WO2014167920A1 - 電池状態判定装置 - Google Patents

電池状態判定装置 Download PDF

Info

Publication number
WO2014167920A1
WO2014167920A1 PCT/JP2014/055545 JP2014055545W WO2014167920A1 WO 2014167920 A1 WO2014167920 A1 WO 2014167920A1 JP 2014055545 W JP2014055545 W JP 2014055545W WO 2014167920 A1 WO2014167920 A1 WO 2014167920A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
battery
absolute value
axis component
complex impedance
Prior art date
Application number
PCT/JP2014/055545
Other languages
English (en)
French (fr)
Inventor
大輔 木庭
幸大 武田
公一 市川
高橋 泰博
三井 正彦
Original Assignee
プライムアースEvエナジー 株式会社
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プライムアースEvエナジー 株式会社, トヨタ自動車 株式会社 filed Critical プライムアースEvエナジー 株式会社
Priority to US14/782,788 priority Critical patent/US9995792B2/en
Priority to CN201480019396.2A priority patent/CN105122073B/zh
Priority to DE112014001900.3T priority patent/DE112014001900T5/de
Publication of WO2014167920A1 publication Critical patent/WO2014167920A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery state determination device that determines a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur.
  • a method for determining the initial activity level and the deterioration level of the secondary battery is disclosed (for example, see page 20-21 of Japanese Patent Laid-Open No. 2000-299137, FIG. 15). reference).
  • the complex impedance is measured by applying an alternating voltage to the secondary battery while changing the frequency stepwise. Then, the real axis component and the imaginary axis component of the impedance are obtained from the measured value. By plotting these values on a two-dimensional plane, a complex impedance line composed of a curve and a straight line is drawn.
  • a diameter of a substantially arc portion corresponding to a so-called charge transfer resistance region in the complex impedance line is obtained by an approximation method, and it is determined whether or not the diameter is smaller than a predetermined threshold value. If the diameter of the substantially circular arc portion of the complex impedance is smaller than a predetermined threshold value, it is determined that the initial activity of the battery is sufficient. If the diameter is equal to or larger than the predetermined threshold value, the initial activity is insufficient. To do.
  • a battery with a high possibility of a micro short circuit or a battery with a micro short circuit has a smaller battery capacity than a normal battery. Even if the battery is similarly discharged, the SOC (State ⁇ of Charge) of such a battery is different from the SOC of a normal battery. For this reason, there is a method for determining whether or not a state in which a micro short-circuit has occurred or a state in which there is a high possibility of a micro short-circuit from the difference in impedance change based on the difference in SOC.
  • a non-defective battery that is not a micro short-circuit may be determined as a defective product.
  • a nickel metal hydride battery or a lithium battery having a resistance value of 10 m ⁇ or less is used for in-vehicle use.
  • An object of the present invention is to improve the determination accuracy of a battery state determination device that determines whether or not a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur.
  • the battery state determination device is a battery state determination device that determines a micro short-circuit tendency state that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur.
  • the battery state determination device is an impedance measurement unit that measures a complex impedance by applying an alternating voltage or alternating current of a measurement frequency to a secondary battery to be determined, and the measurement frequency is in a diffusion resistance region.
  • a detection unit that detects an absolute value of an imaginary axis component of the complex impedance obtained from the impedance measurement unit; a storage unit that stores a lower limit threshold; Being set based on the measurement result of the absolute value of the imaginary axis component of the secondary battery that is in a state of being in a short-circuited state; and a determination unit, wherein the determination unit is determined by the detection unit.
  • the detected absolute value of the imaginary axis component is compared with the lower limit threshold value, and when the absolute value of the imaginary axis component is smaller than the lower limit threshold value, the secondary battery to be determined is in the micro short-circuit tendency state. Determining that there is.
  • the complex impedance of the diffusion resistance region is measured for the secondary battery to be determined, and the absolute value of the imaginary axis component is a parameter for determining the micro short-circuit tendency state.
  • the diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve.
  • the impedance change in the diffusion resistance region becomes significant.
  • the absolute value of the detected imaginary axis component is a parameter that best reflects the tendency of minute short circuits, and the measurement error is relatively small. Therefore, even in the case of a battery in which it is difficult to detect a micro short-circuit tendency state with other parameters, it is possible to detect the micro short-circuit tendency state of such a battery without destruction.
  • the impedance measuring unit measures the complex impedance of the secondary battery having a charged state of 20% or less.
  • the complex impedance of the secondary battery which tends to be short-circuited, varies greatly as the state of charge (SOC) of the secondary battery approaches “0”. Since the battery state determination device measures the complex impedance of a secondary battery having a charged state of 20% or less, the detection accuracy of a micro short circuit is also improved, and it is not necessary to fully charge the secondary battery to perform the determination.
  • SOC state of charge
  • the detection unit calculates an absolute value of a real axis component of the complex impedance together with an absolute value of the imaginary axis component
  • the storage unit includes a first value corresponding to the absolute value of the imaginary axis component.
  • a second lower limit threshold that is set based on a measurement result of an absolute value of the real axis component of the secondary battery that is in a state of micro short-circuiting is stored together with a lower limit threshold, and the determination unit is a secondary battery to be determined
  • the secondary battery to be determined is the It determines with it being in a micro short circuit tendency state.
  • the absolute value of the real axis component is used as a parameter for determining a minute short-circuit tendency state. For this reason, by comparing the absolute value of the detected imaginary axis component and the absolute value of the real axis component with the corresponding lower limit threshold values, the determination accuracy of the minute short-circuit tendency state is improved.
  • a battery state determination device that determines a micro short-circuit tendency state that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur.
  • the state determination device is an impedance measurement unit that measures a complex impedance by applying an AC voltage or an AC current of a measurement frequency to a secondary battery to be determined, and the measurement frequency is a frequency corresponding to a diffusion resistance region
  • a storage unit for storing the lower limit threshold value; a determination unit, wherein the determination unit compares the absolute value of the real axis component detected by the detection unit with the lower limit threshold value; When the absolute value of the real axis component is smaller than the lower threshold, the secondary battery of the determination target and a determining that said a micro short circuit tends state.
  • the complex impedance of the diffusion resistance region is measured, and the absolute value of the real axis component is used as a parameter for determining the micro short-circuit tendency state.
  • the diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve.
  • the impedance change in the diffusion resistance region becomes significant.
  • the absolute value of the detected real axis component with a preset lower limit threshold, the determination accuracy of the minute short-circuit tendency state is improved. Therefore, even in the case of a battery in which it is difficult to detect a micro short-circuit tendency state with other parameters, it is possible to detect the micro short-circuit tendency state of such a battery without destruction.
  • a battery state determination device that determines a micro short-circuit tendency state that is a state in which a micro short circuit has occurred or a state in which a micro short circuit is highly likely to occur.
  • the state determination device is an impedance measurement unit that measures a complex impedance by applying an AC voltage or an AC current of a measurement frequency to a secondary battery to be determined, and the measurement frequency is a frequency corresponding to a diffusion resistance region
  • a detection unit that detects an absolute value of the complex impedance obtained from the impedance measurement unit; and stores a lower limit threshold value set based on the measurement result of the complex impedance of the secondary battery that is in a state of micro short circuit.
  • the determination unit calculates an absolute value of the complex impedance detected by the detection unit and the lower limit threshold value. And compare, and a absolute value of the complex impedance is smaller than the lower threshold, the secondary battery of the determination target is determined to the a micro short circuit tends state.
  • the complex impedance of the diffusion resistance region is measured for the secondary battery to be determined, and the absolute value of the complex impedance is used as a parameter for determining the micro short-circuit tendency state.
  • the diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve.
  • the impedance change in the diffusion resistance region becomes significant. Therefore, by comparing the absolute value of the detected impedance with a preset lower limit threshold, the determination accuracy of the minute short-circuit tendency state is improved. Therefore, even in the case of a battery in which it is difficult to detect a micro short-circuit tendency state with other parameters, it is possible to detect the micro short-circuit tendency state of such a battery without destruction.
  • the impedance measuring unit measures the complex impedance of the secondary battery having a charged state of 20% or less.
  • the complex impedance of a secondary battery that tends to be short-circuited changes greatly as the state of charge (SOC) of the secondary battery approaches “0”. Since the battery state determination device measures the complex impedance of a secondary battery whose charge state is 20% or less, the detection accuracy of a micro short circuit is also improved, and it is not necessary to fully charge the secondary battery to perform the determination. .
  • FIG. 1 shows an apparatus outline of a first embodiment according to the battery state determination apparatus of the present invention.
  • FIG. 2 shows a graph of complex impedance obtained by measurement with the same apparatus.
  • FIG. 3 is a distribution diagram showing the relationship between the distribution of non-defective products and defective products used for determination in the embodiment and the complex impedance.
  • FIG. 4 shows a complex impedance graph for explaining the determination method in the embodiment.
  • FIG. 5 shows a flowchart of the determination method in the embodiment.
  • FIG. 1 shows an apparatus outline of a first embodiment according to the battery state determination apparatus of the present invention.
  • FIG. 2 shows a graph of complex impedance obtained by measurement with the same apparatus.
  • FIG. 3 is a distribution diagram showing the relationship between the distribution of non-defective products and defective products used for determination in the embodiment and the complex impedance.
  • FIG. 4 shows a complex impedance graph for explaining the determination method in the embodiment.
  • FIG. 5 shows a flowchart of the determination method in the embodiment.
  • FIG. 6 shows a flowchart of the determination method of the second embodiment of the present invention.
  • FIG. 7 shows a flowchart of the determination method of the third embodiment of the present invention.
  • FIG. 8 shows a flowchart of the determination method of the fourth embodiment of the present invention.
  • a battery state determination apparatus is described.
  • This device is for in-vehicle use, and a secondary battery such as a lithium ion battery or nickel metal hydride battery having a resistance value of 10 m ⁇ or less is in a state where a micro short circuit has occurred or a possibility that a micro short circuit is likely to occur (a micro short circuit tendency state) ).
  • the micro short circuit is a micro short circuit caused by a slight deposit in the battery or a mixture of minute foreign substances. Even if a slight short circuit occurs, the battery may not immediately become unusable.
  • a micro short-circuit may burn out instantaneously when a micro-current flows through the short-circuit location, but may cause a decrease in battery performance and may cause an internal short circuit.
  • the battery state determination device 10 includes a measurement device 11 and a determination device 12.
  • the measuring device 11 includes an impedance measuring unit 11a and an SOC adjusting unit 11b.
  • the impedance measuring unit 11a measures the complex impedance of the battery module M as a secondary battery by applying an AC voltage or an AC current to the battery module M to be determined.
  • the SOC adjustment unit 11b adjusts the state of charge (SOC) of the battery module M.
  • the battery module M is composed of a plurality of battery cells in this embodiment. A plurality of battery modules M are combined to form a battery stack, and the battery stack and the ECU constitute a battery pack mounted on a vehicle or the like.
  • the determination device 12 includes a CPU 12a, a RAM 12b, a ROM 12c, and the like.
  • the ROM 12c stores a program used for determining a minute short-circuit tendency state.
  • the determination result of the determination device 12 is output to an output device 13 such as a display or a printing device.
  • the determination device 12 constitutes a detection unit, a storage unit, and a determination unit.
  • the complex impedance measurement value is input from the measurement device 11 to the determination device 12.
  • the ROM 12c of the determination device 12 stores a measurement frequency Fdif and a lower limit threshold Zjmin set through experiments or the like for the battery module M to be determined.
  • the measurement frequency Fdif and the lower limit threshold Zjmin vary depending on the battery type such as a nickel metal hydride battery or a lithium battery. In the same battery type, when the number of cells, capacity, etc. are different, the measurement frequency Fdif and the lower limit threshold Zjmin change. Accordingly, when the type or configuration of the battery to be determined changes, the measurement frequency Fdif and the lower limit threshold Zjmin are set according to the determination target.
  • the complex impedance Z of the battery module M is expressed as follows by the real axis component Zreal and the imaginary axis component Zimg which are vector components. “J” is an imaginary axis unit.
  • the complex impedance curve N shown in FIG. 2 schematically shows a plot of the magnitudes of the real and imaginary axis components of the complex impedance on a two-dimensional plane.
  • the complex impedance curve N is measured by changing the frequency of the alternating voltage (or alternating current) applied to the battery module M.
  • the horizontal axis represents the absolute value (
  • the complex impedance curve N is divided into a component liquid resistance area A, an arc-shaped charge transfer resistance area B, and a substantially linear diffusion resistance area C from the high frequency side.
  • the component liquid resistance region A is a region where contact resistance in the active material or the current collector, resistance when ions in the electrolytic solution in the separator move, and the like appear.
  • the charge transfer resistance region B is a resistance region in charge transfer or the like.
  • the diffusion resistance region C is a region where an impedance related to material diffusion appears.
  • the measurement frequency Fdif is a predetermined frequency in the frequency range corresponding to the diffusion resistance region C.
  • the reason why the measurement frequency Fdif is a frequency corresponding to the diffusion resistance region C is that the impedance change of the battery module M in a state of a short circuit is more noticeable in the diffusion resistance region C than in the other regions A and B. by.
  • an AC voltage or an AC current having a measurement frequency Fdif is applied to the battery module M.
  • the lower limit threshold Zjmin indicates the lower limit of the magnitude of the imaginary axis component of the complex impedance.
  • the battery module M having the measured absolute value of the imaginary axis component that is less than the lower threshold Zjmin is determined to be a defective product that is in a short-circuit tendency state.
  • the specific value of the lower threshold Zjmin is set as follows. For example, several hundred battery modules M are to be inspected. An AC voltage having a measurement frequency Fdif is applied to each battery module M one by one, and the measuring device 11 or the like measures the imaginary axis component Zimg of the complex impedance.
  • the reason for measuring the imaginary axis component Zimg instead of the real axis component Zreal is that the real axis component Zreal reflects not only the tendency of short-circuiting but also abnormalities due to an increase in liquid resistance and component resistance, and the imaginary axis component Zimg This is because the tendency for a short-circuit is reflected best.
  • each battery module M When the imaginary axis component Zimg of each battery module M is measured, the presence or absence of a micro short circuit of each battery module M and whether or not there is a possibility of a micro short circuit are determined by a known method such as decomposition analysis.
  • the distribution diagram shown in FIG. 3 shows the distribution of the imaginary axis component Zimg when an AC voltage of the measurement frequency Fdif is applied to each battery module M.
  • the horizontal axis in FIG. 3 is the absolute value of the imaginary axis component Zimg
  • the vertical axis is the quantity of the battery module M.
  • defective products are distributed in a region where the absolute value of the imaginary axis component Zimg is smaller than 6.0 m ⁇
  • non-defective products are distributed in a region where the absolute value of the imaginary axis component Zimg is 6.0 m ⁇ or more. .
  • the lower limit threshold Zjmin may be set to a value that is greater than the number of defective products.
  • FIG. 4 shows a non-defective complex impedance curve N1 and a defective complex impedance curve N2. These curves N1 and N2 are measured by changing the frequency and applying an AC voltage to the non-defective and defective battery modules M with low SOC.
  • of the imaginary axis component at the point P1 corresponding to the measurement frequency Fdif in the curve N1 exceeds the lower limit threshold Zjmin.
  • of the imaginary axis component at the point P2 corresponding to the measurement frequency Fdif in the curve N2 is less than the lower threshold Zjmin. Note that when even one of the battery cells constituting the battery module M is in a short-circuit tendency state, the absolute value of the imaginary axis component Zimg of the complex impedance of the battery module M is less than the lower limit threshold Zjmin.
  • the determination device 12 performs SOC adjustment of the battery module M by controlling the SOC adjustment unit 11b of the measurement device 11 (step S1).
  • the SOC adjusting unit 11b discharges (or charges) the battery module M to lower the SOC.
  • the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less.
  • the determination device 12 controls the measurement device 11, and the complex impedance of the battery module M is measured by the impedance measurement unit 11a (step S2). At this time, the determination device 12 controls the measurement device 11 so that the measurement device 11 applies the AC voltage of the measurement frequency Fdif stored in the ROM 12c to the battery module M.
  • the measurement frequency Fdif may be set in advance. By setting the measurement frequency Fdif to a predetermined value, the measurement time can be shortened compared to the case where the frequency range is set.
  • the impedance measurement unit 11a When the impedance measurement unit 11a measures the complex impedance of the battery module M, the impedance measurement unit 11a outputs the measurement value to the determination device 12.
  • the determination device 12 calculates the absolute value (
  • the determination device 12 determines that the determination target battery module M is not in a short-circuit tendency state (non-defective battery module determination). M is determined to be a non-defective product) (step S6).
  • the determination device 12 determines that the battery module M to be determined is a defective product that is in a short-circuit tendency state (step S7). .
  • the complex impedance of the diffusion resistance region is measured for the battery module M to be determined, and the absolute value
  • the diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve N.
  • the impedance change in the diffusion resistance region becomes significant. For this reason, by comparing the absolute value
  • of the imaginary axis component is a parameter that best reflects the tendency of short-circuiting, and the measurement error is relatively small. Therefore, when a minute short-circuit tendency state occurs, a minute short-circuit tendency state is detected in a non-destructive manner even in a battery having another parameter with a small change.
  • the battery state determination apparatus 10 measures complex impedance when the charge state of the secondary battery is 20% or less. Therefore, the determination accuracy of the minute short circuit is also improved, and it is not necessary to fully charge the secondary battery for the determination.
  • the SOC is set to 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy is further improved.
  • the real axis component of the complex impedance is used to determine the micro short-circuit tendency state.
  • the real axis component Zreal reflects not only the tendency of short-circuiting but also increases in liquid resistance, component resistance, and the like. For example, when an abnormality is determined including an increase in liquid resistance, component resistance, etc., it is preferable to use the actual axis component Zreal as a determination parameter.
  • the lower limit threshold Zrmin of the real axis component Zreal is determined in the same manner as the procedure for determining the lower limit threshold Zjmin of the imaginary axis component Zimg in the first embodiment. That is, several hundred battery modules M are to be inspected, an AC voltage having a measurement frequency Fdif is applied, and the measuring device 11 measures the real axis component Zreal of the complex impedance. And the presence or absence of the micro short circuit of each battery module M and whether a micro short circuit may arise are determined by a well-known method. Then, a distribution diagram as shown in FIG. 3 is created, and a lower limit threshold Zrmin serving as a boundary between a non-defective product and a defective product is set from the distribution diagram.
  • the determination device 12 controls the SOC adjustment unit 11b of the measurement device 11 and performs the SOC adjustment of the battery module M (step S1), as in the first embodiment.
  • the SOC adjusting unit 11b discharges (or charges) the battery module M to lower the SOC.
  • the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less.
  • the SOC when the SOC is set to a low state, the impedance change becomes remarkable as compared with the high SOC state, and the state is easily determined. Further, when the SOC is 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy can be further improved.
  • the determination device 12 controls the measurement device 11, and the impedance measurement unit 11a measures the complex impedance of the battery module M (step S2).
  • the impedance measurement unit 11a When the impedance measurement unit 11a measures the complex impedance of the battery module M, the impedance measurement unit 11a outputs the measurement value to the determination device 12.
  • the determination device 12 calculates the absolute value (
  • the determination device 12 reads the lower limit threshold value Zrmin of the absolute value of the real axis component from the ROM 12c (step S11).
  • the determination device 12 determines whether or not the absolute value
  • the determination device 12 determines that the battery module M to be determined is not in a short-circuit tendency state (non-defective battery determination). It is determined that the module M is a non-defective product) (step S6). That is, the battery module M determined to be non-defective in step S6 is not likely to be in a short circuit tendency state, and there is a high possibility that there is no abnormality due to an increase in liquid resistance / component resistance.
  • the determination device 12 determines that the battery module M to be determined is in a micro short-circuit tendency state (step S7).
  • the complex impedance of the diffusion resistance region is measured for the battery module M, and the absolute value
  • the diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve N.
  • the impedance change in the diffusion resistance region becomes significant. Therefore, by comparing the detected absolute value
  • ) of the complex impedance is used for the determination of the micro short-circuit tendency state.
  • is expressed as follows.
  • of the complex impedance includes the real axis component Zreal.
  • the real axis component Zreal is preferably used as a determination parameter, and the absolute value
  • the setting method of the lower limit threshold Zmin of this embodiment is the same as that of the first embodiment. That is, the only difference from the first embodiment is that the parameter on the horizontal axis of the above distribution map is the absolute value
  • the determination device 12 performs SOC adjustment of the battery module M as in the first and second embodiments (step S1). At this time, the SOC adjusting unit 11b discharges (or charges) the battery module M to make the SOC low.
  • the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less.
  • the SOC when the SOC is set to a low state, the impedance change becomes remarkable as compared with the high SOC state, and the state is easily determined. Further, when the SOC is 5% or less, the impedance change becomes particularly remarkable, and the determination accuracy can be further improved.
  • the determination device 12 measures the complex impedance of the battery module M by the impedance measuring unit 11a (step S2).
  • the determination device 12 calculates the absolute value (
  • the determination device 12 reads the lower limit threshold value Zmin of the absolute value of the complex impedance from the ROM 12c (Step S21).
  • the determination device 12 determines whether or not the absolute value
  • the determination device 12 determines that the determination target battery module M is not in a short-circuit tendency state (non-defective product battery module). M is determined to be a non-defective product) (step S6).
  • the determination device 12 determines that the battery module M to be determined is in a short-circuit tendency state (step S7).
  • the complex impedance of the diffusion resistance region is measured for the battery module M, and the absolute value
  • the diffused resistance region is a portion that appears on the low frequency side of the complex impedance curve N.
  • the impedance change in the diffusion resistance region becomes significant.
  • of the detected complex impedance with a preset lower limit threshold Zmin, the determination accuracy of the minute short-circuit tendency state is improved. Therefore, when a minute short-circuit tendency state occurs, a minute short-circuit tendency state is detected in a non-destructive manner even in a battery having another parameter with a small change.
  • the fourth embodiment has a configuration in which only the procedure of the determination method of the first embodiment is changed.
  • the operation of the battery state determination device 10 will be described. About the common part of the operation
  • the imaginary axis component Zimg and the real axis component Zreal of the complex impedance are used for the determination of the micro short-circuit tendency state. When both of these components are equal to or higher than the set lower thresholds Zjmin and Zrmin, a non-defective product determination is performed (determined that the battery module M to be determined is a non-defective product).
  • the lower limit threshold Zjmin of the imaginary axis component Zimg is the same as that of the first embodiment, and the lower limit threshold Zrmin of the real axis component Zreal is the same as that of the second embodiment.
  • the determination device 12 performs SOC adjustment of the battery module M by controlling the measurement device 11 (step S ⁇ b> 1).
  • the SOC adjusting unit 11b discharges (or charges) the battery module M to lower the SOC.
  • the SOC of the battery module M is preferably 20% or less, and particularly preferably 5% or less.
  • the determination device 12 measures the complex impedance of the battery module M (step S2), and based on the measured value (measured complex impedance), the absolute value of the imaginary axis component
  • the determination device 12 reads the absolute value lower limit threshold Zjmin of the imaginary axis component and the absolute value lower limit threshold Zrmin of the real axis component from the ROM 12c (step S31). The determination device 12 determines whether the absolute value
  • the determination device 12 determines that the absolute value
  • the battery module M is not in a short-circuit tendency state, and a non-defective product determination is performed (determined that the battery module M to be determined is a non-defective product) (step S6).
  • step S7 when absolute value
  • the determination device 12 determines that the short-circuit tendency state is present (step S7). That is, only the battery module M in which the absolute value
  • the battery state determination device 10 determines the micro short-circuit tendency state by using the absolute value
  • the battery state determination device 10 determines a non-defective product only when each absolute value
  • the complex impedance of the battery module M with an SOC of 20% or less was measured.
  • the battery module M The complex impedance may be measured in a state where the SOC of the circuit is over 20%.
  • the battery module M is a determination target, and the battery module M is composed of a plurality of battery cells.
  • a single battery cell may be a determination target.
  • the determination target may be a battery stack including a plurality of battery modules M.
  • the micro short-circuit tendency state of the battery module M is determined using the measurement device 11 and the determination device 12, but the battery state determination device of the present invention is not limited to the configuration.
  • the SOC adjustment unit 11b and the impedance measurement unit 11a of the measurement device 11 may be different devices.
  • the method of calculating the integrated value of the charging current is used as a method of measuring the SOC.
  • the method of measuring the SOC is not limited to the method of calculating the integrated value of the charging current.
  • a method of calculating based on other parameters such as a voltage value and temperature, or a method of calculating by combining those parameters including a current value may be used.
  • SYMBOLS 10 Battery state determination apparatus, 11 ... Measurement apparatus, 11a ... Impedance measurement part, 12 ... Detection part, Memory

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 インピーダンス解析によって微小短絡が生じる可能性が高い状態又は電池が微小短絡を起こした状態を判定する電池状態判定装置を提供する。 【解決手段】微小短絡傾向状態を判定する電池状態判定装置10であって、電池モジュールMに周波数変化させた交流電圧又は交流電流を印加して得られる複素インピーダンス曲線のうち拡散抵抗領域に対応する周波数を測定周波数とし、該測定周波数の交流電圧又は交流電流を判定対象の電池モジュールMに印加して複素インピーダンスを測定するインピーダンス測定部11aと、前記複素インピーダンスの虚軸成分の絶対値を検出する判定装置12とを備え、該判定装置12は、虚軸成分の測定結果に基づき設定された下限閾値を記憶し、虚軸成分の絶対値と下限閾値とを比較し、虚軸成分の絶対値が下限閾値よりも小さい場合に、判定対象の電池モジュールMが微小短絡傾向状態であると判定する。

Description

電池状態判定装置
 本発明は、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態を判定する電池状態判定装置に関する。
 従来から二次電池について複素インピーダンスを解析することにより、電池の劣化状態や余寿命を評価する技術が提案されている。この方法によれば、電池を破壊することなく電池状態を評価することができるので、正常であると判定された電池を再利用することも可能である。
 複素インピーダンスを解析する方法の一例として、二次電池の初期活性度及び劣化度を判定するための方法が開示されている(例えば特開2000-299137号公報の第20-21頁、図15を参照)。この方法では、二次電池に対し、周波数を段階的に変化させながら交流電圧を印加することによって、複素インピーダンスが測定される。そして測定値からインピーダンスの実軸成分及び虚軸成分が求められる。それらの値を二次元平面にプロットすることで、曲線及び直線からなる複素インピーダンス線が、描画される。また複素インピーダンス線のうち、いわゆる電荷移動抵抗領域に相当する略円弧部分の径を近似法で求め、その径が所定のしきい値よりも小さいか否かを判断する。複素インピーダンスの略円弧部分の径が所定のしきい値よりも小さければ電池の初期活性度は十分であると判断し、その径が所定のしきい値以上であれば初期活性度は不十分とする。
特開2000-299137号公報
 微小短絡が生じる可能性が高い状態の電池又は微小短絡が生じた電池は、正常な電池と比べて電池容量が少ない。同様に放電したとしても、そのような電池のSOC(State of Charge;充電状態)は、正常な電池のSOCとは相違する。そのため、SOCの相違に基づくインピーダンス変化の相違から、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態であるか否かを判断する手法がある。
 しかしながら、電荷移動抵抗領域のインピーダンス変化の相違から微小短絡に関する判定を行う場合、SOCが変化してもインピーダンス変化が小さい電池では、微小短絡が生じる可能性が高い状態又は微小短絡が生じた状態であるか否か判定することは困難であり、判定精度が低かった。このため、例えば微小短絡ではない良品の電池が不良品として判定されることがあった。このような電池としては、例えばニッケル水素電池や、車載用であって抵抗値が10mΩ以下のリチウム電池が挙げられる。
 本発明の目的は、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態であるか否かを判定する電池状態判定装置の判定精度を向上することにある。
 本開示の一側面によれば、電池状態判定装置は、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、前記電池状態判定装置は、測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部であって、前記測定周波数は、拡散抵抗領域に対応する周波数であることと;前記インピーダンス測定部から得られた前記複素インピーダンスの虚軸成分の絶対値を検出する検出部と;下限閾値を記憶する記憶部であって、前記下限閾値は、前記微小短絡傾向状態である二次電池の前記虚軸成分の絶対値の測定結果に基づき設定されていることと;判定部であって、前記判定部は、前記検出部によって検出された前記虚軸成分の絶対値と前記下限閾値とを比較し、前記虚軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定することとを備える。
 この態様によれば、判定対象の二次電池について、拡散抵抗領域の複素インピーダンスが測定され、虚軸成分の絶対値は、微小短絡傾向状態を判定するためのパラメータとされる。拡散抵抗領域は、複素インピーダンス曲線のうち低周波数側に表れる部分である。微小短絡傾向状態の二次電池では、拡散抵抗領域におけるインピーダンス変化が顕著になる。このため、検出された虚軸成分の絶対値を予め設定した下限閾値と比較することによって、微小短絡傾向状態の判定精度は、向上される。特に虚軸成分の絶対値は、微小短絡傾向を最もよく反映するパラメータであり、測定誤差は比較的小さい。従って他のパラメータでは微小短絡傾向状態が検出されづらい電池の場合でも、非破壊でそのような電池の微小短絡傾向状態を検出することができる。
 一態様としては、前記インピーダンス測定部は、充電状態が20%以下である前記二次電池の前記複素インピーダンスを測定する。
 即ち微小短絡傾向である二次電池の複素インピーダンスは、二次電池の充電状態(SOC)が「0」に近いほど、大きく変化する。上記電池状態判定装置は充電状態が20%以下の二次電池の複素インピーダンスを測定するので、微小短絡の検出精度も向上され、判定を行うために二次電池を満充電にする必要がない。
 一態様としては、前記検出部は、前記虚軸成分の絶対値とともに前記複素インピーダンスの実軸成分の絶対値を算出し、前記記憶部は、前記虚軸成分の絶対値に対応する第1の下限閾値とともに、前記微小短絡傾向状態である二次電池の前記実軸成分の絶対値の測定結果に基づき設定された第2の下限閾値を記憶し、前記判定部は、判定対象の二次電池の前記虚軸成分の絶対値が前記第1の下限閾値よりも小さい、又は、前記実軸成分の絶対値が前記第2の下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する。
 この態様によれば、複素インピーダンスの虚軸成分の絶対値に加え、実軸成分の絶対値が、微小短絡傾向状態を判定するためのパラメータとされる。このため検出された虚軸成分の絶対値、及び実軸成分の絶対値を、それらに対応する各下限閾値と比較することによって、微小短絡傾向状態の判定精度が向上される。
 本開示の他の側面によれば、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、前記電池状態判定装置は、測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部であって、前記測定周波数は、拡散抵抗領域に対応する周波数であることと;前記インピーダンス測定部から得られた前記複素インピーダンスの実軸成分の絶対値を検出する検出部と;前記微小短絡傾向状態である二次電池の前記実軸成分の測定結果に基づき設定された下限閾値を記憶する記憶部と;判定部であって、前記判定部は、前記検出部によって検出された前記実軸成分の絶対値と前記下限閾値とを比較し、前記実軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定することとを備える。
 この態様によれば、判定対象の二次電池について、拡散抵抗領域の複素インピーダンスを測定し、実軸成分の絶対値が、微小短絡傾向状態を判定するためのパラメータとされる。拡散抵抗領域は、複素インピーダンス曲線のうち低周波数側に表れる部分である。微小短絡傾向状態の二次電池では、拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出された実軸成分の絶対値を予め設定した下限閾値と比較することによって、微小短絡傾向状態の判定精度は向上される。従って他のパラメータでは微小短絡傾向状態が検出されづらい電池の場合でも、非破壊でそのような電池の微小短絡傾向状態を検出することができる。
 本開示の他の側面によれば、二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、前記電池状態判定装置は、測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部であって、前記測定周波数は、拡散抵抗領域に対応する周波数であることと;前記インピーダンス測定部から得られた前記複素インピーダンスの絶対値を検出する検出部と;前記微小短絡傾向状態である二次電池の前記複素インピーダンスの測定結果に基づき設定された下限閾値を記憶する記憶部と;判定部であって、前記判定部は、前記検出部によって検出された前記複素インピーダンスの絶対値と前記下限閾値とを比較し、前記複素インピーダンスの絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定することとを備える。
 この態様によれば、判定対象の二次電池について、拡散抵抗領域の複素インピーダンスが測定され、該複素インピーダンスの絶対値が、微小短絡傾向状態を判定するためのパラメータとされる。拡散抵抗領域は、複素インピーダンス曲線のうち低周波数側に表れる部分である。微小短絡傾向状態の二次電池では、拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出されたインピーダンスの絶対値を予め設定した下限閾値と比較することによって、微小短絡傾向状態の判定精度が向上される。従って他のパラメータでは微小短絡傾向状態が検出されづらい電池の場合でも、非破壊でそのような電池の微小短絡傾向状態を検出することができる。
 一態様としては、前記インピーダンス測定部は、充電状態が20%以下である前記二次電池の前記複素インピーダンスを測定する。
 即ち微小短絡傾向の二次電池の複素インピーダンスは、二次電池の充電状態(SOC)が「0」に近いほど、大きく変化する。上記電池状態判定装置は、充電状態が20%以下の二次電池の複素インピーダンスを測定するので、微小短絡の検出精度も向上され、判定を行うために二次電池を満充電にする必要がない。
 
本開示の他の特徴と利点は、以下の詳細な説明と、本開示の特徴を説明するために付随する図面とによって明らかであろう。
 本開示の新規であると思われる特徴は、特に、添付した請求の範囲において明らかである。目的と利益を伴う本開示は、以下に示す現時点における好ましい実施形態の説明を添付した図面とともに参照することで、理解されるであろう。
図1は、本発明の電池状態判定装置に係る第1実施形態の装置概略を示す。 図2は、同装置での測定によって得られる複素インピーダンスのグラフを示す。 図3は、同実施形態で判定に用いられる良品及び不良品の分布と複素インピーダンスとの関係を示す分布図である。 図4は、同実施形態における判定方法を説明する複素インピーダンスのグラフを示す。 図5は、同実施形態における判定方法のフローチャートを示す。 図6は、本発明の第2実施形態の判定方法のフローチャートを示す。 図7は、本発明の第3実施形態の判定方法のフローチャートを示す。 図8は、本発明の第4実施形態の判定方法のフローチャートを示す。
 (第1実施形態)
 以下では、電池状態判定装置の第1実施形態が説明される。この装置は、車載用であって抵抗値が10mΩ以下のリチウムイオン電池、ニッケル水素電池等の二次電池が、微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態(微小短絡傾向状態)にあるか否か判定する。微小短絡は、電池内における僅かな析出物や微小な異物の混入等によって生ずる微小な短絡である。微少短絡が生じても、直ちに電池が使用不可能な状態にはならない場合もある。微小短絡は、短絡箇所に微小電流が流れることで瞬間的に焼切れる場合もあるが、電池の性能低下の要因となりうる他、内部短絡を招来する可能性もある。
 図1に示すように、電池状態判定装置10は、測定装置11、及び判定装置12を備えている。測定装置11は、インピーダンス測定部11a及びSOC調整部11bを有している。インピーダンス測定部11aは、判定対象である電池モジュールMに交流電圧又は交流電流を印加して、二次電池としての電池モジュールMの複素インピーダンスを測定する。SOC調整部11bは、電池モジュールMの充電状態(SOC)を調整する。電池モジュールMは、本実施形態では、複数のバッテリーセルから構成されている。この電池モジュールMが複数組み合わされることによって、電池スタックが構成され、当該電池スタック及びECU等は、車両等に搭載される電池パックを構成する。
 判定装置12は、CPU12a、RAM12b及びROM12c等を有する。ROM12cには、微小短絡傾向状態の判定に用いられるプログラムが格納されている。判定装置12の判定結果は、ディスプレイ、印刷装置等の出力装置13に出力される。この判定装置12は、検出部、記憶部、判定部を構成する。
 判定装置12には、測定装置11から複素インピーダンス測定値が入力される。判定装置12のROM12cには、判定対象となる電池モジュールMのために、実験等を通じて設定された測定周波数Fdif及び下限閾値Zjminが格納されている。この測定周波数Fdif及び下限閾値Zjminは、ニッケル水素電池、リチウム電池といった電池種別によって変化する。また同じ電池種別でも、セル数や容量等が異なる場合には、この測定周波数Fdif及び下限閾値Zjminは変化する。従って判定対象となる電池の種別や構成が変化する場合には、測定周波数Fdif及び下限閾値Zjminは、判定対象に合わせて設定される。
 電池モジュールMの複素インピーダンスZは、ベクトル成分である実軸成分Zreal及び虚軸成分Zimgによって以下のようにあらわされる。尚、「j」は虚軸単位である。
 Z=Zreal+jZimg
 図2に示す複素インピーダンス曲線Nは、複素インピーダンスの実軸成分及び虚軸成分の大きさを2次元平面にプロットしたものを模式化して示している。この複素インピーダンス曲線Nは、電池モジュールMに印加される交流電圧(又は交流電流)の周波数を変化させて測定されている。横軸は実軸成分Zrealの絶対値(|Zreal|)、縦軸は虚軸成分Zimg(|Zimg|)の絶対値である。
 複素インピーダンス曲線Nは、高周波数側から部品液抵抗領域A、円弧状の電荷移動抵抗領域B、略直線状の拡散抵抗領域Cに分けられる。部品液抵抗領域Aは、活物質や集電体内の接触抵抗、セパレータ内の電解液内のイオンが移動する際の抵抗等が表れた領域である。電荷移動抵抗領域Bは、電荷移動等における抵抗の領域である。拡散抵抗領域Cは、物質拡散が関与したインピーダンスが表れた領域である。
 測定周波数Fdifは、この拡散抵抗領域Cに対応する周波数範囲のうち所定の周波数である。測定周波数Fdifが拡散抵抗領域Cに対応する周波数とされる理由は、微小短絡傾向状態の電池モジュールMのインピーダンス変化は、他の領域A,Bに比べて、拡散抵抗領域Cにおいて顕著であることによる。微小短絡傾向状態であるか否か判定する際には、測定周波数Fdifの交流電圧又は交流電流が電池モジュールMに印加される。
 また下限閾値Zjminは、複素インピーダンスの虚軸成分の大きさの下限を示す。下限閾値Zjmin未満の虚軸成分の測定された絶対値を有する電池モジュールMは、微小短絡傾向状態である不良品と判定される。
 下限閾値Zjminの具体的な値は、以下のように設定される。例えば数百個の電池モジュールMが検査対象とされる。各電池モジュールMに1つずつ測定周波数Fdifの交流電圧を印加し、測定装置11等が、複素インピーダンスの虚軸成分Zimgを測定する。ここで実軸成分Zrealではなく虚軸成分Zimgを測定する理由は、実軸成分Zrealには、微小短絡傾向だけでなく液抵抗・部品抵抗の増加による異常も反映され、虚軸成分Zimgには微小短絡傾向が最もよく反映されるためである。
 各電池モジュールMの虚軸成分Zimgが測定されると、分解解析等、公知の方法によって各電池モジュールMの微小短絡の有無、微小短絡が生じる可能性があるか否か判断される。
 図3に示される分布図は、各電池モジュールMに測定周波数Fdifの交流電圧を印加したときの虚軸成分Zimgの分布を示す。図3の横軸が虚軸成分Zimgの絶対値、縦軸が電池モジュールMの数量である。図3の分布図では、虚軸成分Zimgの絶対値が6.0mΩよりも小さい領域に不良品が分布し、虚軸成分Zimgの絶対値が6.0mΩ以上の領域に良品が分布している。従ってこの良品及び不良品の境界である6.0mΩは、下限閾値Zjminとされる。なお、分布図に、良品及び不良品の明確な境界が見られず、良品及び不良品が混在する領域が存在する場合には、その混在領域の最大値、又は、混在領域のうち良品個数が不良品個数よりも多くなる値に、下限閾値Zjminが設定されてもよい。
 図4は、良品の複素インピーダンス曲線N1及び不良品の複素インピーダンス曲線N2を示す。これらの曲線N1,N2は、SOCが低い状態の良品及び不良品の電池モジュールMに対し周波数を変化させて交流電圧を印加することで、測定されている。微小短絡傾向状態のない良品では、曲線N1のうち測定周波数Fdifに対応する点P1の虚軸成分の絶対値|Zimg|が、下限閾値Zjminを超えている。一方、微小短絡傾向状態である不良品では、曲線N2のうち測定周波数Fdifに対応する点P2の虚軸成分の絶対値|Zimg|が、下限閾値Zjmin未満である。尚、電池モジュールMを構成する電池セルのうち1つでも微小短絡傾向状態である場合には、電池モジュールMの複素インピーダンスの虚軸成分Zimgの絶対値は、下限閾値Zjmin未満となる。
 (動作)
 次に、本実施形態の微小短絡傾向状態の判定方法が説明される。ここでは微小短絡傾向状態の判定は、電池状態判定装置10によって自動的に行われる。
 図5に示すように、判定装置12は、測定装置11のSOC調整部11bを制御することで、電池モジュールMのSOC調整を行う(ステップS1)。SOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCが低い状態にされると、図4に示すインピーダンス曲線のように、SOCが高い状態に比べインピーダンス変化が顕著となり、状態が判定されやすくなる。またSOCが5%以下にされると、インピーダンス変化が特に顕著になり、判定精度はより向上される。
 SOC調整を行うと、判定装置12は測定装置11を制御し、インピーダンス測定部11aによって電池モジュールMの複素インピーダンスが測定される(ステップS2)。このとき判定装置12は、ROM12cに格納された測定周波数Fdifの交流電圧を電池モジュールMに測定装置11が印加するように、測定装置11を制御する。又は測定装置11において、測定周波数Fdifが、予め設定されていてもよい。測定周波数Fdifを所定の値に設定することによって、周波数範囲を設定する場合に比べて、測定時間を短くすることができる。
 インピーダンス測定部11aは、電池モジュールMの複素インピーダンスを測定すると、測定値を判定装置12に出力する。判定装置12は、測定値に基づき複素インピーダンスの虚軸成分の絶対値(|Zimg|)を算出する(ステップS3)。また、判定装置12は、ROM12cから下限閾値Zjminを読み出す(ステップS4)。判定装置12は、虚軸成分の絶対値|Zimg|が下限閾値Zjmin未満であるか否か判断する(ステップS5)。
 虚軸成分の絶対値|Zimg|が下限閾値Zjmin以上である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(判定対象の電池モジュールMが良品であると判定される)(ステップS6)。一方、虚軸成分の絶対値|Zimg|が下限閾値Zjmin以下である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態の不良品であると判定する(ステップS7)。
 以上説明されたように、第1実施形態によれば、以下に列挙する効果が得られる。
 (1)第1実施形態によれば、判定対象の電池モジュールMについて、拡散抵抗領域の複素インピーダンスが測定され、複素インピーダンスの虚軸成分の絶対値|Zimg|が、微小短絡傾向状態を判定するためのパラメータとして検出される。拡散抵抗領域は、複素インピーダンス曲線Nのうち低周波数側に表れる部分である。微小短絡傾向状態の二次電池では、拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した虚軸成分の絶対値|Zimg|を予め設定した下限閾値Zjminと比較することによって、従来に比べ微小短絡傾向状態の電池モジュールMは、比較的精度よく検出される。また特に虚軸成分の絶対値|Zimg|は、微小短絡傾向を最もよく反映するパラメータであり、測定誤差は、比較的小さい。従って微小短絡傾向状態が生じたときに、変化の小さい他のパラメータを有する電池においても、非破壊で微小短絡傾向状態が検出される。
 (2)第1実施形態では、微小短絡傾向である電池モジュールMの複素インピーダンスは、電池モジュールMの充電状態(SOC)が「0」に近いほど、大きく変化する。電池状態判定装置10は、二次電池の充電状態が20%以下のときに複素インピーダンスを測定する。したがって、微小短絡の判定精度も向上され、判定のために二次電池を満充電にする必要がない。SOCが5%以下にされた場合には、インピーダンス変化が特に顕著になり、判定精度は、より向上される。
 (第2実施形態)
 次に、本発明を具体化した第2実施形態が、図6にしたがって説明される。第2実施形態は、第1実施形態の判定方法の手順が変更されたのみの構成であるため、第1実施形態と同様の部分については、同一符号を付してその詳細な説明は省略される。
 本実施形態は、微小短絡傾向状態の判定に複素インピーダンスの実軸成分を用いる。上述したように、実軸成分Zrealには、微小短絡傾向だけではなく、液抵抗・部品抵抗等の増加が反映される。例えば液抵抗・部品抵抗等の増加を含めて異常が判定される場合には、実軸成分Zrealを判定用のパラメータとして用いることが好ましい。
 この場合には、第1実施形態における虚軸成分Zimgの下限閾値Zjminを決める手順と同様に、実軸成分Zrealの下限閾値Zrminが決定される。即ち、数百個の電池モジュールMが検査対象とされ、測定周波数Fdifの交流電圧が印加され、測定装置11が複素インピーダンスの実軸成分Zrealを測定する。そして各電池モジュールMの微小短絡の有無と、微小短絡が生じる可能性があるか否かとが、公知の方法で判定される。そして図3に示されるような分布図が作成され、その分布図から良品と不良品との境界となる下限閾値Zrminが設定される。
 次に本実施形態における電池状態判定装置10の動作が説明される。本実施形態の動作と第1実施形態の動作との共通部分については、同一のステップ番号を付して説明は省略される。図6に示すように、判定装置12は、第1実施形態と同様に、測定装置11のSOC調整部11bを制御して、電池モジュールMのSOC調整を行う(ステップS1)。SOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCが低い状態にされると、SOCが高い状態に比べインピーダンス変化が顕著となり、状態が判定されやすくなる。またSOCが5%以下にされると、インピーダンス変化が特に顕著になり、判定精度をより向上できる。
 判定装置12は測定装置11を制御し、インピーダンス測定部11aによって電池モジュールMの複素インピーダンスが測定される(ステップS2)。
 インピーダンス測定部11aは、電池モジュールMの複素インピーダンスを測定すると、測定値を判定装置12に出力する。判定装置12は、測定値に基づき複素インピーダンスの実軸成分の絶対値(|Zreal|)を算出する(ステップS10)。判定装置12は、ROM12cから、実軸成分の絶対値の下限閾値Zrminを読み出す(ステップS11)。判定装置12は、虚軸成分の絶対値|Zreal|が下限閾値Zrmin未満であるか否か判断する(ステップS12)。
 実軸成分の絶対値|Zreal|が、下限閾値Zrmin以上である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(判定対象の電池モジュールMが良品であると判定される)(ステップS6)。即ち、ステップS6で良品判定された電池モジュールMは、微小短絡傾向状態ではなく、液抵抗・部品抵抗の増加による異常もない可能性が高い。
 一方、実軸成分の絶対値|Zreal|が下限閾値Zrmin未満である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態であると判定する(ステップS7)。
 以上説明されたように、第2実施形態によれば、第1実施形態の(2)に記載の効果に加えて以下に列挙する効果が得られる。
 (3)第2実施形態では、電池モジュールMについて、拡散抵抗領域の複素インピーダンスが測定され、複素インピーダンスの実軸成分の絶対値|Zreal|が、微小短絡傾向状態を判定するためのパラメータとして検出される。拡散抵抗領域は、複素インピーダンス曲線Nのうち低周波数側に表れる部分である。微小短絡傾向状態の電池モジュールMでは、拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した実軸成分の絶対値|Zreal|を予め設定した下限閾値Zrminと比較することによって、微小短絡傾向状態の判定精度は向上される。従って微小短絡傾向状態が生じたときに、変化の小さい他のパラメータを有する電池においても、非破壊で微小短絡傾向状態が検出される。
 (第3実施形態)
 次に、本発明を具体化した第3実施形態が、図7にしたがって説明される。、第3実施形態は、第1実施形態の判定方法の手順が変更されたのみの構成である。
 本実施形態は、微小短絡傾向状態の判定に複素インピーダンスの絶対値(|Z|)を用いる。|Z|は、以下のようにあらわされる。
 |Z|={(Zimg)+(Zreal)}1/2
 従って、複素インピーダンスの絶対値|Z|は実軸成分Zrealを含む。液抵抗・部品抵抗等の増加を含めて状態が判定される場合等には、実軸成分Zrealを判定用のパラメータとして用いることが好ましく、虚軸成分Zimgが含まれる複素インピーダンスの絶対値|Z|で判定することで、微小短絡傾向状態における判定精度も向上される。
 本実施形態の下限閾値Zminの設定方法は、第1実施形態と同様である。即ち上述した分布図の横軸となるパラメータが複素インピーダンスの絶対値|Z|であることのみが、第1実施形態とは異なる。
 次に本実施形態における電池状態判定装置10の動作が説明される。本実施形態の動作と第1実施形態の動作との共通部分については、同一のステップ番号を付して説明は省略される。図7に示すように、判定装置12は、第1及び第2実施形態と同様に、電池モジュールMのSOC調整を行う(ステップS1)。このときSOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCが低い状態にされると、SOCが高い状態に比べインピーダンス変化が顕著となり、状態が判定されやすくなる。またSOCが5%以下にされると、インピーダンス変化が特に顕著になり、判定精度をより向上できる。
 また判定装置12は、インピーダンス測定部11aで電池モジュールMの複素インピーダンスを測定する(ステップS2)。
 判定装置12は、インピーダンス測定部11aによる測定値に基づき複素インピーダンスの絶対値(|Z|)を算出する(ステップS20)。判定装置12は、ROM12cから、複素インピーダンスの絶対値の下限閾値Zminを読み出す(ステップS21)。判定装置12は、複素インピーダンスの絶対値|Z|が下限閾値Zmin以下であるか否か判断する(ステップS22)。
 複素インピーダンスの絶対値|Z|が、下限閾値Zminよりも大きい場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(判定対象の電池モジュールMが良品であると判定される)(ステップS6)。一方、複素インピーダンスの絶対値|Z|が、下限閾値Zmin以下である場合には、判定装置12は、判定対象の電池モジュールMが微小短絡傾向状態であると判定する(ステップS7)。
 以上説明されたように、第3実施形態によれば、第1実施形態の(2)に記載の効果に加えて以下に列挙する効果が得られる。
 (4)第3実施形態では、電池モジュールMについて、拡散抵抗領域の複素インピーダンスが測定され、複素インピーダンスの絶対値|Z|が、微小短絡傾向状態を判定するためのパラメータとして検出される。拡散抵抗領域は、複素インピーダンス曲線Nのうち低周波数側に表れる部分である。微小短絡傾向状態の電池モジュールMでは、拡散抵抗領域におけるインピーダンス変化が顕著になる。このため検出した複素インピーダンスの絶対値|Z|を予め設定した下限閾値Zminと比較することによって、微小短絡傾向状態の判定精度は向上される。従って微小短絡傾向状態が生じたときに、変化の小さい他のパラメータを有する電池においても、非破壊で微小短絡傾向状態が検出される。
 (第4実施形態)
 次に、本発明を具体化した第4実施形態が、図8にしたがって説明される。第4実施形態は、第1実施形態の判定方法の手順が変更されたのみの構成である。
 電池状態判定装置10の動作が説明される。本実施形態の動作と第1実施形態の動作との共通部分については、同一のステップ番号を付して説明は省略される。本実施形態は、微小短絡傾向状態の判定に複素インピーダンスの虚軸成分Zimg及び実軸成分Zrealを用いる。これらの成分の両方が、各々設定された下限閾値Zjmin,Zrmin以上である場合に、良品判定が行われる(判定対象の電池モジュールMが良品であると判定される)。虚軸成分Zimgの下限閾値Zjminは第1実施形態と同様であり、実軸成分Zrealの下限閾値Zrminは第2実施形態と同様である。虚軸成分Zimg及び実軸成分Zrealの条件が満たされた電池モジュールMのみを良品として判定することによって、微小短絡傾向状態の判定精度が向上されるとともに、液抵抗・部品抵抗等の増加による異常の有無についての評価が行われうる。
 図8に示すように、判定装置12は、測定装置11を制御することで、電池モジュールMのSOC調整を行う(ステップS1)。SOC調整部11bは、電池モジュールMの放電(又は充電)を行い、SOCを低い状態にする。具体的には電池モジュールMのSOCを20%以下にすることが好ましく、5%以下にすることが特に好ましい。このようにSOCを低い状態にされると、SOCが高い状態に比べインピーダンス変化が顕著となり、状態が判定されやすくなる。またSOCが5%以下にされると、インピーダンス変化が特に顕著になり、判定精度はより向上される。
 判定装置12は、電池モジュールMの複素インピーダンスを測定し(ステップS2)、測定値(測定された複素インピーダンス)に基づき複素インピーダンスの虚軸成分の絶対値|Zimg|及び実軸成分の絶対値|Zreal|を算出する(ステップS30)。このとき虚軸成分の絶対値|Zimg|及び実軸成分の絶対値|Zreal|は、一回の測定で得られるので、判定にかかる時間が極端に長くなることはない。
 判定装置12は、ROM12cから、虚軸成分の絶対値の下限閾値Zjmin及び実軸成分の絶対値の下限閾値Zrminを読み出す(ステップS31)。判定装置12は、虚軸成分の絶対値|Zimg|が下限閾値Zjmin未満であるか否か、又は実軸成分の絶対値|Zreal|が下限閾値Zrmin未満であるか否かを判断する(ステップS32)。
 虚軸成分の絶対値|Zimg|が下限閾値Zjmin以上であり、且つ実軸成分の絶対値|Zreal|が下限閾値Zrmin以上であると判定装置12が判断すると(ステップS32においてYES)、判定対象の電池モジュールMが微小短絡傾向状態ではないとして、良品判定を行う(判定対象の電池モジュールMが良品であると判定される)(ステップS6)。
 一方、虚軸成分の絶対値|Zimg|が下限閾値Zjminよりも小さい、又は実軸成分の絶対値|Zreal|が下限閾値Zrminよりも小さい場合には(ステップS32においてNO)、電池モジュールMが微小短絡傾向状態であると判定装置12は判定する(ステップS7)。即ち、虚軸成分の絶対値|Zimg|及び実軸成分の絶対値|Zreal|の両方が下限閾値Zjmin,Zrmin以上である電池モジュールMのみ良品判定をしている。したがって、電池モジュールMが微小短絡傾向状態であるにも関わらず、誤ってそのような電子モジュールMを良品として判定することは抑制される。
 以上説明されたように、第4実施形態によれば、第1実施形態の(1),(2)に記載の効果に加えて以下に列挙する効果が得られる。
 (5)第4実施形態では、電池状態判定装置10は、複素インピーダンスの虚軸成分の絶対値|Zimg|に加え、実軸成分の絶対値|Zreal|を、微小短絡傾向状態を判定するためのパラメータとして検出する。そして絶対値|Zimg|が虚軸成分の下限閾値Zjminよりも小さい、又は絶対値|Zreal|が実軸成分の下限閾値Zrminよりも小さい場合には電池状態判定装置10は微小短絡傾向と判定する。電池状態判定装置10は、各絶対値|Zimg|,|Zreal|が各下限閾値Zjmin,Zrmin以上である場合にのみ良品判定する(判定対象の電池モジュールMが良品であると判定する)。このため、判定対象の電池モジュールMが微小短絡傾向状態であるにも関わらず、誤ってそのような電子モジュールMを良品として判定することは抑制される。
 上記実施形態は、以下のように適宜変更して実施されることもできる。
 ・上記各実施形態では、SOCが20%以下とされた電池モジュールMの複素インピーダンスが測定されたが、SOCが20%超でも微小短絡傾向状態が検出可能な電池の場合には、電池モジュールMのSOCが20%超にされた状態で、複素インピーダンスが測定されてもよい。
 ・上記各実施形態では、電池モジュールMが判定対象とされ、電池モジュールMは複数のバッテリーセルから構成されたが、単数のバッテリーセルが判定対象とされてもよい。判定対象は、複数の電池モジュールMから構成される電池スタックでもよい。
 ・上記実施形態では、測定装置11及び判定装置12を用いて、電池モジュールMの微小短絡傾向状態が判定されたが、本発明の電池状態判定装置は、その構成に限定されない。例えば、測定装置11のSOC調整部11bとインピーダンス測定部11aは、互いに別の装置でもよい。
 ・上記各実施形態では、SOCを測定する方法として充電電流の積算値を算出する方法が用いられたが、SOCを測定する方法は充電電流の積算値を算出する方法に限定されない。たとえば、電圧値や温度等の他のパラメータに基づき算出する方法、又は電流値を含めたそれらのパラメータを組み合わせて算出する方法が用いられてもよい。
 10…電池状態判定装置、11…測定装置、11a…インピーダンス測定部、12…検出部、記憶部、判定部を構成する判定装置、C…拡散抵抗領域、Fdif…測定周波数、M…二次電池としての電池モジュール、N…複素インピーダンス曲線、Z…複素インピーダンス、Zimg…虚軸成分、Zreal…実軸成分、Zjmin,Zrmin,Zmin…下限閾値。

Claims (6)

  1.  二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、前記電池状態判定装置は、
     測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部であって、前記測定周波数は、拡散抵抗領域に対応する周波数であることと;
     前記インピーダンス測定部から得られた前記複素インピーダンスの虚軸成分の絶対値を検出する検出部と;
     下限閾値を記憶する記憶部であって、前記下限閾値は、前記微小短絡傾向状態である二次電池の前記虚軸成分の絶対値の測定結果に基づき設定されていることと;
     判定部であって、前記判定部は、前記検出部によって検出された前記虚軸成分の絶対値を前記下限閾値と比較し、前記虚軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定することと
    を備えた電池状態判定装置。
  2.  前記インピーダンス測定部は、充電状態が20%以下である前記二次電池の前記複素インピーダンスを測定する、
     請求項1に記載の電池状態判定装置。
  3.  前記検出部は、前記虚軸成分の絶対値とともに前記複素インピーダンスの実軸成分の絶対値を算出し、
     前記記憶部は、前記虚軸成分の絶対値に対応する第1の下限閾値とともに、前記微小短絡傾向状態である二次電池の前記実軸成分の絶対値の測定結果に基づき設定された第2の下限閾値を記憶し、
     前記判定部は、判定対象の二次電池の前記虚軸成分の絶対値が前記第1の下限閾値よりも小さい、又は、前記実軸成分の絶対値が前記第2の下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定する、
     請求項1又は2に記載の電池状態判定装置。
  4.  二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、前記電池状態判定装置は、
     測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部であって、前記測定周波数は、拡散抵抗領域に対応する周波数であることと;
     前記インピーダンス測定部から得られた前記複素インピーダンスの実軸成分の絶対値を検出する検出部と;
     前記微小短絡傾向状態である二次電池の前記実軸成分の測定結果に基づき設定された下限閾値を記憶する記憶部と;
     判定部であって、前記判定部は、前記検出部によって検出された前記実軸成分の絶対値を前記下限閾値と比較し、前記実軸成分の絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定することと
    を備えた電池状態判定装置。
  5.  二次電池に対し微小短絡が生じた状態又は微小短絡が生じる可能性が高い状態である微小短絡傾向状態を判定する電池状態判定装置であって、前記電池状態判定装置は、
     測定周波数の交流電圧又は交流電流を判定対象の二次電池に印加して複素インピーダンスを測定するインピーダンス測定部であって、前記測定周波数は、拡散抵抗領域に対応する周波数であることと;
     前記インピーダンス測定部から得られた前記複素インピーダンスの絶対値を検出する検出部と;
     前記微小短絡傾向状態である二次電池の前記複素インピーダンスの測定結果に基づき設定された下限閾値を記憶する記憶部と;
     判定部であって、前記判定部は、前記検出部によって検出された前記複素インピーダンスの絶対値を前記下限閾値と比較し、前記複素インピーダンスの絶対値が前記下限閾値よりも小さい場合に、前記判定対象の二次電池が前記微小短絡傾向状態であると判定することと
    を備えた電池状態判定装置。
  6.  前記インピーダンス測定部は、充電状態が20%以下である前記二次電池の前記複素インピーダンスを測定する、
     請求項4又は5に記載の電池状態判定装置。
PCT/JP2014/055545 2013-04-12 2014-03-05 電池状態判定装置 WO2014167920A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/782,788 US9995792B2 (en) 2013-04-12 2014-03-05 Battery state determination device determining a micro-short-circuiting tendency of a rechargeable battery
CN201480019396.2A CN105122073B (zh) 2013-04-12 2014-03-05 电池状态判定装置
DE112014001900.3T DE112014001900T5 (de) 2013-04-12 2014-03-05 Vorrichtung zur Feststellung eines Batteriezustandes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013083789A JP5744957B2 (ja) 2013-04-12 2013-04-12 電池状態判定装置
JP2013-083789 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014167920A1 true WO2014167920A1 (ja) 2014-10-16

Family

ID=51689334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055545 WO2014167920A1 (ja) 2013-04-12 2014-03-05 電池状態判定装置

Country Status (5)

Country Link
US (1) US9995792B2 (ja)
JP (1) JP5744957B2 (ja)
CN (1) CN105122073B (ja)
DE (1) DE112014001900T5 (ja)
WO (1) WO2014167920A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414942A (zh) * 2017-02-09 2018-08-17 丰田自动车株式会社 电池状态推定装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958487B2 (en) * 2016-02-04 2018-05-01 Dialog Semiconductor (Uk) Limited Method and apparatus for powering an electronic device
US10794962B2 (en) 2016-02-19 2020-10-06 Toyota Motor Europe Systems and methods for battery micro-short estimation
JP6369510B2 (ja) * 2016-08-25 2018-08-08 トヨタ自動車株式会社 リチウムイオン二次電池の診断装置および診断方法
CN108241102A (zh) * 2016-12-23 2018-07-03 华为技术有限公司 一种电池微短路的检测方法及装置
JP6552118B2 (ja) * 2017-03-17 2019-07-31 本田技研工業株式会社 ナビゲーションシステム、ナビゲーション方法、および、プログラム
JP6729460B2 (ja) * 2017-03-17 2020-07-22 トヨタ自動車株式会社 車載バッテリの充電制御装置
JP6881156B2 (ja) * 2017-08-24 2021-06-02 トヨタ自動車株式会社 インピーダンス推定装置
JP7145865B2 (ja) * 2017-09-21 2022-10-03 古河電気工業株式会社 充電可能電池短絡予測装置および充電可能電池短絡予測方法
TWI657639B (zh) 2017-12-04 2019-04-21 Industrial Technology Research Institute 電池放電流程決定方法和系統
TWI649573B (zh) 2017-12-04 2019-02-01 財團法人工業技術研究院 電池內短路阻抗之偵測方法和系統
CN110244230B (zh) 2018-03-08 2022-07-08 财团法人工业技术研究院 电池安全鉴别方法、内短路危害等级设定方法及警示系统
JP7153196B2 (ja) * 2018-12-26 2022-10-14 トヨタ自動車株式会社 電池特性評価装置、および電池特性評価方法
WO2021028707A1 (ja) * 2019-08-12 2021-02-18 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
US11104242B2 (en) * 2019-10-01 2021-08-31 Ford Global Technologies, Llc Bus bar resistance identification via AC signal injection and battery control therefrom
JP7391621B2 (ja) * 2019-11-12 2023-12-05 日産自動車株式会社 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム
JP7244456B2 (ja) * 2020-04-28 2023-03-22 プライムアースEvエナジー株式会社 二次電池の状態判定方法及び二次電池の状態判定装置
US11977121B2 (en) 2020-09-15 2024-05-07 Analog Devices International Unlimited Company Autonomous battery monitoring system
KR102650095B1 (ko) * 2021-11-30 2024-03-21 주식회사 민테크 이차전지의 불량 검출 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317810A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電池の特性評価方法
JP2011252930A (ja) * 2011-01-13 2011-12-15 Yokogawa Electric Corp 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598873B2 (ja) 1998-08-10 2004-12-08 トヨタ自動車株式会社 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法
JP4887581B2 (ja) * 2001-07-26 2012-02-29 パナソニック株式会社 電池の検査方法および検査装置
CN2569158Y (zh) * 2002-09-05 2003-08-27 北大先行科技产业有限公司 微短路测试仪
JP5083709B2 (ja) * 2007-06-14 2012-11-28 トヨタ自動車株式会社 燃料電池システム
US7856328B2 (en) * 2007-10-10 2010-12-21 Texas Instruments Incorporated Systems, methods and circuits for determining potential battery failure based on a rate of change of internal impedance
EP2811312B1 (en) * 2012-01-31 2019-04-24 Primearth EV Energy Co., Ltd. Battery state detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317810A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電池の特性評価方法
JP2011252930A (ja) * 2011-01-13 2011-12-15 Yokogawa Electric Corp 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414942A (zh) * 2017-02-09 2018-08-17 丰田自动车株式会社 电池状态推定装置

Also Published As

Publication number Publication date
CN105122073B (zh) 2017-12-05
DE112014001900T5 (de) 2015-12-31
CN105122073A (zh) 2015-12-02
US20160061907A1 (en) 2016-03-03
US9995792B2 (en) 2018-06-12
JP5744957B2 (ja) 2015-07-08
JP2014206442A (ja) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2014167920A1 (ja) 電池状態判定装置
TWI752787B (zh) 電池健全性之評估方法及系統
US9880225B2 (en) Battery state determination device
EP2700966B1 (en) Apparatus and method for estimating battery state
WO2013115038A1 (ja) 電池状態検出装置
JP5071747B2 (ja) 二次電池の検査装置、二次電池の検査方法、二次電池の製造方法
EP2811310B1 (en) State of charge detection device
JP5846054B2 (ja) 診断装置および診断方法
JP2008288192A (ja) 蓄電装置の異常検出装置及び方法並びにプログラム
US20160240898A1 (en) Method for reusing vehicle rechargeable battery
JP6742937B2 (ja) 二次電池の状態判定方法及び二次電池の状態判定装置
JP2014044149A (ja) リチウムイオン電池の劣化推定方法
JP2021174729A (ja) 二次電池の状態判定方法及び二次電池の状態判定装置
JP4954791B2 (ja) 蓄電デバイスの電圧予測方法
JP2015195096A (ja) 真偽判定装置及び真偽判定方法
JP2006030080A (ja) 蓄電デバイスの残存容量演算装置
US20110062918A1 (en) Method and device for monitoring the operating state of a battery
JP6156035B2 (ja) 蓄電モジュールの異常検出方法及び異常検出装置
JP2018106916A (ja) 蓄電システム
JP2011228213A (ja) 二次電池の正極活物質割れ判定方法と二次電池の制御方法,および二次電池の正極活物質割れ判定装置と二次電池の制御装置,これらの装置を搭載する車両
WO2022176317A1 (ja) 二次電池の制御装置
JP2011214938A (ja) 鉛蓄電池用バッテリテスタ
JP5928815B2 (ja) 非水電解質二次電池の製造方法
Nishida et al. Battery Control Technology of Li-ion Battery System for HEV
JP2005265682A (ja) バッテリ状態検知装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782155

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14782788

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014001900

Country of ref document: DE

Ref document number: 1120140019003

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14782155

Country of ref document: EP

Kind code of ref document: A1