을 포함하는 발광 A-1 내지 A-3의 수명이 비교 소자 1 및 2의 수명에 비해 적어도 100시간 길어진 것을 알 수 있다. 예를 들어, 발광 소자 A-3의 수명은 비교 소자 1에 비해 약 83%만큼 길어진 것을 알 수 있다.
한편, CIE 1931에 기초한 발광 소자 A-1 내지 A-3의 색좌표와 비교 소자 1 및 2의 색좌표를 비교할 때, 발광 소자 A-1 내지 A-3은 비교 소자 1 및 2와 실질적으로 동일한 청색을 갖는 광을 발광함을 알 수 있다. 즉, 본 발명의 실시예 1 내지 3에 따른 화합물이 청색 발광 소자의 전자 수송층에 적용되는 경우, 청색 발광 소자의 전력 효율이 향상되고 수명이 길어지면서도 색좌표의 변동이 거의 없는 것을 알 수 있다.
발광 소자 B-1 내지 B-3의 제조
인듐 틴 옥사이드(ITO)로 형성된 제1 전극 상에, 상기 화학식 12로 나타내는 화합물과 상기 화학식 11로 나타내는 화합물(HAT-CN)을 100:3 중량비로 공증착하여 100 Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 상기 화학식 12로 나타내는 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다.
상기 제2 층 위에 발광 호스트 화합물로서 상기 화학식 13으로 나타내는 화합물과 발광 도펀트 화합물로서 상기 화학식 14로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.
그런 다음, 상기 발광층 상에 전자 수송층의 호스트 화합물로서 실시예 1에 따른 화합물과 상기 화학식 15로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 15로 나타내는 Liq를 이용하여 약 5Å 두께의 전자 주입층을 형성하였다.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.
위 방법으로 본 발명의 실시예 1에 따른 화합물을 포함하는 청색 발광 소자 B-1을 제조하였다.
또한, 전자 수송층의 호스트 화합물로서 실시예 2 및 3에 따른 화합물들을 각각 이용하는 것을 제외하고는, 상기 발광 소자 B-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 B-2 및 발광 소자 B-3을 제조하였다.
비교 소자 3 및 4의 제조
전자 수송층의 호스트 화합물로서 비교예 1 및 2에 따른 화합물을 각각 이용하여 전자 수송층을 형성하는 것을 제외하고는, 상기 발광 소자 B-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 3 및 4를 제조하였다.
발광 소자의 전력 효율 및 수명 평가
상기 발광 소자 B-1 내지 B-3과, 비교 소자 3 및 4 각각에 대해서, 상기 발광 소자 A-1 내지 A-3과 비교 소자 1 및 2에 대한 전력 효율, 수명 및 색좌표를 평가한 실험과 실질적으로 동일한 실험을 수행하였다. 그 결과를 표 7에 나타낸다.
표 7
소자 No. 전력 효율[lm/W] 수명(T50[hr]) 색좌표(X, Y)
발광 소자 B-1 7.5 258 0.148, 0.152
발광 소자 B-2 7.9 274 0.149, 0.153
발광 소자 B-3 8.6 289 0.149, 0.157
비교 소자 3 6.2 189 0.151, 0.152
비교 소자 4 5.4 139 0.154, 0.151
표 7을 참조하면, 발광 소자 B-1 내지 B-3의 전력 효율이 각각 7.5 lm/W, 7.9 lm/W 및 8.6 lm/W이고, 이들의 평균 전력 효율은 약 8.0 lm/W인 것을 알 수 있다. 반면, 비교 소자 3 및 4의 전력 효율은 6.2 lm/W 및 5.4 lm/W임을 알 수 있다. 따라서, 본 발명의 실시예 1 내지 3에 따른 화합물을 포함하는 발광 소자 B-1 내지 B-3의 전력 효율은, 비교 소자 3 및 4에 비해 현저히 증가된 것을 알 수 있다. 예를 들어, 발광 소자 B-3의 전력 효율은 비교 소자 3에 비해 약 39%만큼 향상됨을 알 수 있다.
또한, 발광 소자 B-1 내지 B-3의 수명은 각각 258시간, 274시간 및 289시간으로서, 이들의 평균 소자수명이 약 274시간임을 알 수 있다. 반면, 비교 소자 3 및 4의 수명은 189시간 및 139시간인 것을 알 수 있다. 따라서, 본 발명의 실시예 1 내지 3에 따른 화합물을 포함하는 발광 소자 B-1 내지 B-3의 수명은, 비교 소자 3 및 4에 비해 현저히 증가된 것을 알 수 있다. 예를 들어, 발광 소자 B-3의 수명은 비교 소자 3에 비해 약 53%만큼 길어진 것을 알 수 있다.
한편, CIE 1931에 기초한 발광 소자 B-1 내지 B-3의 색좌표와 비교 소자 3 및 4의 색좌표를 비교할 때, 발광 소자 B-1 내지 B-3은 비교 소자 3 및 4와 실질적으로 동일한 청색을 갖는 광을 발광함을 알 수 있다. 즉, 본 발명의 실시예 1 내지 3에 따른 화합물이 청색 발광 소자의 전자 수송층에 적용되는 경우, 청색 발광 소자의 전력 효율이 향상되고 수명이 길어지면서도 색좌표의 변동이 거의 없는 것을 알 수 있다.
실시예 4
Figure PCTKR2014002974-appb-I000066
500mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 C(19.74mmol, 10.0g), 화합물 E(21.72mmol, 6.72g), 테트라하이드로퓨란(THF) 160mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(78.98 mmol, 10.92g)을 물(H2O) 80mL에 용해시킨 후, 상기 500mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.79mmol, 0.9g)을 상기 500mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 12시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 300mL가 담긴 1L 용기에 첨가하여 20분간 교반하였다. 이를 여과하여 연회색 고체인 화합물 4를 약 10.8g 수득하였다(수율 90%).
MALDI-TOF: m/z = 608.2587 (C48H32= 608.3)
실시예 5
Figure PCTKR2014002974-appb-I000067
500mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 D(20.06mmol, 12.0g), 화합물 E(22.66mmol, 7.01g), 테트라하이드로퓨란(THF) 200mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(82.43 mmol, 11.39g)을 물(H2O) 100mL에 용해시킨 후, 상기 500mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.824mmol, 0.95g)을 상기 500mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 12시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 500mL가 담긴 1L 용기에 첨가하여 20분간 교반하였다. 이를 여과하여 흰색 고체인 화합물 5를 약 11.2g 수득하였다(수율 80%).
MALDI-TOF: m/z = 684.0045 (C54H36= 684.3)
실시예 6
Figure PCTKR2014002974-appb-I000068
500mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 F(15.18mmol, 10.0g), 화합물 G(16.70mmol, 6.44g), 테트라하이드로퓨란(THF) 160mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(60.73 mmol, 8.39g)을 물(H2O) 100mL에 용해시킨 후, 상기 500mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.607mmol, 0.70g)을 상기 500mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 18시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 300mL가 담긴 1L 용기에 첨가하여 30분간 교반하였다. 이를 여과하여 연갈색 고체인 화합물 6을 약 8.9g 수득하였다(수율 70%).
MALDI-TOF: m/z = 836.3812 (C66H44= 836.3)
실시예 7
Figure PCTKR2014002974-appb-I000069
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 H(26.96mmol, 15.0g), 화합물 I(59.32mmol, 15.6g), 테트라하이드로퓨란(THF) 240mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(215.71 mmol, 29.81g)을 물(H2O) 120mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(2.157mmol, 2.49g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 24시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 500mL가 담긴 1L 용기에 첨가하여 30분간 교반하였다. 이를 여과하여 연회색 고체인 화합물 7을 약 14g 수득하였다(수율 77%).
MALDI-TOF: m/z = 668.1059 (C48H28S2= 668.2)
실시예 8
Figure PCTKR2014002974-appb-I000070
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 H(26.96mmol, 15.0g), 화합물 J(59.32mmol, 16.4g), 테트라하이드로퓨란(THF) 240mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(215.71 mmol, 29.81g)을 물(H2O) 120mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(2.157mmol, 2.49g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 24시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 500mL가 담긴 1L 용기에 첨가하여 30분간 교반하였다. 이를 여과하여 연회색 고체인 화합물 8을 약13.5g 수득하였다(수율 72%).
MALDI-TOF: m/z = 696.3105 (C50H32S2= 696.2)
실시예 9
Figure PCTKR2014002974-appb-I000071
1L 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 K(24.48mmol, 15.0g), 화합물 L(26.93mmol, 9.14g), 테트라하이드로퓨란(THF) 240mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(97.94 mmol, 13.54g)을 물(H2O) 120mL에 용해시킨 후, 상기 1L 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(0.979mmol, 1.13g)을 상기 1L 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 24시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 500mL가 담긴 1L 용기에 첨가하여 20분간 교반하였다. 이를 여과하여 연녹색 고체인 화합물 9를 약 15.2g 수득하였다(수율 84%).
MALDI-TOF: m/z = 744.1958 (C54H32S2= 744.2)
실시예 10
Figure PCTKR2014002974-appb-I000072
500mL 3구 둥근 바닥 플라스크에 질소를 충전한 후, 화합물 H(21.57mmol, 12.0g), 화합물 L(47.45mmol, 16.1g), 테트라하이드로퓨란(THF) 200mL를 넣고 30분 동안 교반하였다. 또한, 탄산나트륨(Na2CO3)(172.5 mmol, 23.85g)을 물(H2O) 100mL에 용해시킨 후, 상기 500mL 3구 둥근 바닥 플라스크에 첨가하였다. 이어서, 테트라키스(트리페닐포스핀)팔라듐(Pd(PPh3)4)(1.7mmol, 1.99g)을 상기 500mL 3구 둥근 바닥 플라스크에 첨가한 후, 빛을 차단하고 24시간 동안 환류(reflux)시켰다.
상기 반응 혼합물을 식힌 후 메탄올 300mL가 담긴 1L 용기에 첨가하여 30분간 교반하였다. 이를 여과하여 연회색 고체인 화합물 10을 약 14.5g 수득하였다(수율 82%).
MALDI-TOF: m/z = 821.3564 (C60H36S2= 820.2)
비교예 3 내지 8
하기 화학식 c로 나타내는 화합물은 PCT 공개특허 제WO2009-107596호, 하기 화학식 d로 나타내는 화합물은 PCT 공개특허 제WO2006-098080호, 화학식 e로 나타내는 화합물은 한국공개특허 제2010-0001984호, 화학식 f로 나타내는 화합물은 일본등록특허 제4807013호, 화학식 g로 나타내는 화합물은 PCT 공개특허 제WO2006-104044호, 그리고 화학식 h로 나타내는 화합물은 한국공개특허 제2009-133071호에서 개시하고 있는 바를 토대로 하여 제조하여, 각각 비교예 3 내지 8의 화합물로 사용하였다.
[화학식 c]
Figure PCTKR2014002974-appb-I000073
[화학식 d]
Figure PCTKR2014002974-appb-I000074
[화학식 e]
Figure PCTKR2014002974-appb-I000075
[화학식 f]
Figure PCTKR2014002974-appb-I000076
[화학식 g]
Figure PCTKR2014002974-appb-I000077
[화학식 h]
Figure PCTKR2014002974-appb-I000078
발광 소자 C-1 내지 C-7의 제조
인듐 틴 옥사이드(ITO)로 형성된 제1 전극 상에, 상기 화학식 11로 나타내는 화합물(HAT-CN)을 증착하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 상기 화학식 12로 나타내는 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다.
상기 제2 층 위에 발광 호스트 화합물로서 본 발명의 실시예 4에 따른 화합물과 발광 도펀트 화합물로서 상기 화학식 14로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.
그런 다음, 상기 발광층 상에 하기 화학식 16으로 나타내는 화합물과 상기 화학식 15로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 15로 나타내는 Liq를 이용하여 약 5Å 두께의 전자 주입층을 형성하였다.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.
[화학식 16]
Figure PCTKR2014002974-appb-I000079
위 방법으로 본 발명의 실시예 4에 따른 화합물을 포함하는 청색 발광 소자 C-1을 제조하였다.
또한, 발광층의 호스트 화합물로서 본 발명의 실시예 5 내지 10에 따른 화합물들 각각을 이용한 것을 제외하고는, 상기 발광 소자 C-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 C-2 내지 발광 소자 C-7을 제조하였다.
비교 소자 5 내지 10의 제조
발광층의 호스트 화합물로서 비교예 3 내지 8에 따른 화합물을 각각 이용한 것을 제외하고는, 상기 발광 소자 C-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 5 내지 10을 제조하였다.
발광 소자의 전력 효율 및 수명 평가
상기 발광 소자 C-1 내지 C-7과, 비교 소자 5 내지 10 각각에 대해서, 상기 발광 소자 A-1 내지 A-3과 비교 소자 1 및 2에 대한 전력 효율, 수명 및 색좌표를 평가한 실험과 실질적으로 동일한 실험을 수행하였다. 그 결과를 표 8에 나타낸다.
표 8
소자 No. 전력 효율[lm/W] 수명(T50[hr]) 색좌표(X, Y)
발광 소자 C-1 7.1 224 0.147, 0.155
발광 소자 C-2 7.7 278 0.146, 0.151
발광 소자 C-3 6.9 220 0.145, 0.152
발광 소자 C-4 7.4 255 0.145, 0.153
발광 소자 C-5 7.5 263 0.146, 0.153
발광 소자 C-6 7.3 247 0.143, 0.153
발광 소자 C-7 6.8 214 0.146, 0.151
비교 소자 5 5.1 159 0.157, 0.162
비교 소자 6 4.9 147 0.157, 0.163
비교 소자 7 3.6 87 0.157, 0.161
비교 소자 8 4.8 131 0.159, 0.162
비교 소자 9 3.8 98 0.155, 0.161
비교 소자 10 4.1 113 0.156, 0.161
표 8을 참조하면, 발광 소자 C-1 내지 C-7의 전력 효율은 각각 7.1 lm/W, 7.7 lm/W, 6.9 lm/W, 7.4 lm/W, 7.5 lm/W, 7.3 lm/W 및 6.8 lm/W으로서, 이들의 평균 전력 효율은 7.2 lm/W인 것을 알 수 있다. 반면, 비교 소자 5 내지 10의 평균 전력 효율이 4.4 lm/W에 미치지 못하는 것을 알 수 있다. 따라서, 본 발명에 따른 화합물을 발광층의 호스트 화합물로서 포함하는 발광 소자 C-1 내지 C-7의 전력 효율이 비교 소자 5 내지 10의 전력 효율에 비해 적어도 약 33% 증가하는 것을 알 수 있다. 특히, 발광 소자 C-2의 전력 효율은 비교 소자 5에 비해 약 51%만큼 향상된 것을 알 수 있다.
또한, 발광 소자 C-1 내지 C-7의 수명이 각각 224시간, 278시간, 220시간, 255시간, 263시간, 247시간 및 214시간으로서, 이들의 평균 수명은 약 243시간임을 알 수 있다. 반면, 비교 소자 5 내지 10의 수명은 각각 159시간, 147시간, 87시간, 131시간, 98시간 및 113시간이고, 이들의 평균 수명이 약 123시간인 것을 알 수 있다. 따라서, 본 발명에 따른 화합물을 발광층의 호스트 화합물로서 포함하는 발광 소자 C-1 내지 C-7의 수명이 비교 소자 5 내지 10의 수명에 비해 적어도 약 34% 길어짐을 알 수 있다. 특히, 발광 소자 C-2의 수명은 비교 소자 5에 비해 약 75%만큼 길어진 것을 알 수 있다.
한편, CIE 1931에 기초한 발광 소자 C-1 내지 C-7의 색좌표와 비교 소자 5 내지 10의 색좌표를 비교할 때, 발광 소자 C-1 내지 C-7은 비교 소자 5 내지 10과 실질적으로 동일한 청색을 갖는 광을 발광함을 알 수 있다. 즉, 본 발명의 실시예 4 내지 10에 따른 화합물이 청색 발광 소자의 발광층에 호스트 화합물로서 적용되는 경우, 청색 발광 소자의 전력 효율이 향상되고 수명이 길어지면서도 색좌표의 변동이 거의 없는 것을 알 수 있다.
발광 소자 D-1 내지 D-7의 제조
인듐 틴 옥사이드(ITO)로 형성된 제1 전극 상에, 상기 화학식 12로 나타내는 화합물과 상기 화학식 11로 나타내는 화합물(HAT-CN)을 100:3 중량비로 공증착하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에 화학식 12로 나타내는 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다.
상기 제2 층 위에 발광 호스트 화합물로서 본 발명의 실시예 4에 따른 화합물과 발광 도펀트 화합물로서 상기 화학식 14로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.
그런 다음, 상기 발광층 상에 상기 화학식 16으로 나타내는 화합물과 상기 화학식 15로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 상기 화학식 15로 나타내는 Liq를 이용하여 약 5Å 두께의 전자 주입층을 형성하였다.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.
위 방법으로 본 발명의 실시예 4에 따른 화합물을 포함하는 청색 발광 소자 D-1을 제조하였다.
또한, 발광층의 호스트 화합물로서 본 발명의 실시예 5 내지 10에 따른 화합물들을 각각 이용한 것을 제외하고는, 발광 소자 D-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 D-2 내지 발광 소자 D-7을 제조하였다.
비교 소자 11 내지 16의 제조
발광층의 호스트 화합물로서 비교예 3 내지 8에 따른 화합물을 각각 이용한 것을 제외하고는, 상기 발광 소자 D-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 11 내지 16을 제조하였다.
발광 소자의 전력 효율 및 수명 평가
상기 발광 소자 D-1 내지 D-7과, 비교 소자 11 내지 16 각각에 대해서, 상기 발광 소자 A-1 내지 A-3과 비교 소자 1 및 2에 대한 전력 효율, 수명 및 색좌표를 평가한 실험과 실질적으로 동일한 실험을 수행하였다. 그 결과를 표 9에 나타낸다.
표 9
소자 No. 전력 효율[lm/W] 수명(T50[hr]) 색좌표(X, Y)
발광 소자 D-1 7.4 258 0.146, 0.155
발광 소자 D-2 8.1 285 0.145, 0.154
발광 소자 D-3 7.2 237 0.144, 0.155
발광 소자 D-4 7.7 271 0.145, 0.155
발광 소자 D-5 7.9 279 0.147, 0.155
발광 소자 D-6 7.6 268 0.146, 0.156
발광 소자 D-7 7.1 229 0.144, 0.155
비교 소자 11 5.4 163 0.159, 0.162
비교 소자 12 5.2 157 0.158, 0.163
비교 소자 13 3.8 109 0.157, 0.161
비교 소자 14 5.1 152 0.157, 0.162
비교 소자 15 4.2 124 0.156, 0.162
비교 소자 16 4.6 139 0.158, 0.162
표 9를 참조하면, 발광 소자 D-1 내지 D-7의 전력 효율은 각각 7.4 lm/W, 8.1 lm/W, 7.2 lm/W, 7.7 lm/W, 7.9 lm/W, 7.6 lm/W 및 7.1 lm/W이고 이들의 평균 전력 효율은 약 7.6 lm/W인 것을 알 수 있다. 반면, 비교 소자 11 내지 16 각각의 전력 효율은 5.4 lm/W, 5.2 lm/W, 3.8 lm/W, 5.1 lm/W, 4.2 lm/W 및 4.6 lm/W이며, 이들의 평균 전력 효율은 약 4.7 lm/W임을 알 수 있다. 따라서, 본 발명에 따른 화합물을 발광층의 호스트 화합물로서 포함하고 있는 발광 소자 D-1 내지 D-7의 전력 효율이 비교 소자 11 내지 16에 비해 현저하게 좋은 것을 알 수 있다. 특히, 발광 소자 D-2의 전력 효율은 비교 소자 11에 비해 약 50%만큼 향상된 것을 알 수 있다.
또한, 발광 소자 D-1 내지 D-7의 수명은 각각 258시간, 285시간, 237시간, 271시간, 279시간, 268시간 및 229시간이고, 이들의 평균 소자 수명은 약 261시간임을 알 수 있다. 반면, 비교 소자 11 내지 16의 수명은 163시간 이하로서, 비교 소자 13의 경우 109시간에 불과함을 알 수 있다. 따라서, 본 발명에 다른 화합물을 발광층의 호스트 화합물로서 포함하고 있는 발광 소자 D-1 내지 D-7의 수명이, 비교 소자 11 내지 16에 비해 긴 것을 알 수 있다. 특히, 발광 소자 D-2의 수명은 비교 소자 11에 비해 약 75%만큼 길어진 것을 알 수 있다.
뿐만 아니라, CIE 1931에 기초한 색좌표를 참조하면, 본 발명의 실시예 4 내지 10에 따른 화합물이 청색 발광 소자의 발광층에 호스트 화합물로서 적용되는 경우, 청색 발광 소자의 전력 효율이 향상되고 수명이 길어지면서도 색좌표의 변동이 거의 없는 것을 알 수 있다.
발광 소자 E-1 내지 E-7의 제조
인듐 틴 옥사이드(indium tin oxide, ITO)로 형성된 제1 전극 상에, 상기 화학식 12로 나타내는 화합물과 상기 화학식 11로 나타내는 화합물(HAT-CN)을 100:3 중량비로 공증착하여 100Å 두께의 제1 층을 형성하였다. 상기 제1 층 상에, 상기 화학식 12로 나타내는 화합물을 300Å의 두께로 증착하여 제2 층을 형성하였다.
상기 제2 층 상에 하기 화학식 17로 나타내는 화합물을 증착하여 약 100Å 두께의 차단층을 형성하였다.
상기 차단층 위에 발광 호스트 화합물로서 본 발명의 실시예 4에 따른 화합물과 발광 도펀트로서 상기 화학식 14로 나타내는 화합물을 100:5 중량비로 공증착하여 약 200Å 두께의 발광층을 형성하였다.
그런 다음, 상기 발광층 상에 화학식 16으로 나타내는 화합물과 상기 화학식 15로 나타내는 Liq를 50:50 중량비로 공증착하여 약 360Å 두께의 전자 수송층을 형성하였다. 이어서, 상기 전자 수송층 상에 화학식 15로 나타내는 Liq를 이용하여 약 5Å 두께의 전자 주입층을 형성하였다.
상기 전자 주입층 상에, 1,000Å 두께의 알루미늄 박막을 이용한 제2 전극을 형성하였다.
[화학식 17]
Figure PCTKR2014002974-appb-I000080
위 방법으로 본 발명의 실시예 4에 따른 화합물을 포함하는 청색 발광 소자 E-1을 제조하였다.
또한, 발광층의 호스트 화합물을 본 발명의 실시예 5 내지 10에 따른 화합물 각각을 이용하여 형성한 것을 제외하고는, 발광 소자 E-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 발광 소자 E-2 내지 발광 소자 E-7을 제조하였다.
비교 소자 17 내지 22의 제조
비교예 3 내지 8에 따른 화합물을 각각 발광층의 호스트 물질로 이용하여 발광층을 형성하는 것을 제외하고는, 상기 발광 소자 E-1을 제조하는 공정과 실질적으로 동일한 공정을 통해서 비교 소자 17 내지 22를 제조하였다.
발광 소자의 전력 효율 및 수명 평가
상기 발광 소자 E-1 내지 E-7과, 비교 소자 17 내지 22 각각에 대해서, 상기 발광 소자 A-1 내지 A-3과 비교 소자 1 및 2에 대한 전력 효율, 수명 및 색좌표를 평가한 실험과 실질적으로 동일한 실험을 수행하였다. 그 결과를 표 10에 나타낸다.
표 10
소자 No. 전력 효율[lm/W] 수명(T50[hr]) 색좌표(X, Y)
발광 소자 E-1 7.9 287 0.146, 0.158
발광 소자 E-2 8.5 310 0.147, 0.156
발광 소자 E-3 7.4 265 0.145, 0.156
발광 소자 E-4 8.1 302 0.147, 0.155
발광 소자 E-5 8.3 305 0.148, 0.156
발광 소자 E-6 8.0 299 0.148, 0.155
발광 소자 E-7 7.6 272 0.146, 0.156
비교 소자 17 5.8 178 0.159, 0.163
비교 소자 18 5.6 172 0.159, 0.162
비교 소자 19 4.0 121 0.156, 0.163
비교 소자 20 5.4 167 0.158, 0.163
비교 소자 21 4.7 143 0.156, 0.163
비교 소자 22 5.1 160 0.159, 0.162
표 10을 참조하면, 발광 소자 E-1 내지 E-7 각각의 전력 효율이 7.9 lm/W, 8.5 lm/W, 7.4 lm/W, 8.1 lm/W, 8.3 lm/W, 8.0 lm/W 및 7.6 lm/W이고 이들의 평균 전력 효율은 약 8.0 lm/W인 것을 알 수 있다. 반면, 비교 소자 17 내지 22 각각의 전력 효율은 5.8 lm/W, 5.6 lm/W, 4.0 lm/W, 5.4 lm/W, 4.7 lm/W 및 5.1 lm/W이며, 이들의 평균 전력 효율은 약 5.1 lm/W임을 알 수 있다. 따라서, 본 발명에 따른 화합물이 발광층에 포함된 발광 소자 E-1 내지 E-5의 전력 효율은 비교 소자 17 내지 22에 비해서 현저히 향상된 것을 알 수 있다. 특히, 발광 소자 E-2의 전력 효율은 비교 소자 17에 비해 약 47%만큼 향상된 것을 알 수 있다.
또한, 발광 소자 E-1 내지 E-7 각각의 수명은 287시간, 310시간, 265시간, 302시간, 305시간, 299시간 및 272시간이고, 이들의 평균 수명이 약 291시간인 반면, 비교 소자 17 내지 22 각각의 수명은 178시간, 172시간, 121시간, 167시간, 143시간 및 160시간으로서 평균 수명이 약 157시간임을 알 수 있다. 따라서, 본 발명에 따른 화합물이 발광층에 포함된 발광 소자 E-1 내지 E-5의 수명이 비교 소자 17 내지 22에 비해서 길어진 것을 알 수 있다. 특히, 발광 소자 E-2의 수명은 비교 소자 17에 비해 약 74%만큼 길어진 것을 알 수 있다.
한편, CIE 1931에 기초한 색좌표를 참조하면, 본 발명의 실시예 4 내지 10에 따른 화합물이 청색 발광 소자의 발광층에 호스트 화합물로서 적용되는 경우, 청색 발광 소자의 전력 효율이 향상되고 수명이 길어지면서도 색좌표의 변동이 거의 없는 것을 알 수 있다.

Claims (17)

  1. 하기 화학식 1로 나타내는 화합물;
    [화학식 1]
    Figure PCTKR2014002974-appb-I000081
    상기 화학식 1에서,
    La 및 Lb는 각각 독립적으로 *-L1-L2-L3-*을 나타내고, L1, L2 및 L3은 각각 독립적으로 단일 결합이나, 탄소수 1 내지 12를 갖는 아릴기로 치환 또는 무치환된 페닐렌기를 나타내고,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
    X1, X2, Y1, Y2, Z1 및 Z2는 각각 독립적으로 C-Ra 또는 N을 나타내며,
    p 및 q는 각각 독립적으로 0 또는 1을 나타내되, p+q=1 또는 2이고,
    Ra, R3, R4, R5 및 R6은 각각 독립적으로 수소, 페닐기, 피리디닐기 또는 하기 화학식 2로 나타내고,
    [화학식 2]
    Figure PCTKR2014002974-appb-I000082
    R3 및 R4 중 적어도 하나가 상기 화학식 2로 나타내는 치환기인 경우, R5 및 R6 중 적어도 하나는 상기 화학식 2로 나타내는 치환기이며,
    R7은 수소 또는 탄소수 1 내지 30을 갖는 알킬기를 나타낸다.
  2. 제 1 항에 있어서, 상기 화학식 1로 나타내는 화합물은 하기 화학식 3으로 나타내는 것을 특징으로 하는 화합물;
    [화학식 3]
    Figure PCTKR2014002974-appb-I000083
    상기 화학식 3에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
    X1, X2, Y1, Y2, Z1 및 Z2는 각각 독립적으로 C-Ra 또는 N을 나타내되, X1, Y1 및 Z1 중 적어도 어느 하나와 X2, Y2 및 Z2 중 적어도 어느 하나는 N을 나타내고,
    p, r 및 s는 각각 독립적으로 0 또는 1을 나타내고,
    Ra, R3, R4, R5 및 R6은 각각 독립적으로 수소 또는 페닐기를 나타낸다.
  3. 제 2 항에 있어서, 상기 화학식 3으로 나타내는 화합물은
    하기 구조 1 내지 구조 9로부터 선택되는 것을 특징으로 하는 화합물.
    <구조 1>
    Figure PCTKR2014002974-appb-I000084
    <구조 2>
    Figure PCTKR2014002974-appb-I000085
    <구조 3>
    Figure PCTKR2014002974-appb-I000086
    <구조 4>
    Figure PCTKR2014002974-appb-I000087
    <구조 5>
    Figure PCTKR2014002974-appb-I000088
    <구조 6>
    Figure PCTKR2014002974-appb-I000089
    <구조 7>
    Figure PCTKR2014002974-appb-I000090
    <구조 8>
    Figure PCTKR2014002974-appb-I000091
    <구조 9>
    Figure PCTKR2014002974-appb-I000092
  4. 제 2 항에 있어서, 상기 화학식 3으로 나타내는 화합물은 하기 화학식 3-1로 나타내는 것을 특징으로 하는 화합물;
    [화학식 3-1]
    Figure PCTKR2014002974-appb-I000093
    상기 화학식 3-1에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
    r 및 s는 서로 동일하게 0 또는 1을 나타내며,
    R3, R4, R5 및 R6은 페닐기를 나타낸다.
  5. 제 4 항에 있어서, 상기 화학식 3-1로 나타내는 화합물은 하기 구조 1 및 2에서 선택되는 것을 특징으로 하는 화합물;
    <구조 1>
    Figure PCTKR2014002974-appb-I000094
    <구조 2>
    Figure PCTKR2014002974-appb-I000095
  6. 제 1 항에 있어서, 상기 화학식 1로 나타내는 화합물은 하기 화학식 4로 나타내는 것을 특징으로 하는 화합물;
    [화학식 4]
    Figure PCTKR2014002974-appb-I000096
    상기 화학식 4에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
    r 및 s는 각각 독립적으로 0 또는 1을 나타내며,
    R7a 및 R7b는 각각 독립적으로 수소 또는 탄소수 1 내지 30을 갖는 알킬기를 나타낸다.
  7. 제 6 항에 있어서, 상기 화학식 4로 나타내는 화합물은
    하기 구조 1 내지 구조 10으로부터 선택되는 것을 특징으로 하는 화합물.
    <구조 1>
    Figure PCTKR2014002974-appb-I000097
    <구조 2>
    Figure PCTKR2014002974-appb-I000098
    <구조 3>
    Figure PCTKR2014002974-appb-I000099
    <구조 4>
    Figure PCTKR2014002974-appb-I000100
    <구조 5>
    Figure PCTKR2014002974-appb-I000101
    <구조 6>
    Figure PCTKR2014002974-appb-I000102
    <구조 7>
    Figure PCTKR2014002974-appb-I000103
    <구조 8>
    Figure PCTKR2014002974-appb-I000104
    <구조 9>
    Figure PCTKR2014002974-appb-I000105
    <구조 10>
    Figure PCTKR2014002974-appb-I000106
  8. 제 1 항에 있어서,
    상기 화학식 1로 나타내는 화합물은 하기 화학식 5로 나타내는 것을 특징으로 하는 화합물;
    [화학식 5]
    Figure PCTKR2014002974-appb-I000107
    상기 화학식 5에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
    p 및 q는 각각 독립적으로 0 또는 1을 나타내되 p+q=1 또는 2를 나타내고,
    r 및 s는 각각 독립적으로 0 내지 2의 정수를 나타낸다.
  9. 제 8 항에 있어서, 상기 화학식 5로 나타내는 화합물은 하기 구조 1 내지 구조 9로부터 선택되는 것을 특징으로 하는 화합물.
    <구조 1>
    Figure PCTKR2014002974-appb-I000108
    <구조 2>
    Figure PCTKR2014002974-appb-I000109
    <구조 3>
    Figure PCTKR2014002974-appb-I000110
    <구조 4>
    Figure PCTKR2014002974-appb-I000111
    <구조 5>
    Figure PCTKR2014002974-appb-I000112
    <구조 6>
    Figure PCTKR2014002974-appb-I000113
    <구조 7>
    Figure PCTKR2014002974-appb-I000114
    <구조 8>
    Figure PCTKR2014002974-appb-I000115
    <구조 9>
    Figure PCTKR2014002974-appb-I000116
  10. 제 8 항에 있어서, 상기 화학식 5로 나타내는 화합물은 하기 화학식 5-1로 나타내는 것을 특징으로 하는 화합물;
    [화학식 5-1]
    Figure PCTKR2014002974-appb-I000117
    상기 화학식 5-1에서,
    R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 30을 갖는 알킬기 또는 탄소수 1 내지 30을 갖는 알콕시기를 나타내고,
    r 및 s는 서로 동일하게 0 내지 2의 정수를 나타낸다.
  11. 제 10 항에 있어서, 상기 화학식 5-1로 나타내는 화합물은 하기 구조 1 및 2 중에서 선택된 것을 특징으로 하는 화합물;
    <구조 1>
    Figure PCTKR2014002974-appb-I000118
    <구조 2>
    Figure PCTKR2014002974-appb-I000119
  12. 제1 전극;
    제2 전극; 및
    제1 전극과 제2 전극 사이에 배치되고, 제 1 항 내지 제 11 항에 따른 화합물을 포함하는 유기층을 포함하는 발광 소자.
  13. 제1 전극; 발광층; 제2 전극; 및 발광층과 제2 전극 사이에 배치된 전자 수송층을 포함하고,
    상기 전자 수송층은 제 2 항 내지 제 5 항 중 어느 한 항에 따른 화합물을 포함하는 것을 특징으로 하는 발광 소자.
  14. 제1 전극; 발광층; 및 제2 전극을 포함하고,
    상기 발광층은 제 6 항 내지 제 11 항 중 어느 한 항에 따른 화합물을 포함하는 것을 특징으로 하는 발광 소자.
  15. 제 14 항에 있어서, 상기 발광층은 청색광을 발광하는 것을 특징으로 하는 발광 소자.
  16. 제 12 항에 따른 발광 소자를 포함하는 전자 장치.
  17. 제 16 항에 있어서, 상기 전자 장치는 디스플레이 장치 또는 조명 장치인 것을 특징으로 하는 전자 장치.
PCT/KR2014/002974 2013-04-08 2014-04-07 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치 WO2014168386A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/783,001 US10141534B2 (en) 2013-04-08 2014-04-07 Compound, and light-emitting device and electronic device including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130038223A KR101468089B1 (ko) 2013-04-08 2013-04-08 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치
KR10-2013-0038223 2013-04-08

Publications (1)

Publication Number Publication Date
WO2014168386A1 true WO2014168386A1 (ko) 2014-10-16

Family

ID=51689745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002974 WO2014168386A1 (ko) 2013-04-08 2014-04-07 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치

Country Status (3)

Country Link
US (1) US10141534B2 (ko)
KR (1) KR101468089B1 (ko)
WO (1) WO2014168386A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1385221A2 (en) * 2002-07-26 2004-01-28 Xerox Corporation Display device with anthracene and triazine derivtives
KR20080046657A (ko) * 2005-09-14 2008-05-27 이데미쓰 고산 가부시키가이샤 방향족 화합물의 제조방법 및 그 방법으로 수득된 방향족화합물
WO2010134350A1 (ja) * 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2012067077A (ja) * 2010-08-26 2012-04-05 Jnc Corp アントラセン誘導体およびこれを用いた有機電界発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582837B1 (en) * 1997-07-14 2003-06-24 Nec Corporation Organic electroluminescence device
US6361886B2 (en) * 1998-12-09 2002-03-26 Eastman Kodak Company Electroluminescent device with improved hole transport layer
US20040018380A1 (en) * 2002-07-26 2004-01-29 Xerox Corporation Display device with anthracene and triazine derivatives
JPWO2005091686A1 (ja) 2004-03-19 2008-02-07 チッソ株式会社 有機電界発光素子
JP4384536B2 (ja) * 2004-04-27 2009-12-16 三井化学株式会社 アントラセン化合物、および該アントラセン化合物を含有する有機電界発光素子
TWI373506B (en) * 2004-05-21 2012-10-01 Toray Industries Light-emitting element material and light-emitting material
JP4807013B2 (ja) * 2005-09-02 2011-11-02 東レ株式会社 発光素子材料および発光素子
WO2011074253A1 (ja) * 2009-12-16 2011-06-23 出光興産株式会社 有機発光媒体
KR101799077B1 (ko) * 2011-06-30 2017-11-20 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1385221A2 (en) * 2002-07-26 2004-01-28 Xerox Corporation Display device with anthracene and triazine derivtives
KR20080046657A (ko) * 2005-09-14 2008-05-27 이데미쓰 고산 가부시키가이샤 방향족 화합물의 제조방법 및 그 방법으로 수득된 방향족화합물
WO2010134350A1 (ja) * 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2012067077A (ja) * 2010-08-26 2012-04-05 Jnc Corp アントラセン誘導体およびこれを用いた有機電界発光素子

Also Published As

Publication number Publication date
US10141534B2 (en) 2018-11-27
KR101468089B1 (ko) 2014-12-05
KR20140121681A (ko) 2014-10-16
US20160056402A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
WO2020231197A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2016003225A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2010044607A1 (en) Benzimidazole compounds and organic photoelectric device with the same
WO2016140497A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2011074770A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012161382A9 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2012176959A9 (en) Material for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2012161554A9 (ko) 신규 화합물 및 이를 포함하는 유기전자소자
WO2016032150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013191428A1 (ko) 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
WO2020226300A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2020085797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2022225198A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018070824A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013027906A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2020209514A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019022435A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013100603A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2021153931A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020045831A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021015417A1 (ko) 유기발광 화합물 및 유기발광소자
WO2022191466A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2020262853A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021194141A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2014209050A1 (ko) 신규한 화합물, 이를 포함하는 발광 소자 및 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14783001

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782466

Country of ref document: EP

Kind code of ref document: A1