WO2014168029A1 - 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法 - Google Patents
導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法 Download PDFInfo
- Publication number
- WO2014168029A1 WO2014168029A1 PCT/JP2014/059210 JP2014059210W WO2014168029A1 WO 2014168029 A1 WO2014168029 A1 WO 2014168029A1 JP 2014059210 W JP2014059210 W JP 2014059210W WO 2014168029 A1 WO2014168029 A1 WO 2014168029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring pattern
- conductive film
- moire
- pattern
- frequency
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/13338—Input devices, e.g. touch panels
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/60—Systems using moiré fringes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0228—Compensation of cross-talk by a mutually correlated lay-out of printed circuit traces, e.g. for compensation of cross-talk in mounted connectors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0274—Optical details, e.g. printed circuits comprising integral optical means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133308—Support structures for LCD panels, e.g. frames or bezels
- G02F1/133334—Electromagnetic shields
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04112—Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
Definitions
- the present invention relates to a conductive film used in a three-dimensional shape, a display device including the conductive film, and a method for evaluating and determining a wiring pattern of the conductive film.
- a conductive film installed on a display unit of a display device such as a mobile phone (hereinafter also referred to as a display), for example, a conductive film for an electromagnetic wave shield, a conductive film for a touch panel, or the like can be given (for example, Patent Documents). 1-5).
- Patent Document 1 relating to the application of the present applicant, for example, a first pattern such as a pixel arrangement pattern of a display (for example, a black matrix (hereinafter also referred to as BM) pattern) and a second pattern such as an electromagnetic shielding pattern, for example.
- the second pattern generated by the second pattern data in which the relative distance between the spectrum peaks of the two-dimensional Fourier spectrum (2DFFTSp) of each pattern data of the pattern exceeds a predetermined spatial frequency, for example, 8 cm ⁇ 1.
- the automatic selection is disclosed.
- Patent Document 2 relating to the application of the present applicant, as a transparent conductive film having a mesh pattern including a plurality of polygonal meshes, a predetermined spatial frequency, for example, human visual response characteristics is maximum with respect to the center-of-gravity spectrum of each mesh.
- a transparent conductive film in which a mesh pattern is formed such that the average intensity on the band side higher than the spatial frequency corresponding to 5% of the response is higher than the average intensity on the band side lower than the predetermined spatial frequency. is doing.
- Patent Document 2 it is possible to reduce the noise granularity due to the pattern, greatly improve the visibility of the observation object, and provide a transparent conductive film having stable current-carrying performance even after cutting. .
- Patent Document 3 relating to the applicant's application, in the conductive pattern composed of a rhombus-shaped mesh made of fine metal wires, by limiting the ratio of the lengths of the two diagonal lines of the rhombus of each mesh opening to a predetermined range, in Patent Document 4, in the mesh pattern of fine metal lines, the fine metal lines limit the inclination angle with respect to the arrangement direction of the pixels of the display device to a predetermined range. In Patent Document 5, the diamond-shaped mesh pattern of fine metal lines is used. By limiting the apex angle of the rhombus at the opening of each mesh to a predetermined range, moire is less likely to occur even when attached to a display panel, and it is possible to produce at a high yield. .
- the conductive films disclosed in Patent Documents 1 to 5 have a planar shape, and when superimposed on the flat display surface of the display, moire due to interference between the wiring pattern of the conductive film and the BM pattern of the display is eliminated.
- the conductive film having a planar shape with a high visibility of the moire has a three-dimensional shape, for example, a corresponding three-sided curved side and a flat central portion between the sides.
- the wiring pattern 70 of a conductive film having a planar shape with good visibility of moire as shown in FIG. 24A due to a change from a planar shape (two-dimensional shape) to a three-dimensional shape.
- Patent Document 1 since the moire frequency is controlled only from the frequency information of the BM pattern of the display and the conductive film wiring pattern, the intensity of the moiré perception of a person who is affected not only by the frequency but also by the intensity In some cases, moire is visually recognized, and the visibility of moire is not sufficiently improved. Further, in Patent Document 2, regarding the center-of-gravity spectrum of each mesh of the mesh pattern of the transparent conductive film, the noise feeling of the mesh pattern itself of the transparent conductive film that can be visually felt by humans by considering the response characteristics of human vision. However, there is a problem in that it does not lead to improving the visibility of moire.
- the present invention solves the above-mentioned problems of the prior art, and can suppress the occurrence of moire and / or graininess when the conductive film is used in a three-dimensional shape, and the visibility of moire and / or graininess can be suppressed. It is an object of the present invention to provide a conductive film, a display device including the conductive film, and a method for evaluating and determining a wiring pattern of the conductive film.
- the present invention is conductive to the black matrix of the display unit of the display device.
- An object of the present invention is to provide a method for evaluating and determining a wiring pattern.
- the conductive film according to the first aspect of the present invention is a conductive film that is installed on a display unit of a display device and is used by curving at least a part with a predetermined curvature.
- a transparent base and a conductive portion formed on at least one surface of the transparent base and made of a plurality of fine metal wires, wherein the conductive portion is formed in a mesh shape by the plurality of fine metal wires. It has a wiring pattern in which openings are arranged, the wiring pattern is superimposed on the pixel arrangement pattern of the display unit, and the conductive film wiring pattern developed in a planar shape is at least partially used in the state of use of the conductive film.
- the evaluation index of moire caused by the interference with the pixel array pattern is the model.
- the record is one that is in a predetermined range which is not visible.
- the conductive film according to the second aspect of the present invention is a conductive film that is installed on a display unit of a display device and is used by curving at least a part with a predetermined curvature.
- a display device is installed on a display unit and a display surface of the display unit in a state where at least a part thereof is curved with a predetermined curvature.
- the electroconductive film which concerns on the said 1st or 2nd aspect is provided.
- the evaluation and determination method of the wiring pattern of the electroconductive film which concerns on the 4th aspect of this invention are installed on the display unit of a display apparatus, and are mesh-shaped by several metal fine wire.
- the conductive pattern of the conductive film is projected onto the use state of the conductive film, at least part of which is curved with a predetermined curvature, to obtain a projected wiring pattern.
- the moire evaluation index generated by the interference between the projected wiring pattern and the pixel array pattern is obtained by superimposing the pattern on at least one viewpoint, and the obtained moire is obtained.
- the evaluation index is compared with a predetermined range in which moire is not visually recognized, the projected wiring pattern in which the moire evaluation index falls within the predetermined range is evaluated, and the obtained projected wiring pattern is developed on a plane to form a planar conductive film The wiring pattern is determined.
- the conductive film is a curved portion that is curved with a predetermined curvature on each of the corresponding sides of the display surface of the display unit in the use state.
- the three-dimensional shape has a plane portion parallel to the display surface of the display unit between the curved portions on both sides, and one viewpoint is a front surface in a direction perpendicular to the plane portion parallel to the display surface of the display unit. It is preferable.
- the conductive film is preferably a planar conductive film having a planar wiring pattern in which a projected wiring pattern projected into a three-dimensional shape in use is developed into a planar shape.
- the evaluation index of moire is, at least in one viewpoint, the peak frequency and peak intensity of a plurality of spectrum peaks of the two-dimensional Fourier spectrum of the transmittance image data of the projected wiring pattern, and the two-dimensional of the transmittance image data of the pixel array pattern.
- the moiré frequency and intensity calculated from the peak frequency and peak intensity of a plurality of spectral peaks of the Fourier spectrum, respectively, and the moiré frequency at each moiré frequency below the maximum moiré frequency defined according to the display resolution of the display unit. It is calculated from the evaluation value of moire obtained by applying the human visual response characteristic to the intensity according to the observation distance, and the predetermined range is preferably equal to or less than the predetermined value.
- the predetermined value is preferably -1.75 in common logarithm
- the moire evaluation index is preferably -1.75 or less in common logarithm.
- the moire evaluation index is preferably obtained by weighting the moire frequency and intensity with a visual transfer function corresponding to the observation distance as a visual response characteristic by convolution integration.
- the moire evaluation index is the transmittance image data of the pixel arrangement pattern of the display unit in which the projected wiring pattern transmittance image data and the projected wiring pattern are superimposed on at least one viewpoint.
- two-dimensional Fourier transform is performed on the transmittance image data of the projected wiring pattern and the transmittance image data of the pixel array pattern, and a plurality of spectral peaks of the two-dimensional Fourier spectrum of the transmittance image data of the projected wiring pattern are obtained.
- the peak frequency and peak intensity of a plurality of spectrum peaks of the two-dimensional Fourier spectrum of the transmittance image data of the pixel array pattern, and the thus calculated peak frequency and peak intensity of the projected wiring pattern And peak frequency and peak intensity of pixel array pattern Calculate the frequency and intensity of the moire, and select the moire having the frequency below the maximum frequency of the moire specified according to the display resolution of the display unit from the frequency and intensity of the moire thus calculated.
- the moire intensity at each moiré frequency is applied to the human visual response characteristics according to the observation distance to obtain each moiré evaluation value, and is calculated from the plurality of moiré evaluation values thus obtained.
- the predetermined range is preferably -1.75 in common logarithm.
- the density of the mesh of a projection wiring pattern is uniform.
- the projected wiring pattern is preferably a rhombus pattern or a random pattern.
- the variation in the opening area of the projected wiring pattern is preferably in the range of 0.8 to 1.2.
- the moire frequency is given by the difference between the peak frequency of the projected wiring pattern and the peak frequency of the pixel array pattern, and the moire intensity is given by the product of the peak intensity of the projected wiring pattern and the peak intensity of the pixel array pattern. It is preferred that
- the common logarithm is preferably ⁇ 1.89 or less.
- the maximum frequency of moire is given by 1000 / (2p) when the display pitch of the display unit is p ( ⁇ m).
- the visual transfer function is preferably a visual sensitivity function S (u) given by the following formula (1). ... (1)
- u is the spatial frequency (cycle / deg)
- L is the luminance (cd / mm 2 )
- X 0 is the viewing angle (deg) of the display surface of the display unit at the observation distance
- X 0 2 is a solid angle (sr) formed by the display surface at the observation distance.
- the moire evaluation index is preferably calculated by using the worst evaluation value among a plurality of moire evaluation values weighted according to the observation distance with respect to one moire frequency.
- the moire evaluation index is preferably a total value obtained by adding the worst evaluation values selected for one moire frequency for all moire frequencies.
- the moire selected for acting the visual response characteristic is preferably a moire having a moire intensity of ⁇ 4 or more and a frequency of the maximum frequency or less.
- the peak intensity is a sum value of the intensity in a plurality of pixels around the peak position.
- the peak intensity is a combined value of the intensities up to the top five in 7 ⁇ 7 pixels around the peak position.
- the peak intensity is preferably standardized by the transmittance image data of the projected wiring pattern and the pixel array pattern.
- the pixel array pattern is preferably a black matrix pattern.
- the generation of moire and / or granularity can be suppressed, and the visibility of moire and / or granularity can be greatly increased.
- the peak frequency obtained by frequency analysis of the projected wiring pattern in a state in which the wiring pattern in the planar state of the conductive film is projected onto the three-dimensional shape in use and the pixel arrangement pattern of the display device is calculated from the intensity, and the calculated moire intensity / frequency is limited to numerical values so that the visibility is excellent. Therefore, image quality disturbance due to the occurrence of moire can be eliminated and excellent visibility can be obtained.
- the present invention since the resolution of a display device such as a display is taken into account when calculating the moiré evaluation value that is not visually recognized, it is possible to improve the moiré visibility in general for display devices with different resolutions. it can. Further, according to the present invention, since the evaluation function depending on the observation distance is provided, the moire visibility can be evaluated with a highly accurate evaluation index, the moire can be ordered, and the evaluation distance can be determined. Therefore, the visibility can be greatly improved.
- the moiré frequency / intensity obtained by the frequency analysis of the pixel arrangement pattern of the display device and the wiring pattern of the conductive film is calculated, and the calculated moiré intensity / frequency is calculated as the resolution and the observation distance of the display device. Since the numerical values are limited so that the visibility is excellent in consideration, it is possible to eliminate the image quality failure due to the occurrence of moire and obtain excellent visibility regardless of the resolution and the observation distance of the display device.
- the transparent conductive film having a pattern wiring is arranged on a display surface of a display unit of a display device such as a mobile phone and used as a touch panel electrode in a three-dimensional shape
- the display unit of the display device Therefore, it is possible to suppress the occurrence of moire that causes a large image quality failure when the conductive film is visually recognized on the black matrix, and the visibility of the display on the touch panel can be greatly improved.
- (A) And (B) is an example of the projected wiring pattern which projected to the three-dimensional shape of the planar wiring pattern of the electrically conductive film which concerns on the 1st Embodiment of this invention, respectively, and a use surface state, respectively.
- FIG. (A) And (B) is a schematic diagram of another example of the planar wiring pattern in the planar state and the projected wiring pattern projected onto the three-dimensional shape in the use surface state of the conductive film according to the first embodiment of the present invention.
- FIG. (A) And (B) is a schematic diagram of another example of the planar wiring pattern in the planar state and the projected wiring pattern projected onto the three-dimensional shape in the use surface state of the conductive film according to the first embodiment of the present invention.
- FIG. It is a typical fragmentary sectional view of an example of the electroconductive film which concerns on the 2nd Embodiment of this invention.
- (C) is the elements on larger scale of the pixel arrangement pattern of (A)
- (D) is only the subpixel of G channel in (C).
- (A) is a schematic partial enlarged explanatory view showing another example of a pixel arrangement pattern of a display unit to which the conductive film according to the present invention is applied
- (B) is a G channel in (A). It is a typical explanatory view of a pixel arrangement pattern when only sub-pixels are used.
- FIG. 13 is a graph showing the frequency peak position of the pixel arrangement pattern of the display unit shown in FIG. (A) is a graph explaining the frequency peak position of an input pattern image, (B) is a graph explaining calculation of the peak intensity of a frequency peak position.
- A) and (B) are the graph which represents an example of the intensity
- FIG. 13 is a schematic explanatory diagram schematically showing the moire frequency and the moire intensity generated by the interference between the pixel array pattern shown in FIG. 12A and the projected wiring pattern shown in FIG. It is a flowchart which shows another example of the evaluation and determination method of the projection wiring pattern of the electroconductive film which concerns on this invention. It is a graph showing an example of human standard visual response characteristics.
- (A), (B), (C) and (D) are projected wiring patterns in which the average values of the opening areas of the three-dimensional shape conductive films in use are different
- (E), (F), (G) and (H) are schematic diagrams of moire visually recognized by a conductive film having a projected wiring pattern shown in (A), (B), (C) and (D), respectively.
- FIG. 24 It is a fragmentary sectional view which shows typically an example of the electroconductive film which concerns on another embodiment of this invention.
- (A), (B), (C) and (D) are schematic explanatory views showing examples of the projected wiring pattern of the conductive film of the present invention.
- (A) And (B) is a schematic plan view schematically showing a planar wiring pattern in a planar state of a conductive film optimized in a planar state and a projected wiring pattern projected onto a three-dimensional shape in a use surface state. is there. It is a schematic diagram of the moire visually recognized with the electroconductive film with the projection wiring pattern of the three-dimensional shape of a use surface state shown to FIG. 24 (B).
- the conductive film which concerns on this invention, and the wiring pattern evaluation and determination method of a conductive film are demonstrated in detail with reference to suitable embodiment shown to an accompanying drawing.
- the conductive film according to the present invention will be described using a conductive film for a touch panel used in a three-dimensional shape as a representative example.
- the present invention is not limited to this, and a liquid crystal display (LCD: Liquid Crystal) is described.
- LCD Liquid Crystal
- Conductive film installed in a three-dimensional shape in use on a display unit of a display device such as a display, plasma display (PDP), organic EL display (OELD), or inorganic EL display. Any material may be used as long as it is, for example, a conductive film for electromagnetic wave shielding.
- FIGS. 1A and 1B are schematic diagrams showing examples of a planar wiring pattern in a planar state and a projected wiring pattern projected onto a three-dimensional shape in a use surface state of the conductive film according to the first embodiment of the present invention, respectively.
- FIG. FIG. 2 is a schematic partial cross-sectional view of an example of a cross section of a conductive film having the planar wiring pattern shown in FIG.
- FIG. 3 is an explanatory view schematically showing an example of a cross section and an example of an observation viewpoint of the state of use of the three-dimensional shape of the conductive film shown in FIG.
- FIG. 4 is a schematic diagram of moire visually recognized by a conductive film having a three-dimensional projected pattern in use as shown in FIG. As shown in FIGS.
- the conductive film 10 of this embodiment is formed on a transparent substrate 12 and one surface of the transparent substrate 12 (the upper surface in FIG. 2).
- a conductive portion 16 composed of a plurality of fine metal wires (hereinafter referred to as metal fine wires) 14, and a protective layer bonded to the substantially entire surface of the conductive portion 16 via an adhesive layer 18 so as to cover the metal thin wires 14.
- metal fine wires a plurality of fine metal wires
- the conductive film 10 is installed and used in a predetermined three-dimensional shape on the display unit 30 of the display device, and before being used, that is, on the display unit 30. Even if it has a planar wiring pattern 23 shown in FIG. 1 (A) before being installed, it is installed in a predetermined three-dimensional shape on the display unit 30 as shown in FIG. In this state, when viewed from one viewpoint indicated by an arrow a, as shown in FIG. 1B, a projected wiring pattern in which the planar wiring pattern 23 shown in FIG. 1A is projected into a predetermined three-dimensional shape. 24, which is superior to the black matrix (BM) pattern (BM pattern 38) of the display unit 30 in terms of suppressing the occurrence of moire as shown in FIG.
- BM black matrix
- moire Projection wiring pattern 24 whose evaluation index is within a predetermined range where moire is not visually recognized, particularly projection wiring optimized in terms of moire visibility with respect to BM pattern 38 when superimposed on BM pattern 38 in a three-dimensional shape.
- This is a conductive film having a planar wiring pattern 23 to be a pattern 24.
- the conductive film 10 is formed so as to have a projected wiring pattern 24 which is previously installed on the display unit 30 and is finished in a three-dimensional shape in use, with respect to one viewpoint indicated by an arrow a in FIG. Before use, it has a planar shape having a planar wiring pattern 23, and is installed on the display unit 30 at the time of use. Thus, it may be flexible so as to be deformed in a three-dimensional shape so as to form the projected wiring pattern 24.
- the conductive film of the present invention is an evaluation index of moire generated when a projected wiring pattern when projected on a three-dimensional shape in use when projected in a flat shape is caused by interference with a BM pattern in at least one viewpoint
- the moire evaluation index, the predetermined range where the moire is not visually recognized, and the optimization of the moire visibility will be described later.
- the conductive film 10 is formed between a curved portion 13 a that is curved at a predetermined curvature and a curved portion 13 a on both sides at the corresponding side edge portions of the display surface of the display unit 30.
- the three-dimensional shape having the flat portion 13b parallel to the display surface of the display unit 30 is formed.
- the three-dimensional shape of the conductive film 10 is not limited to this, and the shape of the display surface of the display unit 30 is the same. Any three-dimensional shape may be used as long as it corresponds. In the example shown in FIG.
- the three-dimensional shape in the direction perpendicular to the paper surface is not shown, but the side edges corresponding to the direction perpendicular to the paper surface may be provided with curved portions 13a. Conversely, a similar cross-sectional shape may be used in the direction perpendicular to the paper surface.
- the display surface of the display unit 30 is preferably rectangular, but is not particularly limited, and may be an ellipse, a circle, or other shapes.
- one viewpoint for observing the display surface of the display unit 30 on which the three-dimensional conductive film 10 is installed is the display surface of the display unit 30 or the display as shown in FIG. From the plane part 13b of the conductive film 10 parallel to the plane, preferably from the center thereof, from a point on a straight line extending outwardly perpendicular to the display plane or the plane part 13b, that is, by an arrow a observing the display plane from the front
- the viewpoint a will be described, but the present invention is not limited to this and may be observed from a viewpoint different from the viewpoint a. For example, as shown in FIG.
- a viewpoint b indicated by an arrow b in which the curved portion 13a of the conductive film 10 having the same three-dimensional shape is observed as the front may be used.
- the planar wiring pattern 23a in the planar state and the projected wiring pattern 24a projected onto the three-dimensional shape in the use surface state of the conductive film 10 used when observing from the viewpoint b shown in FIG. 5 are respectively shown in FIG. 6 (A).
- the projected wiring pattern 24a shown in FIG. 6B only needs to be observed as a mesh pattern similar to the projected wiring pattern 24 shown in FIG. 1B, but both are the same mesh pattern. Even if it exists, the planar wiring pattern 23a shown to FIG. 6 (A) becomes a different mesh pattern from the projection wiring pattern 24 shown to FIG. 1 (A).
- the moire visibility evaluation index is a predetermined range where the moire is not visually recognized at all viewpoints from the viewpoint a to the viewpoint b.
- the projected wiring pattern 24 having a good visibility of the moire inside, and hence the planar wiring pattern 23 developed in a planar shape is the most preferable and can be said to be an optimized mesh pattern in the present invention.
- the visibility of moiré is at least the viewpoint that best observes the display surface of the display unit 30, for example, the viewpoint a including the viewpoint a from the front shown in FIG. 3 or the viewpoint b from the front shown in FIG.
- the projected wiring pattern 24 and the planar developed planar wiring pattern 23 may be sufficient.
- the transparent substrate 12 is made of a material having insulating properties and high translucency, and examples thereof include materials such as resin, glass, and silicon.
- the resin include PET (Polyethylene Terephthalate), PMMA (Polymethyl methacrylate), PP (polypropylene), PS (polystyrene) and the like.
- the transparent substrate 12 of the conductive film 10 is preferably a flexible material, for example, a resin material.
- a resin material or a material such as glass or silicon may be used.
- the conductive portion 16 includes a conductive layer 28 having a fine metal wire 14 and a mesh-like planar wiring pattern 23 formed by openings 22 between the adjacent fine metal wires 14.
- the planar wiring pattern 23 is projected into a three-dimensional shape when the conductive film 10 is made into a three-dimensional shape, thereby forming a projected wiring pattern 24.
- the metal thin wire 14 is not particularly limited as long as it is a metal thin wire having high conductivity, and examples thereof include a wire made of gold (Au), silver (Ag), or copper (Cu).
- the line width of the fine metal wire 14 is preferably narrower from the viewpoint of visibility, but may be, for example, 30 ⁇ m or less.
- the line width of the fine metal wire 14 is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 9 ⁇ m or less, and further preferably 2 ⁇ m or more and 7 ⁇ m or less.
- the conductive portion 16 includes a planar wiring pattern 23 (see FIG. 1A) in which a plurality of fine metal wires 14 are arranged in a mesh shape, and a projected wiring pattern 24 (FIG. 1B) in a three-dimensional shape. Reference).
- the mesh shape of the opening 22 is a rhombus, but the present invention is not limited to this, and the moire visibility is optimal with respect to a predetermined BM pattern 38 to be described later.
- the projected wiring pattern 24 can be configured, any polygonal shape having at least three sides may be used, and the same mesh shape or different mesh shapes may be used.
- Triangles such as isosceles triangles, squares (square lattice: see FIG.
- the wiring pattern 24 may include a break (break) as will be described later.
- FIG. 7 (A) and FIG. 7 (B) respectively show a randomized planar random wiring pattern 23b and a projected random wiring pattern 24b onto the three-dimensional shape of the present invention.
- This projected random wiring pattern 24b is for observation from the front viewpoint a shown in FIG.
- the planar random wiring pattern 23b shown in FIG. 7A is projected into the three-dimensional shape shown in FIG. 3, and when viewed from the viewpoint a, the projected random wiring pattern 24b shown in FIG. 7B is obtained.
- the material of the adhesive layer 18 examples include a wet laminate adhesive, a dry laminate adhesive, and a hot melt adhesive.
- the protective layer 20 is made of a highly translucent material containing resin, glass, and silicon.
- the refractive index n1 of the protective layer 20 is preferably equal to or close to the refractive index n0 of the transparent substrate 12. In this case, the relative refractive index nr1 of the transparent substrate 12 with respect to the protective layer 20 is close to 1.
- the refractive index in this specification means a refractive index in light having a wavelength of 589.3 nm (sodium D-line).
- ISO 14782: 1999 (corresponding to JIS K 7105) is an international standard.
- the relative refractive index nr1 may be in the range of 0.86 to 1.15, more preferably 0.91 to 1.08.
- FIG. 8 is a schematic partial cross-sectional view showing an example of a conductive film according to the second embodiment of the present invention.
- the plan view of the conductive film of the second embodiment shown in FIG. 8 is the same as the plan view of the conductive film of the first embodiment shown in FIG.
- the conductive film 11 of the second embodiment includes a first conductive portion 16a and a dummy electrode portion 26 formed on one surface (upper side in FIG. 8) of the transparent substrate 12, and a transparent substrate 12.
- the second conductive portion 16b formed on the other surface (lower side in FIG. 8) of the base 12 is bonded to substantially the entire surface of the first conductive portion 16a and the first dummy electrode portion 26a via the first adhesive layer 18a.
- the first protective layer 20a and the second protective layer 20b bonded to the substantially entire surface of the second conductive portion 16b via the second adhesive layer 18b.
- the first conductive portion 16 a and the dummy electrode portion 26 are each composed of a plurality of fine metal wires 14, and both are formed as a conductive layer 28 a on one surface (the upper side in FIG. 8) of the transparent substrate 12.
- the second conductive portion 16b is composed of a plurality of fine metal wires 14, and is formed as a conductive layer 28b on the other surface (lower side in FIG. 8) of the transparent substrate 12.
- the dummy electrode portion 26 is formed on one surface (the upper side in FIG. 8) of the transparent substrate 12 like the first conductive portion 16a, but the other (the lower side in FIG. 8) as in the illustrated example. ) Of the second conductive portion 16b formed on the surface of the second conductive portion 16b.
- the dummy electrode portion 26 is disposed at a predetermined interval from the first conductive portion 16a and is in a state of being electrically insulated from the first conductive portion 16a.
- the second conductive portion formed on one surface (the upper side in FIG. 8) of the transparent substrate 12 and the other surface (the lower side in FIG. 8) of the transparent substrate 12. Since the dummy electrode portion 26 composed of the plurality of fine metal wires 14 corresponding to the plurality of fine metal wires 14b of 16b is formed, scattering by the fine metal wires on one surface (the upper side in FIG. 8) of the transparent substrate 12 is controlled. Electrode visibility can be improved.
- the first conductive portion 16a and the dummy electrode portion 26 of the conductive layer 28a have a mesh-like planar wiring pattern 23 formed by the fine metal wires 14 and the openings 22, and in the three-dimensional conductive film 11, the projected wiring is used. Pattern 24 is obtained.
- the second conductive portion 16b of the conductive layer 28b has a mesh-like planar wiring pattern 23 formed by the fine metal wires 14 and the openings 22 in the same manner as the first conductive portion 16a.
- the projected wiring pattern 24 is obtained.
- the transparent substrate 12 is made of an insulating material, and the second conductive portion 16b is in a state of being electrically insulated from the first conductive portion 16a and the dummy electrode portion 26.
- the 1st, 2nd electroconductive part 16a, 16b and the dummy electrode part 26 can each be formed similarly with the material similar to the electroconductive part 16 of the electroconductive film 10 shown in FIG.
- the first protective layer 20a is formed of a conductive layer 28a composed of the first conductive portion 16a and the dummy electrode portion 26 by the first adhesive layer 18a so as to cover the respective thin metal wires 14 of the first conductive portion 16a and the dummy electrode portion 26. It is adhered to almost the entire surface. Further, the second protective layer 20b is bonded to substantially the entire surface of the conductive layer 28b made of the second conductive portion 16b by the second adhesive layer 18b so as to cover the fine metal wires 14 of the second conductive portion 16b.
- the first adhesive layer 18a and the second adhesive layer 18b can be formed of the same material as the adhesive layer 18 of the conductive film 10 shown in FIG.
- first adhesive layer 18a The material of the second adhesive layer 18b may be the same or different.
- first protective layer 20a and the second protective layer 20b can be formed in the same manner with the same material as the protective layer 20 of the conductive film 10 shown in FIG.
- the material of the second protective layer 20b may be the same or different.
- the refractive index n2 of the first protective layer 20a and the refractive index n3 of the second protective layer 20b are both set to the refractive index n0 of the transparent substrate 12 as in the protective layer 20 of the conductive film 10 of the first embodiment. It is equal to or close to this value.
- the relative refractive index nr2 of the transparent substrate 12 with respect to the first protective layer 20a and the relative refractive index nr3 of the transparent substrate 12 with respect to the second protective layer 20b are both values close to 1.
- the definitions of the refractive index and the relative refractive index are as defined in the first embodiment.
- the relative refractive index nr2 and the relative refractive index nr3 may be in the range of 0.86 or more and 1.15 or less, more preferably 0.91 or more and 1.08, similarly to the relative refractive index nr1 described above. It is as follows.
- the conductive film 10 of the first embodiment of the present invention and the conductive film 11 of the second embodiment described above are, for example, on the touch panel of the display unit 30 (display unit) schematically shown in part in FIG.
- the black matrix (hereinafter also referred to as BM) pattern 38 at least one viewpoint, for example, the viewpoint a, the three-dimensional conductive films 10 and 11 are moire.
- the projected wiring pattern 24 (24a, 24b) optimized in terms of visibility, and the planar wiring film 23 (23a) in which the projected wiring pattern 24 (24a, 24b) is developed into a planar shape in the planar conductive films 10 and 11. , 23b).
- a projected wiring pattern and its planar wiring pattern that are optimized in terms of moiré visibility with respect to a BM (pixel array) pattern are a moiré perceived by human vision with respect to a predetermined BM pattern.
- the moire is visually recognized by interference between the BM pattern of the display unit 30 and the projected wiring pattern having a three-dimensional shape superimposed on the BM pattern.
- the projected wiring pattern is explained, and the explanation of the planar wiring pattern in the planar shape is omitted, but the planar wiring pattern in the planar shape used in the present invention is changed from the projected wiring pattern obtained in the present invention to the two-dimensional shape. It can be obtained by expanding to a reverse projection.
- a projected wiring pattern having a three-dimensional shape is sometimes simply referred to as a wiring pattern, but is referred to as a projected wiring pattern when it is necessary to distinguish it from a planar wiring pattern having a planar shape.
- an order from the least perceived wiring pattern to the least perceivable wiring pattern can be added, and one wiring pattern with the least perceived moire is obtained. It can also be determined.
- the conductive film of the present invention is basically configured as described above.
- FIG. 9 is a schematic explanatory view schematically showing an example of a partial pixel arrangement pattern of a display unit to which the conductive film of the present invention is applied.
- the display unit 30 includes a plurality of pixels 32 arranged in a matrix to form a predetermined pixel arrangement pattern.
- One pixel 32 includes three subpixels (a red subpixel 32r, a green subpixel 32g, and a blue subpixel 32b) arranged in the horizontal direction.
- One sub-pixel has a rectangular shape that is vertically long in the vertical direction.
- the horizontal arrangement pitch of pixels 32 (horizontal pixel pitch Ph) and the vertical arrangement pitch of pixels 32 (vertical pixel pitch Pv) are substantially the same.
- a shape configured by one pixel 32 and a black matrix (BM) 34 (pattern material) surrounding the one pixel 32 is a square.
- the aspect ratio of one pixel 32 is not 1, but the length in the horizontal direction (horizontal)> the length in the vertical direction (vertical).
- the pixel arrangement pattern constituted by the sub-pixels 32r, 32g, and 32b of each of the plurality of pixels 32 is defined by the BM pattern 38 of the BM 34 that surrounds the sub-pixels 32r, 32g, and 32b, respectively.
- the moire generated when the display unit 30 and the conductive film 10 or 11 are overlapped is caused by the interference between the BM pattern 38 of the BM 34 of the display unit 30 and the projected wiring pattern 24 of the conductive film 10 or 11.
- the BM pattern 38 is an inverted pattern of the pixel array pattern, but is treated here as representing the same pattern.
- the projected wiring pattern 24 of the conductive film 11 is BM (pixel array). Since it is optimized in terms of moire visibility with respect to the pattern 38, there is almost no interference of spatial frequency between the arrangement period of the pixels 32 and the wiring arrangement of the thin metal wires 14 of the conductive film 10 or 11. The occurrence of moiré will be suppressed.
- the display unit 30 shown in FIG. 9 may be configured by a display panel such as a liquid crystal panel, a plasma panel, an organic EL panel, or an inorganic EL panel.
- the display device 40 includes a display unit 30 (see FIG. 9) capable of displaying a color image and / or a monochrome image, and a contact position from a three-dimensional input surface 42 (arrow Z1 direction side).
- a three-dimensional touch panel 44 and a housing 46 that houses the display unit 30 and the touch panel 44. The user can access the touch panel 44 through a large opening provided on one surface of the housing 46 (arrow Z1 direction side).
- the touch panel 44 has a cover member 48 laminated on one surface (arrow Z1 direction side) of the conductive film 11 and a cable 50.
- a flexible substrate 52 electrically connected to the conductive film 11 and a detection control unit 54 disposed on the flexible substrate 52.
- the three-dimensional conductive film 11 is bonded to one flat surface (arrow Z1 direction side) of the display unit 30 via an adhesive layer 56.
- the conductive film 11 is arranged on the display screen so as to be curved in a three-dimensional shape with the other main surface side (second conductive portion 16b side) opposed to the display unit 30.
- the cover member 48 exhibits the function as the input surface 42 by covering one surface of the conductive film 11 that is curved in a three-dimensional shape with the same shape. Further, by preventing direct contact with the contact body 58 (for example, a finger or a stylus pen), it is possible to suppress the generation of scratches and the adhesion of dust, and to stabilize the conductivity of the conductive film 11. Can do.
- the contact body 58 for example, a finger or a stylus pen
- the material of the cover member 48 may be any material as long as it can have a three-dimensional shape similar to the shape of the conductive film 11, and may be, for example, glass or a resin film. You may make it closely_contact
- the flexible substrate 52 is an electronic substrate having flexibility. In the illustrated example, it is fixed to the inner wall of the side surface of the housing 46, but the arrangement position may be variously changed.
- the detection control unit 54 captures a change in electrostatic capacitance between the contact body 58 and the conductive film 11 and detects the contact position.
- An electronic circuit for detecting (or a proximity position) is configured.
- the display device to which the conductive film of the present invention is applied is basically configured as described above.
- the conductive film of the present invention has a moiré pattern that is generated when the projected wiring pattern when projected into a three-dimensional shape when used in a flat shape is caused by interference with the BM pattern in at least one viewpoint.
- the evaluation index falls within a predetermined range where moire is not visually recognized. Therefore, in the following, the evaluation index of the moire visibility of the projected wiring pattern of the conductive film with respect to the predetermined BM pattern of the display device, the predetermined range of the present invention in which the moire that should satisfy the evaluation index is not visible, and the optimal visibility of the moire The procedure for optimization and optimization will be described.
- FIG. 11 is a flowchart showing an example of a method for evaluating and determining the projected wiring pattern of the conductive film of the present invention.
- an optimized projected wiring pattern (hereinafter simply referred to as a wiring pattern) for preventing the moire from being perceived by human vision with respect to a predetermined BM pattern of the display device.
- the evaluation index of the moire visibility used in the present invention and the predetermined range to be satisfied will be described by giving an example of an evaluation and determination method including a plurality of procedures for evaluating and determining Is not limited to this, and is an evaluation index capable of evaluating the visibility of moire, and any moire visibility evaluation index may be used as long as the predetermined range to be satisfied can be specified.
- a predetermined range that should be satisfied according to the evaluation index may be specified.
- the conductive film wiring pattern evaluation and determination method of the present invention is obtained by frequency analysis using fast Fourier transform (FFT) between the BM (pixel array) pattern of the display unit of the display device and the wiring pattern of the conductive film.
- the frequency and intensity of the moire are calculated from the peak frequency and intensity, and the calculated moire intensity and frequency are determined empirically to determine the frequency and intensity of the moire that is not visually recognized.
- the wiring pattern satisfying these conditions is evaluated and determined as an optimized wiring pattern so that moire is not visually recognized.
- FFT is generally used for the frequency / intensity of moire, but depending on the method of use, the frequency / intensity of the object changes greatly, so the following procedure is defined.
- the display screen of the display unit of the display device is viewed from the front is considered as one viewpoint, but the present invention is not limited to this, and the moire visibility when viewed from at least one viewpoint is improved. As long as it can be made, it may be from any viewpoint.
- each image (transmission image data) of a BM pattern and a wiring pattern is created. That is, as shown in FIG. 11, in step S10, the transmittance image of the BM pattern 38 (BM34) (see FIGS. 9, 12A, and 12C) of the display unit 30 of the display device 40 shown in FIG. Data and transmittance image data of the wiring pattern 62 (metal thin wire 14) of the conductive film 60 (see FIG. 12B) are created and acquired.
- the transmittance image data of the BM pattern 38 and the transmittance image data of the wiring pattern 62 are prepared or stored in advance, they are acquired from the prepared or stored. You may do it.
- the transmittance image data of the wiring pattern (projected wiring pattern) 62 of the conductive film 60 having a three-dimensional shape indicates that the conductive film 60 as a product is actually displayed on the display surface (non-lighting) of the display unit 30 as described later.
- 60 three-dimensional shape data and two-dimensional (planar) shape wiring pattern data it is reproduced as a three-dimensional model in the simulation space, and an image obtained by observing the reproduced three-dimensional model from a certain observation viewpoint is created by projection simulation. You may do it.
- the BM pattern 38 of the display unit 30 includes, for example, three sub-pixels 32r, 32g, and 32b of three colors of RGB per pixel 32, as shown in FIG. 12A and FIG.
- the transmittance image data for the R and B channels is 0. Is preferable.
- the image data of the BM 34 that is, the transmittance image data of the BM pattern 38, is a rectangle of the BM 34 (no cutout) shown in FIG. 9 or a substantially rectangular shape of the BM 34 shown in FIG.
- the BM pattern is not limited to those having openings (sub-pixels 32r, 32g, and 32b), and may have other shapes of BM 34 as long as it can be used, and a BM pattern having an arbitrary BM opening is designated. May be used.
- the BM pattern 38 is not limited to the simple rectangular shape shown in FIG. 9 or the cutout rectangular opening shown in FIG.
- the pattern may be a pattern composed of RGB sub-pixels 32r, 32g, and 32b having a strip-shaped opening bent at a predetermined angle per pixel 32, or may have a curved strip-shaped opening. It may be a thing or a thing with a bowl-like opening.
- FIG. 13B shows a BM pattern when only a single color of the G channel sub-pixel 32g is used, as in FIG. 12D.
- the wiring pattern 62 of the conductive film 60 is, for example, a rhombus pattern in which the fine metal wires 14 serving as wiring are inclined at a predetermined angle with respect to the horizontal line, for example, 45 ° [deg] as shown in FIG.
- a rhombus pattern inclined by less than 45 ° [deg] can be used.
- the shape of the opening of the wiring pattern may be any shape.
- it may be a regular hexagon or a square lattice as shown in FIGS. 23B to 23D described later, and the square lattice may be a square lattice inclined by 45 ° [deg].
- the square lattice may be a square lattice inclined by 45 ° [deg].
- the resolution is, for example, 12700 dpi which is a high resolution
- the size of the transmittance image data is defined, for example, the pixel size is 8193 (pixels) It is set to an integral multiple of the size of the BM pattern 38 closest to ⁇ 8193 (pixel).
- the transmittance image data of the wiring pattern 62 is created, the resolution is set to, for example, 12700 dpi which is the same as the resolution of the BM pattern 38, and the size of the transmittance image data is defined.
- the pixel size is an integer of the size of the wiring pattern 62 closest to 8193 (pixel) ⁇ 8193 (pixel).
- step S12 two-dimensional fast Fourier transform (2DFFT (base 2)) is performed on the transmittance image data created in procedure 1. That is, as shown in FIG. 11, in step S12, 2DFFT (base 2) processing is performed on each transmittance image data of the BM pattern 38 and the wiring pattern 62 created in step S10, and the BM pattern 38 and the wiring pattern 62 are obtained.
- the peak frequency and peak intensity of a plurality of spectral peaks of the two-dimensional Fourier spectrum of each transmittance image data are calculated.
- the peak intensity is handled as an absolute value.
- FIGS. 14A and 14B are diagrams showing the intensity characteristics of the two-dimensional Fourier spectrum of the transmittance image data of the BM pattern 38 and the wiring pattern 62, respectively.
- the BM pattern 38 and the wiring pattern 62 For each, the peak frequency and peak intensity of each spectral peak is calculated. That is, the position on the frequency coordinate of the spectrum peak in the intensity characteristics of the two-dimensional Fourier spectrum of the BM pattern 38 and the wiring pattern 62 shown in FIGS. 14A and 14B, that is, the peak position represents the peak frequency.
- the intensity of the two-dimensional Fourier spectrum at the position is the peak intensity.
- the peak frequency and intensity of each spectrum peak of the BM pattern 38 and the wiring pattern 62 are calculated and acquired as follows.
- the peak is calculated by obtaining the frequency peak from the basic frequency of the BM pattern 38 and the wiring pattern 62. This is because the transmittance image data for performing 2DFFT processing is a discrete value, and the peak frequency depends on the reciprocal of the image size.
- the frequency peak position includes an independent two-dimensional fundamental frequency vector component a bar represented on the horizontal axis u and an independent two-dimensional fundamental frequency vector component b bar represented on the vertical axis v. Can be combined and represented. Therefore, as a matter of course, the obtained peak positions are in a lattice shape.
- the position of the spectrum peak of the BM pattern 38 and the wiring pattern 62 on the frequency coordinate fxfy is obtained by taking the reciprocal of the pattern pitch (1 / p (pitch) as the lattice spacing. Is given as the position of the grid point on the frequency coordinate fxfy.
- FIG. 15 is a graph showing the frequency peak position in the case of the BM pattern 38, but the wiring pattern 62 can be obtained in the same manner.
- the peak position is obtained in the acquisition of the above peak frequency, so the intensity (absolute value) of the two-dimensional Fourier spectrum possessed by the peak position is acquired.
- the peak position extends over a plurality of pixels (pixels).
- the intensity (Sp) characteristic of the two-dimensional Fourier spectrum is represented by a curve (analog value) shown in FIG. 17A, the intensity characteristic of the same two-dimensional Fourier spectrum digitally processed is as shown in FIG. )
- the intensity peak P of the two-dimensional Fourier spectrum shown in FIG. 17A spans two pixels in the corresponding FIG. 17B. .
- the spectral intensities of the plurality of pixels in the region including the plurality of pixels around the peak position are a plurality of points from the top, for example,
- the peak intensity is preferably the sum of the five intensities (absolute values) of the spectrum intensity of the pixels in the 7 ⁇ 7 pixel region from the top.
- the obtained peak intensity is preferably normalized by the image area (image size). In the example described above, it is preferable to standardize 8193 ⁇ 8193 (Perseval's theorem).
- the frequency and intensity of moire are calculated. That is, as shown in FIG. 11, in step S14, the frequency and intensity of moire are calculated from the peak frequency and peak intensity of both the two-dimensional Fourier spectra of the BM pattern 38 and the wiring pattern 62 calculated in step S12.
- the peak intensity and the moire intensity are treated as absolute values.
- moire originally occurs by multiplication of the transmittance image data of the wiring pattern 62 and the BM pattern 38, and therefore, convolution integration (convolution) of both is performed in the frequency space.
- the difference (absolute value of the difference) between the respective frequency peaks is obtained.
- the obtained difference is used as the moire frequency
- the product of two sets of vector intensities obtained by combining the two is obtained, and the obtained product can be used as the moire intensity (absolute value).
- the difference between the frequency peaks of the intensity characteristics of the two-dimensional Fourier spectrum of both the BM pattern 38 and the wiring pattern 62 shown in FIGS. 14A and 14B is the intensity of the two-dimensional Fourier spectrum of both.
- this corresponds to the relative distance between the peak positions on the frequency coordinates of the respective frequency peaks.
- a plurality of differences between frequency peaks that are values of the relative distance, that is, a plurality of moire frequencies are also obtained. . Therefore, when there are a large number of spectral peaks of both two-dimensional Fourier spectra, the frequency of the moire to be obtained becomes large and the strength of the moire to be obtained becomes large.
- a moire having a predetermined value or a larger value that can be considered to be weak for example, a moire having an intensity of ⁇ 4 or more. It is preferable to handle.
- the display resolution since the display resolution is determined, the highest frequency that can be displayed on the display is determined with respect to the resolution. For this reason, moire having a frequency higher than the highest frequency is not displayed on the display, and thus does not need to be an object of evaluation in the present invention. Therefore, the maximum frequency of moire can be defined in accordance with the display resolution.
- the maximum frequency of the moire to be considered in the present invention can be 1000 / (2p) when the pixel pitch of the pixel arrangement pattern of the display is p ( ⁇ m).
- the moire frequency to be evaluated in the present invention is determined according to the display resolution.
- the moire has a maximum frequency of 1000 / (2p) or less, and the moire has a strength of ⁇ 4 or more.
- FIG. 18 shows the moire frequency and the moire intensity thus obtained.
- FIG. 18 is a schematic explanatory diagram schematically showing the frequency of moire and the intensity of moire generated by interference between the pixel array pattern shown in FIG. 12A and the wiring pattern shown in FIG. It can also be said to be the result of convolution integration of the intensity characteristics of the two-dimensional Fourier spectrum shown in (A) and (B).
- the frequency of the moire is represented by the position of the vertical and horizontal axes
- the intensity of the moire is represented by gray (achromatic color) shading, indicating that the darker the color, the smaller the color, the greater the white. Show.
- step S16 the human visual response characteristic represented by the following formula (1) is applied to the frequency and intensity (absolute value) of the moire obtained in step S14.
- weighting is performed by performing convolution integration, and evaluation values (sub-evaluation values) of a plurality of moire weighted according to the observation distance are calculated.
- a visual transfer function VTF: Visual Transfer Function
- VTF Visual Transfer Function
- u is the spatial frequency (cycle / deg)
- L is the luminance (cd / mm 2 )
- X 0 is the viewing angle (deg) of the display surface of the display at the observation distance
- X 0 2 is the solid angle display surface of the display to make the viewing distance (sr).
- the visual transfer function represented by the above formula (1) is the paper “Formula for the contrast sensitivity of the human eye” Peter GJ Barten, Image Quality and System Performance, edited by Yoichi Miyake, D. Rene Rasmussen, Proc. Of SPIE- IS & T Electronic Imaging, SPIE Vol. 5294 (c) 2004 SPIE and IS & T ⁇ 0277-786X / 04 / $ 15.00, P. 231-P.238, page 234, the visibility function expressed by the equation (11) (CFS: contrast sensitivity function) S (u).
- the above formula (1) is often used in a reflection system, and is appropriately used also in a transmission system such as a display, unlike the Dooley-show function in which the observation distance is fixed as shown in FIG. The observation distance can be taken into consideration, and the difference in sensitivity depending on the light emission luminance of the display can be taken into consideration.
- the obtained frequency of one moire is weighted with a visual sensitivity (contrast sensitivity) S (u) obtained by the following equation (1) with respect to a plurality of observation distances.
- the evaluation values of a plurality of moire weighted with respect to the observation distance are obtained.
- each observation distance d for example, 150 mm, 200 mm, 250 mm, 300 mm, 400 mm, and 500 mm, which may be normally used as a touch panel, is used.
- convolution is performed at six observation distances d1 to d6 and weighting is performed with a coefficient S depending on each observation distance d1 to d6, six evaluation values from I1 to I6 corresponding to the respective observation distances can be obtained. it can.
- the conversion from the unit of the spatial frequency u (cycle / deg) to the unit of (cycle / mm) is performed by converting the spatial frequency a (cycle / deg) to the spatial frequency b (cycle).
- the luminance L (cd / mm 2 ) may be the luminance of the display.
- the luminance L (cd / mm 2 ) may be 500 cd, which is a luminance level of a normal display in which moire is easily visible.
- the viewing angle X 0 (deg) of the display surface of the display at the observation distance d may be obtained by adjusting depending on the observation distance d so that the evaluation area becomes the display surface of the display.
- the moire can be easily visually recognized so that the evaluation area is adjusted to be 40 mm ⁇ 40 mm depending on the observation distance d.
- the solid angle X 0 2 (sr) formed by the display surface of the display at the observation distance d from X 0 thus obtained may be obtained.
- the frequency of moire obtained in step S16 is f.
- the worst evaluation value among a plurality of moire evaluation values I1 to In depending on a plurality of (n) observation distances d1 to dn is calculated and set as a representative evaluation value when the frequency of the moire is f. To do. That is, in the evaluation index calculation method of the present invention, first, it is necessary to obtain the worst value when convolved with a plurality (n) of observation distances d1 to dn and to obtain the representative evaluation value of the moire frequency f.
- the coefficient S depending on the respective observation distances and the above-described six observation distances d1 to d6 and depending on the respective observation distances d1 to d6.
- the worst value among the six evaluation values I1 to I6 obtained by assigning the weights in (5) is used as the representative evaluation value when the moire frequency is f. That is, the representative evaluation value of the moire of this frequency f can be determined by max (I1, I2, I3, I4, I5, I6).
- step S18 the worst evaluation value among the plurality of moire evaluation values I1 to In depending on the plurality (n) of observation distances d1 to dn is calculated for all the moire frequencies f obtained in step S14. Then, it is evaluated and determined as a representative evaluation value of the moire of the frequency f of the moire.
- the worst evaluation value among the plurality of evaluation values of moire depending on the observation distance d is used as the representative evaluation value of moire. The visibility of moire is evaluated without depending on the observation distance d. In order to obtain an optimized wiring pattern.
- step S20 in step S18, the representative evaluation values of all moire obtained for all the moire frequencies f of this wiring pattern 62 (the worst at a plurality of observation distances d) are obtained.
- the evaluation value) is summed to calculate the moire evaluation index.
- the value of the moire evaluation index is expressed in common logarithm. That is, the value in the common logarithm (common logarithm value) of the moire evaluation index is obtained.
- step S22 if the common logarithmic value of the moire evaluation index of the wiring pattern 62 thus obtained is equal to or less than a predetermined value, the wiring pattern 62 is the three-dimensional pattern of the present invention.
- the conductive film 60 (10) having the shape is evaluated as the optimized wiring pattern 62 (24), and is evaluated and determined as the optimized projected wiring pattern 62 (24).
- the projected wiring pattern 24 of the conductive film 60 (10 or 11) is set. Note that the reason for limiting the moire evaluation index value to a predetermined logarithm with a common logarithm is that if it is larger than the predetermined value, the moire caused by the interference between the superimposed wiring pattern and the BM pattern is small. This is because the visually recognized moire is anxious for the user to view. This is because when the value of the moire evaluation index is less than or equal to a predetermined value, it does not matter much.
- the predetermined value depends on the properties of the conductive film and the display device, specifically, the line width of the fine metal wire 14 of the wiring pattern 62, the shape of the opening 22, the size (pitch, etc.), and the angle.
- the phase angle (rotation angle, deviation angle) of the wiring patterns of the two conductive layers, and the shape of the BM pattern 38, the size (pitch, etc.), the arrangement angle, etc. are appropriately set.
- the common logarithm is ⁇ 1.75 (true number 10 ⁇ 1.75 ) or less.
- the evaluation index of moire has a value of, for example, a common logarithm of ⁇ 1.75 or less (10 ⁇ 1.75 or less in true number), more preferably ⁇ 1.89 in common logarithm.
- the most common logarithm is ⁇ 2.05 or less, and the most common logarithm is ⁇ 2.28 or less.
- moire evaluation indices are obtained for a large number of wiring patterns 62 using simulation samples and actual samples, and three researchers conduct visual sensory evaluation of moire due to interference between the wiring pattern 62 and the BM pattern.
- the evaluation index of moire is a common logarithm of -1.75 or less, the moire generated by the interference between the superimposed wiring pattern and the BM pattern is not less than a level at which it is hardly noticed. If the common logarithm is ⁇ 1.89 or less, it is above the level that does not bother even if moiré is visually recognized. If the common logarithm is ⁇ 2.05 or less, it is above the level that does not matter.
- the evaluation index of moire is specified as a preferred range as a common logarithm of -1.75 (10 -1.75 as a true number) or less, and a more preferred range is a common logarithm of ⁇ 1.89.
- a more preferable range is specified as ⁇ 2.05 or less in common logarithm, and the most preferable range is specified as ⁇ 2.28 or less in common logarithm.
- a plurality of optimized wiring patterns 62 can be obtained, but the one having a small common logarithmic value of the moire evaluation index becomes the best wiring pattern 62, and the plurality of optimized wiring patterns 62 may be given an order. it can.
- step S24 the set projected wiring pattern 24 is developed on a plane to determine the planar wiring pattern 23 of the planar conductive film 10 or 11.
- the method for evaluating and determining the planar wiring pattern of the conductive film of the present invention is completed, and even when superimposed on the BM pattern of the display unit of the display device, the generation of moire is suppressed, and even for display devices of different resolutions.
- the present invention has a planar wiring pattern in which a conductive film having a three-dimensional shape of the present invention having an optimized projected wiring pattern having excellent moire visibility regardless of the observation distance is developed in a planar shape. A conductive film having a planar shape can be evaluated and produced.
- the evaluation and determination method of the projected wiring pattern of the conductive film of the present invention may be terminated in step S24.
- step 4 the human standard corresponding to the observation distance is selected for the frequency and intensity of the moire.
- the moire evaluation index is obtained by applying the visual response characteristics, and the wiring pattern is evaluated and the optimized wiring pattern is evaluated and determined based on the evaluation index.
- the present invention is not limited to this, and instead of the procedure 4
- the moire frequency and intensity are fixed to the observation distance and the human standard visual response characteristic is used to obtain the moire evaluation index.
- FIG. 19 is a flowchart showing another example of the method for evaluating and determining the projected wiring pattern of the conductive film of the present invention.
- the projection wiring pattern evaluation and determination method shown in FIG. 19 is substantially the same as the projection wiring pattern evaluation and determination method shown in FIG. Only the differences will be described.
- procedure 1 (step S10) to procedure 3 (step S14) are performed in the same manner as in the example shown in FIG.
- the wiring pattern 62 of the conductive film 60 may be a square lattice in which the thin metal wires 14 to be wiring are inclined by 45 ° [deg], for example.
- the sizes of the transmittance image data of the BM pattern 38 and the wiring pattern 62 are defined, for example, 4096 (pixels) ⁇ 4096 (pixels).
- each image of the BM pattern 38 and the wiring pattern 62 is subjected to a flip processing in all directions (eight directions), for example.
- the spectrum intensity of the plurality of pixels in the region including the plurality of pixels around the peak position is a plurality of points from the top, for example,
- the peak intensity (absolute value) is preferably the average value of the five spectral intensities of the pixels in the 5 ⁇ 5 pixel region from the top.
- step S26 the human standard visual response characteristic shown in FIG. 20 is applied to the frequency and intensity (absolute value) of the moire obtained in step S14. Multiply to calculate the evaluation frequency and evaluation intensity (absolute value) of moire. That is, a visual transfer function (VTF: Visual Transfer Function) representing an example of human standard visual response characteristics shown in FIG. 20 is convolved with the frequency and intensity of the obtained moire. This visual transfer function is based on the Dooley Shaw function and eliminates the attenuation of the sensitivity of the low frequency components.
- VTF Visual Transfer Function
- a Dooley show function at an observation distance of 300 mm is used as a standard human visual response characteristic under a clear vision state.
- the Dooley-show function is a kind of visual transfer function (VTF) and is a representative function that imitates the standard visual response characteristics of human beings. Specifically, this corresponds to the square value of the contrast ratio characteristic of luminance.
- the horizontal axis of the graph is the spatial frequency (unit: cycle / mm), and the vertical axis is the VTF value (unit is dimensionless).
- the VTF value is constant (equal to 1) in the range of 0 to 1.0 cycle / mm, and the VTF value tends to gradually decrease as the spatial frequency increases. That is, this function functions as a low-pass filter that cuts off the medium to high spatial frequency band.
- the actual human visual response characteristic has a value smaller than 1 in the vicinity of 0 cycle / mm, which is a so-called band-pass filter characteristic.
- the attenuation of the sensitivity of the low frequency component is eliminated by setting the value of VTF to 1 even in an extremely low spatial frequency band. Thereby, the effect which suppresses the periodicity resulting from the repeating arrangement
- step S28 for the moire evaluation frequency and evaluation intensity (absolute value) obtained in step S26, the moire evaluation frequency is determined according to the standard visual response characteristics.
- the sum of the evaluation intensities (absolute values) of moire that falls within the frequency range is determined as an evaluation index for the visibility of moire according to the present invention. That is, the VTF is convolved after integration, and an order for optimization is added to the evaluation frequency and evaluation intensity of moire.
- the VTF is convolved and integrated (step S28), and then converted into a density, and the common logarithm is used for the evaluation intensity.
- the following conditions are empirically set in order to efficiently rank the moiré visibility.
- the patterns to be ordered are 1. Rank only using data with a spatial frequency of less than 3 cycles / mm. 2. When the evaluation spatial frequency is 1.8 cycle / mm or less, a pattern with an evaluation intensity of moire of ⁇ 5 or more is not added to the order. 3. At the evaluation spatial frequency of 1.8 cycle / mm to 3 cycle / mm, a pattern having a moire evaluation intensity of ⁇ 3.7 or higher is not added to the order.
- the optimized wiring pattern 24 is set. Of course, when a plurality of optimized wiring patterns 24 are obtained, the one with the smallest sum of the moiré evaluation intensities becomes the best wiring pattern 24, and the plurality of optimized wiring patterns 24 are given an order. Will be. For a large number of wiring patterns 62, the sum of the moiré evaluation strengths was calculated using simulation samples and actual samples, and three researchers evaluated the wiring pattern 62 and the sum of the moiré evaluation strengths.
- the moire When the number is 5 or less (10 ⁇ 4 in the true number, 10 ⁇ 2.5 or less), the moire is almost not visually recognized in the sensory evaluation, and the sum of the evaluation strengths is in the common logarithm of ⁇ 2.5 and less than 0 ( In the case of a true number of more than 10 -2.5 and less than 1), moire is slightly visible in sensory evaluation, but it is acceptable (+-) to the extent that it does not matter, but the sum of its evaluation strengths exceeds 0 in the common logarithm ( In more than 1 in the true number), moire is visually recognized by sensory evaluation It was bad (unusable). Therefore, in the present invention, the sum of the moiré evaluation intensities, which are evaluation indexes for moiré visibility, is limited to a range of 0 or less (1 or less in the true number) in the common logarithm.
- step S30 the sum of the moiré evaluation intensities obtained in step S28 is compared with a predetermined value, and whether the sum of the moiré evaluation intensities is a predetermined value, for example, 0 or less. Determine whether or not. As a result, if the sum of the moiré evaluation intensities exceeds a predetermined value, the process proceeds to step S32, where the transmittance image data of the wiring pattern 62 is updated to the transmittance image data of the new wiring pattern, and step S12 is performed.
- the new wiring pattern to be updated may be prepared in advance or may be newly created.
- any one or more of the rotation angle, pitch, and pattern width of the transmittance image data of the wiring pattern may be changed, and the shape and size of the opening of the wiring pattern may be changed. You may make it change. Further, they may be given randomness.
- step S12 calculation of the peak frequency and peak intensity in step S12
- step S14 calculation of the frequency and intensity of moire in step S14
- step S26 calculation of the evaluation frequency and evaluation intensity of moire in step S26
- step S28 calculation of the sum of evaluation intensity of moire in step S28.
- the steps of comparing the sum of the moire evaluation intensities in step S30 with a predetermined value and updating the transmittance image data of the wiring pattern in step S32 are repeated until the sum of the moire evaluation intensities becomes a predetermined value or less.
- step S34 the wiring pattern 62 is evaluated and determined as an optimized wiring pattern, and the three-dimensional of the present invention
- the projected wiring pattern 24 of the conductive film 10 or 11 having a shape is set.
- step S24 the set projected wiring pattern 24 is developed on a plane to determine the planar wiring pattern 23 of the planar conductive film 10.
- a conductive film having a planar shape of the present invention having a planar wiring pattern in which the conductive film having a three-dimensional shape of the present invention having a projected wiring pattern converted into a flat shape can be produced.
- the evaluation and determination method of the projected wiring pattern of the conductive film of the present invention may be terminated in step S24.
- Conductive film with a projected wiring pattern that is optimized in terms of graininess, the so-called surface roughness, has a uniform density of wiring mesh (especially rhombus openings or random openings) of the projected wiring pattern. It is.
- the projected wiring pattern It is more preferable that the density of the wiring mesh (particularly, the rhombus opening or the random shape opening) is uniform. More specifically, the optimized projected wiring pattern has a variation of the opening area within 20%, that is, 0.8 to 1.2 when the average of the opening area of the opening is 1.0. It is preferable to enter. That is, the uniformity of the density of the wiring mesh of the wiring pattern, specifically, the variation in the opening area of the opening portion of the wiring mesh can be used as an evaluation index of the visibility of the moire and / or graininess.
- a wiring pattern image (transmittance image data) is obtained by imaging the conductive film in a state where the conductive film as a product is actually attached to the display surface of the display unit in a three-dimensional shape. )
- a wiring pattern image is obtained by imaging the conductive film in a state where the conductive film as a product is actually attached to the display surface of the display unit in a three-dimensional shape.
- light is incident on the conductive film (product) when the display is not lit, and then the reflected light from the wiring is received and imaged by a digital camera from a certain observation viewpoint.
- a wiring pattern image when observing from a certain viewpoint is acquired.
- the wiring image may be generated by moving the camera on a plane parallel to the observation plane, capturing images at a plurality of positions, and panoramicly combining the partial images.
- a wiring pattern image (transmittance image data) is acquired by simulation from a three-dimensional model of a three-dimensional conductive film (product).
- the three-dimensional shape and planar wiring pattern of a conductive film (product) product are converted into data.
- a 3D shape of a conductive film (product or 3D model) is imaged with a 3D shape measurement camera, etc., and the 3D shape is converted into data to obtain 3D shape data, and a 2D (planar) shape wiring is obtained.
- the pattern is imaged by a film scanner or the like, and the plane wiring pattern is converted into data to obtain plane wiring pattern data.
- a three-dimensional conductive film (product) is reproduced as a three-dimensional model in a simulation space in a computer such as a personal computer.
- a wiring pattern image obtained by projection is obtained from the reproduced three-dimensional model of the conductive film (product) by projection to obtain a wiring pattern image by simulation.
- FIG. 21A shows the projected wiring pattern of the present invention in which the average of the opening areas of the rhombus pattern openings is 1.0, and the variation in the opening area of the openings is 0%.
- FIG. 21E the wiring pattern is excellent in the moire visibility, in which the moire is not visually recognized even when superimposed on the BM pattern of the display unit.
- the BM pattern shape used here is a square shape with a pixel pitch (Pv, Ph) of 114 ⁇ m, for example, and the size of each subpixel of the three rectangular subpixels of RGB is, for example, in the horizontal direction Length: 30 ⁇ m ⁇ Vertical length: 88 ⁇ m.
- the wiring pattern shape is, for example, a rhombus having an angle of 36 ° and a pitch of 226 ⁇ m.
- FIGS. 21B, 21C, and 21D are projected wiring patterns in which the variation of the opening area of the wiring mesh opening of the wiring pattern is 25%, 50%, and 75%, respectively.
- FIGS. 21 (F), (G), and (H) when these projected wiring patterns are superimposed on the BM pattern of the same display unit, moire is visually recognized.
- FIGS. 21B, 21C, and 21D show a rhombus pattern shown in FIG. 21A in which a part of the shape of the conductive film as shown in FIG. 3 is curved with a predetermined curvature.
- FIG. 21 shows each projected wiring pattern obtained by simulation assuming a three-dimensional shape with a gradually increased curvature of curvature with respect to the three-dimensional shape.
- the conductive film having the projected wiring pattern optimized in the three-dimensional shape may be a two-dimensional shape, that is, a planar conductive film having a flat wiring pattern developed in a planar shape.
- the conductive film having the projected wiring pattern optimized in the three-dimensional shape may be a two-dimensional shape, that is, a planar conductive film having a flat wiring pattern developed in a planar shape.
- the total value of the moire evaluation values (strength) considering the observation distance described above and the sum of the moire evaluation strengths are used as an evaluation index for the visibility of the moire, and the wiring mesh openings
- the variation in the opening area is used as an evaluation index of the visibility of moire and / or graininess (noise granularity, color noise), but the present invention is not limited to this, and the moire and / or graininess of the projected wiring pattern is visually recognized.
- Any evaluation index may be used as long as it is an evaluation index capable of evaluating sex.
- the ratio between the average intensity on the frequency side and the average intensity on the low spatial frequency band side may be used as an evaluation index for the visibility of granularity (noise granularity), and the predetermined range may be a range larger than 1.0. That is, the optimized mesh pattern may be configured such that the average intensity on the high spatial frequency side is larger than the average intensity on the low spatial frequency band side.
- the predetermined spatial frequency is, for example, preferably a human visual response characteristic corresponding to 5% of the maximum response, and a human visual response characteristic having a clear visual distance of 300 mm.
- the mean square deviation of the positions with respect to the vertical direction of the predetermined direction for each centroid position arranged along the predetermined direction is preferably 15 ⁇ m or more and 65 ⁇ m or less.
- the standard deviation of the opening area of the mesh-shaped opening of the mesh pattern (projected wiring pattern) described in Japanese Patent Application No. 2012-166946 according to the applicant's application is defined as graininess (noise granularity, color noise).
- the predetermined range may be 0.017 mm 2 or more and 0.038 mm 2 or less, preferably 0.019 mm 2 or more and 0.027 mm 2 or less.
- the standard deviation of the mean square deviation of the position of the centroid position arranged along the predetermined direction with respect to the vertical direction of the predetermined direction is evaluated.
- the predetermined range may be 15.0 ⁇ m or more, preferably 54.62 ⁇ m or more. Further, the standard deviation in the radial direction of the value represented by the common logarithm of the standard deviation along the angular direction in the power spectrum of the mesh pattern is used as an evaluation index, and the predetermined range is 0.965 or more and 1.065 or less, preferably The range may be 0.97 or more and 1.06 or less. These evaluation indexes may be used as individual evaluation indexes, or some or all of them may be used as a comprehensive evaluation index.
- the frequency and intensity of moire obtained by two-dimensional Fourier spectrum analysis of the mesh pattern (projected wiring pattern) and the BM pattern of the display unit described in Japanese Patent Application No. 2012-082706 relating to the application of the present applicant are The rhombus shape of the rhombic wiring pattern in which the sum of the above-described moire visibility evaluation intensities (the above-mentioned moire visibility evaluation index) obtained by applying the visual response characteristic according to the observation distance is equal to or less than a predetermined value
- the irregularity within a predetermined range determined according to the width of the fine metal wire is measured using a new evaluation index of moire, and the predetermined range is set to 2% to 20% when the width of the fine metal wire is 3 ⁇ m or less.
- the width of the fine wire exceeds 3 ⁇ m, it may be 2% to 10%.
- the irregularity is irregular with respect to the pitch of the rhombus before the irregularity is imparted when the direction imparting the irregularity to the rhombus shape is a direction parallel to or perpendicular to the side of the rhombus. It is defined by the ratio of the average value according to the normal distribution of the diamond-shaped pitch to which the property is given.
- the conductive film of the present invention described above has a mesh-like wiring pattern (projected wiring pattern) made of continuous fine metal wires
- the present invention is not limited to this, and as described above, the present invention.
- the metal fine wire is broken (break) as in the pattern shape of the mesh-like wiring pattern of the conductive film described in Japanese Patent Application No. 2012-276175 relating to the application of the present applicant. It may have a mesh-like wiring pattern containing.
- the spectral intensity of the lowest frequency of the moire represented by the convolution of the spatial frequency characteristics of the mesh pattern at the time of front observation described here and the spatial frequency characteristics of the pixel arrangement pattern of the display unit is used to evaluate the visibility of the moire.
- the predetermined range may be a common logarithm of ⁇ 3.6 or less.
- the mesh-like wiring of this conductive film is formed in a mesh shape with a plurality of fine metal wires and an electrode portion having an electrode wiring pattern formed in a mesh shape so as to be continuous with a plurality of fine metal wires, and a plurality of broken wires
- the mesh pattern of the mesh-like wiring includes an electrode wiring pattern of the electrode portion and the electrode wiring pattern.
- the spatial frequency characteristics of the mesh pattern are preferably the spatial frequency characteristics of the mesh pattern including a plurality of disconnected portions at the time of frontal observation.
- the moire obtained by convolution of the spatial frequency characteristics of the wiring pattern (projected wiring pattern) described in Japanese Patent Application No. 2012-082706 and the spatial frequency characteristics of the pixel arrangement pattern of the display unit according to the application of the present applicant The lowest frequency among the spatial frequencies of the moire obtained by convolution of the spatial frequency characteristic of the half of the wiring pattern and the spatial frequency characteristic of the pixel arrangement pattern of the display unit is defined as the first lowest frequency fm1. Is the second lowest frequency fm2, the ratio fm1 / fm2 between fm1 and fm2 may be used as an evaluation index for the visibility of moire, and the predetermined range may be 1.0 or less.
- an optimized projected wiring pattern in which the first lowest frequency fm1 is equal to or lower than the second lowest frequency fm2 may be used.
- the moiré and / or graininess (noise granularity, Color noise) visibility evaluation index and its range may be used.
- the conductive layer 28b is not formed except for the second conductive portion 16b.
- the present invention is not limited to this, and FIG.
- the dummy electrode part 26 electrically insulated from the second conductive part 16b is provided at a position corresponding to the plurality of thin metal wires 14 of the first conductive part 16a, like the conductive layer 28a. It may be provided.
- the planar wiring pattern 23 of the conductive layer 28a and the planar wiring pattern 23 of the conductive layer 28b can be made the same, and the electrode visibility can be further improved.
- the conductive layer 28a and the conductive layer 28b have the same planar wiring pattern 23 and overlap each other without forming a single planar wiring pattern 23.
- the projected wiring patterns may be overlapped at different positions, or the respective wiring patterns themselves may be different.
- the conductive film according to the present invention has been described with reference to various embodiments and examples.
- the invention is not limited to the embodiments and examples, and various improvements and design changes may be made without departing from the gist of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Non-Insulated Conductors (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
Description
こうして、特許文献1では、モアレの発生を抑止でき、表面抵抗率の増大や透明性の劣化をも回避することができる電磁波シールドパターンの自動選定を可能にしている。
こうして、特許文献2では、パターンに起因するノイズ粒状感を低減可能であり、観察対象物の視認性を大幅に向上できるとともに、断裁後にも安定した通電性能を有する透明導電膜を提供できるとしている。
また、特許文献2では、透明導電膜のメッシュパターンの各メッシュの重心スペクトルに関し、人間の視覚の応答特性を考慮することにより、人間にとって視覚的に感じられる透明導電膜のメッシュパターン自体のノイズ感の減少を図るに過ぎず、モアレの視認性を向上させることにはつながらないという問題があった。
本発明は、特に、パターン配線を有する透明導電性フィルムを3次元形状の状態で表示装置の表示ユニットの表示面に配置してタッチパネル用電極として用いる場合、表示装置の表示ユニットのブラックマトリクスに導電性フィルムを重畳して視認する際に大きな画質障害となるモアレの発生を抑止でき、タッチパネル上の表示の視認性を大幅に向上させることができる導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法を提供することを目的とする。
上記目的を達成するために、本発明の第3の態様に係る表示装置は、表示ユニットと、この表示ユニットの表示面上に、その少なくとも一部を所定の曲率で湾曲させた状態で設置される、上記第1又は2の態様に係る導電性フィルムとを備えることを特徴とする。
また、導電性フィルムは、使用状態における3次元形状に射影された射影配線パターンを平面形状に展開した平面状配線パターン持つ平面状導電性フィルムであることが好ましい。
また、所定値が、常用対数で-1.75であり、モアレの評価指標は、常用対数で-1.75以下であることが好ましい。
また、モアレの評価指標は、モアレの周波数及び強度に、視覚応答特性として観察距離に応じた視覚伝達関数を畳み込み積分で重み付けを行うことによって求められることが好ましい。
また、上記記第1、第2、第3又は第4の態様において、射影配線パターンは、菱形パターン、又はランダムパターンであることが好ましい。
また、射影配線パターンの開口部の開口面積の平均を1.0とした時、射影配線パターンの開口面積のバラツキは、0.8~1.2に入ることが好ましい。
また、モアレの周波数は、射影配線パターンのピーク周波数と画素配列パターンのピーク周波数との差分で与えられ、モアレの強度は、射影配線パターンのピーク強度と画素配列パターンのピーク強度との積で与えられることが好ましい。
また、モアレの最高周波数は、表示ユニットの表示ピッチをp(μm)とする時、1000/(2p)で与えられることが好ましい。
また、視覚伝達関数は、下記式(1)で与えられる視感度関数S(u)であることが好ましい。
…(1)
ここで、uは、空間周波数(cycle/deg)であり、Lは、輝度(cd/mm2)であり、X0は、観察距離における表示ユニットの表示面の視野角(deg)であり、X0 2は、観察距離において表示面が作る立体角(sr)である。
また、モアレの評価指標は、1つのモアレの周波数に対して選択された最も悪い評価値を全てのモアレの周波数について合算した合算値であることが好ましい。
また、視覚応答特性を作用させるために選択されるモアレは、モアレの強度が-4以上の強度を持ち、最高周波数以下の周波数を持つモアレであることが好ましい。
また、ピーク強度は、ピーク位置周辺の複数画素内の強度の合算値であることが好ましい。
また、ピーク強度は、ピーク位置周辺の7×7画素内の上位5位までの強度の合算値であることが好ましい。
また、ピーク強度は、射影配線パターン及び画素配列パターンの透過率画像データで規格化されたものであることが好ましい。
また、画素配列パターンは、ブラックマトリックスパターンであることが好ましい。
即ち、本発明の好ましい形態によれば、導電性フィルムの平面状態の配線パターンを使用状態の3次元形状に射影した状態の射影配線パターン及び表示装置の画素配列パターンの周波数解析により得られるピーク周波数/強度からモアレの周波数/強度を算出し、算出したモアレの強度・周波数を視認性に優れるように数値限定しているので、モアレの発生による画質障害を無くし、優れた視認性を得ることができる。
特に、本発明によれば、視認されないモアレ評価値算出に当たって、ディスプレイ等の表示装置の解像度が考慮されているので、解像度の異なる表示装置に対して、汎用的にモアレ視認性を改善することができる。また、本発明によれば、観察距離に依存した評価関数を設けているので、精度の高い評価指標でモアレ視認性を評価することができ、モアレの序列付けが可能であり、観察距離によらず、視認性を大幅に向上させることができる。
本発明は、特に、パターン配線を有する透明導電性フィルムを3次元形状の状態で、携帯電話等の表示装置の表示ユニットの表示面に配置してタッチパネル用電極として用いる場合、表示装置の表示ユニットのブラックマトリクスに導電性フィルムを重畳して視認する際に大きな画質障害となるモアレの発生を抑止でき、タッチパネル上の表示の視認性を大幅に向上させることができる。
以下では、本発明に係る導電性フィルムについて、3次元形状で使用されるタッチパネル用の導電性フィルムを代表例として説明するが、本発明は、これに限定されず、液晶ディスプレイ(LCD:Liquid Crystal Display)やプラズマディスプレイ(PDP:Plasma Display Panel)や有機ELディスプレイ(OELD:Organic ElectroLuminescence Display)や無機ELディスプレイ等の表示装置の表示ユニット上に使用状態である3次元形状で設置される導電性フィルムであれば、どのようなものでも良く、例えば、電磁波シールド用の導電性フィルム等であっても良いのはもちろんである。
図1(A)、(B)及び図2に示すように、本実施形態の導電性フィルム10は、透明基体12と、透明基体12の一方の面(図2中上側の面)に形成され、複数の金属製の細線(以下、金属細線という)14からなる導電部16と、導電部16の略全面に、金属細線14を被覆するように、接着層18を介して接着された保護層20とを有する。
本発明の導電性フィルムは、平面状に展開した時の平面配線パターンを使用状態の3次元形状に射影した時の射影配線パターンが、少なくとも1視点においてBMパターンとの干渉によって生じるモアレの評価指標がモアレが視認されない所定範囲に入るものであるが、モアレの評価指標、モアレが視認されない所定範囲、及びモアレの視認性の最適化については、後述する。
このような図5に示す視点bから観察する場合に用いられる導電性フィルム10の平面状態の平面配線パターン23a及び使用面状態の3次元形状に射影した射影配線パターン24aをそれぞれ図6(A)及び(B)に示す。ここで、図6(B)に示す射影配線パターン24aは、図1(B)に示す射影配線パターン24と同様なメッシュパターンとして観察されるものであれば良いが、両者が同一のメッシュパターンであったとしても、図6(A)に示す平面配線パターン23aは、図1(A)に示す射影配線パターン24とは異なるメッシュパターンとなる。
金属細線14は、導電性の高い金属製の細線であれば特に制限的ではなく、例えば、金(Au)、銀(Ag)又は銅(Cu)の線材等からなるものを挙げることができる。金属細線14の線幅は、視認性の点からは細い方が好ましいが、例えば、30μm以下であれば良い。なお、タッチパネル用途では、金属細線14の線幅は0.1μm以上15μm以下が好ましく、1μm以上9μm以下がより好ましく、2μm以上7μm以下がさらに好ましい。
また、配線パターン24には、後述するように、断線(ブレーク)が入っていてもよい。
なお、図7(A)に示す平面ランダム配線パターン23bが図3に示す3次元形状に射影され、視点aから観察すると、図7(B)に示す射影ランダム配線パターン24bとなる。
保護層20は、透明基体12と同様に、樹脂、ガラス、シリコンを含む透光性が高い材料からなる。保護層20の屈折率n1は、透明基体12の屈折率n0に等しいか、これに近い値であるのが好ましい。この場合、保護層20に対する透明基体12の相対屈折率nr1は1に近い値となる。
相対屈折率nr1の範囲をこの範囲に限定して、透明基体12と保護層20との部材間の光の透過率を制御することにより、モアレの視認性をより向上させ、改善することができる。
図8は、本発明の第2の実施形態に係る導電性フィルムの一例を示す模式的部分断面図である。なお、図8に示す本第2の実施形態の導電性フィルムの平面図は、図1に示す本第1の実施形態の導電性フィルムの平面図と同様であるのでここでは省略する。
本実施形態の導電性フィルム11においては、透明基体12の一方(図8の上側)の面にも、透明基体12の他方(図8の下側)の面に形成されている第2導電部16bの複数の金属細線14に対応する複数の金属細線14からなるダミー電極部26を形成しているので、透明基体12の一方(図8の上側)の面での金属細線による散乱を制御することができ、電極視認性を改善することができる。
なお、第1、第2導電部16a、16b及びダミー電極部26は、それぞれ図2に示す導電性フィルム10の導電部16と同様の材料で同様に形成することができる。
また、第2保護層20bは、第2導電部16bの金属細線14を被覆するように、第2接着層18bによって第2導電部16bからなる導電層28bの略全面に接着されている。
ここで、第1接着層18a及び第2接着層18bは、それぞれ図2に示す導電性フィルム10の接着層18と同様の材料で同様に形成することができるが、第1接着層18aの材質と第2接着層18bの材質とは、同一であってもよいし、異なってもよい。
また、第1保護層20a及び第2保護層20bは、それぞれ図2に示す導電性フィルム10の保護層20と同様の材料で同様に形成することができるが、第1保護層20aの材質と第2保護層20bの材質とは、同一であってもよいし、異なってもよい。
ここで、相対屈折率nr2及び相対屈折率nr3は、上述した相対屈折率nr1と同様に、0.86以上1.15以下の範囲にあればよく、より好ましくは、0.91以上1.08以下である。
なお、相対屈折率nr2、及び相対屈折率nr3の範囲をこの範囲に限定することにより、相対屈折率nr1の範囲の限定と同様に、モアレの視認性をより向上させることができる。
なお、以下のモアレの視認性の説明では、3次元形状の射影配線パターンを単に配線パターンということがあるが、平面形状の平面配線パターンと区別する必要がある場合には、射影配線パターンという。
また、本発明では、最適化された2以上の1群の配線パターンにおいても、最も知覚されない配線パターンから知覚されにくい配線パターンまで序列を付けることができ、最もモアレが知覚されない1つの配線パターンを決定することもできる。
本発明の導電性フィルムは、基本的に以上のように構成される。
図9にその一部を示すように、表示ユニット30には、複数の画素32がマトリクス状に配列されて所定の画素配列パターンが構成されている。1つの画素32は、3つの副画素(赤色副画素32r、緑色副画素32g及び青色副画素32b)が水平方向に配列されて構成されている。1つの副画素は垂直方向に縦長とされた長方形状とされている。画素32の水平方向の配列ピッチ(水平画素ピッチPh)と画素32の垂直方向の配列ピッチ(垂直画素ピッチPv)は略同じとされている。つまり、1つの画素32とこの1つの画素32を囲むブラックマトリクス(BM)34(パターン材)にて構成される形状(網掛けにて示す領域36を参照)は正方形となっている。また、1つの画素32のアスペクト比は1ではなく、水平方向(横)の長さ>垂直方向(縦)の長さとなっている。
なお、図9に示す表示ユニット30は、液晶パネル、プラズマパネル、有機ELパネル、無機ELパネル等の表示パネルで構成されてもよい。
図9に示すように、表示装置40は、カラー画像及び/又はモノクロ画像を表示可能な表示ユニット30(図9参照)と、3次元形状の入力面42(矢印Z1方向側)からの接触位置を検出する3次元形状のタッチパネル44と、表示ユニット30及びタッチパネル44を収容する筐体46とを有する。筐体46の一面(矢印Z1方向側)に設けられた大きな開口部を介して、ユーザは、タッチパネル44にアクセス可能である。
表示ユニット30の平坦な一面(矢印Z1方向側)には、接着層56を介して、3次元形状の導電性フィルム11が接着されている。導電性フィルム11は、他方の主面側(第2導電部16b側)を表示ユニット30に対向させて、表示画面上に3次元形状に湾曲させて配置されている。
本発明の導電性フィルムが適用される表示装置は、基本的に以上のように構成される。
したがって、以下では、表示装置の所定のBMパターンに対する導電性フィルムの射影配線パターンのモアレ視認性の評価指標、評価指標が満足するべきモアレが視認されない本発明の所定範囲、モアレの視認性の最適化、及び最適化の手順について説明する。
以下では、本発明の導電性フィルムにおいて、表示装置の所定のBMパターンに対してモアレが人間の視覚に知覚されないようにするための最適化された射影配線パターン(以下、単に、配線パターンという)を評価し、決定する複数の手順を含む評価及び決定方法の一例を挙げて説明することによって、本発明に用いられるモアレ視認性の評価指標、及び満足するべき所定範囲について説明するが、本発明は、これに限定される訳ではなく、モアレの視認性を評価できる評価指標であり、その満足すべき所定範囲が特定できれば、如何なるモアレの視認性の評価指標を用いても良いし、用いられる評価指標に合わせて満足すべき所定範囲が特定しても良い。
ここでは、1つの視点として、表示装置の表示ユニットの表示画面を正面から見る場合を考慮するが、本発明はこれに限定されず、少なくとも1つの視点から見た場合のモアレの視認性を向上させることができるものであれば、いずれの視点からのものであっても良い。
特に、3次元形状の導電性フィルム60の配線パターン(射影配線パターン)62の透過率画像データは、後述するように、製品としての導電性フィルム60が実際に表示ユニット30の表示面(非点灯)に対して3次元形状に取り付けられた状態で、導電性フィルム(製品)60をある観察視点から撮像して得られた撮像画像から作成しても良いし、また、導電性フィルム(製品)60の3次元形状データ及び2次元(平面)形状の配線パターンデータを用いてシミュレーション空間内に3次元モデルとして再現させ、再現された3次元モデルをある観察視点から観察した画像を射影シミュレーションにより作成しても良い。
なお、図13(B)は、図12(D)と同様に、Gチャネルの副画素32gの単色のみ利用する場合のBMパターンを示す。
なお、ここでは、BMパターン38の透過率画像データを作成する際に、その解像度を例えば、高解像度である12700dpiとし、透過率画像データのサイズを規定し、例えば、画素サイズを8193(画素)×8193(画素)に一番近いBMパターン38のサイズの整数倍とする。
また、配線パターン62の透過率画像データを作成する際に、その解像度を、例えば、BMパターン38の解像度と同じ12700dpiとし、透過率画像データのサイズを規定し、例えば、BMパターン38と同様に、画素サイズを8193(画素)×8193(画素)に一番近い配線パターン62のサイズの整数場合とする。
ここで、図14(A)及び(B)は、それぞれBMパターン38及び配線パターン62の各透過率画像データの2次元フーリエスペクトルの強度特性を示す図である。
なお、図14(A)及び(B)において、白い部分は強度が高く、スペクトルピークを示しているので、図14(A)及び(B)に示す結果から、BMパターン38及び配線パターン62のそれぞれについて、各スペクトルピークのピーク周波数及びピーク強度を算出する。即ち、図14(A)及び(B)にそれぞれ示すBMパターン38及び配線パターン62の2次元フーリエスペクトルの強度特性におけるスペクトルピークの周波数座標上の位置、即ちピーク位置がピーク周波数を表し、そのピーク位置における2次元フーリエスペクトルの強度がピーク強度となる。
まず、ピーク周波数の取得において、ピークの算出には、BMパターン38及び配線パターン62の基本周波数から周波数ピークを求める。これは、2DFFT処理を行う透過率画像データは離散値であるため、ピーク周波数が、画像サイズの逆数に依存してしまうからである。周波数ピーク位置は、図15に示すように、横軸u上に表される独立した2次元基本周波数ベクトル成分aバー、及び縦軸v上に表される独立した2次元基本周波数ベクトル成分bバーを元に組み合わせて表すことができる。したがって、当然ながら、得られるピーク位置は格子状となる。
即ち、図16(A)に示すように、BMパターン38及び配線パターン62のスペクトルピークの周波数座標fxfy上の位置、即ちピーク位置は、パターンピッチの逆数(1/p(pitch)を格子間隔とする周波数座標fxfy上の格子状点の位置として与えられる。
なお、図15は、BMパターン38の場合の周波数ピーク位置を示すグラフであるが、配線パターン62も、同様にして求めることができる。
したがって、ピーク位置に存在する強度を取得する際には、図16(B)に示すように、ピーク位置周辺の複数の画素を含む領域内の複数の画素のスペクトル強度が上位から複数点、例えば、7×7画素の領域内の画素のスペクトル強度が上位から5点の強度(絶対値)の合計値をピーク強度とするのが好ましい。
ここで、得られたピーク強度は、画像面積(画像サイズ)で規格化するのが好ましい。上述した例では、8193×8193で規格化しておくのが好ましい(パーセバルの定理)。
実空間においては、モアレは、本来、配線パターン62とBMパターン38との透過率画像データの掛け算によって起こるため、周波数空間においては、両者の畳み込み積分(コンボリューション)を行うことになる。しかしながら、ステップS12において、BMパターン38及び配線パターン62の両2次元フーリエスペクトルのピーク周波数及びピーク強度が算出されているので、両者のそれぞれの周波数ピーク同士の差分(差の絶対値)を求め、求められた差分をモアレの周波数とし、両者の組み合わせた2組のベクトル強度の積を求め、求められた積をモアレの強度(絶対値)とすることができる。
なお、BMパターン38及び配線パターン62の両2次元フーリエスペクトルのスペクトルピークは、それぞれ複数存在するので、その相対距離の値である周波数ピーク同士の差分、即ちモアレの周波数も複数求められることになる。したがって、両2次元フーリエスペクトルのスペクトルピークが多数存在すると、求めるモアレの周波数も多数となり、求めるモアレの強度も多数となる。
また、ここで、表示装置においては、ディスプレイ解像度が決まっているため、ディスプレイが表示できる最高の周波数はその解像度に対して決まる。このため、この最高の周波数より高い周波数を持つモアレは、このディスプレイで表示されないことになるので、本発明における評価の対象とする必要はない。従って、ディスプレイ解像度に合わせてモアレの最高周波数を規定することができる。ここで、本発明において考慮すべきモアレの最高周波数は、ディスプレイの画素配列パターンの画素ピッチをp(μm)とする時、1000/(2p)とすることができる。
以上から、本発明では、両2次元フーリエスペクトルのスペクトルピークから求められたモアレの周波数及び強度の中で、本発明における評価の対象とするモアレは、モアレの周波数が、ディスプレイ解像度に応じて規定されるモアレの最高周波数1000/(2p)以下の周波数を持つモアレであって、モアレの強度が-4以上のモアレである。
図18においては、モアレの周波数は、縦横軸の位置によって表され、モアレの強度は、グレー(無彩色)濃淡で表され、色が濃いほど小さく、色が薄い、即ち白いほど大きくなることを示している。
具体的には、まず、図11に示すように、ステップS16において、ステップS14で得られたモアレの周波数及び強度(絶対値)に、下記式(1)で示す人間の視覚応答特性を観察距離に応じて作用させて、即ち畳み込み積分を行って重み付けを行い、観察距離に応じて重み付けされた複数のモアレの評価値(副評価値)を算出する。即ち、モアレの周波数・強度に、下記式(1)で示す人間の視覚応答特性の一例を表す視覚伝達関数(VTF;Visual Transfer Function)を畳み込む。
…(1)
ここで、uは、空間周波数(cycle/deg)であり、Lは、輝度(cd/mm2)であり、X0は、観察距離におけるディスプレイの表示面の視野角(deg)であり、X0 2は、観察距離においてディスプレイの表示面が作る立体角(sr)である。
この上記式(1)は、反射系において良く用いられる、また、後述する図20に示すような観察距離が固定されたドゥーリー・ショー関数と異なり、ディスプレイのような透過系においても適切に用いることができるもので、観察距離を考慮することができるものであり、ディスプレイの発光輝度による感度の違いを考慮できるものである。
具体的には、例えば、モアレの周波数がf、強度がIの場合、それぞれの観察距離d、例えば、通常、タッチパネルとして用いる際に可能性のある150mm,200mm,250mm,300mm,400mm,500mmの6つの観察距離d1~d6で畳み込んで、それぞれの観察距離d1~d6に依存した係数Sで重みをつけると、それぞれの観察距離に対応するI1~I6までの6つの評価値を得ることができる。
また、輝度L(cd/mm2)は、ディスプレイの輝度を用いれば良いが、例えば、モアレが視認され易い通常のディスプレイの輝度レベルである500cdとすれば良い。
更に、観察距離dにおけるディスプレイの表示面の視野角X0(deg)は、評価面積がディスプレイの表示面となるように、上記観察距離dに依存して調整して求めれば良く、例えば、タッチパネルとして用いる際にモアレが視認され易い評価面積が40mmx40mmになるよう観察距離dに依存して調整して求めれば良い。こうして求めたX0から観察距離dにおいてディスプレイの表示面が作る立体角X0 2(sr)を求めれば良い。
即ち、本発明の評価指標の算出方法では、まず、複数(n)の観察距離d1~dnで畳み込んだ際の最悪値を求めて、モアレの周波数fの代表評価値とする必要がある。
こうして、ステップS18では、ステップS14で得られた全てのモアレの周波数fについて複数(n)の観察距離d1~dnに依存した複数のモアレの評価値I1~Inの中の最も悪い評価値を算出し、そのモアレの周波数fのモアレの代表評価値として評価し、決定する。
なお、本発明において、観察距離dに依存した複数のモアレの評価値中の最も悪い評価値をモアレの代表評価値とするのは、観察距離dに依存せずに、モアレの視認性を評価し、最適化された配線パターンを求めるためである。
次に、図11に示すように、ステップS22において、こうして求めた当該配線パターン62のモアレの評価指標の常用対数値が、所定値以下であれば、当該配線パターン62は、本発明の3次元形状の導電性フィルム60(10)の最適化された配線パターン62(24)であると評価し、最適化された射影配線パターン62(24)として評価して決定し、本発明の3次元形状の導電性フィルム60(10又は11)の射影配線パターン24として設定する。
なお、モアレの評価指標の値を、常用対数で、所定値以下に限定する理由は、所定値より大きいと、重畳された配線パターンとBMパターンとの干渉によって生じたモアレが、わずかであっても視認され、視認されたモアレが目視するユーザにとって気になるものとなるからである。モアレの評価指標の値が、所定値以下では、あまり気にならないからである。
したがって、本発明では、モアレの評価指標を、好ましい範囲として、常用対数で-1.75(真数で10-1.75)以下に特定し、より好ましい範囲として、常用対数で-1.89以下に特定し、さらに好ましい範囲として、常用対数で-2.05以下に特定し、最も好ましい範囲として、常用対数で-2.28以下に特定する。
もちろん、配線パターン62の金属細線14の線幅や、開口部22の形状やそのサイズ(ピッチや角度)や、2つの導電層の配線パターンの位相角(回転角、ズレ角)等に応じて、複数の最適化された配線パターン62が得られるが、モアレの評価指標の常用対数値が小さいものが最良の配線パターン62となり、複数の最適化された配線パターン62には序列を付けることもできる。
こうして、本発明の導電性フィルムの平面配線パターンの評価及び決定方法は終了し、表示装置の表示ユニットのBMパターンに重畳してもモアレの発生が抑止され、異なる解像度の表示装置に対しても、また、観察距離によらず、モアレの視認性に優れた、最適化された射影配線パターンを持つ本発明の3次元形状を持つ導電性フィルムを平面状に展開した平面配線パターンを持つ本発明の平面形状を持つ導電性フィルムを評価し、作製することができる。
なお、本発明の3次元形状を持つ導電性フィルムを作成する場合には、ステップS24で、本発明の導電性フィルムの射影配線パターンの評価及び決定方法を終了しても良い。
図19は、本発明の導電性フィルムの射影配線パターンの評価及び決定方法の他の一例を示すフローチャートである。
図19に示す射影配線パターンの評価及び決定方法は、図11に示す射影配線パターンの評価及び決定方法と、手順1~手順3までは、略同一であるので、詳細な説明は省略し、主に相違点のみ説明する。
なお、この例では、手順1のステップS10において、導電性フィルム60の配線パターン62は、例えば、配線となる金属細線14が45°[deg]傾いた正方格子とすることもできる。
なお、ここでは、BMパターン38及び配線パターン62の透過率画像データのサイズを規定し、例えば、4096(画素)×4096(画素)とする。また、後述する手順2のFFT処理時の周期のアーティファクトを防ぐ、若しくは低減するため、BMパターン38及び配線パターン62の各画像は、例えば、全方向(8方向)に折り返し(flip)処理を行っても良い。折り返し処理を行った後の新しい画像サイズは、例えば、4画像分の領域内の画像(一辺8192(画素)=4096(画素)×2)としても良い。
また、手順2のステップS12において、スペクトルピークのピーク位置に存在する強度を取得する際には、ピーク位置周辺の複数の画素を含む領域内の複数の画素のスペクトル強度が上位から複数点、例えば、5×5画素の領域内の画素のスペクトル強度が上位から5点の平均値をピーク強度(絶対値)とするのが好ましい。
具体的には、まず、図19に示すように、ステップS26において、ステップS14で得られたモアレの周波数及び強度(絶対値)に図20に示す人間の標準視覚応答特性を作用させて、即ち掛けて、モアレの評価周波数及び評価強度(絶対値)を算出する。即ち、得られたモアレの周波数・強度に、図20に示す人間の標準視覚応答特性の一例を表す視覚伝達関数(VTF;Visual Transfer Function)を畳み込む。この視覚伝達関数は、ドゥーリー・ショー(Dooley Shaw)関数を基本とし、低周波成分の感度の減衰を無くすようにするものである。
なお、実際の人間の視覚応答特性は、0cycle/mm近傍で1より小さい値になっており、いわゆるバンドパスフィルタの特性を有する。しかしながら、本実施形態において、図20に例示するように、極めて低い空間周波数帯域であってもVTFの値を1にすることで、低周波成分の感度の減衰を無くすようにしている。これにより、配線パターン62の繰り返し配置に起因する周期性を抑制する効果が得られる。
序列を付ける対象となるパターンは、
1.モアレの評価空間周波数が3cycle/mm以内のデータのみを用いて序列を付ける。
2.評価空間周波数1.8cycle/mm以下において、モアレの評価強度が-5以上のパターンは序列に加えない。
3.評価空間周波数1.8cycle/mm~3cycle/mmにおいて、モアレの評価強度が-3.7以上のパターンは序列に加えない。
なお、多数の配線パターン62について、シミュレーションサンプル及び実サンプルでモアレの評価強度の和を求め、3名の研究員が配線パターン62とモアレの評価強度の和とを評価したところ、モアレの評価強度の和が常用対数で-4以下(真数で10-4以下)では、官能評価でもモアレは全く視認されず優(++)であり、その評価強度の和が常用対数で-4超-2.5以下(真数で10-4超10-2.5以下)では、官能評価でモアレはほぼ視認されず良(+)であり、その評価強度の和が常用対数で-2.5超0以下(真数で10-2.5超1以下)では、官能評価でモアレはわずかに視認されるが気にならない程度で可(+-)であるが、その評価強度の和が、常用対数で0超(真数で1超)では、官能評価でモアレが視認されて不良(使用不可)であった。
したがって、本発明では、モアレの視認性の評価指標であるモアレの評価強度の和を、常用対数で0以下(真数で1以下)の範囲に限定する。
その結果、モアレの評価強度の和が、所定値超である場合には、ステップS32に移り、配線パターン62の透過率画像データを新たな配線パターンの透過率画像データに更新して、ステップS12に戻る。
ここで、更新される新たな配線パターンは、予め準備されたものであっても、新たに作成されたものであっても良い。なお、新たに作成された場合には、配線パターンの透過率画像データの回転角度、ピッチ、パターン幅のいずれか1つ以上を変化させても良いし、配線パターンの開口部の形状やサイズを変更するようにしても良い。更には、これらにランダム性を持たせても良い。
次に、ステップS24において、設定された射影配線パターン24を平面に展開して平面状の導電性フィルム10の平面配線パターン23を決定する。
こうして、本発明の導電性フィルムの平面配線パターンの評価及び決定方法は終了し、表示装置の表示ユニットのBMパターンに重畳してもモアレの発生が抑止され、モアレの視認性に優れた、最適化された射影配線パターンを持つ本発明の3次元形状を持つ導電性フィルムを平面状に展開した平面配線パターンを持つ本発明の平面形状を持つ導電性フィルムを作製することができる。
なお、本発明の3次元形状を持つ導電性フィルムを作成する場合には、ステップS24で、本発明の導電性フィルムの射影配線パターンの評価及び決定方法を終了しても良い。
なお、上述した本発明の導電性フィルムの射影配線パターンの評価及び決定方法によって決定された最適化された射影配線パターンを持つ本発明の導電性フィルムにおいては、このように、その射影配線パターンの配線メッシュ(特に、菱形開口部又はランダム形状開口部)の密度が、均一であるのがより好ましい。
具体的には、この最適化された射影配線パターンとは、その開口部の開口面積の平均を1.0とした時、開口面積のバラツキが、2割以内、即ち0.8~1.2に入ることが好ましい。
即ち、モアレ及び/又は粒状性の視認性の評価指標として、配線パターンの配線メッシュの密度の均一性、具体的には、配線メッシュの開口部の開口面積のバラツキを用いることができる。
まず、第1の方法においては、製品としての導電性フィルムが実際に表示ユニットの表示面に対して3次元形状に取り付けられた状態での導電性フィルムの撮像により配線パターン画像(透過率画像データ)を取得する。
例えば、まず、ディスプレイ非点灯時の導電性フィルム(製品)に光を入射させた上で、ある観察視点からデジタルカメラで配線の反射光を受光して撮像することで、導電性フィルム(製品)をある視点から観察したときの配線パターン画像を取得する。
この際に、観察面が広い場合には、観察面と平行な面上にカメラを動かし、複数位置で画像を撮影し、部分画像をパノラマ合成することで配線画像を生成してもよい。
この方法では、まず、導電性フィルム(製品)製品の三次元形状および平面配線パターンをデータ化する。
例えば、導電性フィルム(製品や3次元モデル)の3次元形状を3次元形状測定カメラ等により撮像して3次元形状をデータ化して3次元形状データを得ると共に、2次元(平面)形状の配線パターンをフィルムスキャナ等により撮像して平面配線パターンをデータ化して、平面配線パターンデータを得る。
得られた3次元形状データ及び平面配線パターンデータに基づいて、3次元形状の導電性フィルム(製品)を、パソコン等のコンピュータ内のシミュレーション空間に三次元モデルとして再現させる。
再現された導電性フィルム(製品)の3次元モデルからある観察視点から観察したときの配線パターン画像を射影により取得することで、シミュレーションにより配線パターン画像を取得する。
最後に、第1の方法または第2の方法においても、取得された配線パターン画像から配線の密度が均一かどうか、即ち、配線パターンの配線メッシュの密度の均一性、具体的には、配線メッシュの開口部の開口面積のバラツキが2割以内かどうかを判定する。
図21(A)は、菱形パターンの開口部の開口面積の平均が1.0である、開口部の開口面積のばらつきが0%である本発明の射影配線パターンであり、この本発明の射影配線パターンは、図21(E)に示すように、表示ユニットのBMパターンに重畳してもモアレが視認されない、モアレの視認性に優れたものである。
ここで用いたBMパターン形状は、画素ピッチ(Pv,Ph)が、例えば、114μmである正方形形状であり、RGBの3つの矩形状の副画素の各副画素のサイズは、例えば、水平方向の長さ:30μm×垂直方向の長さ:88μmである。
また、配線パターン形状は、例えば、角度が36°、ピッチが226μmの菱形である。
なお、図21(B)、(C)及び(D)は、図21(A)に示す菱形パターンにおいて、図3に示すような、導電性フィルムの形状の一部を所定の曲率で湾曲させた3次元形状に対して、湾曲の曲率を徐々に大きくした3次元形状を想定してシミュレーションにより得られた各々射影した配線パターンを示すものであり、図21(F)、(G)、及び(H)は、それぞれ図21(B)、(C)及び(D)に対応するモアレ画像である。
したがって、開口面積のバラツキは、2割以内、即ち0.8~1.2に入るようにすることが好ましい。
なお、本発明においては、3次元形状において最適化された射影配線パターンを持つ導電性フィルムを2次元形状、即ち平面状に展開した平面配線パターンを持つ平面形状の導電性フィルムであっても良いのは勿論である。
例えば、本出願人の出願に係る特願2011-221432号明細書に記載のメッシュパターン(射影配線パターン)のメッシュ形状の重心位置の二次元分布のパワースペクトルに関して、所定の空間周波数より、高い空間周波数側における平均強度と低い空間周波数帯域側における平均強度との比を粒状性(ノイズ粒状感)の視認性の評価指標とし、所定範囲を1.0よりも大きい範囲としても良い。即ち、最適化されたメッシュパターンは、高空間周波数側における平均強度が、低空間周波数帯域側における平均強度よりも大きくなるように構成されているものであっても良い。なお、所定の空間周波数は、例えば、人間の視覚応答特性が、最大応答の5%に相当する空間周波数であることが好ましく、人間の視覚応答特性が明視距離が300mmでのドゥーリー・ショー関数に基づいて得られる視覚応答特性である時の空間周波数である6cycle/mmであることがより好ましく、また、パワースペクトルの値が最大となる空間周波数であることがより好ましい。ここで、重心位置の二次元分布に関して、所定方向に沿って配置された各重心位置についての、所定方向の垂直方向に対する位置の平均2乗偏差は、15μm以上であり65μm以下であることが好ましい。
なお、この導電性フィルムのメッシュ状配線は、複数の金属細線により連続するようにメッシュ状に形成された電極配線パターンを備える電極部と、複数の金属細線によりメッシュ状に形成され、複数の断線部を持ち、非連続である非電極配線パターンを備え、電極部と絶縁されている非電極部とを有し、メッシュ状配線のメッシュパターンは、電極部の電極配線パターンと、この電極配線パターンと絶縁されている非電極部の非電極配線パターンからなり、メッシュパターンの空間周波数特性は、少なくとも正面観察時の、複数の断線部を含めたメッシュパターンの空間周波数特性であることが好ましい。
この他、本発明においては、最適化射影配線パターンを得るために、例えば、引用文献3~5に開示の技術を含め、従来公知の技術を適用したモアレ及び/又は粒状性(ノイズ粒状感、色ノイズ)の視認性の評価指標及びその範囲を用いても良い。
また、図22に示す例では、導電層28aと導電層28bとは、同一の平面配線パターン23を持ち、ずれることなく重なり合って1つの平面配線パターン23を形成しているが、両導電層28a及び導電層28bのそれぞれの射影配線パターンは、本発明の評価基準を満たすものであれば、ずれた位置に重ね合わされていても良いし、それぞれの配線パターン自体が異なっていても良い。
12 透明基体
14 金属製の細線(金属細線)
16、16a、16b 導電部
18、18a、18b 接着層
20、20a、20b 保護層
22 開口部
23、23a、23b 平面配線パターン
24、24b、62 射影配線パターン(配線パターン)
26 ダミー電極部
30 表示ユニット
32、32r、32g、32b 画素
34 ブラックマトリクス(BM)
38 BMパターン
40 表示装置
44 タッチパネル
Claims (14)
- 表示装置の表示ユニット上に設置され、少なくとも一部を所定の曲率で湾曲させて使用される導電性フィルムであって、
透明基体と、
該透明基体の少なくとも一方の面に形成され、複数の金属細線からなる導電部と、
を有し、
前記導電部は、前記複数の金属細線によりメッシュ状に形成された、複数の開口部を配列した配線パターンを有し、
前記配線パターンは、前記表示ユニットの画素配列パターンに重畳されており、
平面状に展開した前記導電性フィルムの前記配線パターンを前記導電性フィルムの使用状態の前記少なくとも一部が前記所定の曲率で湾曲した3次元形状に射影した時の射影配線パターンが、少なくとも1視点において、前記画素配列パターンとの干渉によって生じるモアレの評価指標が前記モアレが視認されない所定範囲にあるものであることを特徴とする導電性フィルム。 - 前記導電性フィルムは、前記使用状態において、前記表示ユニットの表示面の対応する両辺側に、それぞれ前記所定の曲率で湾曲する湾曲部と、両側の湾曲部の間に、前記表示ユニットの表示面に平行な平面部とを有する3次元形状であり、
前記1視点は、前記表示ユニットの表示面に平行な前記平面部に垂直な方向の正面である請求項1に記載の導電性フィルム。 - 前記導電性フィルムは、前記使用状態における前記3次元形状に射影された前記射影配線パターンを平面形状に展開した平面状配線パターン持つ平面状導電性フィルムである請求項1又は2に記載の導電性フィルム。
- 前記モアレの評価指標は、少なくとも1視点において、前記射影配線パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度と、前記画素配列パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度とからそれぞれ算出されるモアレの周波数及び強度において、前記表示ユニットの表示解像度に応じて規定されるモアレの最高周波数以下の各モアレの周波数における前記モアレの強度に人間の視覚応答特性を観察距離に応じて作用させて得られたモアレの評価値から算出したものであり、
前記所定範囲は、所定値以下である請求項1~3のいずれか1項に記載の導電性フィルム。 - 前記所定値が、常用対数で-1.75であり、
前記モアレの評価指標は、常用対数で-1.75以下である請求項4に記載の導電性フィルム。 - 前記モアレの評価指標は、前記モアレの周波数及び強度に、前記視覚応答特性として前記観察距離に応じた視覚伝達関数を畳み込み積分で重み付けを行うことによって求められる請求項4に記載の導電性フィルム。
- 前記射影配線パターンのメッシュの密度が均一である請求項1~6のいずれか1項に記載の導電性フィルム。
- 表示装置の表示ユニット上に設置され、少なくとも一部を所定の曲率で湾曲させて使用される導電性フィルムであって、
透明基体と、
該透明基体の少なくとも一方の面に形成され、複数の金属細線からなる導電部と、
を有し、
前記導電部は、前記複数の金属細線によりメッシュ状に形成された、複数の開口部を配列した配線パターンを有し、
平面状に展開した前記導電性フィルムの前記配線パターンを前記導電性フィルムの使用状態の前記少なくとも一部が前記所定の曲率で湾曲した3次元形状に射影した時の射影配線パターンのメッシュ密度が、少なくとも1視点において、均一であることを特徴とする導電性フィルム。 - 前記射影配線パターンは、菱形パターン、又はランダムパターンである請求項1~8のいずれか1項に記載の導電性フィルム。
- 前記射影配線パターンの前記開口部の開口面積の平均を1.0とした時、前記射影配線パターンの前記開口面積のバラツキは、0.8~1.2に入る請求項1~9のいずれか1項に記載の導電性フィルム。
- 表示ユニットと、
この表示ユニットの表示面上に、その少なくとも一部を前記所定の曲率で湾曲させた状態で設置される、請求項1~10のいずれか1項に記載の導電性フィルムとを備えることを特徴とする表示装置。 - 表示装置の表示ユニット上に設置され、複数の金属細線によりメッシュ状に形成された、複数の開口部を配列した配線パターンを有し、少なくとも一部を所定の曲率で湾曲させて使用される平面状の導電性フィルムの配線パターンの評価及び決定方法であって、
前記平面状の前記導電性フィルムの前記配線パターンを、前記少なくとも一部が前記所定の曲率で湾曲した前記導電性フィルムの使用状態に射影して、射影配線パターンを得、
得られた射影配線パターンを、前記表示ユニットの画素配列パターンに重畳し、
少なくとも1視点において、前記射影配線パターンと前記画素配列パターンとの干渉によって生じるモアレの評価指標を求め、
求められたモアレの評価指標を前記モアレが視認されない所定範囲と比較して、前記モアレの評価指標が前記所定範囲に入る射影配線パターンを評価して求め、
求められた射影配線パターンを平面に展開して平面状の導電性フィルムの配線パターンを決定することを特徴とする導電性フィルムの配線パターンの評価及び決定方法。 - 前記モアレの評価指標は、少なくとも1視点において、
前記射影配線パターンの透過率画像データと、前射影記配線パターンが重畳される、前記表示ユニットの画素配列パターンの透過率画像データとを取得し、
前記射影配線パターンの透過率画像データ及び前記画素配列パターンの透過率画像データに対して2次元フーリエ変換を行い、前記射影配線パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度と、前記画素配列パターンの透過率画像データの2次元フーリエスペクトルの複数のスペクトルピークのピーク周波数及びピーク強度とを算出し、
こうして算出された前記射影配線パターンの前記ピーク周波数及び前記ピーク強度と前記画素配列パターンの前記ピーク周波数及び前記ピーク強度とからそれぞれモアレの周波数及び強度を算出し、
こうして算出された前記モアレの周波数及び強度の中から、前記表示ユニットの表示解像度に応じて規定されるモアレの最高周波数以下の周波数を持つモアレを選び出し、
こうして選び出されたそれぞれのモアレの周波数における前記モアレの強度に人間の視覚応答特性を観察距離に応じて作用させてそれぞれモアレの評価値を得、
こうして得られた複数の前記モアレの評価値から算出されるものであり、
前記所定範囲は、常用対数で-1.75である請求項12に記載の導電性フィルムの配線パターンの評価及び決定方法。 - 前記モアレの周波数として、前記射影配線パターンの前記ピーク周波数と前記画素配列パターンの前記ピーク周波数とのピーク周波数同士の差分を求め、
前記モアレの強度として、前記射影配線パターンの前記ピーク強度と前記画素配列パターンの前記ピーク強度との2組のベクトル強度の積を求める請求項13に記載の導電性フィルムの配線パターンの評価及び決定方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14782839.6A EP2985750A4 (en) | 2013-04-10 | 2014-03-28 | CONDUCTIVE FILM, DISPLAY DEVICE HAVING THE SAME, AND EVALUATION AND DETERMINATION METHOD FOR A CONDUCTIVE FILM WIRING PATTERN |
JP2015511210A JP6038294B2 (ja) | 2013-04-10 | 2014-03-28 | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法 |
CN201480020505.2A CN105122336B (zh) | 2013-04-10 | 2014-03-28 | 导电性膜、其配线图案的评价及决定方法及其应用 |
KR1020157027856A KR101756255B1 (ko) | 2013-04-10 | 2014-03-28 | 도전성 필름, 그것을 구비하는 표시 장치 및 도전성 필름의 배선 패턴의 평가 및 결정 방법 |
US14/876,342 US9710088B2 (en) | 2013-04-10 | 2015-10-06 | Conductive film, display device provided with same, and evaluation and determination method for conductive film wiring pattern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-082233 | 2013-04-10 | ||
JP2013082233 | 2013-04-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/876,342 Continuation US9710088B2 (en) | 2013-04-10 | 2015-10-06 | Conductive film, display device provided with same, and evaluation and determination method for conductive film wiring pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014168029A1 true WO2014168029A1 (ja) | 2014-10-16 |
Family
ID=51689439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/059210 WO2014168029A1 (ja) | 2013-04-10 | 2014-03-28 | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9710088B2 (ja) |
EP (1) | EP2985750A4 (ja) |
JP (1) | JP6038294B2 (ja) |
KR (1) | KR101756255B1 (ja) |
CN (1) | CN105122336B (ja) |
TW (1) | TWI630516B (ja) |
WO (1) | WO2014168029A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107844224B (zh) * | 2011-01-18 | 2021-10-22 | 富士胶片株式会社 | 显示装置及显示装置的制造方法 |
JP2014032983A (ja) * | 2012-08-01 | 2014-02-20 | Sony Corp | 半導体装置、表示装置および電子機器 |
JP6001089B2 (ja) * | 2012-12-18 | 2016-10-05 | 富士フイルム株式会社 | 表示装置及び導電性フイルムのパターンの決定方法 |
JP6463133B2 (ja) * | 2013-02-05 | 2019-01-30 | 富士フイルム株式会社 | 導電性フイルムを備える表示装置 |
WO2016182502A1 (en) * | 2015-05-14 | 2016-11-17 | Medha Dharmatilleke | Multi purpose mobile device case/cover integrated with a camera system & non electrical 3d/multiple video & still frame viewer for 3d and/or 2d high quality videography, photography and selfie recording |
JP6511382B2 (ja) * | 2015-10-16 | 2019-05-15 | 富士フイルム株式会社 | 導電性フィルム、及びこれを備える表示装置 |
KR20180040792A (ko) * | 2016-10-13 | 2018-04-23 | 인트리 주식회사 | 도전 패턴의 배치 방법, 이를 이용하여 형성한 도전 패턴 구조체, 도전성 메쉬, 포토마스크, 스템퍼 및 터치 스크린 패널 |
JP7039248B2 (ja) * | 2017-10-20 | 2022-03-22 | 株式会社Vtsタッチセンサー | 導電性フィルム、タッチパネル、および、表示装置 |
CN113053250B (zh) * | 2017-12-28 | 2022-10-04 | 乐金显示有限公司 | 可折叠显示器 |
JP7015271B2 (ja) * | 2018-05-21 | 2022-02-02 | 富士フイルム株式会社 | 導電性部材、導電性フィルム、これを備える表示装置、タッチパネル、導電性部材の配線パターンの作製方法、及び導電性フィルムの配線パターンの作製方法 |
CA187995S (en) * | 2019-06-12 | 2021-02-11 | Cascades Canada Ulc | Embossed tissue sheet |
CN117644680B (zh) * | 2023-11-28 | 2024-07-09 | 深圳市深大极光科技股份有限公司 | 一种可烫印三维全视角显示膜及其制备方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11340679A (ja) * | 1998-05-22 | 1999-12-10 | Bridgestone Corp | 電磁波シールド性光透過窓材 |
JP2007255903A (ja) * | 2006-03-20 | 2007-10-04 | Bridgestone Corp | モアレ干渉縞の予測方法とその評価方法 |
JP2008187039A (ja) * | 2007-01-30 | 2008-08-14 | Bridgestone Corp | 電磁波遮断用フィルタ |
JP2009094467A (ja) * | 2007-09-18 | 2009-04-30 | Fujifilm Corp | 画像表示装置、モアレ抑止フイルム、光学フィルタ、プラズマディスプレイフィルタ、画像表示パネル |
JP2009117683A (ja) | 2007-11-08 | 2009-05-28 | Fujifilm Corp | 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法 |
JP2011216379A (ja) | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 透明導電膜 |
JP2011221432A (ja) | 2010-04-14 | 2011-11-04 | Seiko Epson Corp | 液晶装置および電子機器 |
JP2012082711A (ja) | 2010-10-07 | 2012-04-26 | Toyota Motor Corp | 常時噛合式の内燃機関の始動装置 |
JP2012082706A (ja) | 2010-10-07 | 2012-04-26 | Suzuki Motor Corp | 車両用エンジンのシリンダヘッドカバー構造 |
JP2012164648A (ja) | 2011-01-18 | 2012-08-30 | Fujifilm Corp | 導電性フイルム及びそれを備えた表示装置 |
JP2012163933A (ja) | 2011-01-18 | 2012-08-30 | Fujifilm Corp | 導電性フイルム及びそれを備えた表示装置 |
JP2012163951A (ja) | 2011-01-18 | 2012-08-30 | Fujifilm Corp | 導電性フイルムを備える表示装置及び導電性フイルム |
JP2012166946A (ja) | 2011-02-16 | 2012-09-06 | Aichi Corp | 高所作業車 |
JP2013020775A (ja) | 2011-07-10 | 2013-01-31 | Kazuhiko Yamaoka | 照明装置とそれに用いられるベースユニット及びサテライトユニット |
JP2013045904A (ja) * | 2011-08-24 | 2013-03-04 | Dainippon Printing Co Ltd | 電磁波遮蔽材、積層体および画像表示装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4659873A (en) * | 1985-07-19 | 1987-04-21 | Elographics, Inc. | Fabric touch sensor and method of manufacture |
US7916223B2 (en) * | 2006-04-18 | 2011-03-29 | Nec Lcd Technologies, Ltd. | Dual panel liquid crystal display device |
JP2008025025A (ja) * | 2006-06-22 | 2008-02-07 | Hitachi Chem Co Ltd | 表面が黒化処理された銅金属の製造法、導体層パターン付き基材の製造法、導体層パターン付き基材及びそれを用いた透光性電磁波遮蔽部材 |
US8325296B2 (en) * | 2009-03-30 | 2012-12-04 | Fujifilm Corporation | Light-transmitting substrate, optical film, polarizing plate and image display device |
US8599150B2 (en) * | 2009-10-29 | 2013-12-03 | Atmel Corporation | Touchscreen electrode configuration |
KR20110109817A (ko) * | 2010-03-29 | 2011-10-06 | 후지필름 가부시키가이샤 | 도전성 필름, 투명 발열체, 패턴 생성 방법 및 패턴 생성 프로그램 |
US9031310B2 (en) | 2010-03-31 | 2015-05-12 | Fujifilm Corporation | Conductive film manufacturing method, conductive film, and recording medium |
JP5410353B2 (ja) * | 2010-03-31 | 2014-02-05 | 富士フイルム株式会社 | 透明導電膜の製造方法、導電性フイルム、透明発熱体及びプログラム |
JP2012063760A (ja) * | 2010-08-20 | 2012-03-29 | Fujifilm Corp | 立体画像プリントの位置合せ方法、これに用いる位置合せマーカ及び立体画像プリントの製造方法 |
CN107844224B (zh) | 2011-01-18 | 2021-10-22 | 富士胶片株式会社 | 显示装置及显示装置的制造方法 |
JP2013025626A (ja) * | 2011-07-22 | 2013-02-04 | Mitsubishi Electric Corp | タッチパネル及びそれを備える表示装置 |
-
2014
- 2014-03-28 CN CN201480020505.2A patent/CN105122336B/zh active Active
- 2014-03-28 EP EP14782839.6A patent/EP2985750A4/en not_active Withdrawn
- 2014-03-28 KR KR1020157027856A patent/KR101756255B1/ko active IP Right Grant
- 2014-03-28 JP JP2015511210A patent/JP6038294B2/ja active Active
- 2014-03-28 WO PCT/JP2014/059210 patent/WO2014168029A1/ja active Application Filing
- 2014-04-09 TW TW103112928A patent/TWI630516B/zh active
-
2015
- 2015-10-06 US US14/876,342 patent/US9710088B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11340679A (ja) * | 1998-05-22 | 1999-12-10 | Bridgestone Corp | 電磁波シールド性光透過窓材 |
JP2007255903A (ja) * | 2006-03-20 | 2007-10-04 | Bridgestone Corp | モアレ干渉縞の予測方法とその評価方法 |
JP2008187039A (ja) * | 2007-01-30 | 2008-08-14 | Bridgestone Corp | 電磁波遮断用フィルタ |
JP2009094467A (ja) * | 2007-09-18 | 2009-04-30 | Fujifilm Corp | 画像表示装置、モアレ抑止フイルム、光学フィルタ、プラズマディスプレイフィルタ、画像表示パネル |
JP2009117683A (ja) | 2007-11-08 | 2009-05-28 | Fujifilm Corp | 電磁波シールドフィルムの製造装置、電磁波シールドフィルムの製造方法及びパターン生成方法 |
JP2011216379A (ja) | 2010-03-31 | 2011-10-27 | Fujifilm Corp | 透明導電膜 |
JP2011221432A (ja) | 2010-04-14 | 2011-11-04 | Seiko Epson Corp | 液晶装置および電子機器 |
JP2012082711A (ja) | 2010-10-07 | 2012-04-26 | Toyota Motor Corp | 常時噛合式の内燃機関の始動装置 |
JP2012082706A (ja) | 2010-10-07 | 2012-04-26 | Suzuki Motor Corp | 車両用エンジンのシリンダヘッドカバー構造 |
JP2012164648A (ja) | 2011-01-18 | 2012-08-30 | Fujifilm Corp | 導電性フイルム及びそれを備えた表示装置 |
JP2012163933A (ja) | 2011-01-18 | 2012-08-30 | Fujifilm Corp | 導電性フイルム及びそれを備えた表示装置 |
JP2012163951A (ja) | 2011-01-18 | 2012-08-30 | Fujifilm Corp | 導電性フイルムを備える表示装置及び導電性フイルム |
JP2012166946A (ja) | 2011-02-16 | 2012-09-06 | Aichi Corp | 高所作業車 |
JP2013020775A (ja) | 2011-07-10 | 2013-01-31 | Kazuhiko Yamaoka | 照明装置とそれに用いられるベースユニット及びサテライトユニット |
JP2013045904A (ja) * | 2011-08-24 | 2013-03-04 | Dainippon Printing Co Ltd | 電磁波遮蔽材、積層体および画像表示装置 |
Non-Patent Citations (2)
Title |
---|
PETER G. J. BARTEN: "Formula for the contrast sensitivity of the human eye", IMAGE QUALITY AND SYSTEM PERFORMANCE, EDITED BY YOICHI MIYAKE, D. RENE RASMUSSEN, PROC. OF SPIE-IS&T ELECTRONIC IMAGING, vol. 5294 C, 2004, pages 231 - 238 |
See also references of EP2985750A4 |
Also Published As
Publication number | Publication date |
---|---|
KR101756255B1 (ko) | 2017-07-10 |
JP6038294B2 (ja) | 2016-12-07 |
TWI630516B (zh) | 2018-07-21 |
CN105122336B (zh) | 2017-09-08 |
KR20150127171A (ko) | 2015-11-16 |
EP2985750A4 (en) | 2016-08-24 |
EP2985750A1 (en) | 2016-02-17 |
CN105122336A (zh) | 2015-12-02 |
US20160092012A1 (en) | 2016-03-31 |
JPWO2014168029A1 (ja) | 2017-02-16 |
US9710088B2 (en) | 2017-07-18 |
TW201443739A (zh) | 2014-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6038294B2 (ja) | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価及び決定方法 | |
JP6507222B2 (ja) | 導電性フイルムの評価方法 | |
JP6275618B2 (ja) | 導電性フィルム、それを備える表示装置及び導電性フィルムの配線パターンの評価方法 | |
JP5779535B2 (ja) | 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法 | |
JP5795746B2 (ja) | 導電性フイルム、それを備える表示装置及び導電性フイルムのパターンの決定方法 | |
JP6285888B2 (ja) | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 | |
JP6231432B2 (ja) | 導電性フイルム、それを備える表示装置及び導電性フイルムの評価方法 | |
JP6307410B2 (ja) | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 | |
JP2016081257A5 (ja) | ||
JP6307468B2 (ja) | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 | |
WO2016002791A1 (ja) | 導電性フイルム、これを備える表示装置及び導電性フイルムの評価方法 | |
JP2016082214A5 (ja) | ||
JP2016082037A5 (ja) | ||
WO2016060142A1 (ja) | 導電性フィルム、これを備える表示装置及び導電性フィルムの評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14782839 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015511210 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014782839 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157027856 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |